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When Does a Platform Create Value
by Limiting Choice?

Abstract

We present a theory for why it might be rational for a platform to limit the number of

applications available on it. Our model is based on the observation that even if users

prefer application variety, applications often also exhibit direct network effects. When

there are direct network effects, users prefer to consume the same applications to benefit

from consumption complementarities. We show that the combination of preference for

variety and consumption complementarities gives rise to (i) a commons problem (users

have an incentive to consume more applications than the social optimum to better

satisfy their preference for variety); (ii) an equilibrium selection problem (consumption

complementarities often lead to multiple equilibria); and (iii) a coordination problem

(lacking perfect foresight, it is unlikely that users will end up buying the same set

of applications). The analysis shows that the platform can resolve these problems

by limiting the number of applications available. By limiting choice, the platform

may create new equilibria (including the socially efficient allocation), destroy Pareto-

dominated equilibria, and reduce the severity of the coordination problem faced by

users.



1 Introduction

Platforms, such as video game consoles or personal computers, bring together third-party

application developers and users who demand a variety of these applications. Because plat-

forms connect two (or more) sides of a market, they are characterized by the presence of

indirect network effects: the larger the number of platform users, the more applications are

likely to be developed for it, which, in turn, increases users’ valuation of the platform. For

example, developers’ desire to write Windows applications grows with the number of users

who are expected to adopt that operating system; likewise, the larger the number of ap-

plications expected to run on Windows, the more willing users are to adopt it. Naturally,

indirect network effects have played a prominent role in models of platforms, beginning, at

least, from the pioneering work of Church and Gandal (1992) and Chou and Shy (1996) and

spanning to recent contributions such as Hagiu (2009) or Weyl (2010).

When the value of a platform increases with the number of applications available, it is a

profit-maximizing strategy to offer as many applications as possible so as to exploit indirect

network effects to the maximum possible extent. What’s more, suboptimal exploitation of

indirect network effects may have disastrous consequences as technically superior platforms

may perish in their competition against second-rate alternatives. For example, it is widely

believed that Apple lost its battle against the PC in the late 1980s because of a dearth of

applications. While Microsoft aggressively evangelized independent software vendors and

provided them with tools and support, Apple based its approach on in-house development

of a small number of applications. By the early 1990s, the number of applications available

for the Mac was a small fraction to that for the PC. Likewise, in the 1980s, Sony lost its

battle against JVC whose VHS standard was inferior to Betamax, due, largely, to reduced

movie availability for Sony’s standard.

Given the wealth of evidence suggesting that maximizing the number of applications

available on a platform is a good idea, it is puzzling that firms such as Nintendo or Apple

appear to have actively limited the number of applications on their platforms. In the late

1980s, for example, Nintendo restricted to five the number of new games that developers

were allowed to produce each year for the Nintendo Entertainment System (NES).1 The

company also restricted the number of developers who could sell games for the NES. More

recently, Apple restricts the number of applications available for the iPhone beyond just

controlling for quality. This evidence runs counter the conventional wisdom that “more is

1The NES was the leading second-generation (8-bit) game console. Nintendo’s global market share for
8-bit consoles was greater than 90%.
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always better.”

In this paper, we ask: Why might it be rational for a platform to limit the number of

applications when indirect network effects are at play? Our answer is that by limiting the

number of applications, the platform can help rise users’ utility by resolving:

i. a commons problem;

ii. an equilibrium selection problem; and set)

iii. a coordination problem.

Our theory is based on the observation that even if platforms enjoy indirect network

effects, on many occasions, applications also exhibit direct network effects, i.e., users are

better off consuming the same applications as other users.2,3 When users have limited re-

sources (such as finite time to enjoy applications or an income constraint) and there are many

applications available, they must pick and choose which ones to use. And if direct network

effects are at play, users are better off if they purchase and consume the same limited set of

applications.

We show that when users like application variety but also benefit from consumption

complementarities, three issues may arise. First, the socially optimal number of applications

may not be part of an equilibrium as users may find it unilaterally optimal to deviate to

buy a larger number of applications so as to better satisfy their craving for variety. Second,

multiple equilibria often arise. With the usual assumption that users have perfect foresight,

any one of those equilibria could, in principle, be selected. However, some equilibria lead to

higher user utility than others. Third, if users have no perfect foresight on other users’ choices

in equilibrium, it is unlikely that they will end up with the exact same set of applications,

but such coordination is necessary to fully exploit consumption complementarities.

Our analysis demonstrates that by limiting choice, the platform can accomplish three

tasks. First, it can create new equilibria that did not exist when application choice was

broad. Second, it can eliminate socially inferior equilibria. Third, it can reduce the severity

of the coordination problem faced by users when they do not know other users’ choices

in equilibrium. We conclude that when direct and indirect network effects are at play, an

2For example, gamers often prefer to play the same video games as other gamers as they can then discuss
strategies to beat the game, which makes playing more enjoyable. And in the case of massively multiplayer
online games (MMOG), such as World of Warcraft, the richness of the experience is based directly on the
interactions between players; MMOGs are not fun if played alone.

3The notion of direct network effects was central to the early literature on systems competition, e.g. Katz
and Shapiro (1985), but for the most part has been sidestepped by the literature on platforms.
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important governance decision by platforms is the choice of how many applications should

to be allowed to run on them.

Specifically, we model a platform that connects application developers and users of ap-

plications. We assume that all users are identical and derive utility from product variety

and from consuming the same applications as other users. Preference for variety, modeled as

in Dixit and Stiglitz (1977), gives rise to indirect network effects. Preference for consuming

the same applications as other users, modeled as consumption complementarity (i.e., the

marginal effect of consuming more of a given application increases with other users’ con-

sumption of the same application), gives rise to direct network effects. The model is flexible

in that, depending on the parameter values, there may be direct network effects only, indirect

network effects only, or both types of network effects. We assume that users have a time

budget and that applications are sold at positive prices.

Users play the game where, in a first stage, they decide simultaneously which applications

to purchase and, in a second stage, choose how much consumption time to allocate to each

application. We study subgame-perfect Nash equilibria. Contrary to the recent literature on

platforms (e.g., Rochet and Tirole 2003; Caillaud and Jullien 2003; Armstrong 2006; Hagiu

2009; Casadesus-Masanell and Ruiz-Aliseda 2009), which for the most part studies access

prices and developer entry, we focus on the behavior of users. Thus, we consider elements

such as application prices and qualities as given. And while the platform and application

developers are passive in our model, we study how changing the number of applications

available on the platform affects equilibria.

We find that under pure direct network effects, in every equilibrium users consume only

one application which is the same for all users so that consumption complementarity is

exploited to the maximum possible extent. There are as many equilibria as applications

available on the platform, but since all equilibria lead to the same utility, there is no way

for the platform to improve on users’ utility by limiting or extending choice.

Under pure indirect network effects, users consume a large number of applications to

satisfy their preference for variety. Since there are no consumption complementarities, users’

utility functions are not interdependent and the game is simply a collection of independent

optimization problems (one per user). While there are many equilibria, they all lead to the

same level of utility. Limiting the number of applications available on the platform when

users care exclusively about application variety, can only reduce users’ equilibrium utility.

When both types of network effects are at play, we find that just as in the case of pure

direct network effects, users consume the same set of applications in equilibrium in order
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to exploit consumption complementarities. We also find that there are multiple equilibria.

Multiplicity has two distinct natures in this case. First, there is multiplicity in the sense that

given a number of applications consumed, the specific identity of the applications consumed is

irrelevant (so long as all users consume the same applications). This is the type of multiplicity

that occurs with pure direct or pure indirect network effects. Second, there is multiplicity in

the sense that the set of applications consumed (which is the same for all users) has varying

cardinality. This type of multiplicity is interesting because user utility varies across equilibria.

This type of multiplicity does not exist with pure direct or pure indirect network effects.

(In what follows, by “different equilibria” we mean equilibria with different cardinalities of

applications consumed.)

We find that there is always a set of different equilibria close to the (generally large)

number of applications that users would choose if only indirect network effects were at play.

And if consumption complementarity is sufficiently strong, another set of equilibria emerges

around consuming one application, which is the equilibrium number of applications consumed

under pure direct network effects. Therefore, what is an equilibrium in the case of combined

direct and indirect network effects depends on the strength of consumption complementarity

relative to that of preference for variety. Moreover, in this case new equilibria emerge which

are not an equilibrium under pure network effects of either type.

When preference for variety is more important than consumption complementarity, all

equilibria have a number of applications larger than the socially optimal number. Thus users

face a commons problem. They would be better off if they all consumed fewer applications

(as they would exploit consumption complementarities more fully) but the strong preference

for variety provides incentives to deviate upwards and consume more applications.

When consumption complementarity is stronger than preference for variety, the socially

optimal number of applications is one and there are equilibria where users consume one

application only. However, there are also other equilibria with application cardinalities

greater than one. Thus users face an equilibrium selection problem because, with perfect

foresight, any one of those equilibria could be selected.

Having identified the commons and the equilibrium selection problems, we explore whether

the platform may be able to fix these by choice of the number of applications offered. We

show that if the platform constrains the number of applications to the social optimum, then

in every equilibrium, users consume the socially efficient number of applications. Put dif-

ferently, when consumption complementarity is more important than preference for variety,

by limiting the number of applications the platform gets rid of Pareto dominated equilib-
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ria. And when preference for variety is more important than consumption complementarity,

by limiting the number of applications the platform can also create new, Pareto dominant

equilibria.

The final part of the paper we relax an important standard modeling assumption that,

we believe, has little empirical appeal in our context: perfect foresight about other users’

choices in equilibrium. Since users choose simultaneously which applications to purchase, it

does not seem sensible to assume that they know other users’ choices when they make their

own. It would seem more reasonable to assume that users have no way of knowing which

applications other users will consume when they make their own choices. Thus we study

the game under the assumption that users have no foresight about other users’ choices in

equilibrium.

We find that when direct network effects are at play, users face a coordination problem.

While users will want to purchase and consume the same applications as other users, they will

generally not be able to do so because they have no way of knowing which applications are

being bought by others. The implication is that some of the benefit of direct network effects

is lost as consumption complementarities cannot be fully exploited when users lack foresight

about other users’ choices. In this case, we show that users may benefit substantially when

the number of applications is limited by the platform because this curbs the severity of the

coordination problem that they face. With a smaller choice set, it is more likely that they

will end up purchasing and consuming the same applications and thus more likely that they

will enjoy consumption complementarities.

Our paper contributes to the literature on platforms and two-sided markets, a litera-

ture that has flourished on the basis of industry-specific models. Rochet and Tirole (2003),

for example, is inspired by the credit card industry, Armstrong (2006) captures well the

economics of newspapers, and Hagiu (2009) competition between video game systems. Like-

wise, our model fits well hardware/software platforms such as PDAs or video game systems.

While most of the literature on hardware/software platforms has studied questions related

to pricing, our focus is on one aspect of platform governance that has received little attention

thus far: the effect of limiting the number of applications available on user behavior and,

ultimately, on the value created by the platform.

The only two papers we are aware of that are directly related to the question that we

address here are Zhao (2010) and Ha laburda and Piskorski (2010). Zhao (2010) studies

hardware/software platforms and explores the effects of quantity constraints on product

quality and variety on a monopolistic two-sided platform where quality is uncontractible. He
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finds that when users cannot perfectly observe application quality, developers underinvest in

application quality and that the platform can then use quantity restraints to help mitigate

free-riding and increase overall application quality. While Zhao (2010) studies the effects

of quantity limitations on the behavior of developers, we study the effects on the behavior

of users. A second point of differentiation is that while he provides an explanation for why

it may make sense for the platform to limit the number of applications per developer, in

his theory the platform gains nothing from limiting the number of developers. Therefore,

contrary to ours, his theory is silent about the benefits of limiting the overall number of

applications offered by the platform.

Ha laburda and Piskorski (2010) studies a two-sided platform model based on dating

markets. Without any difference in quality, men prefer market with a larger number of

women, and women prefer a market with more men. It is an environment that gives rise to

indirect network effects. Nonetheless, Ha laburda and Piskorski (2010) shows that users may

benefit when a platform limits the number of candidates. This is because a dating platform

limits the number of candidates on both sides. So, even though it limits the choice, it also

limits the competition. Some agents prefer a platform with less choice, because it increases

the probability that they will find a match. The current paper differs from Ha laburda and

Piskorski (2010) in two ways. First, Ha laburda and Piskorski (2010) is the best suited

for markets with one-to-one matching, like dating or housing markets. The current paper

focuses on markets where users can consume large number of applications. Moreover, the

applications are infinitely duplicable: When one user consumes an application, it does not

limit the availability of the same application to other users. Second, in the applications

market, there is no competitive effect that drives the result in Ha laburda and Piskorski

(2010). To the contrary: as the result of consumption complementarity, the direct network

effect is positive. Users gain if more users (on the same side of the market) consume the

same applications. In the applications market users benefit when the platform restricts

choice because they want to coordinate consumption instead of avoiding competition.

