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Abstract

This paper studies strategic information transmission in a �nite horizon environment where,

each period, a privately informed expert sends a message and a decision maker takes an action.

Our main contribution is to show that communication in this dynamic environment is drastically

di¤erent from the canonical static environment. First, full revelation is possible. We provide a con-

structive method to build such an equilibrium. Second, we show that complicated communication,

where far-away types pool, allows dynamic manipulation of beliefs and enables better information

release in the future. If communication is restricted to be simple, such as monotonic partitional,

full revelation is impossible. Thirdly, we show that conditioning future information release on past

actions improves incentives and information release.
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1 Introduction

The seminal paper on strategic information transmission by Crawford and Sobel (1982) is a model

of choice for a number of applications, ranging from economics and political science, to philosophy

and biology.1 In that paper, a biased and privately informed expert and a decision-maker interact

only once. The con�ict of interest results in coarse information revelation, and in some cases, in

no information at all. We study strategic information transmission in a dynamic, �nite horizon

extension of the Crawford and Sobel setup. Each period the expert sends a message and a decision

maker takes an action. Only the expert knows the state of the world which remains constant over

time and the game . We maintain all other features of the Crawford and Sobel (1982) environment,

in particular, that the interests of the expert and the decision maker di¤er.

There are many environments in which information transmission is dynamic. Many sequential

decisions have to take place, and the decision maker seeks the expert�s advice prior to each one

of them. The earlier literature on dynamic communication has largely focused on the role of

reputation, see, for example, Sobel (1985), Morris (2000), and Ottaviani and Sorensen (2006),

(2006b). Our paper focuses on the dynamics of strategic communication.

Our most surprising, and di¢ cult to establish �nding, is to show that full information revelation

is possible. We show this result in a challenging environment where the horizon is �nite and both

players are fully patient. Moving from one-shot to �nite repetition often leaves the qualitative

feature of equilibria unchanged: here we show an environment where �nite repetition has a drastic

impact. The construction of the fully revealing equilibrium relies on two key features. The �rst is

the use of the separable groups: types who are far apart pool together initially, and then separate.

As such, there is gradual revelation of information. The second feature is that the dynamic nature

of the game enables the use of �trigger strategies,� in which the expert promises better advice

in the future if the decision maker chooses an action bene�cial for the expert now. That is,

trigger strategies are used to incentivize the decision maker, and to facilitate a gradual release of

information that leads eventually to full revelation.

In a nutshell, in a multi-period interaction, communication can be facilitated by generating

appropriate posteriors, and via the use of trigger strategies: the expert employs a signaling rule

which makes future information revelation credible, but he only reveals the truth if his advice

is followed early on. We now provide more details on the roles of separable groups and trigger

strategies in our construction of a fully revealing equilibrium.

We �rst show that it is possible to divide all states into separable groups. A separable group is

a set of types which are su¢ ciently far apart that each would rather reveal the truth, than mimic

any other type in his group. Therefore, we create histories after which it is common knowledge that

1For a survey with applications across disciplines see Sobel (2008).
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the decision maker puts probability one on a particular separable group, at which point the types

in this group separate. The division of all types into separable groups is quite delicate, because,

given that there is a continuum of types, we need to form a continuum of such groups. The expert

anticipates that if at some point he joins a separable group, then he will forgo his informational

advantage. For the expert to join the separable group containing his true type, we have to make

sure that he does not want to mimic a close-by type, who is supposed to join a di¤erent separable

group. This is done via appropriate separation-inducing initial actions, which are not myopically

optimal for the DM. The decision-maker is nevertheless willing to choose these actions, because the

expert threatens to otherwise babble rather than revealing the truth.

