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Abstract

A common sales tactic is for a seller to encourage a potential customer to make

her purchase decision quickly, before she can investigate rival deals in the market.

We consider a market with sequential consumer search in which �rms can achieve

this either by making an exploding o¤er (which permits no return once the consumer

leaves) or by o¤ering a buy-now discount (which makes the price paid for immediate

purchase lower than the regular price). We show that �rms often have an incentive

to use these sales techniques, regardless of their ability to commit to their selling

policy. We examine the impact of these sales techniques on market performance.

Inducing consumers to buy quickly not only reduces the quality of the match between

consumers and products, but may also raise market prices.

Keywords: Consumer search, oligopoly, price discrimination, high-pressure selling,
exploding o¤ers, buy-now discounts, costly recall.

1 Introduction

Selling techniques are rarely a focus of economic research, although they are an important

aspect of the consumer experience in many markets. One controversial sales method forces

the consumer to decide quickly whether to buy. Methods of encouraging a quick decision

include a seller refusing to sell to a customer unless she buys immediately (a sales tactic

for which we use the term �exploding o¤er�), or the seller telling the potential customer

that she will pay a higher price if she decides to purchase at a later date (we say the seller

then o¤ers a �buy-now discount�). In his account of sales practices, Cialdini (2001, page

208) reports:

�We are grateful for their helpful comments to Simon Anderson, John Bone, Marco Haan, Bruno Jullien,

Preston McAfee, Meg Meyer, Nicola Persico, Andrew Rhodes, David Sappington, Glen Weyl, Chris Wilson

and Asher Wolinsky, and to the Economic and Social Research Council (UK) and the British Academy

for their funding assistance.
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Customers are often told that unless they make an immediate decision to

buy, they will have to purchase the item at a higher price later or they will be

unable to purchase it at all. A prospective health-club member or automobile

buyer might learn that the deal o¤ered by the salesperson is good for that one

time only; should the customer leave the premises the deal is o¤. One large

child-portrait photography company urges parents to buy as many poses and

copies as they can a¤ord because �stocking limitations force us to burn the

unsold pictures of your children within 24 hours�. A door-to-door magazine

solicitor might say that salespeople are in the customer�s area for just a day;

after that, they, and the customer�s chance to buy their magazine package, will

be long gone. A home vacuum cleaner operation I in�ltrated instructed its sales

trainees to claim that, �I have so many other people to see that I have the time

to visit a family only once. It�s company policy that even if you decide later

that you want this machine, I can�t come back and sell it to you.�

There are other examples of exploding o¤ers: an academic journal may o¤er to publish a

paper if the author submits it immediately before trying her luck with another outlet, or

a seller of life insurance may give a quote to a consumer which is valid only for 10 days,

knowing that it will take the consumer more than 10 days to generate another quote given

the medical tests required.

A less extreme sales tactic than banning return is to o¤er a discount for immediate sale.

Bone (2006, pp. 71-73) documents how a home improvement company o¤ers its potential

customers a regular price for the agreed service, together with a discounted price� which

was termed a ��rst call discount�� if the customer agrees immediately. Robinson (1995)

discusses other examples of buy-now discounts, such as a prospective tenant who is o¤ered

an apartment for $900 per month but to whom the landlord o¤ers $850 if she agrees

immediately, or a car dealer trying to close a deal who o¤ers a further $500 o¤ the price if

the buyer accepts now, so (as he claims) he can then make his sales quota for that month.

This paper examines a seller�s incentive to discriminate against customers who wish to

buy later, after investigating rival o¤ers. It is natural to study this issue in the context of

sequential search, where consumers search for a suitable product and/or for a low price.1

There are three leading models of sequential consumer search, each of which is relevant for

1We use a model with rational consumers. There are many other methods to induce sales which rely on

more psychological factors. These include attempts to make the prospective buyer �like�the seller (e.g., by

claiming similar interests, family or social background) or attempts to make the buyer feel obligated to the

seller (e.g., by means of a �free gift�). Cialdini (2001) describes these and other sales techniques in more

detail, and Bone (2006) illustrates their use in the two companies he studies. Bone (page 90) describes the

use of an extreme tactic: the seller �burst into tears�when the sale appeared to be in di¢ culty, claiming

she would be in trouble with her boss if she didn�t make the sale. Rotemberg (2010) presents a model in

which sellers, by investing in sales e¤ort, can directly a¤ect a prospective buyer�s utility from the seller�s

item or her disutility from not buying the seller�s item.
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the analysis in this paper. First, Diamond (1971) proposes a model in which sellers o¤er

homogenous products, where consumers know their value for the product in advance of

search, and where all consumers have a positive cost of searching for an additional price.

In this situation, the �Diamond paradox�applies and the market can fail to operate at all:

if consumers anticipate some equilibrium price P from sellers, then to search for a seller

they must be willing to pay at least P + s for the product, which gives a seller an incentive

to charge at least P + s. Thus, there can be no equilibrium price which induces consumers

to enter the market.

Second, Stahl (1989) modi�es Diamond�s model so that a fraction of consumers do

not have search costs, and always investigate all options in the market. The presence of

these �shoppers�gives �rms an incentive to set low prices, and the market is active. In

equilibrium, �rms choose prices according to a mixed strategy, and there is price dispersion

in the market. The shoppers buy the cheapest available product, while prices are low

enough that those consumers with positive search costs buy from the �rst �rm they �nd.

Third, Wolinsky (1986) proposes a model with product di¤erentiation, so that consumers

need to search for a suitable product as well as a low price. Because consumers do not know

their match utility from a �rm until they visit that �rm, the Diamond paradox need not

arise even though all consumers have positive search costs. In equilibrium all �rms choose

the same deterministic price, and consumers keep searching until they �nd a product with

match utility above a threshold. (If no product�s utility is above the threshold, consumers

go back to buy from the �least bad�option if that option yields a positive surplus.)

In the latter two search models, some consumers will return to buy from a previously

sampled seller after investigating other sellers.2 In this paper we discuss how �rms may wish

to discriminate against these return buyers. Of course, to do this a seller needs to be able

to distinguish potential customers it meets for the �rst time from those who have returned

after a previous visit. In the majority of circumstances this is not possible. (A supermarket,

for instance, keeps no track of a consumer�s entry and exit from the store.) Nevertheless,

in many markets such discrimination is feasible. A sales assistant may tell from a potential

customer�s questions or demeanor whether she has paid a previous visit or not, or may

simply recognize her face. In online markets, a retailer using tracking software may be

able to tell if a visitor using the same computer has visited the site before. Sometimes� as

with job o¤ers, automobile sales, tailored �nancial products, medical insurance, doorstep

sales, or home improvements� a consumer needs to interact with a seller to discuss speci�c

requirements, and this process reveals the consumer�s identity.

In such situations, there are two reasons why a �rm might wish to discriminate against

those consumers who buy later. First, there is a strategic reason, which is to deter a

2De los Santos (2008) presents an empirical study of consumer search behaviour prior to making a

purchase, using data from online book purchases. De los Santos (2008, section 4) �nds that of those

consumers who search at least twice, approximately two-thirds buy from the �nal �rm searched and one-

third go back to a �rm searched earlier.
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potential consumer from going on to investigate rival o¤ers. If a consumer cannot return

to a seller once she leaves, this increases the opportunity cost of onward search, as the

consumer then has fewer options remaining relative to the situation in which return is

costless. Second, the observation that a consumer has come back to a seller after sampling

other options reveals relevant information about a consumer�s tastes or the prices she has

been o¤ered elsewhere, and this may provide a pro�table basis for price discrimination. A

seller may charge a higher price to those consumers who have already investigated other

sellers, because their decision to return indicates they are unsatis�ed with rival products.3

As we will see, the former motive is most relevant when �rms can commit to their buy-later

policies (or at least when some consumers believe that announced buy-later policies will

be used), while the latter is more important when �rms have less commitment power.

A simple example may help �x some of the ideas used in this paper. A principal (a seller

or an employer, say) makes an o¤er to a risk-neutral agent (a consumer or worker), knowing

that the agent will receive another o¤er from a second principal subsequently. The �rst

principal aims to maximize the probability that the agent accepts the o¤er. Suppose that

the agent�s payo¤ from the �rst principal is u1 and her payo¤ from the second principal is

u2, where u1 and u2 are identical and independent random variables with mean �u. When

the agent receives her �rst o¤er, she (but not the �rst principal) observes u1 but does not

yet know the realization of u2. Suppose the agent incurs no search or discounting costs

to obtain the second o¤er, and always wishes to accept one o¤er or the other. If the �rst

principal allows the agent to return freely after she receives her second o¤er, the agent will

wait for the second o¤er and choose the better option, so that the agent accepts the �rst

principal�s o¤er with probability equal to a half. However, if the �rst principal commits to

an exploding o¤er so that the agent cannot come back if she waits for the second o¤er, then

the agent accepts the exploding o¤er if u1 � �u. Thus, the exploding o¤er increases the

probability of acceptance if and only if the mean of the distribution is below the median, so

that the distribution is negatively skewed. The basic trade-o¤ involved is as follows. When

the �rst principal uses an exploding o¤er, this makes the agent more likely to accept the

o¤er immediately if she likes it, but it prevents the agent, in the event that she has only

a moderate payo¤ from the o¤er, from coming back if she receives a worse o¤er from the

second principal. When the distribution is negatively skewed, the �rst e¤ect dominates.

Of course, the agent is harmed when the �rst principal makes an exploding o¤er, since

she obtains her ideal outcome when free recall is allowed while an exploding o¤er leads to

ine¢ cient matching for some realizations of (u1; u2).

3This contrasts with the substantial literature on dynamic pricing, which examines how �rms can use

the information of consumer purchase history to re�ne their prices. These models often predict that a

�rm will price low to a customer who previously purchased from a rival (or consumed the outside option

in the case of monopoly), since such a customer has revealed she has only a weak preference for the �rm�s

product. See Coase (1972) for the original monopoly analysis, and Fudenberg and Villas-Boas (2006) for

a survey of this literature in the context of oligopoly.
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In this paper we extend this illustrative example to allow for positive search costs and

price competition between an arbitrary number of sellers, to allow sellers to set higher

prices to return visitors (rather than merely to ban their return), to relax the assumption

that sellers can commit to their buy-later policies, and to consider situations in which it is

uncertainty about price rather than match utility which is relevant. For most of the paper

we conduct the analysis in Wolinsky�s framework with product di¤erentiation, although at

the end of the paper we verify that the main insight carries over to the alternative Stahl

model with homogenous products and price dispersion. In section 2 we suppose that �rms

can employ one of just two �buy-later�policies: consumers can freely return after leaving

the �rm (and buy at the same price), or exploding o¤ers are used and �rst-time visitors are

forced to buy immediately or never. We show that �rms wish to use exploding o¤ers when

the consumer demand curve is concave (which is akin to the negative skewness needed in

the simple example above), while when demand is convex �rms choose to allow free recall.

Beyond cases of convex or concave demand, we show that exploding o¤ers are typically an

equilibrium sales technique when search frictions are large and there are many suppliers.

We derive the equilibrium price when all �rms use exploding o¤ers, and �nd that this price

can be higher or lower than the corresponding price with free recall.

In section 3 we assume �rms have a richer set of buy-later policies from which to choose,

and rather than simply banning return they can charge their returning visitors a higher

price. We �rst analyze the case where �rms can commit to their buy-later price. Starting

from a situation in which �rms treat �rst-time and returning consumers symmetrically, we

show under mild conditions that a �rm has an incentive to o¤er a buy-now discount. We

derive the equilibrium prices for immediate and returning purchase in a duopoly example,

and because of the extra search frictions introduced by the buy-now discount, even the

discounted buy-now price can be higher than the non-discriminatory price.

An alternative method of discriminating against prospective buyers who leave and then

return is to implement an unannounced price hike. When searching for air-tickets online,

a consumer may �nd a quote on one website, go on to investigate a rival seller, only to

return to the original website to �nd the price has mysteriously risen. Or a consulting �rm

may be approached by a company wanting antitrust advice and a fee is chosen, but if the

company returns some weeks later after trying rival consultants (who are too expensive, or

perhaps turn out to be con�icted), it may �nd the fee has increased. To analyze such cases,

in section 3.3 we relax the assumption that �rms can commit to their buy-later price when

consumers make their �rst visit. Then, for reasons akin to Diamond�s paradox, the only

credible outcome when �rms have no commitment power at all is that �rms make exploding

o¤ers and the return market collapses. An inability to commit to its buy-later policy will

therefore amplify a �rm�s incentive to discriminate against those consumers who buy later.

However, if a �rm has limited commitment power, in the sense that it can commit to an

upper bound on the prices paid by returning visitors� this upper bound might simply be

the displayed price of the item in the store, for instance� then an equilibrium exists which
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is identical to the full commitment outcome.

In section 4 we discuss alternative reasons why �rms may wish to encourage quick

decision making. We examine a model with homogenous products and price dispersion

as in Stahl�s search model. Here, a consumer�s uncertainty about future options concerns

price rather than match utility. The results are more clear-cut relative to the setting where

products are di¤erentiated, and starting from Stahl�s free-recall equilibrium we show that

a �rm always has a unilateral incentive to make an exploding o¤er. We also discuss

how consumer risk aversion makes it more likely that exploding o¤ers are a pro�table

strategy, how an incumbent �rm can employ exploding o¤ers so as to deter a more e¢ cient

entrant, and why a �rm may force a quick decision in order to prevent consumers from

comprehending the current product (as opposed to the products o¤ered by rival sellers).

As far as we know, this paper is the �rst to study the use of exploding o¤ers (or, more

generally, buy-now discounts) in consumer markets. In the alternative setting of matching

markets, however, there are a number of studies in which exploding o¤ers play a role.

Exploding o¤ers are often used in specialized labor markets, such as those for law clerks,

sport players, medical sta¤, and student college allocations. In such markets, �rms make

o¤ers to which applicants must respond quickly, and these markets often clear very fast,

with �rms as well as applicants having little opportunity to consider their alternatives.