The paper is organized as follows. In Section 2 we present the game with perfect foresight,

and solve for equilibria under direct and indirect network effects and discuss the utility

implications of the platform limiting choice. In Section 3 we recast the model as one where

users have no foresight about other users’ choices in equilibrium, and solve for equilibria

under the different types of network effects and study the implications for users of the

platform limiting choice. Section 4 concludes.
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2 Game with perfect foresight

We consider a platform which brings together developers and users of applications. There is

a set A of available applications and N users. The number of users is exogenous. We denote

the cardinality of A by A. Since our focus is on the user side, we treat A also as exogenous.

Let xka denote user k’s consumption of application a. The consumption utility that user

k derives from consuming xk = (xk1, x
k
2, . . . , x

k
A) applications is given by

u(xk; {xl}l 6=k) =

(∑
a∈A

(
xka
)1/R)R

+ α
∑
a∈A

(
xka
∑
l 6=k

xla
)
,

where α ≥ 0 captures the value of consumption complementarity, and 1 ≤ R < 2 captures

the intensity of the user’s preference for variety.4 The larger is R, the more the users prefer

product variety. When R = 1, there is no preference for variety.

Consumption utility u allows to capture both the direct and indirect network effects.

Indirect network effects originate from users’ preference for variety: users prefer platforms

with more users because it is more likely that more applications will be developed for that

platform. Therefore, the larger is R, the stronger is the source of indirect network effects.

When R = 1, however, users have no preference for variety and, therefore, there are no

indirect network effects.

Direct network effects are present when a user’s utility from consuming an application

increases with other users’ consumption levels of the same application. For example, users

of video games enjoy a given game more if their friends also use the same game, as they

can discuss strategies to beat the game. Direct network effects are captured by the term

α ·xka ·
∑

l 6=k x
l
a: user k’s enjoyment of her consumption of application a is larger the more the

other users (l 6= k) consume application a. We let α ≥ 0. When α = 0, there are no direct

network effects and as α increases, direct network effects become stronger. In summary,

user preferences may exhibit direct or indirect network effects, depending on the value of

parameters α and R. Table 1 illustrates how the presence of network effects depends on the

parameter values.

We assume that users have a budget of X units of time to consume the applications and

interpret xka ≥ 0 as the amount of time that user k spends consuming application a. Thus, if

user k consumes Q ⊆ A applications, she must satisfy the budget constraint: X ≥
∑

a∈Q x
k
a.

Applications are sold at exogenous price p > 0 each, regardless of how much users consume

4Note that when α = 0, preferences are as in Dixit and Stiglitz (1977).
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Figure 1: Types of network effects depending on parameter values.

them.5 To make the problem nontrivial, we assume that p < X. This guarantees that p is

sufficiently low for users to find it desirable to consume at least one application. Therefore,

user k’s net utility from consuming xk when price is p is given by

U(xk; {xl}l 6=k) = u(xk; {xl}l 6=k)− p ·
∑
a∈A

1(xka), (1)

where 1(·) is an indicator function taking value 1 when its argument is different from zero.

Since the focus of our analysis is on the value of limiting choice, we also assume that

absent action by the platform to constrain the set of available applicaitons, the cardinality of

A is large. Specifically, we assume that A ≥
( (R−1)X

p

) 1
2−R . We will show that this guarantees

that there are sufficiently many different applications available for users to satisfy their

preference for variety.

We consider the following two-stage game: In the first stage, all users decide simultane-

ously which games to purchase at price p. In the second stage, users decide simultaneously

how to allocate their time budget X across the applications they have purchased. We solve

for the subgame-perfect Nash equilibria in pure strategies and follow Katz and Shapiro (1985)

in assuming that expectations are fulfilled in equilibrium.

Specifically, given that user k has already purchased set of applications Qk, in the second

stage she chooses consumption xk to maximize her own consumption utility u given the

expected consumption of all other N − 1 users, xl for l 6= k:

max
xka, a∈Qk

u(xk; {xl}l 6=k) subject to X ≥
∑
a∈Qk

xka. (2)

5We present the results for p = 0 in an appendix.
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In the first stage, users choose the set of applications to purchase, Qk ⊆ A, anticipating

their own consumption and that of all other users in the second stage. User k’s objective is

to maximize her own net utility U .

We end the description of the model by presenting two definitions that are helpful for

the discussion of equilibria.

Definition 1 (balanced strategy) Let Qk be the set of applications consumed by user k.

And let Qk be the cardinality of Qk. We say that user k’s strategy is balanced if xka = X
Qk for

a ∈ Qk, and xka = 0 for a /∈ Qk.

Thus, a balanced strategy is one where the user allocates her time budget equally across all

the applications she consumes. Note that balanced strategies are pure strategies and that

for any Qk there is a unique balanced strategy.

Definition 2 (balanced equilibrium) An equilibrium is balanced if all users play balanced

strategies.

In this section, we solve the game under the assumption that users have a perfect foresight

about other users’ choices in equilibrium. This is a classic assumption of rational beliefs, a

part of Nash equilibrium. Later, in Section 3 we relax the perfect-foresight assumption.

In the remainder of this section, we investigate separately each type of network effects

before considering the interplay of both types together. We first study the model with direct

network effects and find that users consume one single application so as to take full advantage

of consumption complementarities (Section 2.1). Then, we move on to studying the model

with pure indirect network effects and find that users choose to consume a large number of

applications driven by their preference for variety (Section 2.2). Next, we study the interplay

between the two types of network effects and find that there is a tradeoff between harnessing

consumption complementarities and the utility gains from product variety. In the Pareto-

optimal equilibrium, users always consume a smaller number of applications than under pure

indirect network effects (Section 2.3). Finally, we show that the platform can create value

by limiting the number of applications available even if though users have perfect foresight

about each others’ purchase and consumption decisions (Section 2.4).

2.1 Direct network effects

There are pure direct network effects when users derive utility from consuming the same

applications as other users but not from product variety. Therefore, consumption utility
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u exhibits pure direct network effects when R = 1 and α > 0. In this case, user k’s net

utility (1) takes the form

UD(xk; {xl}l 6=k) =
∑
a∈A

xka + α
∑
a∈A

(
xka
∑
l 6=k

xla
)
− p ·

∑
a∈A

1(xka).

User k’s consumption of application a in an equilibrium is denoted by x̂ka. Let QkD ⊆ A
be a set of applications that user k consumes in equilibrium in an environment with pure

direct network effects. Then, the cardinality of QkD is Qk
D =

∑
a∈A 1(x̂ka). The following

proposition characterizes the equilibria in this case.

Proposition 1 When R = 1 and α > 0, in every equilibrium QkD = QD for all k and the

number of applications consumed is Qk
D = QD = 1 for all k. There are A equilibria. All

equilibria are balanced and Pareto optimal.

Proof. See Appendix A, page 30.

Because R = 1, users derive no utility from product variety. However, because α > 0

they derive utility from other users consuming the same applications for longer periods of

time. Indeed, user k’s marginal utility of consuming application a is increasing in other

users’ aggregate consumption of a,

∂ uD(xk; {xl}l 6=k)
∂xka

= 1 + α ·
∑
l 6=k

xla .

Therefore, the more other users consume application a, the more user k desires to consume

a. Since the same applies to all users, in equilibrium all users consume the same application.

Users could coordinate on any one of the A applications available, since all users and all

applications are homogeneous.

2.2 Indirect network effects

There are pure indirect network effects when users derive utility from product variety but

not from consuming the same applications as other users. Therefore, consumption utility u

exhibits pure indirect network effects when 1 < R < 2 and α = 0. In such a case, user k’s
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net utility (1) takes the form

UI(x
k; {xl}l 6=k) =

(∑
a∈A

(
xka
)1/R)R − p ·∑

a∈A

1(xka). (3)

Note that (3) is essentially the same as the setup in Dixit and Stiglitz (1977), with two

exceptions. First, the cost of time spent using application a is set in our model to 1 for

all a ∈ A. Second, we impose a price p > 0 that users must pay to use an application.6

Proposition 2 characterizes the equilibria in this case.

Proposition 2 Assume 1 < R < 2 and α = 0. Let qI =
(
(R−1)X

p

) 1
2−R . In every equilibrium

the number of applications consumed is Qk
I = QI for each user k, where QI = max{1, qI}.

All equilibria are balanced and Pareto optimal.7

Proof. See Appendix A, page 31.

To understand this result, notice that Dixit and Stiglitz (1977) implies that when α = 0

and p → 0, the solution to optimization problem (2) is QI → ∞ and x̂ka = X
QI
→ 0. Users

derive utility from product variety and find it optimal to consume as many applicaitons

as possible in equal proportions. The result is driven by the fact that, as long as R > 1,

applications have infinite marginal consumption utility around zero:

lim
xka→0

∂ uI(x
k; {xl}l 6=k)
∂xka

=∞

and that this marginal utility decreases as consumption increases. Therefore, spreading the

time budget evenly across Q + 1 applications yields more utility than spreading the same

time budget across Q applications.

To determine how many applications to purchase, users must compare the additional

benefit from consuming an additional application and the price p that they must pay for that

application. Specifically, if Q applications are consumed by a user in optimal consumption

6More precisely, our cost of time (which we normalize to 1) corresponds to the application prices in the
original Dixit-Stiglitz’s formulation. In contrast to Dixit-Stiglitz, we assume that users must pay a fixed price
for access to each application she consumes, p > 0. This price is independent of the usage. For example,
when users buy a particular videogame title, they pay for it once regardless of the usage, and then they
allocate scarce time to playing the game. In our model, the price of the game is p and the opportunity cost
of time allocated to playing the game is 1.

7There are N ·A!
QI !(A−QI)!

pure-strategy subgame-perfect Nash equilibria and continuum mixed strategy equi-

libria.
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schedule, her utility is
(
Q
(
X
Q

) 1
R
)R − pQ = QR−1X − pQ. Therefore, the marginal benefit

from increasing Q is (R − 1)QR−2X. The marginal cost of an additional application is p.

Equating marginal benefit and marginal cost, we find that the optimal number of applications

consumed under pure indirect network effects is qI =
( (R−1)X

p

) 1
2−R . With p < X, it is always

worth for a user to consume at least one application. We assume that the user cannot

consume less than one application. Thus, if qI < 1, the user consumes one application.

Therefore, the optimal consumption is characterized by QI = max{1, qI}.
Let QkI ⊆ A be the set of applications that user k consumes in equilibrium in an envi-

ronment with pure indirect network effects. Proposition 2 states that all users consume the

same number of applications in equilibrium, i.e., Qk
I = QI for all k. However, it does not

need to be that users consume the same applications, i.e. we may have QkI 6= QlI for k and

l 6= k. This is because users gain no utility from consuming the same applications as others.

Thus, any N subsets of A with cardinality QI constitutes an equilibrium.

2.3 Interplay between direct and indirect network effects

Now we investigate what happens when users in the platform experience both direct and

indirect network effects, so that they derive utility from product variety and from consuming

the same applications as other users. In such a case, 1 < R < 2 and α > 0. Let QkDI ⊆ A
be a set of applications that user k consumes in equilibrium in an environment with direct

and indirect network effects, and let Qk
DI be the cardinality of QkDI . Note that in the cases

of pure direct and of pure indirect network effects, in all equilibria users consumed exactly

the same number of applications, i.e., Qk
D = 1 and Qk

I = max{1, qI}. However, when both

direct network effects are present, multiple values of Qk
DI are possible.

The study of this hybrid specification is substantially more complex than the cases of

pure direct and pure indirect network effects. Therefore, we present the analysis in parts.

We begin by introducing two helpful lemmas.

Lemma 1 Assume that 1 < R < 2 and α > 0. In every balanced equilibrium QkDI = QDI
for all k.

Proof. See Appendix A, page 33.

Lemma 2 Assume that 1 < R < 2 and α > 0. If QDI is the cardinality of the consumption

set in a balanced equilibrium, then any set of applications QDI ⊆ A of cardinality QDI

constitutes a balanced equilibrium.
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Proof. See Appendix A, page 35.

The lemmas imply that in the case of 1 < R < 2 and α > 0 we may completely

characterize balanced equilibria by simply stating equilibrium cardinalities QDI . Lemma 1

says that in every balanced equilibrium all users consume the same applications. Lemma 2

says that if QDI is the number of applications consumed in a particular balanced equilibrium,

then there are CA
QDI

equilibria with the same number of applications consumed. For example,

if A = {1, 2, 3, 4}, QDI = 2 characterizes six balanced equilibria: QDI1 = {1, 2}; QDI2 =

{1, 3}; QDI3 = {1, 4}; QDI4 = {2, 3}; QDI5 = {2, 4}; and QDI6 = {3, 4}. It is easy to see

that users derive the same utility in all of these equilibria and, thus, we think of them as

equivalent. For clarity of exposition, we refer to balanced equilibria by just indicating their

cardinality.