We emphasize another necessary condition for full information revelation. The fully revealing

equilibrium cannot be a monotonic partition equilibrium. In a monotonic partition equilibrium,

the expert employs a uniform signaling rule where each type sends one message with probability

one, and the set of types that choose the same message is connected. We prove that if attention is

restricted to monotonic partition equilibria, learning stops. Moreover, we argue that non-monotonic

equilibria can be strictly Pareto superior to all dynamic monotonic equilibria. Overall, we conclude

that monotonic partition equilibria constitute a special class of equilibria in our dynamic setup,

whereas this is a canonical class of equilibria in the static setup of Crawford and Sobel (1982).

Non-monotonic (or non-convex) equilibria play a prominent role in Baliga and Sj½ostr½om (2011),

who highlight the role of pooling extremists. Such equilibria also appear in Baliga and Sj½ostr½om

(2008), who, building on Baliga and Sj½ostr½om (2004), show how strategic ambiguity can reduce arm

proliferation. Krishna and Morgan (2004) use non-monotonic equilibria in a static environment with

mediated communication. In our dynamic environment the role of non-monotonic equilibria is to

manipulate beliefs to a¤ect incentives to release information over time.

Welfare properties of equilibria are another di¤erence between the dynamic and the static

strategic communication games. Crawford and Sobel (1982) show that, under some assumptions,

both the expert and the decision maker ex-ante (before the state is realized) prefer equilibria with

higher number of partitions. We provide an example that shows that it is not necessarily the case

for dynamic equilibria. More partitions of the possible states of the world (i.e. larger number

of equilibrium vectors of actions) do not guarantee higher expected payo¤ for the expert and the

decision maker. The reason is as follows. In the dynamic setup the intetemporal nature of the

indi¤erence conditions that pin down the cuto¤s that characterize partition equilibria allow for

a much richer set of possibilities which overturn the static Pareto comparison results. A similar

phenomenon occurs when the communication is noisy, as shown in an example of the working paper

version of Blume, Board, and Kawamura (2007). In their example, a two-step partition Pareto

dominates a three-step partition. We also present an example in which dynamic monotonic partition
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equilibria can be strictly Pareto superior to playing the most informative one-shot equilibrium in

the �rst period, and babbling thereafter. Finally, we show that non-monotonic equilibria can be

strictly Pareto superior to all dynamic monotonic equilibria.

Our work shows that the nature of dynamic strategic communication is quite distinct from

its static counterpart. In the static case, because of the con�ict of interest between the decision-

maker and the expert, nearby expert types have an incentive to pool together, precluding full

information revelation. The single-crossing property also implies that in equilibrium, the action

is a monotonic step function of the state. These two forces make complex signaling (even though

possible) irrelevant, given that it is observationally equivalent to partitional signaling, and imply

that only local incentive compatibility matters. In the dynamic setup the key di¤erence is that

today�s communication sets up the stage for tomorrow�s communication. Complex signaling helps

in the dynamic setup, because it can lead to posteriors where possible states are su¢ ciently far apart

that they have no incentive to mimic each other. Sustaining in equilibrium such posteriors requires

complex signaling where one needs necessarily to worry about global incentive compatibility.

Related Literature

Crawford and Sobel (1982) is the seminal contribution on strategic information transmission.

That paper has inspired an enormous amount of theoretical work and myriads of applications. Here

we study a dynamic extension. Other papers that look at dynamic relations between one expert

and one receiver di¤er from ours because, as already mentioned, their focus is on the sender�s

reputation. Other papers have a dynamic aspect because they allow for multi-round communication

protocols, but with a single round of action(s). Aumann and Hart (2003) characterize geometrically

the set of equilibrium payo¤s when a long conversation is possible. In that paper, two players�one

informed and one uninformed, play a �nite simultaneous move game. The state of the word is �nite,

and players engage in direct (no mediator) communications (possibly in�nitely long exchange of

messages), before both choosing simultaneously costly actions. In contrast, in our model only the

informed party sends cheap messages�the uniformed party chooses actions and the state is in�nite.