(See Roth and Xing, 1994, for an account of a number of such markets.) This literature

often studies exploding o¤ers, together with early contracting, in a setting where match

quality information (e.g., information about workers�productivity) is revealed over time

(see Li and Rosen, 1998, for instance). When exploding o¤ers are used, these markets have

a tendency to �unravel�: employers compete to make and workers are willing to accept

ever earlier o¤ers. Early contracting can provide an insurance gain for agents, but it causes

ine¢ cient matching. Niederle and Roth (2009) conducted an experimental study on the

use of exploding o¤ers in a laboratory matching market. They �nd that �rms do tend to

use exploding o¤ers when they are permitted to do so, and the result is that matching

occurs ine¢ ciently early and match quality is poor, relative to the situation in which using

exploding o¤ers is banned. Our model is more suitable for consumer markets where the

interaction between buyers and sellers often occurs through individual search processes

instead of through a synchronized matching market as often seen in labor markets. But

both early contracting in labor markets and early buying in our model lead to an ine¢ cient

use of information available in the market.

Our paper also relates to several strands of the industrial organization literature, beyond

the early papers on consumer search already discussed. Janssen and Parakhonyak (2010)

extend Stahl�s model so that consumers incur an exogenous cost to return to a previous

�rm. The optimal stopping rule with costly recall is signi�cantly more complicated than

when return is costless. When there are more than two �rms, a consumer�s stopping rule

is non-stationary and her reservation surplus level depends on her previous o¤ers. They
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further show that equilibrium prices do not depend on the recall cost.4

Firms often bene�t from a reduction in consumer search intensity, since this usually

softens price competition. In our model, the exploding o¤er or buy-now discount serves

this purpose. Alternatively, Ellison and Wolitzky (2008) extend Stahl�s model so that a

consumer�s incremental search cost increases with her cumulative search e¤ort. If a �rm

increases its in-store search cost (say, by making its tari¤ harder to comprehend), this will

make further search less attractive. They show that if the exogenous component of search

costs falls, �rms will unilaterally increase their self-determined element of search costs, with

the result that equilibrium prices are unchanged. Though otherwise very di¤erent, our

model and theirs study how search frictions are determined endogenously: even if intrinsic

search frictions are negligible, a market may su¤er from substantial search frictions� and

high prices� in equilibrium.

Finally, our analysis of buy-now discounts is related to the literature on auctions with

a �buy now�price (see Reynolds and Wooders, 2009, for instance). Online auctions some-

times o¤er bidders the option to buy the item immediately at a speci�ed price rather than

enter an auction against other bidders. In these situations, a seller has one item to sell

to a number of potential bidders, and so a bidder needs to pay a high buy-now price in

order to induce the seller from going on to search for other bidders by running an auction,

whereas our model involves sellers o¤ering a low buy-now price so as to induce a buyer from

going on to search for other sellers. Common rationales for buy-now prices in auctions are

impatience or risk-aversion on the part of bidders or the seller, neither of which is needed

in our model.

2 Exploding O¤ers

Our underlying market is based on Wolinsky�s model with di¤erentiated products.5 There

are 2 � n < 1 symmetric �rms in the market, each supplying a single horizontally

di¤erentiated product at a constant marginal cost which is normalized to zero.6 There are

a large number of consumers with idiosyncratic preferences, and their measure is normalized

to one. A consumer�s valuation of product i, ui, is a random draw from some common

4Daughety and Reinganum (1992) make the point that the extent of consumer recall may be endoge-

nously determined by �rms�equilibrium strategies. In their model, the instrument that a �rm can use

to in�uence consumer recall is the length of time that it will hold the good for consumers at the quoted

price. In contrast to our assumption that a consumer can discover a seller�s buy-later policy only after

investigating that seller, Daughety and Reinganum suppose that sellers can announce their recall policies

to the population of consumers before search begins.
5See Anderson and Renault (1999) for analysis of a variant of Wolinsky (1986) in which there is no

outside option and consumers always buy a product in the market.
6Note that if there were unlimited �rms in the market (n = 1), banning or discouraging return has

no impact on a �rm�s demand or pro�t. As is well known, with unlimited options, consumers would not

choose to return to a previously sampled option even if it was free for them to do so.
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distribution with support [0; umax] and with cumulative distribution function F (�) and
continuously-di¤erentiable and bounded density f(�). We suppose that the realization of
match utility is independent across consumers and products. In particular, there are no

systematic quality di¤erences across the products. Each consumer wishes to buy one item,

provided an item can be found with a positive surplus. We sometimes refer to the function

1� F (�) as the consumer demand curve.
Consumers initially have imperfect information about the deals available in the market.

They gather this information through a sequential search process, and by incurring a search

cost s � 0, a consumer can visit a �rm and �nd out (i) its price, (ii) its �buy-later�policy,
and (iii) the realized match value. (If the search cost is zero, we require that consumers

nevertheless consider products sequentially.) In this section, the only two buy-later policies

available to a �rm are to use an exploding o¤er or to allow free recall. (If a �rm allows free

recall, it sets the same price to �rst-time visitors and returning visitors.) To implement an

exploding o¤er, �rms are assumed to be able to distinguish �rst-time visitors from returning

customers and to have the ability to commit not to serve a returning customer. After

visiting one �rm, a consumer can choose to buy at this �rm immediately or to investigate

another �rm. If permitted, she can costlessly return to a previous �rm after sampling

subsequent �rms.7 Since �rms are ex ante symmetric, we consider situations with random

search, so that a consumer is equally likely to investigate any of the remaining unsampled

�rms when she searches, and we also focus on symmetric equilibria.

The timing of the game is as follows. At the �rst stage, �rms set prices and buy-later

policies simultaneously. The strategy space of each �rm is then R+�ffree recall, exploding
o¤erg. At the second stage, consumers search sequentially and make their purchase decision
after search is terminated. Consumers do not observe �rms�actual choices before they

start searching, but hold rational expectations of equilibrium prices and buy-later policies.

Information unfolds as the search process goes on, but consumers�beliefs about the o¤ers

made by unsampled �rms are unchanged, even if they observe o¤-equilibrium o¤ers from

some �rms. Both consumers and �rms are assumed to be risk neutral. We use the concept

of perfect Bayesian equilibrium, and focus on symmetric pure strategy equilibria in which

�rms set the same price and buy-later policy based on their expectation of consumers�

search behavior, and at each �rm consumers hold equilibrium beliefs about unsampled

�rms�strategies and make their search decisions accordingly.

A piece of notation which summarizes the distribution of match utilities and the extent

of search frictions is

V (p) �
Z umax

p

(u� p) dF (u)� s : (1)

7In most search markets, even if �rms allow free return, consumers face some intrinsic cost of returning

to a previously visited �rm. In most of our analysis, introducing a small intrinsic returning cost does

not a¤ect results qualitatively, but only complicates the analysis, and we assume it away for analytical

convenience. However, when we come to discuss buy-now discounts without commitment in section 3.3,

whether an intrinsic returning cost exists or not will make an important di¤erence.
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Thus, V (p) is the expected surplus of sampling a product if a consumer expects that the

price will be p, the cost of sampling the product is s, and this is the only product available.

Note that V (p) is decreasing but p + V (p) is increasing in p. Throughout this paper we

assume that the search cost s is relatively small, so that

V (pM) > 0 ; (2)

where pM is the monopoly price which maximizes p[1 � F (p)]. This condition means

that consumers are willing to sample a product sold even at the monopoly price. In the

example where u is uniformly distributed on [0; 1], which we use for illustration in the

following analysis, condition (2) requires s < 1
8
.

In the remainder of section 2, we compare market performance when �rms allow free

recall with the situation where �rms make exploding o¤ers (sections 2.1 and 2.3), and we

discuss the incentive �rms have to make exploding o¤ers (section 2.2).

2.1 The market with free recall and with exploding o¤ers

Here, we examine the market when all �rms allow free recall and compare this to the

less familiar situation where all �rms make exploding o¤ers. If all �rms allow free recall,

the situation is as in Wolinsky (1986), and for reference later we recapitulate part of his

analysis. In a symmetric equilibrium in which all �rms set the same price p0, consumers

have a stationary stopping rule whereby they buy a product immediately if they obtain a

match utility u greater than a threshold a, and if no product yields that level of utility,

the consumer samples all products and buys from the best of the n options provided that

option generates a positive surplus. Here, the reservation utility a is determined by the

formula

V (a) = 0 : (3)

The expression
R umax
a

(u� a) dF (u) in V (a) is the incremental bene�t of searching once
more if the best current utility is a and the consumer has free recall. So the optimal

threshold makes the consumer indi¤erent between searching on, which incurs cost s, and

purchasing this product with utility a. Since V (�) is a decreasing function, (3) has a unique
solution and a decreases with s, and condition (2) is equivalent to a > pM . Note that in

this case there is e¢ cient matching of consumers to products in the sense that a consumer

will always buy her most preferred product from those products she sees.

The following result describes the equilibrium price in the market with free recall.8

Lemma 1 In the market where all �rms allow free recall, the �rst-order condition for p0
to be the equilibrium price is

1� F (p0)n

p0
+ n

Z a

p0

F (u)n�1f 0(u)du = f (a)
1� F (a)n
1� F (a) : (4)

8The �rst-order condition (4) was derived in Wolinsky (1986), while the results about existence and

su¢ ciency of the �rst-order condition have apparently not been stated in the literature.
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If the demand curve 1 � F is strictly logconcave, then in the interval 0 < p0 < a the

�rst-order condition (4) has a solution and any such solution lies in the range

1� F (a)
f(a)

< p0 < pM :

If the monopoly pro�t function p[1� F (p)] is concave, then the �rst-order condition (4) is
su¢ cient for p0 to be the equilibrium price.

(Unless otherwise stated, all omitted proofs can be found in the appendix.)

As the number of suppliers becomes large, the equilibrium price in (4) converges to

p0 =
1�F (a)
f(a)

. As the search cost tends to its upper bound in (2) (i.e., as a tends to pM),

consumers stop searching whenever they �nd a product with positive surplus and each �rm

acts as a monopolist, so the price converges to p0 = pM (which then also equals 1�F (a)
f(a)

).

Suppose next that all �rms force their �rst-time visitors to buy immediately or not at

all. Suppose consumers anticipate that each �rm sets the price p. What is a consumer�s

optimal search strategy? As is intuitive, consumers become less choosy as they run out of

options, and their reservation utility for purchasing decreases the fewer �rms remain to be

searched. Indeed, if they are unfortunate enough to reach the �nal �rm they will have to

accept any o¤er which leaves them non-negative surplus. In particular, since a consumer

may end up buying a product which is inferior to products rejected earlier in her search

process, the matching of products to consumers is less e¢ cient than in the market with

free recall. The precise stopping rule is derived in the following result.9

Lemma 2 Suppose consumers face a search market with m �rms, each of which makes

an exploding o¤er and sets price p. Then a consumer will enter the market if and only if

p < a, where a is given in (3), in which case she obtains expected surplus

Wm � am � p � 0 ;

where am solves the recursive equation

am+1 = am + V (am) (5)

with initial value a0 = p and where V (�) is de�ned in (1). If p < a, a consumer who has
l � 0 �rms remaining unsampled will buy from her current �rm if match utility is greater

than al, and the sequence a0; a1; ::: is increasing.

Note that, unlike the case with free recall, each am depends on the price p since the

starting value a0 does so. Note also that when p < a the sequence am in (5) converges to

the free-recall reservation utility a as m!1.
9Related analysis of the optimal stopping rule for search without recall has been derived by, for example,

Lippman and McCall (1976).
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We next derive the symmetric equilibrium price when �rms use exploding o¤ers. Sup-

pose n�1 �rms set the price p and the remaining �rm is considering its choice of price, say
~p. (Of course, when choosing their search strategy consumers anticipate that this �rm has

set the equilibrium price p.) Suppose this deviating �rm happens to be in the kth position

of a consumer�s search process, so n � k �rms remain unsampled. Then the probability
that the consumer will visit this �rm is h1 � 1 if k = 1, and if k > 1 this probability is

hk �
k�1Y
i=1

F (an�i) : (6)

From Lemma 2, she will then buy from this �rm if u � ~p > an�k � p, which occurs with
probability 1�F (an�k � p+ ~p), and so the �rm�s demand given it is in the consumer�s kth
search position is

hk[1� F (an�k � p+ ~p)] : (7)

Since the �rm is in any position 1 � k � n with equal probability, its total demand with
price ~p when all other �rms are expected to set price p is

Q(~p) =
1

n

nX
k=1

hk[1� F (an�k � p+ ~p)] ;

and its pro�t is ~pQ(~p). The following result characterizes the equilibrium price when

exploding o¤ers are used.10

Lemma 3 In the market where all �rms make exploding o¤ers, the �rst-order condition
for p to be the equilibrium price is

p =

Pn
k=1 hk[1� F (an�k)]Pn

k=1 hkf(an�k)
: (8)

If the demand curve 1 � F is strictly logconcave, then in the relevant interval 0 < p < a

the �rst-order condition (8) has a solution and any such solution lies in the range

1� F (a)
f(a)

< p < pM :

If the monopoly pro�t function p[1 � F (p)] is concave, the �rst-order condition (8) is
su¢ cient for p to be the equilibrium price.

Since each an�k depends on p, equation (8) de�nes p only implicitly. Notice that the

numerator in the right-hand side of (8) equals 1 �
Qn
k=1 F (an�k), the total output in

equilibrium.

10Lemmas 1 and 3 do not discuss the uniqueness of equilibria in the respective regimes. However, one can

show that if the demand curve is strictly logconcave then there is a unique solution to the free-recall �rst-

order condition (4), while if the demand curve is concave there is a unique solution to the exploding-o¤er

�rst-order condition (8).
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One can show that as the number of �rms tends to in�nity, this equilibrium price

converges to the same lower bound 1�F (a)
f(a)

as in the free-recall case. Intuitively, when the

number of �rms is unlimited, a consumer would never choose to return to a previously

sampled �rm, even if she could freely do so, and so the use of exploding o¤ers has no e¤ect

on the equilibrium price. Finally, as the search cost tends to its upper bound (i.e., as a

tends to pM), p converges to the monopoly price pM as in the free-recall regime.

2.2 Incentives to make an exploding o¤er

Before we compare the outcome when all �rms use exploding o¤ers with the benchmark

model with free recall, we �rst investigate a more fundamental issue: when will �rms use

exploding o¤ers in equilibrium? That is, if all its rivals make exploding o¤ers and set the

price p in (8), does a �rm have an incentive to deviate and allow free recall (and, possibly,

set a di¤erent price as well)? Before pursuing the analysis in general, consider this simple

duopoly example with �xed prices which yields the main insight.