To study balanced equilibria, it is helpful to define the following function:

V (Q) = QR−1X + α
X2

Q
(N − 1)− pQ. (4)

Suppose that all users play balanced strategies and consume the same set of applications of

cardinality Q. Then, each user’s net utility (1) is given by V (Q). Lemma 1 implies that the

net utility in every balanced equilibrium must be on V (Q). Figure 2 illustrates the shape of

V for different values of α.

Figure 2: Shape of V for different values of α. (R = 1.7135, A = 30, X = 2, N = 16,
p = 0.646.)

The shape of V is driven by the tradeoff between consumption complementarity and

preference for variety. As shown by Proposition 1 consumption complementarity and the

resulting direct network effects induce users to consume one application only. Proposition 2,

13



however, shows that preference for variety and the resulting indirect network effects induce

users to consume more applications. The figure shows that when users have strong preference

for variety as compared to consumption complementarity (low α), indirect network effects

outweigh direct network effects. When preference for variety is weak, however, direct network

effects outweigh indirect network effects.

Let

Q̂ = max

{
1, Q such that

dV

dQ
= 0

}
.

If V has interior maxima, then Q̂ is the unique interior maximum. Otherwise, V reaches its

maximum at Q̂ = 1. As we can see in Figure 2, when α is large, Q̂ = 1 (cf. α = 0.16 in the

figure). Otherwise, Q̂ > 1 (other values of α in the figure). The value Q̂ is important for

the shape of V . Specifically, for Q > Q̂, V is always decreasing. However, for Q̂ > 1, when

Q < Q̂, V first decreases and then increases. It is possible for some Qs less than Q̂ that

V (Q) > V (Q̂). Let Q? be Q < Q̂ such that V (Q?) = V (Q̂), when Q̂ > 1.

The following remark states that Q̂ is lower than QI , the equilibrium number of applica-

tions consumed when there are no direct network effects (as defined in Proposition 2).

Remark 1 When QI ≥ 1, then Q̂ < QI .

Proof. See Appendix A, page 35.

Intuitively, the presence of direct network effects prompts users to allocate their limited

time budget to fewer applications. The fact that other users consume the same applications

compensates for the loss of application variety. The condition QI ≥ 1 guarantees that the

comparison between Q̂ and QI is nontrivial.8

The values Q̂, QI and Q? are very important for characterization of balanced equilibria

when both direct and indirect network effects are present. Following two proposition show

that there is a large set of Qs that cannot characterize balanced equilibria. The results are

helpful because they significantly constrain the set of Qs that may characterize equilibria.

Proposition 3 Assume that 1 < R < 2 and α > 0. If Q̂ > 1, then Q̂ is not a balanced

equilibrium.

Proof. See Appendix A, page 36.

8For QI = 1, Q̂ = QI = 1.
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The proposition states that when Q̂ in interior, it cannot be a balanced equilibrium. This

is because there is a profitable upward deviation, i.e., users have incentive to consume more

applications. By the definition of Q̂, if Q̂ > 1, it must be that ∂V (Q)
∂Q

∣∣
Q=Q̂

= 0. Therefore, an

incremental balanced deviation upwards to Q̂+ ε has no effect on the utility of the deviator.

However, the optimal unilateral deviation upward is not balanced.9 The optimal upward

deviation is strictly more beneficial to the user than the balanced deviation. Therefore, an

optimal upward deviation is strictly profitable.

Proposition 4 Assume that 1 < R < 2 and α > 0. Then for any Q such that max{1, Q?} ≤
Q < Q̂ or Q > QI , Q cannot characterize a balanced equilibrium.

Proof. See Appendix A, page 37.

Figure 3 illustrates Proposition 4.

Figure 3: Intervals of Q that cannot be an equilibrium as described in Proposition 4.

To understand this result, consider first Q > QI . Given that all other users consume Q

applications, any user has incentive to deviate downwards to QI . The utility for user k from

deviating to Qk < Q is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X + �
�Qkα

X

�
�Qk

(N − 1)
X

Q︸ ︷︷ ︸
consumption complementarity

−pQk .

9In the case of deviation upward, the deviator consumes some applications that no other user consumes.
Due to consumption complementarity, an optimal consumption schedule then calls for more consumption of
those applications that other users consume, and less (but positive) consumption of applications that only
the deviator consumes.
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Note that the consumption complementarity term is independent of Qk. Since she consumes

Qk < Q, the deviator consumes only applications also consumed by the other users.10 Each

of those applications is consumed by all other users at the level of (N − 1)X
Q

. The deviator

divides her time budgetX amongst theQk applications that she consumes, Qk· X
Qk . Therefore,

the benefit of the direct network effect is constant, no matter what Qk < Q the deviator

chooses. However, the net benefit of variety (Qk)R−1X − pQk is maximized at QI which is

lower than Q. As a consequence, the deviator would want to deviate to QI . We conclude that

Q > QI may not be an equilibrium. Intuitively, consuming more than QI applications leads

to “too much” application variety for the price. Moreover, if it had an effect, consumption

complementarity would push users to consume fewer applications also.

Now we argue that for Q ∈ [max{1, Q?}, Q̂) there is a profitable deviation upwards. In

what follows we impose that the deviator balances his time budget across all the applications

that she consumes. Even though this is not the optimal deviation, we show that it is a

profitable deviation (and therefore, the optimal deviation is also profitable). Given that all

other users consume Q applications in a balanced way, the utility of the deviator from a

balanced consumption of Qk applications is:

UDI(Q
k ≥ Q) =

(
Qk
)R−1

X + ��Qα
X

Qk
(N − 1)

X

��Q︸ ︷︷ ︸
consumption complementarity

−pQk . (5)

Note that UDI(Q
k ≥ Q) is the same function of Qk as V in equation (4) which has a local

maximum at Q̂ > Q. Moreover, for all Q ∈ [max{1, Q?}, Q̂), UDI(Q̂ > Q) > UDI(Q).

Thus, for all those values of Q, there is a profitable upwards deviation. We conclude that

Q ∈ [max{1, Q?}, Q̂) may not be an equilibrium.

Intuitively, consuming more applications satisfies the deviator’s preference for variety to a

greater extent. However, consuming less of each application consumed by other users means

that the utility from consumption complementarity is lower. When Q ∈ [Q?, Q̂] the tradeoff

is resolved in favor of consuming more applications.

Note that for Q ∈ [1, Q?] and Q ∈ [Q̂, QI ] the same trade off is at play. However, it

is possible that the trade off is resolved in favor of consumption complementarity which

means that it is not worth for users to deviate upwards. In combination with Lemma 3

10Consider user k and suppose that all other users play balanced strategies consuming the same set of
applications Q. Directly, we can see that if user k decides to also consume Q applications, she consumes
exactly the applications in Q and not other. Moreover, it is optimal for her to consume them in equal
amounts, i.e., she consumes them according to a balanced strategy. However, user k may also consider
deviations that involve consuming a different number of applications.
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this implies that equilibria are possible in these intervals. Propositions 4 and 5 show that

multiple such equilibria exist. We show that there are two aspects to this multiplicity. First,

as described in Lemma 2, for any given cardinality QDI there may exist multiple sets QDI
each constituting a separate equilibrium. Second, there may exist many different values of

QDI that characterize equilibria. The former type of multiplicity is of no consequence to

user utility while the latter has important utility implications. Thus we focus on the second

type of multiplicity in our analysis.

The following lemma assures that so long as Q ≤ QI , it is never beneficial for user k to

deviate to a strategy with a lower number of applications. Thus, in searching for balanced

equilibria, we need to focus only on deviations to a larger number of applications.

Lemma 3 Assume that 1 < R < 2 and α > 0. If all users play balanced strategy Q with

cardinality Q ≤ QI , then any unilateral deviation by user k to any other strategy with Qk < Q

leads to lower utility for player k.

Proof. See Appendix A, page 38.

To understand this result, suppose that all users are consuming Q ≤ QI and consider a

deviation to Qk < Q. At Q, users have no incentive to deviate downward. The utility for

the deviator is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X + α�
�Qk X

�
�Qk

(N − 1)
X

Q︸ ︷︷ ︸
consumption complementarity

− pQk .

Note that UDI(Q
k ≤ Q) is increasing for all Qk ≤ Q and therefore it is maximized at Qk = Q.

Thus there is no incentive to deviate downward.

Intuitively, consuming fewer applications satisfies user k preference for variety to a lesser

extent. At the same time, there is no benefit from consumption complementarity. The reason

is that each of the applications used by the deviator are consumed by all other users at the

level of (N−1)X
Q

. The deviator divides her time budget X amongst the Qk applications that

she consumes Qk · X
Qk = X. Therefore, the benefit of the direct network effect is constant,

no matter what Qk the deviator chooses.

Proposition 5 states that there always exists a balanced equilibrium where all users

consume QI applications and that Qs close but lower than QI also characterize equilibria.
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Together with Proposition 4, Proposition 5 indicates that QI is the equilibrium with the

largest number of applications consumed.

Proposition 5 When 1 < R < 2 and α > 0, there always exist balanced equilibria with

QDI = QI , where QI is defined in Proposition 2. Furthermore, if QI > 1 there is Qo < QI

such that any Q ∈ [Qo, QI ] characterizes balanced equilibria, i.e., Q = QDI .

Proof. See Appendix A, page 39.

Figure 4a illustrates this result. The proposition states that so long as users exhibit

preference for variety, no matter how small, there are balanced equilibria with the same

number of applications, QI , that users would choose to consume if there were no direct

network effects.

To understand why QI is an equilibrium, by Lemma 3 we need only consider deviations

upward. By the same argument to that following equation (5), a deviation upward cannot

improve the utility from consumption complementarity. Moreover, QI maximizes utility from

preference for variety. Therefore, there are no incentives to deviate and QI is an equilibrium.

A deviation upwards always decreases utility from consumption complementarity. Notwith-

standing, for Q < QI there is some benefit from increased variety. For Q less than but close

to QI , however, this benefit is infinitesimally small (the FOC is satisfied at QI) and it is

outweighed by the utility loss from consumption complementarity. Therefore, Q less than

but close to QI also characterize equilibria.

Proposition 6 shows that there may also exist other equilibria.

Proposition 6 Assume that 1 < R < 2 and α > 0. There exist parameter values such that

QDI = 1 and QI > 1.

Proof. Suppose that QI > 1, which implies that qI > 1 or (R − 1)X > p. When all users

consume one application only, their consumption utility is:

u(Q=1) = X + αX2(N − 1).

Now, if a user deviates to consume y of second application, her consumption utility is:

u(Q=2) =
(

(X − y)
1
R + y

1
R

)R
+ αX(N − 1)(X − y).
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The optimal level of deviation y∗ is characterized by the first order condition:

∂u(Q=2)

∂y
=
(

(X − y∗)
1
R + y∗

1
R

)R−1(( 1

y∗

)1− 1
R

−
(

1

X − y∗

)1− 1
R

)
− αX(N − 1) = 0.

Notice that y∗ decreases with N and y∗ → 0 as N → ∞. Therefore, as N increases, y∗

decreases but QI is not affected.

To find out if the value of the optimal deviation is larger than the price of the second

application, we compute:

u(Q=2| y=y∗)− u(Q=1) =

=
(

(X − y∗)
1
R + y∗

1
R

)R
+ αX(N − 1)(X − y∗)− (X + αX2(N − 1)) <

<
(

(X − y∗)
1
R + y∗

1
R

)R
−X.

Note that ((X − y∗) 1
R + y∗

1
R )R−X is continuous, takes value zero at y∗ = 0 and it is strictly

increasing in y∗. Therefore for any price p, we can find N large enough so that y∗ is low

enough so that

u(Q=2| y=y∗)− u(Q=1) < p,

and the deviation is not profitable.

This completes the proof of Proposition 6.

Notice that it is necessary that V (Q = 1) > V (Q̂) for Q = 1 to be an equilibrium. It

follows from Proposition 4.

By similar arguments as in the proof pf Proposition 6, we can show that an y environment

around Q=1 may also be an equilibrium.

The result of Proposiiton 6 is illustrated in Figure 4b. There we can see that equilibria

exist in two disconnected intervals: one interval around Q= 1 (recall that by Proposition 1

QD = 1 is the equilibrium under pure direct network effects) and the other one around QI .

In the interval around QD = 1, the strong consumption complementarities (users consume

the same few applications intensely) guarantee that users do not want to deviate to consume

more applications. In the interval around QI , the weak consumption complementarities

(users consume little of many applications) guarantee that users do not want to deviate to

consume fewer applications.

We have seen that there are multiple equilibria. The final result in this subsection Pareto
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(a) (b)

Figure 4: Intervals of QDI .

ranks the equilibria.

Proposition 7 When there exist multiple balanced equilibria with different values of QDI ,

equilibria with a smaller QDI Pareto dominate equilibria with larger QDI .