Krishna and Morgan (2004) add a long communication protocol to Crawford and Sobel (1982)�s

game, whereas Goltsman H½orner, Pavlov and Squintani (2009) characterize such optimal protocols.

Forges and Koessler (2008a, 2008b) allow for a long protocol in a setup where messages can be

certi�able. In all those papers once the communication phase is over, the decision maker chooses

one action. In our paper, there are multiple rounds of communication and actions (each expert�s

message is followed by an action of the decision maker). A crucial di¤erence from these earlier

works is that in our environment the expert can condition his future advice on the decision-maker�s

past actions.
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In our setup, the dynamic nature of communication enables full information revelation. In

contrast, full information revelation is not possible in the dynamic setup of Andrelini, Gerardi,

and Laguno¤ (2008) who consider dynamic strategic communication is a dynastic game and show

that if preferences are not fully aligned �full learning�equilibria do not exist. Renault, Solan, and

Vieille (2011) examine dynamic sender-receiver games, in a setup where the information is not fully

persistent and the state is �nite. They restrict attention to Markov equilibria and characterize the

set of equilibrium payo¤s. In contrast, we assume fully persistent information, �nite horizon, and

a state drawn from a continuum, and focus mainly on non-markovian equilibria.2

Our model bears some similarities to the static strategic communication with multiple receivers.

In those models the expert cares about a sequence of actions, but in contrast to our model, those

actions are chosen by di¤erent individuals. An important di¤erence is that in our model the receiver

cares about the entire vector of actions chosen, compared to those models where each receiver cares

only about his own action. Still, some of the properties of the equilibria that we obtain also

appear in the models with multiple receivers. For example, our non-monotonic example presented

in Section 4 resembles Example 2 of Goltzman and Pavlov (2008). It is also similar to Example 2

in Krishna and Morgan (2004).3,4

Full information revelation is possible in other variations of the Crawford and Sobel (1982)

setup: When the decision maker consults two experts as in Battaglini (2002), Eso and Fong (2008)

and Ambrus and Lu (2010);5 when information is completely or partially certi�able, as in Mathis

(2008); and when there are lying costs and the state is unbounded as in Kartik, Ottaviani and

Squintani (2007). In the case of multiple experts, playing one against the other is the main force

that supports truthful revelation. In the case of an unbounded state, lying costs become large and

support the truth. In the case of certi�able information, one can exploit the fact that messages are

state-contingent to induce truth telling. All these forces are very di¤erent from the forces behind

our fully revealing construction.

2 Ivanov (2011) allows for a dynamic communication protocol in a setup where the expert is also initially un-
informed and the decision maker controls the quality of information available to the expert. He builds on our
construction and employs separable groups, but in a much di¤erent informational setting. (The DM gives the un-
informed expert a device that initially reveals (to the expert only) the separable group containing the truth, and
contains a built-in threat to only reveal the exact state if the expert reports this information truthfully).

3Equilibria can be non-monotonic also in environments where the decision maker consults two experts as in
Krishna and Morgan (2001).

4For the expert, inducing a sequence of actions is payo¤-equivalent to inducing a probability distribution over
actions, so our analysis for the expert would go through also in such settings. Our set-up is however more �exible on
the DM�s side, since conditioning advice on past actions (trigger strategies), is impossible in mediated static set-ups.

5But full information is not possible in the setup of Levy and Razin (2007).
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2 The Environment

We extend the classical model of Crawford and Sobel (1982) to a dynamic setting. There are two

players: an Expert - E (sender) and a Decision Maker - DM (receiver) who interact for �nitely many

periods t = 1; :::; T . The expert knows the state of the world � 2 [0; 1] which is constant over time
and is distributed according to the c.d.f. F . At the beginning of each period t, the expert sends

a (possibly random) message mt which depends on the realization of the state � to the decision

maker. The decision maker then updates his beliefs about the state and chooses an action yt 2 R
that a¤ects both players�payo¤s. There is a con�ict of interest because, for all states �, the expert�s

ideal choice of action di¤ers from the decision maker�s. This is captured by a scalar b; the bias

parameter of the expert. The discount factor of the expert and the decision maker is �i 2 [0; 1]
for i 2 fE;DMg: When the state is � and the decision maker chooses actions yT = (y1; ::; yT ), the
expert�s payo¤ is given by