-
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Figure 1a: Demand with free recall Figure 1b: Demand with exploding o¤er

Suppose there are two �rms, each of which sets the exogenous price p < a. Is a �rm�s

demand boosted or reduced if it decides to force its �rst-time visitors to buy immediately

or not at all? First, for those consumers who �rst sample its rival, �rm i�s decision whether

or not to use an exploding o¤er has no impact on its demand. Therefore, the only impact

on the �rm�s demand comes from that half of the consumer population who sample it �rst.

If �rm i allows free recall, such a consumer will buy from it immediately whenever ui > a,

and a consumer will return to buy from it whenever p < ui < a and ui > uj. (This is

true regardless of whether or not the rival �rm makes an exploding o¤er.) This pattern of

demand is depicted in Figure 1a. If, instead, �rm i uses an exploding o¤er, expression (5)
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implies that a consumer will buy from it if and only if ui > a1 = p + V (p). This pattern

of demand is depicted in Figure 1b.

As we have shown, a1 2 (p; a) and so the use of an exploding o¤er makes a consumer
more likely to buy immediately, but it eliminates the possibility that the consumer comes

back after �nding an inferior product elsewhere. One can calculate that when u is uniformly

distributed on [0; 1], �rm i�s demand in the two �gures is identical, and when a �rm forces

immediate sale this has no net impact on its demand. More generally, as in the illustrative

example discussed in the introduction, the impact of using an exploding o¤er is to eliminate

the �rm�s demand from �low ui�consumers, who have match utility close to price p and

might otherwise come back, and to boost its demand from �high ui�consumers, who do

not wish to risk losing the existing desirable option by going on to sample the rival. If

u has an increasing density (i.e., the demand curve 1 � F is concave), the latter e¤ect

dominates the former, and the net impact of forcing immediate sale is to boost a �rm�s

demand. Similarly, if the demand curve is convex, then the former e¤ect dominates and

the probability of a consumer accepting its o¤er is reduced when an exploding o¤er is used.

The next result shows that this argument is valid with any number of �rms and en-

dogenous prices.

Proposition 1 (i) If the demand curve 1 � F is strictly concave then every symmetric

equilibrium involves �rms using exploding o¤ers;

(ii) if the demand curve 1�F is strictly convex then every symmetric equilibrium involves
�rms allowing free recall;

(iii) if the demand curve 1�F is linear, i.e., u is uniformly distributed, then an equilibrium
with exploding o¤ers and an equilibrium with free recall both exist.

This result only covers situations with concave or convex demand (i.e., where the density

for the match utility is monotonic). The reason why results are then clear-cut is that the

impact of exploding o¤ers on a �rm�s demand does not depend on the prevailing price.

With a non-monotonic density function, whether exploding o¤ers are an equilibrium sales

technique may depend on price. In particular, it may depend on both the number of �rms

in the market and the magnitude of search frictions. Results with non-monotonic densities

can be obtained if there are many suppliers, as described in the next result.11

Proposition 2 Suppose f is a hump-shaped density with mode u� (i.e., f is strictly in-
creasing for u < u� and strictly decreasing for u > u�). Then for su¢ ciently large n:

(i) if a < u� it is an equilibrium for all �rms to use exploding o¤ers;

(ii) if a > u� it is an equilibrium for all �rms to allow free recall.

11From the proof of this result, one can also see that if a < u�, then for large n free recall cannot emerge

in any symmetric equilibrium, which implies that every symmetric equilibrium involves all �rms using

exploding o¤ers. Unfortunately, we cannot prove the counterpart of this result when a > u�.
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Loosely speaking, when n is large only the behavior of f around the threshold point a

matters for the incentives to make an exploding o¤er. (Proposition 1 by contrast showed

that exploding o¤ers are used when the density is everywhere increasing.) This result

implies that when the density is hump-shaped and the number of �rms is large, the size

of search frictions determines the equilibrium sales policy. When the search cost is high

enough that a is smaller than the mode, �rms use exploding o¤ers; otherwise, �rms allow

free recall. In particular, in �competitive�markets (in the sense that search frictions are

small and the number of suppliers is large), we anticipate that allowing free recall is an

equilibrium policy. The other useful comparative statics exercise is to consider the impact

of the number of �rms on the equilibrium sales policy. To illustrate this in an example,

consider the case where match utilities follow the hump-shaped Weibull distribution with

F (u) = 1 � e�u3 and support [0;1), which has mode u� � 0:87 and monopoly price

pM � 0:69. For a search cost such that a = 1 > u�, one can verify that when n = 2; 3 and
4 the only symmetric equilibrium involves �rms using exploding o¤ers, while for n = 5 and

6 all �rms allow free return.12

Our analysis presumed that consumers search through market options in a purely ran-

dom order. In some markets, however, a prominent seller may attract a disproportionate

share of initial consumer searches. (De los Santos (2008) showed this was so in the online

book market.) Indeed, the examples of doorstep selling mentioned in the introduction do

not �t the random search assumption well since such a seller is relatively likely to be the

�rst seller for that product encountered by the consumer over the relevant time horizon.

Nevertheless, prominence does not a¤ect a �rm�s incentive to adopt exploding o¤ers, at

least when the demand curve is concave or convex, and Proposition 1 applies regardless

of the fraction of �rst-time visitors a given seller receives. The reason can be understood

by looking at Figure 1. The decision about whether or not to use an exploding o¤er only

a¤ects a �rm�s demand from those consumers who sample it �rst, and this demand e¤ect is

positive (negative) if the demand curve is concave (convex), independent of the proportion

of such consumers. Thus, much of the analysis in this paper applies equally to situations

where some sellers are more prominent than others.

Our analysis to this point relies on a �rm�s ability to commit to an exploding o¤er.

However, if a consumer does come back to a �rm after sampling a rival, the �rm will have

an incentive to sell to that consumer.13 This credibility problem is enhanced by the fact

12See our online appendix for the details of these calculations. A second factor which could arise with

non-monotonic densities is that �rms may choose intermediate buy-later policies, which make return costly

for their �rst-time visitors but not prohibitively so. For example, online sellers can ask customers to log on

to their accounts or input information again, or �rms can ask consumers to queue again or make another

appointment if they want to come back. With a monotonic density, a �rm wishes either to make return

impossible or free, even if it could impose intermediate returning costs.
13Indeed, the quote from Cialdini in the introduction immediately goes on to say: �This, of course, is

nonsense; the company and its representatives are in the business of making sales, and any customer who

called for another visit would be accommodated gladly.�
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that consumers often will wish to return to previous �rms, since their stopping rule is such

that their remaining option may have lower utility than previously rejected options. Even

if �rms lack any ability to commit, though, �rms may wish to claim to employ exploding

o¤ers if a fraction of consumers are �credulous�. When some consumers mistakenly believe

a seller�s claim that they must buy immediately or not at all, then Proposition 1 still

applies. To see this, notice that the other, rational, consumers will ignore what the sellers

say about their buy-later policies and behave as in the free-recall case. So the decision

about whether to make an exploding o¤er depends only on the credulous consumers who

behave just as the consumers do in the full commitment case.14 In addition, as we discuss

in section 3.3, when the more �exible sales policy with buy-now discounts is available,

the lack of commitment power can strengthen a �rm�s incentive to discriminate against

consumers who buy later.

2.3 The impact of exploding o¤ers

It is hard in general to compare market performance with and without the use of exploding

o¤ers, and the comparison between the prices in (4) and (8) is opaque. To gain further

insights consider �rst the case of a uniform distribution for match utility, so that u is

uniformly distributed on [0; 1] and the demand curve is linear. In this example, the �rst-

order condition for the free-recall equilibrium price in (4) simpli�es to

1

p0
= pn�10 +

1� an
1� a ; (9)

while (8) implies that the equilibrium price with exploding o¤ers satis�es

1

p
= hn +

nX
k=1

hk (10)

where hk =
Qk�1
i=1 an�i is the probability in the exploding-o¤er equilibrium that a consumer

will visit the kth �rm in her search order.15 (Lemmas 1 and 3 imply that these �rst-order

conditions are su¢ cient for p0 and p to be the equilibrium price in each regime.) Expression

(5) implies that the reservation utility thresholds in the exploding o¤er regime satisfy

am+1 =
1

2
(a2m + 1)� s

starting with a0 = p. As m becomes large am converges to a = 1 �
p
2s, the free-recall

threshold. (Recall that in this uniform example condition (2) requires s < 1
8
, i.e., a > 1

2
.)

14While the proportion of credulous consumers does not a¤ect the incentive to use exploding o¤ers (at

least when the demand curve is convex or concave), this proportion will a¤ect the equilibrium price when

exploding o¤ers are (claimed to be) used. A conceptual issue arising in such a model with both rational and

naive consumers is how they form their expectation of equilibrium prices. Our discussion here implicitly

assumes that all consumers somehow hold the correct expectation about prices.
15To derive (10), note that the numerator in (8) is equal to market demand, which is given by 1� phn.
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The following result shows that the price rises when exploding o¤ers are used in this

example.

Proposition 3 Suppose u is uniformly distributed on [0; 1] and s < 1
8
. Then price is

higher when �rms use exploding o¤ers than when they allow free recall.

The solid curve in Figure 2a depicts how the exploding-o¤er price p varies with the

number of �rms for the case s = 0, while the dashed curve depicts the free-recall price

p0. Both prices converge to zero for large n, but it seems that prices with exploding o¤ers

are approximately double those which prevail with free recall. (This �gure includes the

monopoly case n = 1, in which case the monopolist charges the price pM = 1
2
and the use

of exploding o¤ers has no impact.) As the search cost gets larger, the di¤erence between

the exploding-o¤er and free-recall prices decreases (and if s = 1
8
, the di¤erence vanishes).
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Figure 2a: Prices with exploding o¤ers Figure 2b: Pro�ts with exploding o¤ers

In general, though, it is possible that prices remain unchanged or even fall when ex-

ploding o¤ers are used, as the following examples demonstrate.16

� Consider the exponential distribution with a c.d.f. F (u) = 1 � e�u=� de�ned on
[0;1), where � is the expected value of match utility. Then one can verify that
p = p0 = �, i.e., the use of exploding o¤ers has no impact on equilibrium prices.17

16In the �rst two of the following examples, although the demand curve is well-behaved in the sense

that 1� F is logconcave, the monopoly pro�t function p[1� F (p)] is not concave as required by Lemmas
1 and 3. But one can numerically verify that a �rm�s pro�t function is nevertheless single-peaked, so that

�rst-order condition is su¢ cient for p0 and p to be the equilibrium prices.
17The special feature of the exponential distribution is that a monopoly �rm facing this population of

consumers, where each consumer has an outside option with utility z � 0, will choose the same price

p = � regardless of z. With price p, the monopolist will sell to a consumer if u � p � z, and so will

choose p to maximize pe�(p+z)=�, a choice which does not depend on z. (Perlo¤ and Salop (1985), which

is the antecedent of Wolinsky�s model without search frictions, noted these properties of the exponential

distribution.) When �rms use exploding o¤ers, this immediately implies that each �rm will choose p = �,

regardless of the number of �rms and the search cost. When there is free recall, it is also straightforward

to check that p0 = � solves expression (4) in this example.
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� Consider the Weibull distribution with a c.d.f. F (u) = 1 � e�u2 de�ned on [0;1),
where the monopoly price is pM � 0:71. When n = 2 and a = 10, one can show that
p � 0:63 < p0 � 0:64.

� Finally, consider the distribution with density function f(u) = 1
2
+ 1
1+e�k(u�1=2)

de�ned

on [0; 1] (which is a truncated logistic function). For k > 0, this density is increasing

and so the demand curve 1�F is concave. When k = 50 (in which case the monopoly
price is pM � 0:53), n = 2 and a = 0:6, one �nds that p � 0:4997 < p0 � 0:5054.

Therefore, the comparison of prices in the free-recall and the exploding-o¤er regimes

is ambiguous, even with reasonable regularity conditions placed on the demand function.

The reason why it is hard to obtain clear-cut results about the impact of exploding o¤ers on

price is that there are a number of distinct e¤ects at work. On one hand, using exploding

o¤ers makes �rst-time visitors less likely to search on, which tends to reduce a �rm�s

demand elasticity since fewer consumers can compare prices across �rms. On the other

hand, using exploding o¤ers excludes potential returning consumers, the demand from

whom is typically rather inelastic, and which therefore may raise demand elasticity.18 On

top of these two potentially con�icting e¤ects, for a given price the use of exploding o¤ers

excludes more consumers from the market, which also a¤ects the demand elasticity. As a

result, the net impact of the use of exploding o¤ers on price depends on the shape of the

demand curve in a complex way.

Whenever p � p0 (such as in the uniform or exponential examples), aggregate con-

sumer surplus and total welfare (measured by the sum of consumer surplus and pro�t)

fall when all �rms use exploding o¤ers, relative to the situation when all �rms allow free

recall. Consumer surplus falls since the price rises compared to the free-recall situation

and consumers are prevented from returning to a product which yields positive surplus.

(Even if p = p0, i.e., if using exploding o¤ers did not change the market price, consumers

would obtain lower surplus in the exploding-o¤er case due to the no-return restriction. The

higher price p > p0 only adds to their loss.) As far as total welfare is concerned, relative to

the free-recall situation, the use of exploding o¤ers not only induces suboptimal matching

(i.e., consumers on average cease their search too early due to the �buy now or never�

requirement), but also excludes more consumers from the market since p � p0, both of

which harm e¢ ciency.

However, it is ambiguous whether the exploding-o¤er equilibrium has a higher pro�t

level than the free-recall equilibrium even if p > p0. Figure 2b above compares industry

pro�t between the two cases in the uniform example with s = 0 (the solid curve represents

the exploding-o¤er case). The pro�t is lower with exploding o¤ers when n = 2. For a

18To understand the elasticity of the returning customers, consider the �nal integral term in (19) in the

appendix, which represents a �rm�s return demand. If u is uniform, so that f is constant, this demand does

not depend at all on the �rm�s price ~p, while if the density is increasing, this demand actually increases

with the �rm�s price.
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higher search cost, this can happen with a greater number of �rms (e.g., when s = 0:05,

it is true for n � 4). In the above logistic example, one can also check that �rms earn

less in the exploding-o¤er equilibrium than in the free-recall equilibrium. Together with

Proposition 1, these examples indicate that �rms may end up playing a prisoner�s dilemma

when they are able to use exploding o¤ers: each �rm has a unilateral incentive to use an

exploding o¤er, but when all �rms do so their pro�ts fall.