Proof. See Appendix A, page 41.

Function V (Q) is user utility in a situation where every user consumes Q applications in

a balanced way. Therefore, for QDI that constitute a balanced equilibrium, V (QDI) gives

the utility that users obtain in equilibrium. As follows from Proposition 4 and illustrated by

Figure 3, whenever V (Q) is increasing, such Qs cannot be equilibria. Therefore, equilibrium

utility must be decreasing in QDI .

2.4 On the role of the platform: Creating value by limiting choice

We conclude Section 2 by showing that users may benefit when platform limits the number

of applications available; but only when both direct and indirect network effects are present.

To examine the platform’s choice of the number of applications available, A, we relax the

assumption that A ≥
( (R−1)X

p

) 1
2−R .

First, notice that when pure direct network effects are present, the users achieve the same

net utility in an equilibrium, for any A ≥ 1. The platform cannot improve on this.

Corollary 1 Assume that R = 1 and α > 0. Then the platform cannot change the net

utility that users achieve in an equilibrium, for any A ≥ 1.
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From Section 2.2 we know that when A ≥ qI , under pure indirect network effects, in an

equilibrium, every user consumes QI applications. As Corollary 2 states, when the platform

sets 1 < A < qI , the users consume all available applications. But they yield lower utility

than from consuming QI applications.

Corollary 2 Assume that 1 < R < 2 and α = 0. If 1 < A < qI , then there exists a unique

equilibrium. This is a balanced equilibrium where all users consume all A applications. The

net utility of users in equilibrium strictly increases with A for A < qI .

Therefore, the platform can only decrease users’ utility when limiting the number of

available applications. When A < qI users strictly gain from access to a larger number of

applications. And when A ≥ qI , the users do not gain or lose by having more applications

available.

Now we turn to the case where both direct and indirect network effects are present. The

following definition is helpful for the arguments in this case. Let

Q∗∗ = arg maxV (Q). (6)

From the shape of V follows that Q∗∗ may be either 1 or Q̂. In both cases Q∗∗ ≤ Q̂ ≤ QI

(the latter equality holds only when QI = 1). When Q∗∗ = Q̂ > 1, then by Proposition 3,

Q∗∗ never characterizes a balanced equilibrium. When Q∗∗ = 1 (it may, but does not have

to be when Q̂ = 1), it may characterize a balanced equilibrium (as Proposition 6 shows),

but it not always does.11

There are two ways in which users may benefit from the platform limiting choice. First,

when Q∗∗ is not an equilibrium, by limiting choice the platform is helping users solve a

“commons” problem. Second, even if Q∗∗ is an equilibrium, it is one of many equilibria and

other equilibria are Pareto inferior to Q∗∗. In this case, the platform may help users solve

an “equilibrium selection” problem by limiting choice.

The following proposition shows that regardless of whether Q∗∗ is in the equilibrium set

of the original game, the platform can ensure that Q∗∗ becomes the only equilibrium of the

game by restricting A to Q∗∗.

Proposition 8 Assume that 1 < R < 2 and α > 0. If the platform sets A = Q∗∗, then there

exists a unique balanced equilibrium where all users consume Q∗∗ applications.

11Notice that whether Q∗∗ = 1 or Q∗∗ = Q̂ > 1 depends on the value of α. For small α (as α = 0.03 in

Figure 2) Q∗∗ = Q̂ > 1. For larger, Q̂ > 1, but Q∗∗ = 1 (cf. α = 0.06 and α = 0.1) in the figure). For even

larger α, Q∗∗ = Q̂ = 1 (as for α = 0.16 in the figure).

21



Proof. See Appendix A, page 42.

The proposition implies that the equilibrium set may change with changes in A. In

particular, when the platform sets A = Q∗∗, Q∗∗ becomes the unique equilibrium. Therefore,

when Q∗∗ is in the original equilibrium set, if the platform constrains A to be equal to Q∗∗,

it eliminates all the Pareto-inferior equilibria and eliminates the possibility that users select

inferior equilibria. Thus,

Corollary 3 Assume that 1 < R < 2 and α > 0. When Q∗∗ is in the equilibrium set, users

may benefit when platform restricts the number of available applications to Q∗∗.

On the other hand, if Q∗∗ is not in the original equilibrium set, when the platform

constrains A to be equal to Q∗∗, it creates a new equilibrium that Pareto dominates all the

original equilibria. Thus,

Corollary 4 Assume that 1 < R < 2 and α > 0. When Q∗∗ is not in the equilibrium set,

users strictly benefit when platform restricts the number of available applications to Q∗∗.

Intuitively, when Q∗∗ is not an equilibrium, users face a commons problem. They would

all be better off if they limited their consumption to Q∗∗. However, they all have an incentive

to deviate towards higher consumption which ends up reducing all users utility.

We note that in the environment with perfect foresight, the platform cannot create value

by restricting choice when there are only direct or only indirect network effects. With pure

direct network effects there are multiple equilibria but they are all Pareto optimal. In the

case of pure indirect network effects, a user’s optimal choice does not depend on other users’

choices. Therefore, users do not face neither a commons problem nor an equilibrium selection

problem when network effects are of one type only.

3 Game with no foresight

Whenever direct network effects are present, the equilibria we have studied in Section 2

require that users know exactly which applications are consumed by all other users. That is,

we assumed that when making their choices, users had perfect foresight about other users’

choices. In many environments, such perfect foresight may be difficult to achieve.

In this section we analyze a similar but distinct game to that of the previous section. The

difference is that we change the assumption of perfect foresight and study equilibria where
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users have no way of knowing which applications other users will consume when they make

their own choices.

Perfect foresight assumes that in equilibrium player k knows the cardinality and the iden-

tity of the applications that all other users with consume. Moreover, she also knows the how

much of each application other users consume. As an alternative, now we assume no fore-

sight by which we mean that users initially assign equal probability to any feasible strategy

of other users. However, they refine their beliefs by Bayesian updating and eventually reach

equilibrium beliefs.

In the game with no foresight, users face a coordination problem. Since users do not

know which applications are consumed by other users, some of the benefit to the direct

network effects is lost. The utility that users can achieve in this environment is lower

than in the environment with perfect foresight, because users cannot exploit consumption

complementarities as well due to lack of coordination.

This coordination problem arises only when the direct network effects are present (α > 0).

Section 3.1 shows this effect for pure direct network effects and Section 3.3 shows that the

effect is also present when there are both types of network effects. In those cases, the

platform can create value by limiting the number of available applications. By providing

fewer applications, the platform alleviates the coordination problem faced by users. Without

direct network effects, there are no consumption complementarities and thus coordination

problems do not lead to loss in utility as shown in Section 3.2.

We now describe the game with no foresight. The only difference with the game in

Section 2 is what we assume about users’ beliefs. Recall that xk = {xk1, xk2, . . . , xkA} such

that
∑

a∈A x
k
a = X denotes a feasible consumption vector. We use xk to also denote a

pure strategy. Because all users are identical, they all have access to the same set of pure

strategies. Let X denote the set of all pure strategies for any given user. Let φkl ∼ U [X ]

denote user k’s beliefs on user l’s choice of pure strategy. Let φk = {φkl }l 6=k be a vector that

denotes user k’s beliefs on all other users’ choices of pure strategy.

With this, user k’s utility from consuming vector xk is:

Eφku(xk) =

(∑
a∈A

(
xka
)1/R)R

+ α
∑
a∈A

(
xka Eφk

∑
l 6=k

xla
)
,
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and the optimization problem (2) becomes

max
xka, a∈A

{
Eφku(xk)− p ·

∑
a∈A

1(xka)
}

subject to X ≥
∑
a∈A

xka. (7)

As Lemma 4 shows, under no foresight the expectation over consumption of any appli-

cation a by any other user l 6= k significantly simplifies.

Lemma 4 For every l and k and a,

Eφkl x
l
a =

X

A
.

Proof. See Appendix A, page 42.

Therefore,

Eφk

∑
l 6=k

xla =
∑
l 6=k

Eφkl x
l
a =

∑
l 6=k

X

A
= (N − 1)

X

A
. (8)

Note that this expectation does not depend on how many applications or which applica-

tions all other users consume, therefore there is no interdependence between users’ choices.

Given this, we now can find the optimal choice by user k (which in our setting is independent

of what all other users do). Whatever is the number of applications Gk that user k wishes

to consume, her optimal consumption pattern is the following balanced consumption: divide

the time budget equally among the applications consumed. Once user k decides that G∗

is the optimal number of applications for her to consume, it does not matter which subset

of A she chooses, as all yield the same utility. Therefore, G∗ fully describes k’s set of best

responses.

Moreover, G∗ identifies what are the dominated strategies for user k: any strategy with

cardinality different from G∗ and any strategy with cardinality equal to G∗ but with non-

balanced consumption pattern. User k knows that all other users are the same and she

knows that all other users are rational. Therefore, user k cannot believe that other users

will play dominated strategies. Because users are homogeneous, user k can infer dominated

strategies of other users. When user k finds an optimal number of applications for her to

consume, G∗, she knows that that number is the same for all other users and also that all

users are going to consume the G∗ applications in a balanced way.

User k updates her beliefs using Bayes’ Rule. Therefore, she assigns zero probability
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to dominated strategies and equal probability to undominated strategies. Since with no

foresight she does not know which applications they consume, she believes that every subset

of A with cardinality G∗ is equally likely to be consumed by user l 6= k. That is, the updating

does not tell her which precise applications other users will consume.

Finally, user k recalculates her best response under the updated beliefs. This recalculated

best response is exactly the same as the original best response. This is because under the

new beliefs the expected consumption of any application a by agent l 6= k is still X
A

, as

in Lemma 4. If every user behaves this way, beliefs are consistent with strategies and this

constitutes a no-foresight equilibrium .

3.1 Direct network effects

As in Section 2.1, to capture pure direct network effects, we set R = 1 and α > 0. Recall

that x̂ka denotes user k’s equilibrium consumption of application a. Let Gk
D be the number of

applications consumed by user k in a no-foresight equilibrium in an environment with pure

direct network effects.

Proposition 9 Assume R = 1 and α > 0. In every no-foresight equilibrium, user k con-

sumes one application, i.e., Gk
D = 1 for every k.

Proof. See Appendix A, page 43.

The intuition is as follows. Suppose that user k consumes Gk applications under no-

foresight. Using expression (8), we find that for R = 1, the expected consumption utility for

every user k is:

EuD(Gk) = X + αX(N − 1)
X

A
.

Because that uD does not depend on how many applications the user consumes, for p > 0

there is no point for any of the agents to buy more than one application.

Notice that the equilibrium net utility EUD(Gk
D = 1) = EuD − p decreases with A.

Clearly, the platform can increase utility by decreasing A. In fact, user utility can be raised

to X(1 + α(N − 1)X) − p by limiting the number of applications to A = 1. This is the

maximum utility that users may achieve given those preferences.
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3.2 Indirect network effects

As in Section 2.2, to capture pure indirect network effects, we set 1 < R < 2 and α = 0.

Let Gk
I be the number of applications consumed by user k in a no-foresight equilibrium in

an environment with pure indirect network effects.

Proposition 10 Assume 1 < R < 2 and α = 0. In every no-foresight equilibrium, every

user k consumes Gk
I = GI = QI applications in equal amount, where QI is defined in

Proposition 2.

Proof. See Appendix A, page 43.

Intuitively, when there are pure indirect network effects users do not gain anything from

coordinating consumption. Therefore, a user’s beliefs on other users’ choices have no bearing

on her utility. Thus the equilibrium behavior is the same as in the case of perfect foresight.

As a consequence, there is no gain to users if the platform limits the number of applications

available.

3.3 Interplay between direct and indirect network effects

Finally, we investigate what happens when users experience both direct and indirect network

effects. In such a case, 1 < R < 2 and α > 0. Let Gk
DI be the number of applications

consumed by user k in a no-foresight equilibrium in an environment with direct and indirect

network effects.

Proposition 11 Suppose 1 < R < 2 and α > 0. In every no-foresight equilibrium, every

user k consumes Gk
DI = GDI = QI applications in equal amount, where QI is defined in

Proposition 2.

Proof. See Appendix A, page 44.

Note that these equilibria are the same as the ones described in Proposition 10. However,

using equation (8), we find that in this case the expected equilibrium net utility can be

expressed as

EUDI(GDI) = GR−1
DI X + αX(N − 1)

X

A
− pGDI , (9)
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which depends on A. Therefore, unlike in the case of pure indirect network effects (Proposi-

tion 10), with both types of network effects equilibria are not efficient and the platform may

improve efficiency by limiting A.

Equation (8) shows that Eφk
∑

l 6=k x
l
a = (N − 1)X

A
. This says that the expected con-

sumption of any application by other users does not depend on the number of applications

consumed. Therefore, the direct network effect does not influence the number of applications

consumed in equilibrium, i.e., GDI = GI = QI . Still, the direct network effects affect the

expected utility achieved in equilibrium (eq. 9).