UE(yT ; �; b) = �Tt=1�
t�1
E uE(yt; �; b);

and the decision maker�s payo¤ is given by

UDM (yT ; �) = �Tt=1�
t�1
DMu

DM (yt; �):

We assume that period payo¤s uE(yt; �) and uDM (yt; �; b) satisfy the conditions imposed by Craw-

ford and Sobel (1982), namely that (i) ui is twice di¤erentiable, for all �; (ii) @u
i(y;�)
@y = 0 for some y

for i 2 fE;DMg; (iii) that @
2ui(:;:)
@y2

< 0; and (iv) a single crossing condition,@
2ui(:;:)
@�@y > 0. Conditions

(ii) and (iii) guarantee a unique maximum in y.

Let yDM (�) and yE(�) denote, respectively, the decision maker�s and the expert�s most preferred

action when the true state � is known by both players . The single crossing condition ensures that

yDM (�) and yE(�) are increasing in �. We assume that, regardless of the state �, a con�ict of

interest exists: yDM (�) 6= yE(�), for all �.
The decision maker observes his payo¤s only at the end of the game. He does not observe his

payo¤ at each period t. Otherwise, the problem would be trivial because the decision maker can

learn the expert�s information by simply inverting his payo¤.

A strategy pro�le � = (�i)i=E;DM , speci�es a strategy for each player. Let ht denote a history

that contains all the reports submitted by the expert mt�1 = (m1; :::;mt�1), and all actions chosen

by the decision maker yt�1 = (y1; :::; yt�1) up to, but not to including stage t. The set of all

feasible histories at t is denoted by Ht. A behavioral strategy of the expert, �E ; consists of a

sequence of signaling rules that map [0; 1] �Ht to a probability distribution over reportsM. Let

q(m j�; ht ) denote the probability that the expert reports message m at history ht when his type

is �. A strategy for the decision maker, �DM , is a sequence of maps from Ht to actions. We use
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yt(m jht ) 2 R to denote the action that the decision maker chooses at ht given a report m: A belief
system, �, maps Ht to the set of probability distributions over [0; 1]: Let �(�jht) denote the decision
maker�s beliefs about the experts�s type after a history ht, t = 1; :::; T: A strategy pro�le � and a

belief system � is an assessment. We seek strategy pro�les and belief systems that form Perfect

Bayesian Equilibria, (PBE).

In the paper we use the terminology as follows.

De�nition 1 An equilibrium is called babbling if for all m with q(m j�; ht ) > 0; all � 2 [0; 1], all
ht and t; we have that yt(m jht ) = ŷ:

In other words, we call an equilibrium babbling, if the same action is induced with probability

one for all states � 2 [0; 1] and all t 2 T:

De�nition 2 We call a signaling rule q uniform, if q(m j�; ht ) is uniform, with support on [�i; �i+1]
if � 2 [�i; �i+1]:

De�nition 3 A partition equilibrium is one in which, at each period t and history ht; the expert

employs only uniform signaling rules.

In other words, at a partition equilibrium, the expert follows a pure strategy in which, for any

message m, the set of types sending message m is connected.

De�nition 4 An equilibrium is fully revealing if there exists a T̂ � T such that after all histories
along the equilibrium path leading to T̂ ; the expert sends for all � 2 [0; 1] a di¤erent message with
probability one, inducing yt(�) = yDM (�) from t = T̂ on.

3 Uniform Signaling

We �rst brie�y summarize the static cheap talk game of Crawford and Sobel (1982) in which

uniform signaling rules are the canonical form of communication in static games. We then study

properties of uniform signaling in our dynamic setup.