3 Buy-Now Discounts

An alternative framework allows a �rm to charge a higher price to returning visitors instead

of the drastic measure of banning return. When this more �exible sales policy is available,

we will show that a �rm�s incentive to discriminate against returning customers is present

under more general conditions than needed for Proposition 1. Consider the same model as

before, except that instead of choosing the extreme policies of either allowing free return

or no return, each �rm can choose two distinct prices: p is the price for �rst-time visitors

and p̂ is the price for returning customers, and the strategy space of each �rm becomes

R+�R+. (Neither price is observable to consumers before they start searching.) Whenever
p̂ > p, returning to a previous �rm is costly.19 Indeed, when p̂ is su¢ ciently high, the �rm

in e¤ect makes an exploding o¤er. One interpretation of this discriminatory pricing is that

a �rm sets a regular (or �buy-later�) price p̂ and o¤ers �rst-time visitors a �buy-now�

discount � � p̂�p. Until section 3.3, we assume that a �rm can commit to p̂ when it o¤ers
new visitors the buy-now price p.

3.1 Incentives to o¤er a buy-now discount

We �rst analyze when a �rm has an incentive to o¤er a buy-now discount � , starting from

the situation in which all �rms o¤er the equilibrium uniform price p0 in expression (4).

First, we observe that the impact of o¤ering a small buy-now discount on a �rm�s pro�t is

just as if the �rm levies a small buy-later premium.20

19If p̂ < p, then a consumer has an incentive to leave a �rm and then return, even if she has no intention

of investigating other �rms. If this kind of consumer arbitrage behavior� of stepping out the door and

then back in again� cannot be prevented, then setting p̂ < p is equivalent to setting a uniform price p̂,

and so without loss of generality we assume �rms are constrained to set p̂ � p.
20Suppose all �rms but one choose the uniform price p0 in (4). If the remaining �rm o¤ers the buy-now

price p and buy-later price p+ � , denote this �rm�s pro�t by �(p; �). If p � p0 and � � 0, then

�(p; �) � �(p0; 0) + (p� p0)�p(p0; 0) + ��� (p0; 0) = �(p0; 0) + ��� (p0; 0) ;

where the equality follows from the assumption that p0 is the equilibrium uniform price and subscripts

denote partial derivatives. Thus, the impact on the �rm�s pro�t is captured by the term ��� (p0; 0), which

is independent of p.
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Lemma 4 Starting from the situation in which all �rms o¤er the equilibrium uniform

price p0 in (4), the impact on a �rm�s pro�t of o¤ering a small buy-now discount � (so its

buy-now price is p0�� and its buy-later price is p0) is approximately equal to the impact of
levying a buy-later premium � (so its buy-now price is p0 and its buy-later price is p0+ �).

Intuitively, the fact that p0 is the equilibrium uniform price implies that a �rm�s pro�t

is not signi�cantly a¤ected by small changes in its uniform price, and the only �rst-order

impact on a �rm�s pro�t comes from its buy-now discount � (regardless of whether this is

interpreted as a discount for immediate purchase relative to the buy-later price p0, or as a

premium for later purchase relative to the buy-now price p0).

To illustrate the pros and cons of o¤ering a discount most transparently, consider

initially the case of duopoly. It is somewhat more straightforward to consider the incentive

to charge a buy-later premium, and then to invoke Lemma 4. If �rm i introduces a buy-

later premium, this has no impact on its demand and pro�t from those consumers who �rst

sample the rival given they hold equilibrium beliefs, and so we can restrict attention to that

portion of consumers who sample �rm i �rst. A buy-later premium not only discourages

consumers from searching on, as the exploding o¤er did in the earlier analysis, but also

generates extra revenue from returning consumers.

How does � a¤ect a consumer�s decision whether to buy immediately from �rm i?

Denote by a(�) the reservation utility which leads the consumer to buy immediately, i.e.,

if she �nds match utility ui � a(�) at the �rm she will buy without investigating the rival.
Clearly if no premium is levied (� = 0) then a(0) = a, the free-recall reservation level in

(3). By de�nition, if a consumer discovers utility ui = a(�) at �rm i she is indi¤erent

between buying immediately (thus obtaining surplus a(�)�p0) and going on to investigate
�rm j, which yields expected utilityZ umax

a(�)��
(uj � p0)dF (uj)| {z }

utility when she buys from j

+ F (a(�)� �)[a(�)� p0 � � ]| {z }
utility when she returns to buy from i

� s : (11)

To understand expression (11), note that if the consumer �nds utility uj at the rival, she

will buy from that �rm if uj � p0 � a(�) � p0 � � , and otherwise she will return to buy
from �rm i (but at the higher price p0+ �). Equating a(�)� p0 with expression (11) yields
the following formula for a(�):

V (a(�)� �) = � : (12)

(Remember V (�) is de�ned in (1), and given � this equation has a unique solution a(�).)
The pattern of demand for the consumers who �rst sample �rm i is depicted in Figure 3.21

21This analysis and Figure 3 presume that some consumers do return to �rm i after sampling �rm j,

which requires that the premium � is not too large. By examining the �gure, one sees that the condition

is a(�) > p0+ � . From (12), and noting that V (�) is a decreasing function, this is equivalent to � < V (p0).
When the discount exceeds V (p0), the returning cost is so great that a consumer never returns to a �rm

once she leaves it (i.e., the �rm in e¤ect uses an exploding o¤er).
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Note that a(�) decreases with � , and by di¤erentiating (12) we obtain

a0(�) =
�F (a(�)� �)
1� F (a(�)� �) < 0 : (13)

This is intuitive, as raising the cost of returning makes a consumer more likely to buy

immediately (just as in the extreme case of exploding o¤ers).

Using Figure 3, the fraction of those consumers who sample �rm i �rst and who actually

buy from the �rm is

1� F (a(�)) +
Z a(�)

p0+�

F (u� �)f(u)du| {z }
�rm i�s returning consumers

:

By using (13), the derivative of �rm i�s demand with respect to � is equal toZ a(�)

p0+�

F (u� �)f 0(u)du : (14)

In particular, the �rm�s demand is boosted with a buy-later premium whenever the density

is increasing, as we saw when we discussed exploding o¤ers in section 2.2.
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Figure 3: Pattern of demand when �rm i levies buy-later premium �

Firm i makes revenue p0 from each of its customers, plus an additional � from each of

its customers who buy later. It follows that the derivative of �rm i�s pro�ts with respect

to � evaluated at � = 0 is Z a

p0

F (u) [f(u) + p0f
0(u)] du : (15)
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Here,
R a
p0
Ffdu is the extra revenue generated from the returning customers while

R a
p0
Ff 0du

is the extra (maybe negative) demand generated by increasing the cost of return.

From (15), the �rm has an incentive to introduce a buy-now discount whenever the

demand curve is concave. But it has an incentive to introduce a discount much more

generally, and the incentive is present whenever p0 in (4) is strictly above
1�F (a)
f(a)

, which we

know from Lemma 1 is the case with strictly logconcave demand. To see this, use (4) to

obtain

p0

Z a

p0

F (u)f 0(u)du =
1

2

�
p0f(a)

1� F (a)(1� F (a)
2)� (1� F (p0)2)

�
> �1

2

�
F (a)2 � F (p0)2

�
= �

Z a

p0

F (u)f(u)du ;

where the inequality follows from the assumption that p0 >
1�F (a)
f(a)

. Thus, expression (15)

is positive and a �rm has a unilateral incentive to o¤er a buy-now discount.

The next proposition shows that this result holds for an arbitrary number of �rms.

Proposition 4 (i) Starting from the free-recall equilibrium with price p0 in (4), a �rm has
a unilateral incentive to o¤er �rst-time visitors a buy-now discount if the demand curve

1� F is strictly logconcave;
(ii) starting from the exploding-o¤er equilibrium with price p in (8), a �rm has a unilateral

incentive to o¤er a buy-later price low enough to induce some �rst-time visitors to return.

An implication of Proposition 4 is that if a symmetric equilibrium exists when �rms

choose a buy-now and a buy-later price, it must involve an intermediate buy-now discount

such that some consumers do return in equilibrium. Part (i) of Proposition 4 indicates that

a seller typically has an incentive to o¤er a �rst-time visitor a discount on the regular price

if the consumer buys immediately, so that uniform pricing is not an equilibrium outcome

when �rms can distinguish new from returning visitors.22 The intuition for this result is as

follows. As Lemma 4 shows, the impact of a small buy-now discount is the same as a small

buy-later premium. A small buy-later premium has two e¤ects: the extra revenue e¤ect

(every returning consumer now pays a premium) and the demand e¤ect (�rst-time visitors

become more likely to buy immediately, but potential returning consumers are less likely

to come back). The second e¤ect is similar to the impact of exploding o¤ers, and it is

positive if the demand curve is concave. However, the �rst revenue e¤ect must be positive.

Part (i) shows that this �rst e¤ect is powerful enough for the overall e¤ect to be positive

under a much milder condition on the demand curve. Part (ii) shows that a �rm prefers

to set a �moderate�buy-later price, rather than such a high buy-later price that none of

22In the example discussed in section 2.3 where match utility is exponentially distributed, a �rm does

not have an incentive to o¤er a buy-now discount, and uniform prices are an equilibrium even when �rms

have the ability to discriminate against those consumers wishing to buy later. (The demand curve is not

strictly logconcave in this example.)

21



its initial visitors return. The intuition is that a �rm can enjoy the strategic bene�ts of

exploding o¤ers but also generate some additional revenue if it charges returning visitors

a high price instead of banning return altogether.23

3.2 Equilibrium buy-now discounts in duopoly

In this section we investigate the equilibrium buy-now discount in the case of duopoly.24 We

�rst report how to derive the equilibrium prices and discuss the existence of equilibrium.

We then illustrate the equilibrium outcome in the example in which match utility ui is

uniformly distributed on [0; 1]. For convenience, we analyze the model in terms of the

buy-now price p and the buy-now discount � = p̂� p (rather than in terms of p and p̂).
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Figure 4: Pattern of demand when �rm i o¤ers (pi; � i)

Suppose a symmetric equilibrium outcome is (p; �) and consumers expect both �rms to

o¤er this tari¤. Suppose instead that �rm i deviates and o¤ers an alternative tari¤ (pi; � i).

It is without loss of generality that we consider deviations restricted to � i � V (p).25

23Thus, if �rms can commit to distinct prices for their �rst-time visitors and those consumers who buy

later, we do not expect to see exploding o¤ers used in equilibrium. Nevertheless, our analysis of exploding

o¤ers in section 2 is still worthwhile. For instance, the simplicity of the exploding o¤er policy may be easier

to get across to consumers in a sales context, and some of the claimed �excuses� forcing quick decisions,

such as the salesman being the area for that day only, make better sense for exploding o¤ers. Finally, as

we discuss in section 3.3, when sellers cannot commit to their buy-later prices, exploding o¤ers emerge

once more as the equilibrium sales policy.
24It appears to be hard to characterize the buy-now discount equilibrium for an arbitrary number of �rms,

as we were able to do in our discussion of exploding o¤ers. As is also discussed by Janssen and Parakhonyak

(2010), when there are more than two �rms the consumer stopping rule with buy-now discounts is non-

stationary and depends on the history of realized match utilities, and this makes the equilibrium analysis

complex. (When exploding o¤ers are used, by contrast, the stopping rule does not depend on previous

o¤ers, since the consumer has no ability to return.)
25As can be seen from Figure 4 and expression (12), when � i > V (p), returning demand disappears and

the �rm�s pro�t is independent of � i. Hence, our restriction to � i � V (p) is without loss of generality.
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Similarly to Figure 3, �rm i�s demand from those consumers who sample it �rst is as

depicted on Figure 4a (they buy at �rm i immediately if ui� pi > a(� i)� p). (Recall that
a(�) is de�ned above in (12).) Firm i�s demand from those consumers who �rst encounter

the rival is shown on Figure 4b (they will come to �rm i if uj < a(�) since they hold

equilibrium beliefs).

Then �rm i�s deviation pro�t is

piQT + � iQR ; (16)

where QT is �rm i�s total demand and QR is the portion of demand from its returning

customers. (The �rm obtains revenue pi from each of its customers, plus the incremental

revenue � i from each of its returning customers.) By calculating the measures of the regions

in Figure 4 one can check that

2QT = 1� F (a(� i)� p+ pi) +
Z a(� i)�� i

p

F (u) f (u� p+ pi + � i) du| {z }
2QR

+F (a(�)) [1� F (a(�)� � � p+ pi)] +
Z a(�)��

p

F (u+ �) f (u� p+ pi) du .

(The �rst line above re�ects the demand depicted in Figure 4a, while the second line

captures the demand in Figure 4b.) Using (13), one can verify that the �rst-order conditions

for (p; �) to be equilibrium prices are

1� F (p)F (p+ �)
p

= f(a(�)) + F (a(�))f(a(�)� �) (17)

�
Z a(�)��

p

�
F (u+ �)f 0(u) + (1 +

�

p
)F (u)f 0(u+ �)

�
du ;

and
�f(a(�))F (a(�)� �)
1� F (a(�)� �) =

Z a(�)��

p

F (u)[(p+ �)f 0(u+ �) + f(u+ �)]du : (18)

If � = 0, expression (17) degenerates to the �rst-order condition (4) in Wolinsky�s model

with n = 2. If � = V (p) (i.e., p = a(�)��) so there are no returning consumers, expression
(17) degenerates to the �rst-order condition (8) in the exploding-o¤er regime with n = 2.

In particular, when u is uniformly distributed on [0; 1], so that a(�)� � = 1�
p
2(s+ �)

and s < 1
8
, the above two �rst-order conditions become

1

p
� p = 1 + a(�) + � ; 2� [a(�)� � ]

1� a(�) + � = [a(�)� � ]
2 � p2 :

In our online appendix, we show that under some conditions (e.g., when the density function

f is weakly increasing) the system of (17) and (18) has a solution (p; �) with 0 < � <

V (p) (note that the above demand analysis is predicated on � < V (p) which ensures the
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existence of returning consumers in equilibrium), and in the uniform example, the �rst-

order conditions are also su¢ cient for (p; �) to be the equilibrium prices.

In the following, we report some properties of the uniform example. First, as with

the use of exploding o¤ers in Proposition 3, we observe that the use of buy-now discounts

leads to higher prices, i.e., p0 < p < p̂. That is, even the discounted buy-now price in the

discriminatory case is higher than the uniform price, and the ability to o¤er such discounts

drives up both prices.26 The intuition is that the buy-now discount adds to the intrinsic

search frictions in the market, and this allows �rms to charge a higher price. Figure 5a

below depicts how the three prices vary with the search cost s, where from the bottom up

the three curves represent p0, p and p̂, respectively.