Combining this result with Propositions 4 and 5, we see that the number of applications

consumed in equilibria with perfect foresight is weakly lower than in the no-foresight equi-

librium, i.e., QDI ≤ GDI . Moreover, as shown in Proposition 7, when QDI = GDI this is

the worst of the equilibria with perfect foresight in terms of Pareto efficiency. Therefore, the

platform can create value by limiting the number of applications available. We turn to this

issue in the next subsection.

3.4 On the role of the platform: Creating value by limiting choice

In Section 2 we have shown that with perfect foresight and in the presence of direct and

indirect network effects, users may benefit when the platform limits the set of applications

available. Specifically, users always face an equilibrium selection problem and may also face a

commons problem. Both of these issues can be resolved by the platform limiting the number

of applications available.

We now show that under no foresight there is a different reason why users benefit from

limited choice: resolving the coordination problem that users face when direct network effects

are at play. We note that under no foresight, users do not face neither equilibrium selection

nor commons problems.

Proposition 12 Suppose that α > 0, 1 ≤ R < 2. Under no foresight, the platform max-

imizes users’ net utility by setting the number of available applications to A = Q∗∗, where

Q∗∗ is given by (6).

Proof. See Appendix A, page 44.

Note that the result applies whenever direct network effects are at play, regardless of the

preference for variety. Intuitively, by reducing A the platform alleviates the coordination
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problem as it is more likely that users consume the same applications and gain utility from

direct network effects.

So long as A > Q∗∗, the equilibrium is inefficient, specially when A is large. Only when

A = Q∗∗ the efficient outcome is an equilibrium. The platform creates value by creating a

new equilibrium.

4 Concluding remarks

We have shown that when users enjoy application variety but also benefit from consumption

complementarities, three problems may arise: the socially optimal number of applications

may not be part of an equilibrium; multiple equilibria ensue; and, users will likely find it hard

to coordinate consumption. The analysis has demonstrated that by limiting the number of

available applications (i.e., limiting choice) the platform can provide a fix to each one of

these problems. Specifically, by limiting choice the platform may create new equilibria that

do not exist when application choice is broad. In addition, it can eliminate socially inferior

equilibria. Moreover, it can reduce the severity of the coordination problem faced by users.

The overall conclusion is that when direct and indirect network effects are at play, an

important governance decision by platforms is the choice of how many applications should to

be allowed to run on them. To implement such a choice, the platform may directly suppress

access to developers and impose quantity constraints (as Nintendo did in the mid-1980s), or

it may limit the number of applications indirectly through setting high prices for developers

to access the platform.

While we have shown that the platform may create value by limiting choice, the recom-

mendation to practitioners is not “provide as few applications as possible.” Rather, it is that

even in settings where users have a strong preference for variety, the platform should actively

manage the number of applications that it offers as there is a number beyond which offering

more applications will decrease users utility and, thus, overall platform value. This recom-

mendation is in stark contrast to the conventional wisdom that platforms should encourage

the development of complements to the maximal possible extent.

The obvious next step to gain further insight on the value that a platform may create

by acting as a gatekeeper is endogenizing the price at which applications are sold and the

number of applications that would be provided absent intervention by the platform. Likewise,

it would be valuable to embed our model into a setting with competing platforms. Given

the complexity of the analysis when users are the only strategic players, we expect these
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extensions to be challenging. We hope, however, to have provided a solid first step on which

to build general theories of platform competition that will shed further light on the value

that platforms create by limiting choice.
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Appendix

A Proofs

Proof of Proposition 1 (page 10)

Proof. Let R = 1 and α > 0. Suppose that users l 6= k play pure strategies xl. The

proof proceeds in following steps: First, we find the optimal consumption patterns, given

that user k has access to some set Q ⊆ A of applications, where the cardinality of Q is

Q ≥ 1. Second, given the consumption pattern, we find the optimal set of applications

consumed, QkD. We characterize subgame-perfect Nash equilibria where all users decide

which applications to consume and at which level.

Suppose that user k has access to a set Q ⊆ A applications. Given Q, user k’s objective

is to allocate the consumption in order to maximize her utility, i.e.,

max
xka ,a∈Q

{∑
a∈Q

xka + α
∑
a∈Q

(
xka
∑
l 6=k

xla

)}
s.t. X ≥

∑
xka .

The Lagrangian of this maximization problem, including the constraint is

L =
∑
a∈Q

xka + α
∑
a∈Q

(
xka
∑
l 6=k

xla

)
+ λ(X −

∑
xka) .

The derivative of the Lagrangian with respect to xka is

∂L
∂xka

= 1 + α
∑
l 6=k

xla − λ .

This derivative does not depend on xka. Let a′ be an application such that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a

for all a ∈ Q. There may be one or more such applications. Those applications yield

the largest derivative ∂L
∂xk

a′
, i.e., additional consumption of those applications brings more

additional consumption utility than other applications. In equilibrium, user k does not

consume other applications than a′. If there is only one a′, the best response of user k is

to consume only this one application, i.e., xka′ = X and xka = 0 for a 6= a′. If there is more

than one a′, any allocation of time budget X across all those applications yields exactly the

same consumption utility. A special case of such allocation is allocating whole X to one

application a′.
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Given this consumption pattern, user k needs to decide on the set of applications that

she consumes, Q, in order to maximize her net utility. If there exists unique a′ ∈ A such that∑
l 6=k x

l
a′ ≥

∑
l 6=k x

l
a for all a ∈ A, then the optimal set of applications consumed by user

k is a singleton QkD = {a′}. Notice that it leads to an equilibrium, where all users allocate

their whole time budget to the same application, i.e. QkD = QD = {a′} and xka′ = X for

all k. Therefore, it is a balanced equilibrium. Since any a′ ∈ A would constitute such an

equilibrium, there are A equilibria of this form. Every user’s net utility in such an equilibrium

is X +αX2(N − 1)− p. The following paragraph shows that no other equilibrium exists. In

particular, there is no equilibrium that Pareto dominates an equilibrium with QD. Therefore,

all those equilibria are Pareto efficient.

Suppose now that there is more than one a′ such that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a. Since the

price p > 0, user k’s best response is to consume only one of a′ applications. This is because

consuming more of those applications yields exactly the same consumption utility, but user k

needs to pay additional price p for each additional application. The net utility is lower when

more applications are consumed. Therefore, there cannot be an equilibrium with QD ≥ 2.

Moreover, since p < X, it is always better for any user to consume one application to none.

Therefore, in each equilibrium exactly one application is consumed by all the users.

This completes the proof of Proposition 1.

Proof of Proposition 2 (page 11)

Proof. Suppose that 1 < R < 2 and α = 0. User k’s consumption utility (and net

utility) does not depend on other users’ consumption, due to α = 0. Thus, the equilibrium

consumption decision of user k does not depend on the decisions of other users (i.e., the

equilibrium strategy is simply the optimization result of each user).

The proof proceeds in two steps: First, we find the optimal consumption pattern, given

that user k has access to some set Q of applications, where cardinality of Q is Q ≥ 1. Second,

given the consumption pattern, we find the optimal set of applications consumed, QkI .
Suppose that user k has access to set Q ⊆ A of applications. Given Q, user k’s objective

is to allocate the consumption in order to maximize her utility, i.e.,

max
xka ,a∈Q

(∑
a∈Q

(xka)
1
R

)R
s.t. X ≥

∑
a∈Q

xka .
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The Lagrangian associated with this problem, including the constraint is

L =
(∑
a∈Q

(xka)
1
R

)R
+ λ(X −

∑
a∈Q

xka) .

The first order condition for a particular application a′ ∈ Q, ∂L
∂xk

a′
= 0 yields

(∑
a∈Q

(xka)
1
R

)R−1
· (xka′)

1
R
−1 = λ ⇐⇒ xka′ =

(∑
a∈Q(xka)

1
R

)R
λ

R
R−1

, ∀a′ ∈ Q .

Thus, in the consumption schedule that maximizes the consumption utility, every application

is consumed in the same amount, i.e., x̂ka = x̂ for all a ∈ Q. To reach the maximum the

constraint X ≥
∑

a∈Q x
k
a needs to bind. Therefore Q·x̂ = X and x̂ = X

Q
. That implies that

every equilibrium must be a balanced equilibrium.

With x̂ = X
Q

the maximal consumption utility given Q is

uI(x̂;Q) =

(∑
a∈Q

(
X

Q

) 1
R
)R

=

(
Q

(
X

Q

) 1
R

)R

= QR−1X .

This consumption utility is the same for any set Q of cardinality Q. The net utility also

depends solely on the cardinality of set Q. For any set Q with cardinality Q, the user k’s

maximal net utility is

UI(x̂;Q) = QR−1X − pQ .

For p > 0, the optimal number of applications consumed by user k is characterized by the

first order condition

(R− 1)QR−2X = p ⇐⇒ Q =

(
X(R− 1)

p

) 1
2−R

. (10)

Let qI =
(
X(R−1)

p

) 1
2−R

.

The number of applications consumed cannot be greater than A or smaller than 1. We

have assumed that the number of applications is large enough.12 Specifically, we have as-

sumed that A ≥ qI . Therefore, we need to assure that the number of applications consumed

12If we had allowed for A < qI , it would be optimal for a user to consume all A applications. This is
because the derivative of UI(x̂;Q) is strictly positive for all Q < qI . So it would be positive on the whole
domain [1, A] for A < qI .
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is not lower than 1. Therefore, the optimal number of applications consumed by any user k

is Qk
I = max{1, qI}.

Since the optimal number of applications consumed is the same for all users, let QI

denote Qk
I for any k. Each user is indifferent between consumption of any subset with

cardinality QI . Any collection of sets {Q1
I , . . . ,QNI } constitutes an equilibrium, as long as

for any k, cardinality of QkI is QI . There are A!
QI !(A−QI)!

·N such collections of sets. Therefore

there is that many pure strategy Nash equilibria. There is also a continuum of mixed

strategy equilibria: any probability distribution over all the pure strategies described above

constitutes an equilibrium strategy for user k (given that all the subsets have the same

cardinality, any of such mixed strategies yields the same utility as a pure strategy).

If there existed any other equilibrium, it would involve some users consuming other

number of applications than QI with a positive probability. That is suboptimal strategy for

those users. Therefore, there are no other equilibria.

Since in all subgame perfect Nash equilibria every user consumes QI applications, each

in equal amount, all the equilibria yield the same net utility to all users. Moreover, there

does not exist an equilibrium where some users could achieve a higher net utility. Thus, all

equilibria are Pareto optimal.

This completes the proof of Proposition 2.

Proof of Lemma 1 (page 12)

Proof. Assume that 1 < R < 2 and α > 0. Suppose, to the contrary, that in some

equilibrium Qk 6= Ql for some l and k (we drop the subscript DI in this proof for clarity of

exposition). We show that this cannot be an equilibrium.

First, consider the case where Qk = Ql, i.e., user k and user l consume the same amount

of applications, but different ones. This cannot be an equilibrium. Take an application

a′ that k consumes, but l does not, and application a′′ that l consumes but k does not.

Suppose, without loss of generality that
∑

j 6=l, k x
j
a′ ≤

∑
j 6=l, k x

j
a′ (otherwise, we switch k and

l). User k’s net utility in such a candidate equilibrium is( ∑
a∈Qk

(
xka
) 1

R

)R
+ α

∑
a∈Qkr{a′}

(
xka
∑
j 6=k

xja

)
+ αxka′

∑
j 6=k, l

xja′ − pQ
k .

If user k spends xka′ consuming application a′′ instead of a′ (without changing anything else),
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she increases her utility to( ∑
a∈Qk

(
xka
) 1

R

)R
+ α

∑
a∈Qkr{a′}

(
xka
∑
j 6=k

xja

)
+ αxka′

( ∑
j 6=k, l

xja′′ + xla′′︸ ︷︷ ︸
>
∑

j 6=k, l x
j

a′

)
− pQk .

Therefore, it is not an equilibrium for users to consume different application, since α > 0.

For the same reason, if Qk < Ql, user k consumes only applications that l consumes, i.e.,

Qk ⊂ Ql. However, Qk < Ql cannot be an equilibrium.

Suppose, to the contrary, that in a balanced equilibrium Ql > Qk and Qk ⊂ Ql. Since

they place balanced strategies, xla = X
Ql for a ∈ Ql, and xka = X

Qk for a ∈ Qk and xka = 0

for all other applications, especially for a ∈ Qk \ Qk. The consumption of all other users is∑
j 6=k, l x

j
a for all a ∈ A. For k, it is optimal to consume Qk. Such consumption yields the

net utility ( ∑
a∈Qk

(
xka
) 1

R

)R
+
∑
a∈Qk

xka

( ∑
j 6=k, l

xja + xla

)
− pQk .