3.1 The Canonical Static Communication

We start by reviewing the Crawford and Sobel (1982) �ndings. For the static communication

and decision game they show that all equilibria are equivalent to partition equilibria. The expert

employs simple uniform signaling rules. He follows a pure strategy in which, for any message m,

the set of types sending message m is connected. This type of communication induces actions

which are increasing step functions of the state. Hence, intervals of types pool together by sending
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the same message, ultimately, inducing the same action by the decision maker. This implies that

communication is coarse. Even though the state � takes a continuum of values, only �nitely many

di¤erent actions are induced.

The intuition behind this result can be summarized as follows. Fix an equilibrium of the one-

shot game and let y(�) denote an action induced when the state is �. The con�ict of interest between

the expert and the decision maker (yDM (�) 6= yE(�), for all �) implies that there are at most �nitely
many actions induced. The fact that uE is strictly concave in y, together with single-crossing and

the �niteness of actions, implies that there are at most �nitely many states � where the expert is

indi¤erent between two induced actions. Then, y(�) can be, without loss of generality, taken to

be single-valued. Because y takes at most �nitely many values, it is an increasing step function.

The state space is divided into a �nite number of subintervals, and y takes a di¤erent value in

each subinterval. Importantly, Crawford and Sobel (1982) show that, without loss of generality,

equilibrium induced actions, y can be taken to arise from uniform signaling rules. This result

follows from the observation that all messages inducing the same action y can be replaced by a

single message. Therefore, more complex signaling rules play no role in the static setup.

3.2 Uniform Signaling: A Special Kind of Dynamic Communication

We now focus on simple partitional communication protocols (uniform signalling) and study their

properties in our dynamic setup. We show two results. The �rst result is that with monotonic

partition equilibria the decision maker never learns the truth. The second result establishes that

when the bias is so large that only one action is induced at an equilibrium of the static game,

the same is true also in dynamic monotonic partition equilibria. Finally, an example shows that

dynamic partitions can di¤er and can be more informative compared to static ones.

In constructing partition equilibria, the main di¤erence from the static case is that the expert�s

indi¤erence conditions that characterize the cuto¤s of the partitions are intertemporal. This makes

the explicit solution of the resulting di¤erence equation di¢ cult even in simple environments, such

as in the uniform quadratic loss case. To overcome this di¢ culty, we notice that at some point in

the game the expert�s indi¤erence conditions reduce to the static ones and then apply the results

of Crawford and Sobel (1982).

Using this approach, we �rst show that among the class of monotonic partition equilibria, there

exists no equilibrium in which the decision maker eventually learns the state of the world for all

� 2 [0; 1]. That is, there exist no fully revealing equilibria.

Proposition 1 For all T , there exist no fully revealing monotonic partition equilibria.

This result follows almost immediately from Crawford and Sobel (1982). A short sketch of the

argument is as follows. Suppose, by contradiction, that there exists a fully revealing monotonic

8



partition equilibrium. Then, there exists a period T̂ � T in which the last subdivision occurs,

with yt(�) = �, for all t � T̂ . Since yt (�) = � (respectively yt (� + ") = � + ") from T̂ onwards, the

incentive constraint at time bT for type � to not mimic type � + " is�
1 + � + �2 + :::+ �T�T̂�1

�
uE (yt (�) ; �) �

�
1 + � + �2 + :::+ �T�T̂�1

�
uE (yt (� + ") ; �) ;

and similarly for type � + ". These conditions are equivalent to the static equilibrium conditions

in Crawford and Sobel (1982), who proved that they imply that at most �nitely many actions can

be induced at an equilibrium of a static game, a contradiction to full revelation.

We now proceed to show that if all static equilibria are equivalent to babbling then all dynamic

monotonic partition equilibria are equivalent to babbling.