Second, the equilibrium buy-now discount � (the distance between the upper curve and

the middle curve in Figure 5a) decreases with the search cost s. In particular, when s = 0,

we have p � 0:45 and p̂ � 0:51, and so � � 0:06. In this case, although the market has no
intrinsic search frictions, �rms in equilibrium generate search frictions on consumers via

the buy-now discount, which here is about 12% of the buy-later price. By contrast, in a

market with s = 1
8
, which is the highest intrinsic search cost which induces consumers to

participate, we have p = p̂ = 1
2
and � = 0, so that there is no buy-now discount. (When

s = 1
8
, search costs are so high that consumers will accept the �rst o¤er which yields a

non-negative surplus. In particular, there are no returning consumers even with costless

recall.)
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Figure 5a: Prices and search cost
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Figure 5b: Pro�ts and search cost

Since both prices rise, the buy-now discount equilibrium excludes more consumers from

the market. In addition, as expected, the use of buy-now discounts boosts the demand

from consumers who buy immediately and reduces demand from those who buy later. This

is illustrated for the case s = 0 in Table 1 (including for reference the case where exploding

o¤ers are used).

26It is not unusual that the ability to price discriminate in oligopoly leads to a fall in all prices, but cases

where all prices rise are less familiar.
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p p̂ buy immediately buy later excluded

free recall 0.41 0.41 41% 41% 17%

buy-now discount 0.45 0.51 66% 11% 23%

exploding o¤er 0.45 n/a 73% 0% 27%

Table 1: The impact on prices and demand of buy-now discounts and exploding o¤ers

However, whether the use of buy-now discounts leads to higher pro�t depends on the

magnitude of the search cost. Figure 5b shows how industry pro�ts with uniform pricing

(the dashed curve) and pro�ts with buy-now discounts (the solid curve) vary with the

search cost s. We see that price discrimination leads to higher pro�t only if the search cost

is relatively small. When the search cost is relatively high, price discrimination leads to

prices which exclude too many consumers. In these cases, �rms are engaged in a prisoner�s

dilemma: when feasible an individual �rm wishes to o¤er a buy-now discount, but when

both do so industry pro�ts fall. Finally, for similar reasons as in the exploding-o¤er case,

aggregate consumer surplus and total welfare fall when �rms use buy-now discounts in this

example.

3.3 Buy-later prices without commitment

The preceding analysis has assumed that a �rm can commit to its buy-later price when

consumers �rst visit. We discuss here whether buy-now discounts are used if we relax

this assumption. That is to say, we investigate whether �rms wish to implement an unan-

nounced price rise when consumers return to buy. The basic game structure is the same

as before, except that now when a consumer discovers a �rm�s buy-now price, she can only

form some belief about its buy-later price (the belief is of course required to be correct in

equilibrium). The actual buy-later price can be learned only after she returns to the �rm.

Here, unlike the rest of the paper, it makes an important di¤erence whether or not

consumers face an intrinsic returning cost when they come back to a previously-visited

�rm. Since in most situations such a returning cost does exist, we focus on this case.

(In the previous analysis with commitment, the presence of a small intrinsic return cost

makes no qualitative di¤erence, and for simplicity we assumed this cost was precisely zero.)

Proposition 5 describes the outcome when �rms cannot fully commit to their buy-later

price.27

27If, by contrast, consumers face no intrinsic returning cost, there is often an equilibrium in which

uniform pricing (as in the free-recall benchmark model in section 2.1) is a credible strategy, so that no

buy-now discount is o¤ered. That is to say, (i) consumers do not anticipate that they will face a higher

price if they return to buy from a previously sampled �rm and plan their search strategy accordingly, and

(ii) when a consumer does return to a �rm, that �rm has no ex post incentive to surprise the consumer

with an unexpected price hike. This is easy to understand in the extreme case with s = 0. When search

costs are zero, consumers sample all �rms before they purchase (given their belief that there is no buy-later

surcharge), and so all buyers are returning customers. Thus, we are just in the situation of Wolinsky�s
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Proposition 5 Suppose consumers face an intrinsic returning cost.
(i) If �rms cannot commit to their buy-later price, in equilibrium no consumers return to

a previously-visited �rm and the equilibrium price is as described in Lemma 3;

(ii) if �rms can commit to an upper bound on their buy-later price, then �rms in any

equilibrium will choose their buy-later price to equal the upper bound, and the outcome is

as if �rms can fully commit to their buy-later prices.

Thus, part (i) shows that if �rms cannot commit to their buy-later price and if there is

an intrinsic returning cost (no matter how small), rational consumers anticipate that buy-

later prices will be so high that it is never worthwhile to return to a previous �rm after

leaving it. In e¤ect, because of the informational motive to raise prices to those consumers

who buy later, �rms are forced to make exploding o¤ers, and consumers have just one

chance to buy from any �rm. Thus, the lack of commitment power strengthens a �rm�s

temptation to exploit returning consumers. This result is analogous to Diamond�s (1971)

paradox, showing how a small search cost can cause a market to shut down. Diamond�s

result relies on consumers knowing their match utility in advance, and a central advantage

of Wolinsky�s formulation with ex ante unknown match utilities is that this paradox can

be avoided. But even in Wolinsky�s framework, the returning consumers know their match

utilities, and so the returning market fails for the same reason as the primary market failed

in Diamond�s framework.

Of course, as shown in part (ii) of Proposition 4, a �rm would like to avoid this complete

shut down of the return market if possible. One method, when feasible, is to commit to a

buy-later price cap. For instance, in most retailing markets the price printed on the price

label in the store usually has this commitment power, and a sales person has no authority

to increase the price above the displayed price. Similarly, as discussed in the introduction,

the �rm in Bone�s (2006) study o¤ered its potential customers a regular price (in the form

of a written quote) if they decided to buy later. Whenever this form of partial commitment

is feasible, part (ii) of Proposition 5 shows that the equilibrium is the same as that in the

full commitment situation analyzed in sections 3.1 and 3.2. Thus, a cap on the buy-later

price can be used as a full commitment device.

4 Alternative Motives for Exploding O¤ers

Factors other than those discussed in our main model may also play a role in giving �rms

an incentive to use high-pressure sales tactics, and in this section we discuss additional

motivations for making exploding o¤ers.

model with zero search costs, and the incentive to set the price to returning consumers is exactly the same

as the incentive to set the uniform price p0 in the s = 0 version of expression (4). If search is costly (s > 0)

one can prove that this uniform price equilibrium also exists whenever the demand curve 1�F is convex.
(See our online appendix for the details.)
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4.1 Exploding o¤ers with homogenous products

The analysis to this point has used Wolinsky�s framework with di¤erentiated products and

no equilibrium price dispersion. In many search markets, however, consumers do not face

signi�cant uncertainty about the utility they obtain from a seller�s product, but rather from

the price they will pay. In this alternative situation, does a seller also have an incentive to

use an exploding o¤er? We explore this issue in the context of Stahl�s (1989) model with

homogenous products and endogenous price dispersion.

Consider Stahl�s model with n �rms and unit consumer demand. Let v be each con-

sumer�s willingness to pay for the product. All consumers are risk neutral and sample

�rms sequentially and randomly to gather price information. A fraction � of consumers

are �shoppers�who have zero search cost (so they will be fully informed of market prices

if sellers put no restrictions on their ability to return to a previously sampled �rm), and a

fraction 1 � � of consumers have a positive search cost s > 0 for sampling an additional
�rm. (These costly searchers are assumed to be able to sample the �rst �rm for free.)

Stahl�s model assumed free recall, so that each �rm allowed consumers to return to buy

after they have investigated its rivals. As explained by Stahl, in equilibrium �rms choose

prices according to a mixed strategy, and there is price dispersion in the market. In more

detail, in symmetric equilibrium each �rm chooses its price according to a c.d.f. G(p) with

support [pmin; r], the shoppers investigate all sellers and buy from the cheapest seller, while

the costly searchers stop searching whenever they �nd a price no greater than r and so

buy from the �rst �rm they encounter.28 In order for a �rm to be indi¤erent between all

prices in the interval [pmin; r], a �rm�s pro�t must be constant in this range.

Starting from Stahl�s free-recall equilibrium, we show that a �rm always has a strict

incentive to make an exploding o¤er. This stands in contrast to the more ambiguous

situation with product di¤erentiation (see Proposition 1 above). This result is relatively

easy to understand in the case of duopoly. Suppose that one �rm is considering whether

to make an exploding o¤er at some price p 2 [pmin; r], given that its rival allows free recall
and charges a stochastic price according to the c.d.f. G(�). A costly searcher will buy from
the �rm (given p � r), regardless of whether it makes an exploding o¤er or not. Likewise,
those shoppers who �rst encounter the rival seller will be una¤ected by the �rm�s use of

an exploding o¤er. Thus, to determine whether making an exploding o¤er is pro�table for

the �rm, we need only consider its demand from those shoppers who visit it �rst. If the

�rm sets price p 2 (pmin; r) and allows free recall, it competes against a rival o¤ering a
stochastic price and so will make the sale with probability less than one. (Recall that each

such price generates the same expected pro�t in the free-recall equilibrium.) If it instead

uses an exploding o¤er, it competes against a rival o¤ering the (known) expected price

�p =
R r
pmin

~pdG(~p). Hence, using an exploding o¤er with any price in the range pmin < p < �p

28A costly searcher�s reservation price r is endogenously determined in equilibrium. (When the search

cost s is large, the equilibrium involves r = v.)
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will boost demand, and so pro�t, compared to the free-recall equilibrium.

A similar result holds with an arbitrary number of �rms:

Proposition 6 Starting from Stahl�s free-recall equilibrium, a �rm has a unilateral incen-
tive to make an exploding o¤er.

4.2 Risk aversion

If consumers are risk-averse, this will amplify a �rm�s incentive to use an exploding o¤er. To

illustrate this, consider again the simple example introduced in the introduction but where

the agent is risk-averse. When the �rst principal uses an exploding o¤er, the agent will

accept whenever u1 is greater than the certainty equivalent of the gamble from the second

principal, and with risk aversion this certainty equivalent is lower than the mean �u. (In

the limit of extreme risk aversion, the agent will always accept the exploding o¤er, as she

is unwilling to risk the chance of a low payo¤with the second principal.) Hence, exploding

o¤ers will boost the probability of acceptance in more cases than with risk-neutrality.

4.3 Exploding o¤ers as a barrier to entry

Aghion and Bolton (1987) discuss how an incumbent seller may wish to contract with a

potential buyer in such a way that entry is discouraged. In their basic model, products

are homogeneous, and there is a single buyer who wishes to purchase a single unit which

she values at v. The incumbent has known cost cI < v for supplying the product, while

a single potential entrant has cost cE which is unknown to the incumbent and buyer (but

known to the entrant). If there is no contract in place between the incumbent and buyer,

entry occurs whenever cE � cI and the equilibrium price is cI . If cE > cI then entry does

not take place and the incumbent can set the monopoly price p = v.

An important issue is whether the incumbent has an incentive to o¤er an exclusive

contract to the buyer in which the buyer agrees to buy from the incumbent at some price

P before entry takes place. (If the buyer refuses to sign the contract, then the subsequent

outcome is the game without contracts just described.) Aghion and Bolton show that the

incumbent never has this incentive: in order to persuade the buyer to buy in advance of

entry, and thus to forego the potential bene�ts of competition, the incumbent must o¤er

such a low price that its pro�ts are no higher than if it waited for the entrant�s decision.29

Clearly, though, these exclusive contracts are not exploding o¤ers in our sense, since if the

buyer refuses to accept the incumbent�s contract, she has the ability to return to buy from

the �rm in the no-contract interaction which follows.

29However, they show that the incumbent always has an incentive partially to discourage the entrant,

in the sense that the buyer agrees to a penalty payment made to the incumbent if she decides to buy

from the entrant. Such contracts are somewhat akin to buy-now discounts in our model, in that buy-now

discounts merely discourage rather than prevent a consumer from investigating a rival �rm.
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However, if the incumbent does make a publicly-observed exploding o¤er to the buyer,

and thus commits not to serve the buyer later if she refuses to sign the contract, entry

can pro�tably be deterred. The key point is that if the buyer refuses the exploding o¤er,

she obtains zero surplus: she then either has no supplier at all (if the entrant�s cost turns

out to be very high), or she faces an entrant who knows the buyer cannot return to the

incumbent and so charges the monopoly price p = v. In e¤ect, rejecting the incumbent�s

exploding o¤er forces the entrant to set the monopoly price, and this leaves the buyer no

surplus should she decide to wait for entry to occur. The buyer will therefore accept an

exploding o¤er at any price P < v, and a su¢ ciently high price will yield higher pro�t

than the interaction without contracts. Thus, if their use is credible, an exploding o¤er

from the incumbent can deter more e¢ cient entry and harm consumers. The mechanism

at work is quite di¤erent from that in our main model: for an exploding o¤er to deter

entry it needs to be observed by the second �rm so that that �rm is induced to set a high

price, whereas in section 2 �rms choose their sales policies simultaneously.