And after substituting xka = X
Qk and xla = X

Ql

(Qk)R−1X + α
X

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

)
+ α

X

Qk
QkX

Ql
− pQk.

In particular, consuming Qk applications yields higher utility for user k than consuming the

same Ql applications as user l, i.e.13

(Ql)R−1X+α(
X

Ql
)2Qk+α

X

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
−pQl ≤ (Qk)R−1X+α

X2

Ql
+α

X

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

)
−pQk =⇒

=⇒ X
(

(Ql)R−1−(Qk)R−1
)

+αX

(
1

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− 1

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

))
−p
(
Ql−Qk

)
≤ α

X2

Ql

(
1−Q

k

Ql

)
.

(11)

13The utility if user k would consume Ql applications in a balanced strategy is calculated with the following
formula:

(Ql)R−1X + α
X

Ql

(
QKDI

X

Qk
+
∑

a∈Qk
DI

( ∑
j 6=k, l

xja

))
+ α

X

Ql

∑
a∈Qk\Ql

( ∑
j 6=k, l

xja

)
− pQl .
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For l it is optimal to consume

(∑
a∈Ql

(
xla
) 1

R

)R
+
∑
a∈Qk

xla

( ∑
j 6=k, l

xja + xka

)
+

∑
a∈Ql\Qk

xla

( ∑
j 6=k, l

xja

)
− pQl =

=
(
Q
)R−1

+ α
X

Ql
X + α

X

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− pQl .

In particular, consuming Ql applications yields higher utility for user l than consuming only

Qk applications, i.e.,

X
(

(Ql)R−1−(Qk)R−1
)

+αX

(
1

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− 1

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

))
−p
(
Ql−Qk

)
≥ αX2

(
1

Qk
− 1

Ql

)
.

(12)

However, for Ql > Qk ≥ 1, α X2

Ql

(
1− Qk

Ql

)
< αX2

(
1
Qk − 1

Ql

)
. Therefore, both inequal-

ities (11) and (12) cannot be satisfied at the same time. Thus, it cannot be that there is a

balanced equilibrium where Ql > Qk.

This completes the proof of Lemma 1.

Proof of Lemma 2 (page 12)

Proof. Suppose that in a balanced equilibrium user k consumes Qk
DI = QDI applications.

By Lemma 1, we know that all users consume the same QDI applications, where QDI denotes

the consumption set. Notice that the net utility of users does not depend on the identity

of the applications. The net utility is the same as long as all users consume the same QDI

applications, whichever they are. Therefore, any subset of applications QDI of cardinality

QDI constitutes an equilibrium.

Proof of Remark 1 (page 14)

The remark directly follows from Lemma 5.

Lemma 5 For all parameters α ≥ 0 and 1 ≤ R < 2, QI ≥ Q̂. Moreover when QI > 1, then

Q̂ < QI , and when QI = 1 then Q̂ = QI .

Proof. Recall that QI is defined based on the solution (qI) to the following first order

condition

(R− 1)QR−2X − p︸ ︷︷ ︸
DI(Q)

= 0 (13)
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For Q→ 0+ the derivative DI →∞. Moreover, the derivative is always decreasing. For any

p > 0, the first order condition DI(Q) = 0 has exactly one solution, at qI .

Similarly, Q̂ is defined based on the solution to another first order condition

D̂(Q) = (R− 1)QR−2X − p︸ ︷︷ ︸
DI(Q)

− αX(N − 1)
X

Q2︸ ︷︷ ︸
+

= 0 (14)

For any Q the derivative D̂ is smaller than the derivative DI . Therefore, whenever D̂ = 0

for some Q̃, then DI > 0 for this Q̃. Moreover, since the derivative DI is decreasing, DI = 0

for a larger Q than Q̃. Therefore, the solution (qI) to the first order condition (13) is always

larger than any solution to the first order condition (14), if the solution to the latter exists.

After establishing this fact, the proof proceeds to analyze two cases: QI > 1 and QI = 1.

Suppose first that QI > 1. This happens when qI > 1. The value of Q̂ is either a solution

to (14) or 1. In either case Q̂ < qI = QI .

Suppose now that QI = 1. This happens when qI < 1. Therefore, any solution to (14)

must also be smaller than 1. Then Q̂ = 1 = QI .

This completes the proof of Lemma 5.

Proof of Proposition 3 (page 14)

Proof. The optimal upward deviation involves non-balanced consumption. It yields strictly

higher utility than an upward deviation with balanced consumption. Suppose that Q̂ > 1.

Then V ′(Q̂) = 0. Note that the payoff from an upward deviation to Qk under balanced con-

sumption is the same as V (Qk). Therefore, an incremental upward deviation with balanced

consumption from Q̂ yields 0 benefit. But that means that the optimal upward deviation

from Q̂ yields strictly positive benefit. Thus, Q̂ is not a balanced equilibrium.

This completes the proof of Proposition 3.14

14Notice the implication of this result for the incentives in the market: Suppose that the platform limits
the number of applications to Q̂, and Q̂ is optimal. Thus, the platform guarantees users the best equilibrium
outcome. Nonetheless, the users are not happy with this restriction. They may believe (because they look
at their profitable deviation upward) that if one more application would be available, they would be better
off. But, of course, in an equilibrium they wouldn’t.
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Proof of Proposition 4 (page 15)

Proof. Let 1 < R < 2 and α > 0. Suppose that all users play a balanced strategy, where

they consume a set of applications Q with cardinality Q.

The proof proceeds in two steps: In the first step, we show that for Q > QI any user

has incentive to deviate from this strategy and consume fewer applications. In the second

step, we show that for Q such that max{1, Q?} ≤ Q < Q̂ any user has incentive to deviate

and consume more applications. Therefore, no Q in those two intervals can characterize a

balanced equilibrium.

Suppose that Q > QI . If user k consumes Q or fewer applications, i.e., Qk ≤ Q, he

consumes the same applications as other users, i.e., Qk ⊆ Q. This is because, due to direct

network effects (α > 0), user k’s consumption utility would be lower if he consumed other

applications instead. Moreover, if user k consumes Qk ≤ Q applications, it is optimal for

her to consume them according to a balanced consumption schedule: X
Qk of each. This is

because each application presents the same benefit through consumption complementarity.

Therefore, the net utility when user k consumes Qk ≤ Q applications is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X +�
�Qkα

X

�
�Qk

(N − 1)
X

Q
− pQk .

Since p > 0, the optimal number of applications that user k would like to consume is

characterize by the first order condition

∂UDI(Q
k ≤ Q)

∂Qk
= (R− 1)

(
Qk
)R−2

X − p = 0 . (15)

Note that this is the same condition as (10) in the proof of Proposition 2. So Qk = qI is the

only positive value satisfying this condition. Moreover, for any Qk > qI , the derivative in

(15) is negative. Therefore, for any Q > QI , user k can profitably deviate to consuming QI

applications.

In the second step of the proof, we turn to Q such that max{1, Q?} ≤ Q < Q̂, and we show

that any user can profitably deviate by consuming more applications. When user k consumes

more applications than Q, she consumes all applications in Q, and Qk−Q applications that

no other user consumes. The optimal consumptions schedule in such deviation is not a

balanced consumption schedule. If we impose the balanced consumption schedule on the

upward deviation, it yields lower utility than the optimal deviation. Even though it is not

the optimal deviation, we show that an upward deviation with a balanced consumption
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schedule is profitable for any user. The net utility from user k’s balanced consumption of

Qk ≥ Q applications is

UDI(Q
k ≥ Q) =

(
Qk
)R−1

X + ��Qα
X

Qk
(N − 1)

X

��Q
− pQk .

Note that UDI(Q
k ≥ Q) is the same as V (Q) in equation (4) which has a local maximum at

Q̂ > Q. Moreover, if there does not exist Q? ≤ 1, then for any Q ∈ [1, Q̂), and when Q? ≤ 1

exists, then for any Q ∈ (Q?, Q̂), UDI(Q̂ > Q) > UDI(Q). That is, it is strictly profitable

for a user to deviate upwards (to Q̂ from those Qs). It reminds to show that there exists a

profitable deviation away from Q? ≤ 1. By the definition of Q?, UDI(Q̂ > Q) = UDI(Q?).

The most profitable deviation, however involves a non-balanced consumption schedule, and

yields strictly higher utility than UDI(Q
k > Q). Therefore, the optimal deviation away from

Q? is profitable.

This completes the proof of Proposition 4.

Proof of Lemma 3 (page 17)

Proof. Let 1 < R < 2 and α > 0. Suppose that all other users l 6= k play a balanced

strategy where they consume a set of applications Q with cardinality Q. If user k consumes

Q or fewer applications, i.e. Qk ≤ Q, he consumes the same applications as other users, i.e.

Qk ⊆ Q. This is because, due to direct network effects (α > 0), user k’s net utility would

be lower if he consumed other applications instead.

User k’s consumption utility from consuming Qk ≤ Q applications is

u(xk, Qk;Q) =
( ∑
a∈Qk

(
xka
) 1

R

)R
+ α

∑
a∈Qk

xka︸ ︷︷ ︸
=X

(N − 1)
X

Q
.

By usual arguments we find that the consumption schedule maximizing the consumption

utility, under the constraint
∑

a∈Qk xka ≤ X is balanced strategy, i.e., xka = X
Qk for all a ∈ Qk.

Therefore, the net utility of user k from consuming Qk applications is

UDI(Q
k;Q) =

(
Qk
)R−1

X + αX(N − 1)
X

Q
− pQk . (16)

Notice that this utility is strictly increasing for Qk < qI and strictly decreasing for Qk > qI .

if qI < 1, then QI = 1 and it is not possible that Qk < QI . Otherwise, suppose that Q ≤ QI .
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Then if Qk < Q ≤ qI , then the utility in (16) increases with Qk. That is, the user achieves

a lower utility if he deviates from Q to Qk < Q.

This completes the proof of Lemma 3.

Proof of Proposition 5 (page 18)

Proof. Let 1 < R < 2 and α > 0. Suppose that all other users play a balanced strategies

and consume a set of applications QI with cardinality QI . By Lemma 3, it is enough to

show that there is no profitable deviation upward to prove that QI is a balanced equilibrium.

Consider user k who consumes Qk > QI applications. When user k diverts part of her

time y away from the QI applications that all other users consume, it is optimal for her

to consume the same amount of each application in QI , X−y
QI

. Moreover, it is also optimal

to consume the same amount of each application that user k consumes outside QI , y
Qk−QI

.

Then, the net utility of user k is

UDI(Q
k > QI | y) =

(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

+α
X(X − y)

QI

(N−1)−pQk .

Consider first only the part of the net utility without the direct network effects:(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

− pQk .

This is the same as the utility under pure indirect network effects. We know from the proof

of Proposition 2 that for any Qk, the utility maximizing consumption schedule is balanced.

However, since α > 0, in this case the optimal deviation upward must involve un-balanced

consumption (in an optimal deviation user consumes more of each application that other

users consume and less of each applications that she alone consumes), i.e., y < X
Qk (Qk−QI).

Therefore, if Qk > QI , then(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

− pQk <

(
Qk

(
X

Qk

) 1
R

)R

− pQk .

Recall that QI maximizes the net utility under pure indirect network effects. Therefore, for
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Qk > QI , (
Qk

(
X

Qk

) 1
R

)R

− pQk <

(
QI

(
X

QI

) 1
R

)R

− pQI .

Therefore,(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

− pQk <

(
QI

(
X

QI

) 1
R

)R

− pQI .

Moreover, for any y > 0,

α
X(X − y)

QI

(N − 1) < α
X2

QI

(N − 1) .

Therefore, any positive deviation, y > 0, toward consuming more applications, Qk > QI ,

yields strictly worse net utility for user k,

UDI(Q
k > QI | y) =

(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

+α
X(X − y)

QI

(N−1)−pQk <

<

(
QI

(
X

QI

) 1
R

)R

+ α
X(X − y)

QI

(N − 1)− pQI <

<

(
QI

(
X

QI

) 1
R

)R

+ α
X2

QI

(N − 1)− pQI = UDI(QI) .

Therefore, any set of applications QI with cardinality QI constitutes a balanced equilibrium.

Notice that the optimal deviation y∗ that maximizes the consumption utility is always

positive.15 That is if y∗ satisfies the first order condition ∂UDI(Q
k>QI | y)
∂y

∣∣∣
y=y∗

= 0, it must be

that y∗ > 0. However, because the user needs to pay a positive price p > 0 for diverting

even small y, it is not optimal to do so at QI . (As shown by declining net utility.) Below

we show that if QI > 1, then also for Qs slightly smaller than QI , users have no incentive to

deviate upward. And so those Qs constitute balanced equilibria.

15For formal proof of this property, see the proof of Proposition 15, for p = 0.
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Suppose now that QI > 1. For y > 0, there exists q0 < QI such that16

(q0)R−1X + α
X2

q0
(N − 1)− p q0 = QR−1

I X + α
X(X − y)

q0
(N − 1)− pQI .

Let Q0 = max{1, q0}. Then it is easy to check that

(Q0)R−1X + α
X2

Q0
(N − 1)− pQ0 ≥ QR−1

I X + α
X(X − y)

Q0
(N − 1)− pQI . (17)

Any deviation upward from Q0 yields net utility

UDI(Q
k > Q0| y > 0) =

(
Q0

(
X − y
Q0

) 1
R

+ (Qk −Q0)

(
y

Qk −Q0

) 1
R

)R

+α
X(X − y)

Q0
(N−1)−pQk <

< (Qk)R−1X + α
X(X − y)

Q0
(N − 1)− pQk ≤

≤ (QI)
R−1X + α

X(X − y)

Q0
(N − 1)− pQI ≤

≤ (Q0)R−1X + α
X2

Q0
(N − 1)− pQ0 = UDI(Q

0) .

Therefore, there exists Q0 < QI such that users have no incentive to deviate upward.

Therefore, Q0 constitutes a balanced equilibrium. Moreover, since for any Q such that

Q0 ≤ Q ≤ QI , inequality (17) holds, those also constitute balanced equilibria.

This completes the proof of Proposition 5.

Proof of Proposition 7 (page 20)

Proof. It follows directly from the shape of V (Q) and Proposition 4: All possible equilibria

need to be included in the interval [1, Q?)∪(Q̂, QI ]. (The set of equilibria is a strict subset of

this interval). The utility obtained by every user in each equilibrium Q is V (Q). Since V (Q)

is strictly increasing on the interval [1, Q?) ∪ (Q̂, QI ], a lower equilibrium Q yields higher

utility for every user than a higher equilibrium Q, i.e. lower equilibrium Q Pareto-dominates

higher Q.

16This is because QR−1X − pQ is continuous and strictly increasing for Q < QI . And because for y∗ > 0,
X−y∗
q0 < X

q0 .
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Proof of Proposition 8 (page 21)

Proof. The shape of V implies that either Q∗∗ = 1 or Q∗∗ = Q̂. The proof first considers

Q∗∗ = Q̂ > 1, and then Q∗∗ = 1.

Suppose that Q∗∗ = Q̂ > 1. Then, Q? (as defined for Proposition 4) does not exist.

Therefore, by Proposition 4, no Q < Q̂ may constitute a balanced equilibrium. As in the

proof of Proposition 4, users are better off deviating upward to consuming Q̂ applications.

When A > Q̂, then Q̂ is not a balanced equilibrium, by Proposition 3. This is because

there exists profitable deviation upward, toward consuming larger number of applications.

However, when A = Q∗∗ = Q̂, such deviation is not possible. Therefore, consuming all Q̂

constitutes the only equilibrium.

Now, suppose that Q∗∗ = 1. When platform sets A = Q∗∗ = 1 then trivially, in the only

equilibrium all users consume the only application in the market.

This completes the proof of Proposition 8.

Proof of Lemma 4 (page 24)

Proof. Suppose that l consumes G applications for some G. Given G, any application a is

consumed by l with probability G
A

. Since when every strategy is equally likely, any subset of

cardinality G is equally likely to be consumed. The probability that particular application

a is in a consumption set is

how many subsets with G can you choose from A that will include a

how many subsets with G can you choose from A overall
=

=
choose G− 1 out of A− 1

choose G out of A
=

(A− 1)!

(G− 1)! (A−G)!

/
A!

G! (A−G)!
=
G

A
.

Now, we calculate the expected level of consumption E(xla|xla ∈ G) conditionally on a

being in a given consumption set G of l. Since we know that all the consumption schedules

over the set G satisfy
∑

a∈G x
l
a = X, therefore

E(
∑

x) = X =⇒
∑

E(x) = X ,

due to the linearity of the sum.

But the applications are not distinct (they are interchangeable). If every consumption

schedule is equally likely, the expected consumption of every a in the consumption set is the

same.
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Suppose to the contrary, that the expected consumption of some a′ ∈ G is higher than

some other application, a′′, E(xla′) > E(xla′′). Then, in the set of all possible consumption

schedules, switch a′ and a′′ in every schedule. The set of all possible consumption schedules

remains unchanged, but now E(xla′′) > E(xla′). Hence, contradiction. Therefore, the expected

consumption of every a ∈ G is the same E(xla) = X
G

.

Then, the overall expected level of consumption of any application a is

Eφkl x
l
a =

G

A
· X
G

=
X

A
.

(Technically, it is for a given G. But since the expectation for any G is the same, any

probability distribution over G’s gives the same expected value.)

This completes the proof of Lemma 4.

Proof of Proposition 9 (page 25)

Proof. Let R = 1 and α > 0. Suppose that user k consumes Gk applications in a no-foresight

environment. By Lemma 4, her expected consumption utility is

EuD(Gk) = X + αX(N − 1)
X

A
,

and does not depend on the number of applications consumed, Gk (as long as the budget

constraint is binding,
∑
xka = X).

Since p > 0, purchasing more than one application increases cost, without increasing

consumption utility. Therefore, in equilibrium, every user k consumes only one application,

Gk
D = 1.

This completes the proof of Proposition 9.

Proof of Proposition 10 (page 26)

Proof. The result of this proposition follows directly from Proposition 2.

Suppose 1 < R < 2 and α = 0. User k’s consumption utility (and net utility) does not

depend on other users’s consumption, due to α = 0. Thus, user k’s optimization problem is

exactly the same as under the perfect foresight (Proposition 2), and yields the same solution.

In particular, the optimal number of applications consumed is the same, Gk
I = QI for any k.

This completes the proof of Proposition 10.
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Proof of Proposition 11 (page 26)

Proof. Let 1 < R < 2 and α > 0. Suppose that user k consumes Gk applications in a no-

foresight environment. For any given number of applications, Gk, the optimal consumption

schedule is a balanced consumption. This is because for any application, the expected level

of consumption by other users is the same (Lemma 4). User k’s expected net utility (using

Lemma 4) is then

EUDI(Gk) =
(
Gk
)R−1

X + α (N − 1)
X2

A
− pGk . (18)

Note that the benefit from the direct network effect does not depend on Gk. This leads

to a result similar to the one in Proposition 2: The above function UDI is maximized by

Gk = qI =
(
(R−1)X

p

) 1
2−R , for any k.

This completes the proof of Proposition 11.

Proof of Proposition 12 (page 27)

Proof. Let’s consider separately the case for R = 1 and for 1 < R < 2.

Suppose first that α > 0 and R = 1. By Proposition 9, we know that when A ≥( (R−1)X
p

) 1
2−R , the optimal number of applications consumed by any user k is Gk

D = 1. It

is easy to show that for any A ≥ 1, every user optimally consumes one application. The

expected net utility for any user in an equilibrium for A ≥ 1 is

EU∗D = X + α(N − 1)
X2

A
− p .

Clearly, EU∗D is maximized by A = 1. Moreover, for α > 0 and R = 1, the unique maximum

of V (Q) is always Q∗∗ = 1. Therefore, the platform maximizes users’ net utility when it sets

the number of available applications to A = Q∗∗ = 1.

Suppose now that α > 0 and 1 < R < 2. By Proposition 11, we know that when

A ≥
( (R−1)X

p

) 1
2−R , the optimal number of applications consumed by any user k is Gk

DI = QI ,

as this number maximizes EUDI(Gk) in (18). We need to consider two cases: for QI = 1

and for QI > 1.

When QI = 1, the expected net utility of any user in equilibrium for A ≥ 1 is

EU∗DI(QI =1) = X + α(N − 1)
X2

A
− p ,
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which is maximized by A = 1. By Lemma 5, Q̂ = 1 when QI = 1. Thus, the unique

maximum of V (Q) is always Q∗∗ = 1. In result, the platform maximizes user’s net utility

when it sets the number of available applications to A = Q∗∗ = 1.

The case of QI > 1 occurs only when qI > 1. When A ≥ qI =
( (R−1)X

p

) 1
2−R , the expected

net utility of a user in equilibrium is

EU∗DI(QI > 1|A ≤ QI) = (QI)
R−1X + α (N − 1)

X2

A
− pQI .

On the possible range, this utility is maximized for A = QI .

Since EUDI(Gk) strictly increases in Gk for Gk < QI , every user consumes all applica-

tions, if there is fewer applications available than QI . Thus, for A ≤ qI =
( (R−1)X

p

) 1
2−R , the

expected net utility of a user in equilibrium is

EU∗DI(A|A ≤ QI) = (A)R−1X + α (N − 1)
X2

A
− pA .

Note that this function of A is the same as V (with the exception that V is a function of

Q). Moreover, when QI > 1, it must be that Q∗∗ < QI . Since Q∗∗ that maximizes V , then

A = Q∗∗ < qI also maximizes the expected net utility EU∗DI(A|A ≤ QI). Moreover, because

mathbbE U∗DI(QI > 1|A ≤ QI) is maximized at A = QI , A = Q∗∗ maximizes the expected

utility EU∗DI on the whole range A ≥ 1. Therefore, the platform maximizes users’ net utility

when it sets the number of available applications to A = Q∗∗.

This completes the proof of Proposition 12.

B Results for p = 0

Suppose that the access price for any application is p = 0. Then, the net utility is the same

as the consumption utility, and every user chooses the set of consumed applications and the

consumption schedule to maximize her consumption utility.

Note that under p = 0 the assumption on A does not make sense any more. It is not

possible to make A “large enough”. In this appendix, we allow for arbitrary A.

B.1 Game with perfect foresight

In this section, we assume that every agent knows (or correctly predicts) the number and

identity of applications consumed by all other users (i.e., the user knows the consumption
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sets and consumption schedules of all other users) in equilibrium.

B.1.1 Game with perfect foresight: Direct network effects

Proposition 13 Assume R = 1, α > 0 and p = 0. For any Q ⊆ A, there exists a balanced

equilibrium where all users consume the set of applications Q. There is no other balanced

equilibrium.

Proof. Let R = 1, α > 0 and p = 0. Suppose that all other users play a balanced strategy

where they consume a set Q ⊆ A applications. If user k consumes fewer applications

than other users, she consumes the same applications as other users (due to consumption

complementarity it would make sense otherwise). The optimal consumption schedule then

is balanced. User k’s net utility of consuming Qk ≤ Q applications is

UD(Qk ≤ Q) =���
��(Qk)R−1X +@@Q

kα
X

@
@Q
k
(N − 1)

X

Q
.

(The term (Qk)R−1 cancels because R = 1.) This utility does not depend on Qk. Thus,

user k does not have incentive to deviate downward, i.e., consume fewer applications than

other users.

Now suppose that user k consumes more applications than other users. She diverts y ≤ X

of her time to applications that no other users consume. It is optimal for her to still consume

all Q applications that other users consume (hence y < X), and among those applications,

each application is consumed at the same lever, X−y
Q

. Because R = 1, independently of how

many more applications user k consume, her net utility is

UD(Qk ≥ Q) = X + αX(N − 1)
X − y
Q

.

This utility is strictly decreasing in y, and it reaches its maximum for y = 0, i.e., when

user k does not divert any time to applications other than those consumed by other users.

So, user k has no incentive to deviate upward, i.e., consume more applications.

Therefore, if all users consume Q applications in a balanced strategy, it constitutes a

balanced equilibrium, for any Q ⊆ A.

To show that there is no other balanced equilibrium, notice that if other balanced equi-

librium existed, users would need to consume different applications or different number of

applications in an equilibrium. Suppose that Q ⊆ A is a set of applications that is consumed
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at strictly positive level by at least one other user,

Q = {a, ∃l 6= k s.t. xla > 0} .

If the aggregate consumption of all other users is not the same for all applications in Q,

the best response of user k is an un-balanced strategy, where she consumes larger levels of

applications that have higher aggregate consumption levels by other users. Therefore, it

cannot be a balanced equilibrium.

Suppose then that aggregate consumption by all other users is the same for all applica-

tions in Q,
∑

l 6=k x
l
a =

∑
l 6=k x

l
a′ for all a, a′ ∈ Q. Then user k’s best response is a balanced

strategy where she consumes all Q applications. But if xla = xla′ for all l and all a, a′ ∈ Q,

then it is a balanced equilibrium where all users consume Q. To show that it cannot be any

other balanced equilibrium, suppose that for some l and l′ and some a, xla 6= xl
′
a . But then

for user l it is not true that
∑

j 6=l x
j
a =

∑
j 6=l x

j
a′ . Therefore, it cannot be that user l’s best

response is a balanced strategy. Therefore, it cannot be a balanced equilibrium. The only

balanced equilibrium is when all users consume all applications in Q.

This completes the proof of Proposition 13.

Corollary 5 Assume R = 1, α > 0 and p = 0. Suppose that in an equilibrium users

consume Q applications, where Q is cardinality of Q. An equilibrium is Pareto-optimal if

and only if Q = 1.