4.4 Preventing learning about a �rm�s own product

Lastly, a motive for forcing quick decisions might be to prevent consumers from properly

understanding the current product rather than the deals o¤ered by rival �rms. If a seller

forces consumers to decide quickly, a consumer might have to decide whether or not to

purchase before she has worked out how much she actually wants the product. With-

out accurate information about the realized match utility, suppose that a (risk-neutral)

consumer then bases her purchase decision on the expected match utility, �u. Unlike our

main model, this issue can be analyzed within a simple monopoly framework. Suppose the

monopolist has marginal cost c for supplying the product. If the seller gives the consumer

time to calculate her match utility u, the seller�s pro�t with price p is (p � c)[1 � F (p)],
and the optimal price maximizes this expression. If instead the seller forces the consumer

to buy immediately, knowing only her expected utility, the seller can charge p = �u and

obtain pro�t �u � c. Since �u > p[1 � F (p)] for all p, it follows that the latter strategy
is more pro�table whenever c is su¢ ciently close to zero. By contrast, if c is su¢ ciently

large (above �u, for instance), then the monopolist prefers to give consumers enough time

to understand the realized match utility.30

5 Conclusions

This paper has explored the incentives �rms have to discriminate against those consumers

who buy from a �rm after investigating rival o¤ers. There are two broad reasons why �rms

30For further details of the monopolist�s incentives to reveal or conceal match-speci�c information, see

Lewis and Sappington (1994). They show that the monopolist typically will choose to reveal all information

or none.
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wish to do this if they can: a strategic motive to discourage consumers from investigating

rivals, and an informational motive which re�ects the fact that returning buyers prefer

the �rm�s o¤er to rival o¤ers. The strategic motive is more important when �rms can

commit to their sales policy, while the informational motive applies when �rms have less

commitment power. When �rms can commit to their sales policy, the use of exploding o¤ers

is individually pro�table for �rms when products are di¤erentiated and the demand curve

is concave (Proposition 1), when there are many suppliers and search costs are signi�cant

(Proposition 2), or when products are homogenous (Proposition 6). A less extreme policy

is to o¤er �rst-time visitors a buy-now discount, and �rms have an incentive to o¤er

such discounts under the mild condition that the demand curve is strictly logconcave

(Proposition 4(i)). If �rms cannot commit at all to their buy-later price, the information

motive forces �rms to make exploding o¤ers (Proposition 5(i)). This outcome is suboptimal

for �rms (Proposition 4(ii)). However, a little commitment power solves this problem, and

if �rms can commit to an upper bound on their buy-later price, then the outcome is as

if �rms can commit to their buy-later price when they �rst meet prospective customers

(Proposition 5(ii)). When �rms use exploding o¤ers, this often, but not always, causes

market prices to increase (e.g., see Proposition 3), as well as causing a poor match between

products and consumers when products are di¤erentiated.

As demonstrated in this paper, inducements to make a quick decision can limit a

consumer�s ability to make a well-informed decision, which in turn can harm market per-

formance. Public policy has attempted to address this problem. For instance, the Unfair

Commercial Practices Directive, adopted in 2005 across the European Union, prohibits in

all circumstances �Falsely stating that a product will only be available for a very limited

time, or that it will only be available on particular terms for a very limited time, in order

to elicit an immediate decision and deprive consumers of su¢ cient opportunity or time

to make an informed choice.�However, the enforcement of such laws is often di¢ cult. A

more e¢ cient method to tackle the issue may involve less direct means. For example, ex-

ploding o¤ers could in essence be prohibited by mandating a �cooling o¤ period�, so that

consumers have the right to return a product within some speci�ed time after agreeing to

purchase. (They could then return a product if they subsequently �nd a preferred option.)

Many jurisdictions impose cooling o¤ periods for some products, especially those sold in

the home.

To end, we point out reasons why sales tactics which disadvantage returning visitors

are not seen in many markets, even when their use is permitted. A �behavioral� reason

why �rms do not surcharge their returning customers or force their customers to decide

quickly is that consumers could be antagonized by those sales techniques, and decide to

buy elsewhere. But �rst and foremost, many retailers, especially in the traditional bricks-

and-mortar sector, cannot distinguish �rst-time from returning visitors. Shopping at the

supermarket, say, is unlikely to involve much contact with sales personnel at all, and there

is currently no mechanism by which the �rm can detect �rst-time from returning visitors.
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More generally, consumers may be able to conceal their search history (e.g., by deleting

cookies on their computer). Thus, if �rms discriminate against return visitors and if it is

easy to pretend to be a new visitor, consumers will do this, and the market will operate as

a standard search market with each �rm o¤ering uniform prices.

APPENDIX

Proof of Lemma 1: As shown by Wolinsky, given that other �rms are charging the price
p0, if �rm i deviates and charges ~p, its demand is31

Q0(~p) =
1

n
[1� F (a� p0 + ~p)]

1� F (a)n
1� F (a) +

Z a

p0

F (u)n�1f(u� p0 + ~p)du : (19)

In equilibrium, �rm i maximizes ~pQ0(~p) by choosing ~p = p0, and so expression (19) implies

the �rst-order condition for p0 to be the equilibrium price is as given in expression (4).

Recall pM is the monopoly price and it solves pM = 1�F (pM )
f(pM )

, which has a unique solution

if 1�F is logconcave (i.e., if 1�F
f
is decreasing). Also notice that the logconcavity of 1�F

implies
f (u)2

1� F (u) + f
0 (u) > 0 : (20)

We �rst show that in the relevant interval 0 < p0 < a, equation (4) has a solution in

the range
1� F (a)
f(a)

< p0 < pM :

First, for p0 � 1�F (a)
f(a)

we show that the left-hand side of (4) is greater than the right-hand

side. If p0 � 1�F (a)
f(a)

, we have

1� F (p0)n

p0
=
1� F (a)n

p0
+
F (a)n � F (p0)n

p0
� f (a) 1� F (a)

n

1� F (a) +
F (a)n � F (p0)n

p0
:

31To understand this expression, consider the two sources of �rm i�s demand. First, if �rm i�s deal

generates consumer surplus greater than a�p0 then a consumer who visits it will buy from it immediately.
Suppose �rm i is in the kth position in a consumer�s search order, so that to reach �rm i the consumer

has already sampled, and rejected, k � 1 �rms, an event which occurs with probability F (a)k�1 (since a
consumer will buy immediately if uj � a). The consumer who reaches it will buy immediately at �rm i if

ui � ~p � a� p0, which occurs with probability 1� F (a� p0 + ~p). (If the �rm is in the �nal position, i.e.,

k = n, then she will surely buy from �rm i if ui� ~p � a�p0, since her surplus ui� ~p is positive and higher
than all other �rms.) Since a �rm is in the kth position with probability 1=n, summing over k leads to the

�rst term on the right-hand side of (19). Second, if a consumer searches through all sellers and does not

�nd any product with net surplus greater than a� p0, she will then buy from �rm i if it o¤ers the highest

surplus and this surplus is positive. The probability of this event is

Pr(max
j 6=i

f0; uj � p0g < ui � ~p < a� p0) =
Z a�p0+~p

~p

F (ui � ~p+ p0)n�1dF (ui) ;

which equals the second term in (19) after changing variables from ui to u = ui + p0 � ~p.
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So it su¢ ces to show that

F (a)n � F (p0)n

p0
+ n

Z a

p0

F (u)n�1f 0(u)du > 0,
Z a

p0

F (u)n�1
�
f (u)

p0
+ f 0 (u)

�
du > 0 :

(21)

Since p0 � 1�F (a)
f(a)

and 1�F
f
is decreasing, we have p0 <

1�F (u)
f(u)

for any u 2 (p0; a), and so

f (u)

p0
+ f 0 (u) >

f (u)2

1� F (u) + f
0 (u) > 0 ;

where the �nal inequality follows from (20), which proves (21).

Second, for pM � p0 � a, we show that the left-hand side of (4) is smaller than the

right-hand side. From the de�nition of pM and that 1�F
f
is decreasing, we know that

pM � p0 implies p0 � 1�F (p0)
f(p0)

, and so

1� F (p0)n

p0
� f(p0)

1� F (p0)n

1� F (p0)
:

Then we only need to show that

f (a)
1� F (a)n
1� F (a) � f(p0)

1� F (p0)n

1� F (p0)
> n

Z a

p0

F (u)n�1f 0(u)du ;

or equivalently Z a

p0

d

du

�
f (u)

1� F (u)n
1� F (u) � n

Z u

0

F (x)n�1f 0(x)dx

�
du > 0 :

The term inside the bracket [�] is strictly increasing in u if and only if 1 � F is strictly

logconcave,32 and so the above inequality holds.

Finally, we show that if the monopoly pro�t function p[1�F (p)] is concave, then a �rm�s
pro�t function in Wolinsky�s model is also concave, which implies the su¢ ciency of the �rst-

order condition. De�ne �(u) � nF (u)n�1=[1+F (a)+ � � �+F (a)n�1], so that �(u) < 1 and
�0(u) > 0. Then from (19) a �rm�s pro�t when it charges price ~p is proportional to

~p

�
1� F (a� p0 + ~p) +

Z a

p0

�(u)f(u� p0 + ~p)du
�
:

One can check that the second-order derivative of this pro�t with respect to ~p is

�[2f(a� p0 + ~p) + ~pf 0(a� p0 + ~p)] +
Z a

p0

�(u)[2f 0(u� p0 + ~p) + ~pf 00(u� p0 + ~p)]du

= �[1� �(u)][2f(a� p0 + ~p) + ~pf 0(a� p0 + ~p)]� �(p0)[2f(~p) + ~pf 0(~p)]

�
Z a

p0

�0(u)[2f(u� p0 + ~p) + ~pf 0(u� p0 + ~p)]du : (22)

32The derivative of the bracket term is�
f

1� F

�0
(1� Fn)� f

1� F nF
n�1f � nFn�1f 0 =

�
1� Fn
1� F � nFn�1

��
f2

1� F + f
0
�
> 0:
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(The equality follows by integrating by parts.) Notice that

2
f(u� p0 + ~p)

~p
+ f 0(u� p0 + ~p) � 2

f(u� p0 + ~p)
u� p0 + ~p

+ f 0(u� p0 + ~p)

for any u � p0. Hence, a su¢ cient condition for (22) to be negative is 2f(p) + pf 0(p) � 0
which is equivalent to p[1� F (p)] being concave.

Proof of Lemma 2: First note that if p < a then V (p) > 0, and so (5) implies that famg
is an increasing sequence as claimed. In particular, am � p � 0 for all m � 0. Second, if a
consumer�s expected surplus from entering a no-recall search market with m �rms is Wm,

for m � 0, then when the consumer has l � 0 �rms remaining unsampled she will accept
the product from her current �rm if and only if u � p � Wl = al � p, i.e., if u � al as

stated in the result. It remains to prove that a consumer�s expected surplus from entering

a no-recall search market with m �rms is indeed Wm.

We prove this by means of an inductive argument. If m = 0, then clearly the consumer

obtains zero surplus from participating in the market, and the result applies as stated.

Suppose now that the result holds for m � 0 �rms, and consider the situation when there
are m + 1 �rms in the market. If the consumer chooses to enter the market and sample

the �rst �rm, she will buy from the �rst �rm if and only if u � am, since her surplus from
searching beyond the �rm is am� p by the inductive assumption. Therefore, her expected
surplus from entering the market isZ umax

am

(u� p)dF (u) + (am � p)F (am)� s =

Z umax

am

(u� am)dF (u) + am � p� s

= V (am) + am � p
= am+1 � p � 0

where the second step uses the de�nition of V (�) in (1) and the �nal equality follows
from the recursive relation (5). Thus, when p < a, the consumer�s expected surplus from

entering the no-recall search market with m + 1 �rms is Wm+1 � 0 as stated. Finally,

suppose that p > a. Then when the consumer has only one �rm to sample (m = 1) her

expected surplus from entering the market is V (p) < 0. By induction, if she does not enter

the market with m � 1 �rms when p > a, she will also not enter when there are m + 1

�rms. This completes the proof of the result.

Proof of Lemma 3: In the relevant range 0 < p < a, we have an�k 2 (p; a) for every
k � n � 1. (Recall a0 = p, and whenever p < a, am increases with m and converges to a

as m!1.) Under the logconcavity condition, 1�F
f
is a strictly decreasing function. This

implies that each 1�F (an�k)
f(an�k)

lies between 1�F (a)
f(a)

and 1�F (p)
f(p)

(when k = n, it is equal to the

latter), and therefore so is the right-hand side of (8), which establishes the existence of a

solution in the range 1�F (a)
f(a)

< p < pM .
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We next show that if p[1 � F (p)] is concave, then ~p[1 � F (an�k � p + ~p)] is concave
in ~p for any k (which then implies that the pro�t function ~pQ(~p) is concave). Notice that

the second-order derivative is negative if 2f(an�k � p + ~p) + ~pf 0(an�k � p + ~p) � 0. Since
an�k � p, we have

2
f(an�k � p+ ~p)

~p
+ f 0(an�k � p+ ~p) � 2

f(an�k � p+ ~p)
an�k � p+ ~p

+ f 0(an�k � p+ ~p) :

Hence, a su¢ cient condition for a concave pro�t function is 2f(x) + xf 0(x) � 0, which is
equivalent to p[1� F (p)] being concave.

Proof of Proposition 1: Part (i): Our proof of this part consists of two steps. First, we
show that if the match utility density f is strictly increasing, then all �rms using exploding

o¤ers is an equilibrium. Second, we exclude the possibility that all �rms allowing free recall

is also an equilibrium.

The hypothesis is that all �rms choose to use exploding o¤ers and to set the price p

in (8). Suppose a deviating �rm chooses price ~p and allows free recall, while other �rms

follow the proposed equilibrium strategy. Suppose that the deviating �rm is in the kth
position of a consumer�s search process and k < n. (If k = n then allowing free recall or

not does not a¤ect the �rm�s demand.) Then the probability that this consumer will visit

the �rm is still hk in (6), since consumers hold equilibrium beliefs. However, her incentive

to search beyond the �rm is now altered. Since she can return to this �rm whenever she

wants, she becomes more willing to continue searching. If at the deviating �rm she �nds

utility u such that u� ~p � 0, she will never buy from the �rm (either immediately or later).
So consider the situation where u � ~p > 0. Then if she leaves the deviating �rm, she will
enter a no-recall search market with n � k products each being sold at price p, but now
with an outside option u� ~p.
We �rst describe a consumer�s expected surplus and optimal stopping rule in a no-recall

search market with m products each being sold at price p and with an outside option z > 0

(which she can consume without starting to search). This result is a generalization of

Lemma 2, which applied to the situation with z = 0, and its proof is essentially the same.

Claim 1 Suppose consumers face a search market with m �rms, each of which use ex-

ploding o¤ers and set price p. Suppose that if consumers do not buy in the market, their

outside option is z � 0. Then a consumer obtains expected surplus equal to

Wm(z) =

(
z if z � a� p
am(z)� p if z < a� p

(23)

where al(z) solves the recursive equation

al+1(z) = al(z) + V (al(z)) (24)

with a0(z) = z + p and where V (�) de�ned in (1). A consumer enters the market if and

only if z < a � p, in which case a consumer who has l � 0 �rms remaining unsampled
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will buy from her current �rm if match utility is greater than al(z). If she �nds no such

product after visiting all �rms, she will consume the outside option.