Proof. Let R = 1, α > 0 and p = 0, and suppose that in an equilibrium users consume Q
applications, where Q is cardinality of Q. The net utility of each user in an equilibrium with

Q ≥ 1 is

U∗D(Q) = X + α

Q∑
a=1

(
X

Q
(N − 1)

X

Q

)
= X + α(N − 1)

X2

Q
.

This utility strictly decreases with Q, and is maximized when Q = 1. Whenever more

than one application is consumed in equilibrium, the equilibrium is Pareto-inferior to an

equilibrium where one application is consumed.

Therefore, only equilibria where QkD = QD = {a} for some a ∈ A and all k — i.e.,

equilibria where all users consume one and the same application — are Pareto optimal.

B.1.2 Game with perfect foresight: Indirect network effects

Proposition 14 Assume 1 < R < 2, α = 0 and p = 0. There exists a unique equilibrium,

where QkI = A each user k, i.e., every user k consumes all available applications. Moreover,
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the unique equilibrium is balanced.

Proof. Let 1 < R < 2, α = 0 and p = 0.

As in the proof for p > 0, we find that the optimal consumption schedule, given that

user k has access to some set Q applications is to consume each of them in the amount of

x̂ = X
Q

. Therefore, every equilibrium is balanced equilibrium.

To find the equilibrium consumption set for user k, recall that her consumption utility

given Q is

uI(x̂;Q) =

(
Q

(
X

Q

) 1
R

)R

= QR−1X .

This utility is always strictly increasing in Q, i.e., user k always prefers to consume as many

applications as possible. In such a case, user k’s consumption set is only limited by A, i.e.,

she optimally consumes all applications available, each at the level x̂ = X
A

.

This completes the proof of Proposition 14.

A Pareto-optimal equilibrium is an equilibrium that is not Pareto-dominated by any other

equilibrium. A Pareto-optimal allocation is a feasible set of consumption schedules for all

users such that is not Pareto-dominated by any other feasible set of consumption schedule.

When an equilibrium is unique, it is clearly a Pareto-optimal equilibrium. However, it does

not need to be a Pareto-optimal allocation (because a Pareto-optimal allocation does not

have to be an equilibrium).

Corollary 6 In the case for 1 < R < 2, α = 0 and p = 0, the unique balanced equilibrium

is also the Pareto-optimal allocation.

Proof. For α = 0, the equilibrium utility does not depend on other users’ consumption, and

no other number of consumed application yields higher utility for user k than the equilibrium

number, A. Therefore, this equilibrium is a Pareto-optimal allocation.

B.1.3 Game with perfect foresight: Interplay between direct and indirect net-

work effects

Proposition 15 Assume 1 < R < 2, α > 0 and p = 0. There exists a unique balanced equi-

librium, where QkDI = A each user k, i.e., every user k consumes all available applications.17

17[] I am convinced that it is the unique equilibrium overall (not only unique balanced), but the current
proof shows only that it is unique balanced. The original statement of the proposition was Assume 1 < R < 2,
α > 0 and p = 0. There exists a unique equilibrium, where QkDI = A each user k, i.e., every user k consumes
all available applications. Moreover, the unique equilibrium is balanced.
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Proof. Let 1 < R < 2, α > 0 and p = 0. Suppose that all other users consume Q appli-

cations according to a balanced strategy. If user k consumes fewer applications than other

users, Qk ≤ Q, it is optimal for her to consume them according to a balanced consumptions

schedule. Then, the net utility of user k is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X +�
�Qk X

�
�Qk
α
X

Q
(N − 1) .

This utility strictly increases with Qk, and yields the highest value for Qk = Q. Therefore,

user k has no incentive do deviate downward, and consume fewer applications than other

users.

Now, we show that if Q < A, then user k always has incentive to consume more applica-

tions than other users. Suppose that user k consumes one more application than other users.

She diverts some y of her time to the new application, while it is optimal for her to consume

at the same level all the applications that other users consume, X−y
Q

. Then, user k’s utility

is (
Q

(
X − y
Q

) 1
R

+ y
1
R

)R

+ ��Q
X

��Q
(X − y)α(N − 1) .

Using additional application brings user k benefit due to preference for variety. However,

diverting time from applications that are consumed by other users decreases user k payoff

due to consumption complementarity (the direct network effect). The marginal “cost” of

diverting consumption due to direct network effect is ∂X(X−y)α(N−1)
∂y

= αX(N − 1). The

marginal benefit due to preference for variety is

∂
(
Q1− 1

R (X − y)
1
R + y

1
R

)R
∂ y

=
(
Q1− 1

R (X − y)
1
R + y

1
R

)R−1 (
y1−

1
R −Q1− 1

R (X − y)
1
R
−1
)

︸ ︷︷ ︸
f(y)

.

Function f(y) is strictly decreasing in y, and as y → 0+, f(y)→∞. Therefore, for any value

of αX(N − 1), there exists small enough y for which f(y) > αX(N − 1). That means that

there always exists a consumption schedule (characterized by y for which it is beneficial for

user k to deviate from Q and consume one more application.18

18Notice that here it is fine to compare derivatives, while in the case of p > 0 it is not. Here for every little
bit of y, we lose y ·αX(N −1), and we benefit more than y ·f(y) (this is because it is an underestimation, for
lower y’s, f(y) is higher). In the case of p > 0, user k needs to pay the whole p, even if using infinitesimally
small amount of y.
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Since for all Q < A user k has incentive to deviate toward consuming more applications,

such Q cannot characterize an equilibrium. When Q = A a deviation upward is not feasible,

and no user finds it profitable to deviate downward. Therefore, in a balanced equilibrium

all applications are consumed by all users. There is only one such equilibrium.

This completes the proof of Proposition 15.

Corollary 7 In the case for 1 < R < 2, α > 0 and p = 0, the unique balanced equilibrium

may or may not be a Pareto-optimal allocation. When the equilibrium is not a Pareto-optimal

allocation, then the allocation where all users consume one application is the Pareto-optimal

allocation.

Proof. Let 1 < R < 2, α > 0 and p = 0. In the unique balanced equilibrium all users

consume all A available applications, which yields utility

U∗DI(QDI =A) = AR−1X + α
X2

A
(N − 1) .

Now, suppose that all users would play a balanced strategy where they all consume a set of

applications Q of cardinality Q. Then, user k’s payoff is

QR−1X + α
X2

Q
(N − 1)︸ ︷︷ ︸

V (Q)

,

which is the same function as V for p = 0. This function V (Q) has only one optimum,19

at Q =
(
αX(N−1)
R−1

) 1
R

. This is a minimum.20 So, if
(
αX(N−1)
R−1

) 1
R ≤ 1, V (Q) is increasing for

all A ≥ 1. When
(
αX(N−1)
R−1

) 1
R
> 1, V (Q) is first decreasing and then increasing. In such a

19The first order condition

∂ V (Q)

∂ Q
=

X

Q2

[
(R− 1)QR − αX(N − 1)

]
= 0

is satisfied only for Q =
(
αX(N−1)
R−1

) 1
R

.
20This result may be obtained in two ways: First, it is enough to show that for Q lower than this

threshold, the derivative is negative; and for Q higher than the threshold, the derivative is positive. In the

second approach, we show that the second derivative of V (Q) is negative for Q =
(
αX(N−1)
R−1

) 1
R

.

V ′′(Q) = (R− 1) (R− 2)︸ ︷︷ ︸
−

QR−3X + 2α
X2

Q3
(N − 1) = 0 ⇐⇒ QR =

2αX(N − 1)

(R− 1)(2−R)
.
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case, V (Q) has two local maxima: at Q = 1 and at Q = A. It is possible that V (1) > V (A),

even though Q = 1 is not an equilibrium. When V (A) ≥ V (1), then the unique balance

equilibrium is a Pareto-optimal allocation. But when when V (A) < V (1), the equilibrium is

Pareto-dominated by the allocation where Q = 1.

This completes the proof of Corollary 7.

B.1.4 Game with perfect foresight: On the role of the platform

With pure direct network effects there exist many possible equilibria. However, only equili-

bira where exactly one application is consumed are Pareto-optimal. Such equilibria always

exist. But if more than one application is available, A > 1, there also exist Parto-inferior

equilibria. The platform eliminates the Pareto-inferior equilibria by setting A = 1.

With pure indirect network effects there exists a unique equilibrium. This equilibrium is

a Pareto-optimal allocation for a given A (i.e., in a given environment, users could not do

better by consuming any other number of applications). However, the equilibrium net utility

of each user: AR−1X increases with A. Therefore, the larger the number of applications the

platform provides, the larger is users’ net utility.

In the presence of both direct and indirect network effect there exists a unique equilibrium.

But for a given A it may or may not be Pareto-optimal (Corollary 7). If the platform is

bounded in setting A and cannot provide more applications than A, then it needs to consider

whether V (1) ≤ V (A) or not. When V (1) ≤ V (A), then the platform should set A = A to

maximize users’ net utility. But when V (1) > V (A), then the platform should set A = 1.

If the platform is not bounded in setting A. It should set as large A as possible. This is

because U∗DI(A)→∞ when A→∞. Therefore, for large enough A, U∗DI(A) = V (A) > V (1),

and then U∗DI(A) is only decreasing in A.

B.2 Game with no foresight

B.2.1 Game with no foresight: Direct network effects

Proposition 16 Assume R = 1, α > 0 and p = 0. Any set of consumption schedules

constitutes a no-foresight equilibrium, as long as for any user k,
∑

a∈A x
k
a = X.

For Q <
(

2αX(N−1)
(R−1)(2−R)

) 1
R

, V ′′(Q) < 0. And
(
αX(N−1)
R−1

) 1
R

<
(

2αX(N−1)
(R−1)(2−R)

) 1
R

, so the second derivative is

negative where the first order condition is satisfied.
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Proof. Let R = 1, α > 0 and p = 0. Under the assumption of no-foresight, and p = 0,

user k’s net utility from consuming a set of applications Gk is

UDI({xka}|xka ∈ Gk) =
∑
xka∈Gk

xka + α(N − 1)
X2

A
.

Since a user does not maximize the consumption unless she uses all her time budget,∑
xka∈Gk

xka = X for any Gk. Thus, the utility achieved by user k is X + α(N − 1)X
2

A
,

independently of a consumption schedule. Whatever is user k’s consumption set and con-

sumption schedule, she never has incentive to deviate. Therefore, whenever all users consume

all their time budget, i.e.,
∑

a∈A x
k
a = X for every k, a set of such consumption schedules

constitute an equilibrium.

This completes the proof of Proposition 16.

B.2.2 Game with no foresight: Indirect network effects

In the case of pure indirect network effects, foresight plays no role. All the results, including

results for the role of the platform, are the same for no-foresight as for perfect foresight.

B.2.3 Game with no foresight: Interplay between direct and indirect network

effects

Proposition 17 Assume that 1 < R < 2 and α > 0. There exists a unique no-foresight

equilibrium, where GkDI = A each user k, i.e., every user k consumes all available applica-

tions. Moreover, all users play balanced strategies in this equilibrium.

Proof. Suppose that that 1 < R < 2 and α > 0. Under the assumption of no-foresight, and

p = 0, user k’s net utility from consuming a set of applications Gk is

UDI({xka}|xka ∈ Gk) =
( ∑
xka∈Gk

(
xka
) 1

R

)R
+ α(N − 1)

X2

A
.

Maximizing UDI({xka}|xki ∈ Gk) under the constraint that
∑

x∈Gk x
k
a ≤ X, yields the same

first order condition for every xka. Therefore, the optimal consumption schedule is a balanced

consumption.

Under balanced consumption, the utility of user k’s from consuming Gk applications is

UDI(G
k) =

(
Gk
)R−1

X + α(N − 1)X
2

A
. This utility is strictly increasing in Gk. Therefore,
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every user finds it optimal to consume all A available applications, and in equilibrium all

users play a balanced strategy and consume GkDI = A.

This completes the proof of Proposition 17.

B.2.4 Game with no foresight: On the role of the platform

Under pure direct network effects, when the platform provides A ≥ 1 applications, each

user’s utility in any equilibrium is

U∗D = X + α(N − 1)
X2

A
.

This utility strictly decreases with A. The platform with the objective to maximize users’

net utility should set A = 1.

Under pure indirect network effects, foresight plays no role. The cases of no-foresight

and perfect foresight are the same: The users’ utility strictly increases in A and, therefore,

the platform should provide as many applications as possible.

When both network effects are present, the unique equilibrium under no-foresight equi-

librium is the same as the unique balanced equilibrium under perfect foresight: All users

consume all A available applications according to the balanced consumption schedule, and

achieve the equilibrium utility of

U∗DI(G
k
DI =A) = AR−1X + α

X2

A
(N − 1) .

Therefore, the same analysis as in the case of perfect foresight leads us to conclusion that if

the platform is unbounded while setting A, it should set as large A as possible. When it is

bounded by A, it needs to consider whether V (A) ≥ V (1) or not.
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