Note that when z < a � p, we have z < al(z) � p < a � p for l � 1, so the consumer
will consume the outside option only if she samples all products and �nds that the last

one has a match utility lower than a0(z). If we denote by rm(z) the probability that the

consumer will consume the outside option, then rm(z) = 1 if z � a � p and rm(z) =
F (am�1(z)) � � �F (a0(z)) < 1 if z < a � p. Properties from (24) which will be used below

are

am(a� p) = a; am(0) = am; a0m(z) = rm(z) (25)

for z < a� p, where am is de�ned in (5).
When the deviating �rm occupies the kth position in a consumer�s search order, the

consumer will buy from it immediately if and only if u� ~p � a� p. If u� ~p 2 (0; a� p),
then she will come back to buy after sampling all n�k subsequent �rms, which occurs with
probability rn�k(u � ~p). Thus, the �rm�s demand when it is in the kth position, charges
price ~p and permits free return, is

hk

�
1� F (a� p+ ~p) +

Z a�p+~p

~p

rn�k(u� ~p)f(u)du
�

= hk

�
1� F (a� p+ ~p) +

Z a

p

rn�k(u� p)f(u� p+ ~p)du
�
; (26)

where the equality follows after changing variables in the integral. Compared to the demand

generated with an exploding o¤er given in (7), it now has reduced immediate demand since

a > an�k, but has positive returning demand comprised of the integral term.

Claim 2 Demand in (26) is smaller than that in (7) if f is strictly increasing.

Proof. We need to showZ a

p

rn�k(u� p)f(u� p+ ~p)du < F (a� p+ ~p)� F (an�k � p+ ~p) (27)

=

Z a

p

rn�k(u� p)f(�(u))du ;

where

�(u) � a� p+ ~p�
Z a

u

rn�k(x� p)dx :

The equality comes from noting that �0(u) = rn�k(u � p), �(a) = a � p + ~p, and �(p) =
an�k � p + ~p (which follows from (25)). Since �(u) > u � p + ~p (because rn�k(x � p) < 1
for x < a), the inequality (27) holds if f is an increasing function.

Therefore, for any price ~p, unilaterally allowing free recall causes the deviating �rm�s

demand (and hence pro�t) to fall when f is increasing. (This is true regardless of the �rm�s
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position in a consumer�s search order, except when it is in the �nal position in which case

the use of exploding o¤ers makes no di¤erence to the �rm�s demand.) It follows that an

equilibrium in which all �rms use exploding o¤ers exists.

The second step is to exclude the possibility of a free-recall equilibrium when f is

strictly increasing. We show that, starting from the hypothetical free-recall equilibrium

with price p0, a �rm has a unilateral incentive to use an exploding o¤er no matter what

position it is in the consumer�s search process (except when it is in the �nal position).

As in expression (19) and footnote 7, �rm i�s demand, if it is in the kth position of the

consumer�s search process with k < n and if it sets a price ~p and allows free recall, is

F (a)k�1[1� F (a� p0 + ~p)] +
Z a

p0

F (u)n�1f(u� p0 + ~p)du : (28)

Suppose now that the �rm instead uses an exploding o¤er with a price ~p. We will show

the �rm�s demand with this deviation is higher than (28) for any ~p when the density is

increasing, and hence the hypothetical equilibrium is not valid.33 De�ne � � maxf0; u1 �
p0; � � � ; uk�1 � p0g. Then the consumer will visit the �rm if and only if � < a� p0. If she
�nds match utility u at the �rm, she will buy (immediately) if u � ~p is greater than the
expected surplus from searching further.

Denote by Ym (z) the expected surplus from participating in a free-recall search market

with m � 0 products o¤ered at price p0 and an outside option 0 < z < a� p0. Then34

Ym (z) = z +

Z a

z+p0

[1� F (u)m]du : (29)

One can check that z � Ym (z) < a� p0.
The consumer will buy from �rm i if and only if u � ~p � Yn�k(�). Here, � is the

consumer�s outside option if the consumer leaves the �rm and continues searching (since

the �rm is using an exploding o¤er). The c.d.f. of � de�ned on [0; umax � p0] is G(�) �
F (�+p0)

k�1, which has a mass point at zero. Therefore, the deviating �rm�s demand when

33We only need to show that the �rm�s deviation demand when it uses an exploding o¤er with price p0
is greater than that in the free-recall equilibrium. We consider a more general deviation for the purpose of

proving the result in part (ii) where, to check a free-recall equilibrium can be sustained, we need consider

both the buy-later policy and the price deviation.
34The consumer will stop searching before she runs out of options if and only if she �nds a product with

match utility greater than a. (This is true regardless of z since z < a � p0.) This also implies that the
consumer will consume the outside option if and only if she has sampled all �rms and each of them o¤ers

ui�p0 < z, which occurs with probability F (z+p0)m. Since z does not a¤ect the consumer�s stopping rule,
it a¤ects her welfare only when she consumes the outside option. Hence, we deduce Y 0m(z) = F (z + p0)

m.

Our formula follows by noting that Ym(a�p0) = a�p0, i.e., when the outside option is a�p0 the consumer
will consume it immediately without searching.
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it is in the kth position is

Pr (� < a� p0 and u� ~p > Yn�k(�)) (30)

= G(0)[1� F (~p+ Yn�k(0))] +
Z a�p0

0

[1� F (~p+ Yn�k(�))]dG(�)

= F (a)k�1[1� F (~p+ Yn�k(a� p0))] +
Z a

p0

f(~p+ Yn�k(u� p0))Y 0n�k(u� p0)F (u)k�1du ;

where the second equality follows after integrating by parts and changing the integral

variable from � to u = � + p0. According to the de�nition of Ym(�) in (29), we have
Yn�k(a� p0) = a� p0 and

Yn�k(u� p0) = u� p0 +
Z a

u

[1� F (x)n�k]dx ; Y 0n�k(u� p0) = F (u)n�k :

Substituting these into (30) shows that the �rm�s deviation demand is

F (a)k�1[1� F (a� p0 + ~p)] +
Z a

p0

F (u)n�1f

�
u� p0 + ~p+

Z a

u

[1� F (x)n�k]dx
�
du : (31)

The second term in (31) re�ects the increased probability that the consumer will buy

immediately.

One can see that if f is strictly increasing, demand in (31) is strictly greater than

demand in (28). Therefore, the �rm does have an incentive to deviate from the supposed

free-recall equilibrium. This completes the proof of part (i). Parts (ii) and (iii) can be

proved in a similar manner.

Proof of Proposition 2: (i) Consider �rst the case where each �rm�s price is �xed at
p < a. From (27), we know that starting from each �rm using exploding o¤ers, no �rm

has a unilateral incentive to allow free recall ifZ a

p

rn�k(u� p)f(u)du <
Z a

p

rn�k(u� p)f
�
a�

Z a

u

rn�k(x� p)dx
�
du :

Notice that a hump-shaped density and a < u� imply that f(u) is increasing at any u < a.

Hence, the above inequality holds since a�
R a
u
rn�k(x� p)dx > u for u < a.

We now allow for price deviations as well. Then we need to show that (27) holds with

the most pro�table deviation price ~p. It is easy to see that if any ~p is allowed, the condition

that f is increasing at u < a is not enough for (27) to hold. However, when n is large, we

know that the exploding-o¤er equilibrium price is p � 1�F (a)
f(a)

, and we can also show that

the optimal deviation price when �rm i unilaterally allows free recall is close to this price

too. Speci�cally, �rm i�s deviation demand consists of two parts: the returning demand

QR =
1

n

nX
k=1

hk

Z a

p

rn�k(u� p)f(u� p+ ~p)du
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(which is the sum over k of the second term in (26) divided by n), and the immediate

demand

QI =
1

n

nX
k=1

hk[1� F (a� p+ ~p)]

(which is the sum over k of the �rst term in (26) divided by n). We have

QR <
1

n

nX
k=1

F (a)k�1F (a)n�k
Z a

p

f(u� p+ ~p)du = F (a)n�1
Z a

p

f(u� p+ ~p)du

(the inequality used am < a and rm(z) = F (am�1(z)) � � �F (a0(z)) < F (a)m for z < a� p),
and

QI >
1

n

nX
k=1

F (p)k�1[1� F (a� p+ ~p)] = 1� F (p)n
n(1� F (p)) [1� F (a� p+ ~p)]

(the inequality used am > p). Thus,

QR
QI

<
nF (a)n�1[1� F (p)]

1� F (p)n

R a
p
f(u� p+ ~p)du

1� F (a� p+ ~p)

which converges to zero as n!1. Therefore, when n is large, the optimal deviation price
should be close to the price which maximizes ~pQI , i.e., it is close to p � 1�F (a)

f(a)
. Then we

can focus on deviation prices ~p = p+ "(n), where "(n)! 0 as n!1. From (27), we need
to show thatZ a

p

rn�k(u� p)f(u+ "(n))du <
Z a

p

rn�k(u� p)f
�
a+ "(n)�

Z a

u

rn�k(x� p)dx
�
du :

Since "(n)! 0, the previous argument with a �xed price carries over.

(ii) Again, we �rst consider the case where the price is �xed at p0. From (28) and (31),

we can see that starting from all �rms allowing free recall, no �rm has a unilateral incentive

to introduce exploding o¤ers ifZ a

p0

F (u)n�1f

�
a�

Z a

u

F (x)n�kdx

�
du <

Z a

p0

F (u)n�1f(u)du :

When n is large, this condition holds if

f

�
a�

Z a

u

F (x)n�kdx

�
< f(u) for u � a .

Since a �
R a
u
F (x)n�kdx > u for any u < a, this inequality must hold if f is strictly

decreasing at a. For a hump-shaped density, this is implied by a > u�.

We now allow for price deviations as well and need to show thatZ a

p0

F (u)n�1f

�
a� p0 + ~p�

Z a

u

F (x)n�kdx

�
du <

Z a

p0

F (u)n�1f(u� p0 + ~p)du

for any deviation price ~p. However, when n is su¢ ciently large, we knew that the equilib-

rium price in the free-recall case is p0 � 1�F (a)
f(a)

, and again we can show that the optimal
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deviation price when �rm i unilaterally makes an exploding o¤er is close to 1�F (a)
f(a)

. From

(31), �rm i�s returning demand is now

QR =
1

n

nX
k=1

Z a

p0

F (u)n�1f

�
u� p0 + ~p+

Z a

u

[1� F (x)n�k]dx
�
du

(which is the sum over k of the second term in (31) divided by n), and the immediate

demand is

QI =
1� F (a)n
n(1� F (a)) [1� F (a� p0 + ~p)]

(which is the sum over k of the �rst term in (31) divided by n). If M is the upper bound

of f , we have

QR < M

Z a

p0

F (u)n�1du :

It follows that QR=QI converges to zero as n ! 1, and so the optimal deviation price
should be close to the price which maximizes ~pQI , i.e., it is close to p0 � 1�F (a)

f(a)
. Then

following a similar logic as in part (i), one can show that the above argument with a �xed

price carries over.

Proof of Proposition 3: Suppose to the contrary that p � p0, where these two prices

are given in (9)�(10) and which we know lie in the interval (1� a; 1=2). Then

0 � 1

p
� 1

p0
= hn +

nX
k=1

hk � pn�10 � 1� a
n

1� a � hn +
nX
k=1

hk � pn�1 �
1� an
1� a � Jn(p) :

We will show below that Jn(p) < 0 for p 2 (1� a; a) and any n � 2. (Note that am = a if
p = a and so Jn(a) = 0.) Then the above inequality implies p � 1� a or p � a. This is a
contradiction to p 2 (1� a; 1=2) and so we can conclude that p > p0.
We use an inductive argument to show Jn(p) < 0 for p 2 (1� a; a). First, we have

J2(p) = 1 + 2a1 � p� (1 + a) = a� a2 � (p� p2) < 0 :

The second step used a1 = p + V (p) = a� (a2 � p2)=2, and the �nal step follows because
p 2 (1� a; a). Now suppose for n � 2 that

Jn(p) < 0, hn +
nX
k=1

hk < p
n�1 +

1� an
1� a

for p 2 (1 � a; a). We aim to show Jn+1(p) < 0 in the same interval. Using the inductive

assumption, we have

Jn+1(p) = hn+1 +

n+1X
k=1

hk � pn �
1� an+1
1� a

= 1 + an

 
hn +

nX
k=1

hk

!
� pn � 1� a

n+1

1� a

< 1 + an

�
pn�1 +

1� an
1� a

�
� pn � 1� a

n+1

1� a :
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As we show below,

an

�
pn�1 +

1� an
1� a

�
< pn + a

1� an
1� a (32)

for p 2 (1� a; a). Hence, after some rearranging Jn+1(p) < 0 follows.
As the �nal step, we now prove inequality (32). Let

n �
pn + a1�a

n

1�a
pn�1 + 1�an

1�a
< a :

We want to prove an < n. Again we use the induction method, starting at n = 1. First,

one can verify that a1 < 1. Now suppose an < n, and we aim to show an+1 < n+1.

Using the inductive assumption, we have an+1 = an + V (an) < n + V (n) since x+ V (x)

is increasing in x. So a su¢ cient condition for an+1 < n+1 is that

n + V (n) < n+1 : (33)

Notice that in the uniform case x+V (x) = a� (a2�x2)=2 < a�ax+x2 for x < a. Hence,
(33) holds if

a� an + 2n < n+1 , a� n+1 < n(a� n),
a� n+1
n(a� n)

< 1 :

One can verify that

a� n+1
n(a� n)

=
p(1� an) + pn(1� a)
a(1� an) + pn(1� a) �

pn�1(1� a) + 1� an
pn(1� a) + 1� an+1 :

The �rst term on the right-hand side above is less than 1 since p < a. The second term

is less than 1 if and only if pn�1(1 � p) < an, which must be true for p 2 (1 � a; a). This
completes the proof.

Proof of Proposition 4: (i) We will show that a �rm has an incentive to introduce a

small buy-later premium, and then invoke Lemma 4 to show that the �rm also has an

incentive to o¤er a small buy-now discount. Compared to the duopoly case analyzed in

the main text, the additional analysis needed for the general n-�rm case involves the extra

complexity of a consumer�s stopping rule. In particular, the consumer�s stopping rule at a

�rm which o¤ers a buy-later premium will depend on the history of o¤ers she sees before

she encounters the �rm, and this feature was absent in the duopoly analysis.

Let p0 be the price in the free-recall equilibrium de�ned by (4). Assumption (2) implies

that p0 < a. We �rst consider the following hypothetical search problem:

A search problem: Suppose a consumer encounters �rm i �rst, and is o¤ered match

utility ui, the buy-now price p0, and a buy-later premium � > 0 (so the buy-later

price at �rm i is p̂ = p0 + �). Suppose she expects that m remaining �rms charge

price p0 < a and allow free recall, and suppose the consumer has an outside option

� < a� p0. When will this consumer buy from �rm i?
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It is clear that (a) if ui � a, the consumer will surely stop searching and buy at �rm
i immediately (this is even true when � = 0); and (b) if ui � p0 � �, then �rm i�s o¤er is

dominated by the outside option and the consumer will never buy from the �rm.

Now consider the intermediate case with ui � p0 2 (�; a � p0). If the consumer buys
immediately at �rm i, her payo¤ is ui � p0. If she leaves �rm i, she will enter a free-recall

search market with m �rms and an outside option

z = maxf�; ui � p̂g < a� p0 :

(Recall she will pay the higher price p̂ > p0 if she returns to buy from �rm i.) As before,

her expected surplus Ym(z) from entering this search market is given by (29). Given �, z

is a function of ui and we can therefore regard Ym(z) as a function of ui: it is �at until

ui reaches � + p̂ and then increases with ui with slope less than one. (Note that we are

considering the case with ui < a, so the slope cannot be equal to one.) Recall from (29)

that for z < a� p0, we have z < Ym(z) < a� p0.
Clearly, the consumer will buy immediately from �rm i if and only if

ui � p0 � Ym(maxf�; ui � p̂g) : (34)

Given the properties of Ym(�), the value of ui which achieves equality in (34) has a unique
solution which we denote by am(�) 2 (� + p0; a). We conclude that the consumer will buy
immediately from �rm i if and only if ui � am(�).
There are then two cases, depending on the size of the premium � :

(a) If ui � p0 crosses Ym(z) at the �at portion, which occurs when � + p̂� p0 > Ym(�),
i.e., when � > Ym(�)� �, then

am(�) = p0 + Ym(�) ; (35)

which does not depend on � . In this case, the consumer will leave �rm i if ui < am(�) and

then will never return to �rm i because ui � p̂ < am(�)� p̂ < �.
(b) If ui� p crosses Ym(z) at the increasing portion, which occurs when � � Ym(�)� �,

then am(�) is implicitly determined by am(�)� p0 = Ym(am(�)� p0 � �), which from (29)

implies that am(�) satis�es

� =

Z a

am(�)��
[1� F (u)m]du ; (36)

which does not depend on p0 or �. In particular, am(0) = a. Expression (36) is the

generalization beyond duopoly of our earlier formula (12). In this case, the consumer will

initially reject �rm i�s o¤er if ui < am(�), but will come back to the �rm after sampling the

remaining m �rms if ui � p̂ > max1�j�mf�; uj � p0g. Note that the assumption � < a� p0
implies that Ym(�)� � > 0, and so case (b) is relevant for all su¢ ciently small � > 0.
In sum, we deduce the following result:

41



Claim 3 In this hypothetical search problem, the consumer will buy from �rm i imme-

diately if and only if ui � am(�), where am(�) is de�ned in (35) if � > Ym(�) � �, and
otherwise am(�) is de�ned in (36).

Finally, since Ym(�)� � is decreasing in �, the condition � > Ym(�)� � is equivalent to
� 2 (�� ; a� p0), where �� solves

� = Ym(�� )� �� =
Z a

��+p0

[1� F (u)m]du (37)

if � < Ym(0), and �� = 0 otherwise. In particular, Ym(�0) = �0 = a� p0.

We now prove Proposition 4. Starting from the free-recall equilibrium with price p0,

suppose �rm i unilaterally introduces a returning purchase premium � > 0 but keeps the

buy-now price unchanged at p0. Suppose �rm i happens to be in the kth position of the

consumer�s search process. If k = n, then � has no impact on �rm i�s pro�t. In the

following, we show that for any k < n, introducing a small premium � > 0 is pro�table for

the �rm.

As in the proof of Proposition 1, let � � maxf0; u1�p0; � � � ; uk�1�p0g be the best o¤er
from the previous k � 1 �rms. A consumer will visit �rm i if � < a� p0. If the consumer
arrives at �rm i and discovers match utility ui and the buy-later premium � (but still

holds the equilibrium belief about the remaining n�k �rms�policies), she faces the search
problem we have just analyzed with m = n� k, and her stopping rule will depend on her
best previous o¤er �. Let us focus on a relatively small � such that � < Yn�k(0) and de�ne

�� as in (37) with m = n � k. Then if � 2 (�� ; a � p0), the reservation utility according
to (35) is an�k(�) = p0 + Yn�k(�). In this case, the consumer will buy immediately if

ui � an�k(�), and otherwise she will keep searching and never come back. Alternatively, if
� � �� the reservation utility an�k(�) is as given in (36) with m = n� k. In this case, even
if the consumer leaves �rm i �rst (i.e., if ui < an�k(�)), she will eventually come back after

sampling all remaining �rms if ui � p0 � � is greater than their o¤ered surplus and the
outside option � which represents the best o¤er among the previous k�1 �rms. Explicitly,
�rm i�s returning demand in this case is

Pr(max
j>k

f�; uj � p0g < ui � p0 � � < an�k(�)� p0 � �)

=

Z an�k(�)

p0+�

F (ui � �)n�1dF (ui) =
Z an�k(�)��

p0

F (u)f(u+ �)du :

(Note � is also a random variable with c.d.f. G(�) = F (� + p0)
k�1, and the second step

follows after changing the integral variable.) Therefore, �rm i�s pro�t if it is in the kth
search position and charges the buy-later premium � is

p0

Z a�p0

��

[1� F (p0 + Yn�k(�))] dG(�) + p0G(�� )[1� F (an�k(�))]
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+ (p0 + �)

Z an�k(�)��

p0

F (u)n�1f(u+ �)du : (38)

Note from (36) that

(1� a0n�k(0))(1� F (a)n�k) = 1 : (39)

By using the observations Yn�k(�0) = �0 = a� p0 and (39), the derivative with respect to
� of �rm i�s pro�t in (38) when it is in the kth position (with k < n), evaluated at � = 0, isZ a

p0

F (u)n�1[f(u) + p0f
0(u)]du ; (40)

which generalizes the duopoly expression (15). Here,
R a
p0
F n�1fdu is the extra revenue

generated from the returning customers, while
R a
p0
F n�1f 0du is the extra demand generated

by increasing the cost of return. That (40) is positive when p0 >
1�F (a)
f(a)

follows the

argument given in the main text for duopoly. Since (40) is positive (and the same) for all

k < n, the proof of part (i) is complete.

(ii) Suppose by contrast that there is an equilibrium without returning demand. Let ��

be the minimum buy-later premium needed for such an equilibrium. Then �� satis�es

an�1 = p+ �� ; (41)

where p is the equilibrium exploding-o¤er price de�ned in (8). (Recall that famg is the
sequence of reservation utilities with exploding o¤ers.) To see this, notice that am is

increasing in m and so if a consumer never wants to go back to the �rst sampled �rm (at

which she was the most choosy), she also does not want to go back to any other �rm. That

is, (41) implies

am < p+ �� (42)

for any m � n� 2.
Starting from the hypothetical equilibrium in which each �rm sets a buy-now price p

and a buy-later premium �� ,35 suppose �rm i deviates and sets a buy-later premium �� � "
where " > 0 is small enough that (42) continues to hold (but keeps its buy-now price p

unchanged). Note that this small deviation will not a¤ect the search behavior of consumers

who sample any other �rm �rst because of (42), and so we focus on those consumers who

sample �rm i �rst.

Given a buy-later premium smaller than �� , the consumer will become more likely to

search on at �rm i. Let ~an�1 > an�1 be the new reservation utility. For a small deviation,

~an�1 must satisfy

~an�1 � p = Wn�1(~an�1 � p� �� + ") ; (43)

where Wn�1 is as given in (23). The right-hand side is the expected surplus from partici-

pating a �no-recall�market with n� 1 �rms and a positive outside option ~an�1� p� �� + "
35The same argument applies if �rms charge buy-later premia greater than �� .
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which is available if the consumer comes back to �rm i.36 Let ~an�1 � an�1 + �" be the

�rst-order approximation of ~an�1, where � is to be determined. Then (41) and (43) imply

an�1 � p+ �" � Wn�1((1 + �)")

� Wn�1(0) + (1 + �)"W
0
n�1(0)

= an�1 � p+ (1 + �)"rn�1(0) :

The equality used (23) and (25), and rn�1(0) is the probability that the consumer will

purchase nothing when �rms make exploding o¤ers. Thus, � satis�es

� = (1 + �)rn�1(0) : (44)

For a small ", �rm i�s fresh demand from those who visit �rm i �rst will be reduced by

f(an�1)�" : (45)

On the other hand, the reduction of the buy-later premium will generate new returning

demand. Those consumers who �nd u 2 [p+ �� � "; ~an�1] at �rm i will search on �rst and

eventually come back with a probability approximately equal to rn�1(0). Since the length

of the above interval is (approximately) (1 + �)", the returning demand is

f(an�1)(1 + �)rn�1(0)" : (46)

From (44), one can see that (45), the decrease of the fresh demand is actually equal to

(46), the increase of the returning demand, and so total demand is unchanged to �rst order

with this deviation. But each returning consumer pays more than each �rst-time visitor

(p+ �� � " > p). Hence, the deviation is pro�table.

Proof of Proposition 5: (i) Denote by r > 0 the intrinsic returning cost. Suppose in

some equilibrium that each consumer forecasts that a �rm�s buy-later price is p̂(pi) when

its buy-now price is pi, where p̂(�) can take any form. Suppose that the buy-now price in
this equilibrium is p�, say, and suppose� contrary to the claim� there is some returning

demand in this equilibrium. But if a consumer returns to �rm i after sampling other

�rms, her match utility must satisfy ui � p̂(p�) + r, since the consumer needs to pay the
returning cost r. Since all its returning customers have match utility at least as great as

p̂(p�) + r, the �rm�s optimal price for these customers must be at least p̂(p�) + r. This

is because charging returning consumers p̂(p�) + r will not induce any of them to leave

this �rm again and buy from others (since going back to any other �rm also involves a

returning cost r), while charging them a price below that cannot increase demand (since

the deviation is not public). We thus obtain a contradiction to the assumption that p̂(p�)

36The consumer�s reservation utility at the subsequent �rms may also change, but (42) still holds for a

su¢ ciently small ". That is why we can regard the subsequent market as a no-recall market.
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was the correctly anticipated buy-later price. Therefore, in any equilibrium there are no

returning consumers. The unique equilibrium outcome is then that �rms charge �rst-time

visitors a price as described in the exploding-o¤er equilibrium in Lemma 3, and charge

returning consumers a su¢ ciently high price such that consumers never come back to

previously sampled �rms.

(ii) Suppose now that �rms can commit to an upper bound on the price they will charge

returning visitors. Suppose that �rm i charges the buy-now price pi and commits to an

upper bound on its buy-later price given by p̂i. Then any consumer who returns to buy

from �rm imust expect that the �rm will actually charge price p̂i. (Suppose to the contrary

that a returning consumer anticipates that the �rm will actually charge price ~p < p̂i. Then,

following the same logic as in part (i) of this proof, �rm i then has an incentive to increase

its buy-later price above ~p since it knows that the consumer is willing to pay at least ~p+ r

for the product. Therefore, the only equilibrium belief can be that returning consumers

anticipate that �rms will set their buy-later price equal to their announced upper bound.)

The �rm has an incentive to raise the price above p̂i, as in the proof to part (i), but that is

not feasible given that the �rm commits to its cap. Hence, �rm i will charge its returning

customers exactly p̂i. We deduce that announcing an upper bound to the buy-later price

is equivalent to committing to an actual buy-later price at the level of the cap, and so the

analysis of sections 3.1 and 3.2 can be applied.

Proof of Proposition 6: Suppose a �rm unilaterally makes an exploding o¤er with price
p � r. For a costly searcher who visits this �rm, she will stop searching immediately as

before (since the expected incremental bene�t from searching on is now smaller than in

the free-recall case). So the �rm�s demand from costly searchers does not change relative

to the free-recall case with price p. In the following, therefore, we focus on the impact of

such a deviation on the demand from shoppers.

When a shopper comes to this �rm, she might now stop searching because of the

exploding o¤er. But this decision depends on both p and the prices she has already

observed in the previously sampled �rms. Suppose the �rm is in the kth position of the

consumer�s search process with k < n. Let � = minfp1; : : : ; pk�1g be the minimum price

observed so far. (If k = 1, let � = r.) If the consumer chooses to search on, then she must

give up the o¤ered price p, and the expected price she will then pay is

Pn�k(�) = �[1�G(�)]n�k +
Z �

pmin

~p
d

d~p
f1� [1�G(~p)]n�kgd~p

= pmin +

Z �

pmin

[1�G(~p)]n�kd~p ;

where 1�[1�G(~p)]n�k is the c.d.f. of the minimum price among the n�k subsequent �rms.
(Note that Pn�k(�) is an increasing function and Pn�k(�) < �.) Thus, this shopper will

buy from the deviating �rm if and only if the exploding o¤er price satis�es p < Pn�k(�).
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Consider the particular exploding o¤er with price pmin + ", where " > 0 is small. It

su¢ ces to show that this deviation gives rise to a higher demand from shoppers than in

the free-recall o¤er with the same price. In the free-recall case, the demand from shoppers

is

[1�G(pmin + ")]n�1 � 1� "(n� 1)g(pmin) ; (47)

regardless of the �rm�s position in the consumer�s search order. However, with an exploding

o¤er, demand from shoppers when the �rm is in the kth position becomes

Pr(pmin + " < Pn�k(�)) = Pr(� > �̂) ;

where �̂ solves

pmin + " = Pn�k(�̂), " =

Z �̂

pmin

[1�G(~p)]n�kd~p :

One can show �̂ � pmin + ", and so

Pr(� > �̂) � [1�G(pmin + ")]k�1

� 1� "(k � 1)g(pmin) : (48)

Comparing (47) and (48) shows that for a given price pmin + ", the demand from shoppers

with exploding o¤ers is indeed higher than in the free-recall case for all cases except k = n

(when demand is equal in the two regimes). (One can check that g(pmin) > 0 in Stahl�s

equilibrium.) Thus, the deviating �rm makes strictly greater pro�t when it makes an

exploding o¤er with a price slightly above pmin.
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