Proposition 2 If all static equilibria are equivalent to the babbling equilibrium, then all dynamic

monotonic partition equilibria are equivalent to babbling.

Proof. See Appendix A.

Note that the logic of the arguments used to establish Propositions 1 and 2 applies also to an

in�nite horizon environment.

It is also easy to see that the payo¤s of both the expert and the decision maker of any static

equilibrium can be achieved as a per period payo¤s in the dynamic communication game. We can

construct an �equivalent�(in terms of payo¤s) dynamic equilibrium as follows: In the �rst period,

all types follow the same strategies as in the static equilibrium. For all t > 1 experts of all types

�babble�, and the decision maker repeats the same action she took in period 1. It is trivial to verify

that these strategies constitute an equilibrium.

In Appendix B, we show an example when in our dynamic setup (T = 2) both players can be

strictly better-o¤ compared to the best static equilibrium. In that example, �E = �DM = 1, the

state is uniformly distributed on [0; 1] and preferences satisfy

uE(y; �) = � (y � � � b)2 and uDM (y; �; b) = � (y � �)2 ; (1)

with b = 1
12 . At the most informative static equilibrium the state space is divided in two sub-

intervals: [0; 13 ] and [
1
3 ; 1] inducing two actions

1
6 and

4
6 : We show that when T = 2, there exists

a partition equilibrium where the state space is divided ultimately in three sub-intervals: [0; 0:25];

[0:25; 0:45833] and [0:458 33; 1].

However, in dynamic settings it is also possible to have equilibria with more partitions that

are inferior to ones with less (we present an example of such an equilibrium in Appendix C). This

happens because a larger ultimate number of partitions may require extensive pooling earlier on,

inducing overall lower welfare. This �nding is in contrast to Crawford and Sobel (1982), who show
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that under their Assumption M equilibria can be easily Pareto ranked: both the expert and the

decision maker ex-ante (before the state is realized) prefer the equilibrium with the highest number

of partitions and actions induced.6 Our �ndings suggest that Pareto comparisons in dynamic cases

are less straightforward, even if we restrict attention to monotonic partitional equilibria.

We proceed to study the role of complex signalling in our dynamic game.

4 An Example with Complex Signaling and Dynamic Information

Revelation

In this section we present an example where the expert employs a complex signalling rule that

induces an action of the decision maker that is not monotonic in the state. We show that, for a

range of biases, this equilibrium is superior to all monotonic ones.

In the example below, the bias is so severe that if communication and the decision were static

(one round), as in Crawford and Sobel (1982), all equilibria would be babbling. We show, that

even in these extreme bias situations, some information can be revealed with just two rounds. This

equilibrium has the feature that the decision maker learns the state quite precisely when the news

is either horri�c or terri�c, but remains agnostic for intermediate levels.

Example 1 Dynamic equilibria can be non-monotonic

Consider a two period game where �E = �DM = 1, types are uniformly distributed on [0; 1] and

preferences are given by (1). We will construct an equilibrium with the following �piano teacher�

interpretation: a child�s parent (the DM) wants the amount of money he spends on lessons to

correspond to the child�s true talent �; whereas the piano teacher (expert) wants to in�ate this

number. In our equilibrium, parents of children who are at either the bottom or top extreme of the

talent scale get the same initial message, �you have an interesting child� (m1(1) below), and then

�nd out in the second period whether �interesting�means great (m2(3)) or awful (m2(1)); parents of

average children are told just that in both periods. More precisely, let the expert use the following

signaling rule:

In period 1, the expert for states in [0; �)[ (��; 1] sends a message m1(1) with probability 1. For

states in [�; ��], he sends a message m1(2) with probability 1. In period 2, the expert adopts the

following signaling rule. For states in [0; �) the expert sends a message m2(1) with probability 1,

for states in [�; ��] he sends a message m2(2) with probability 1, and for states in (��; 1] he sends

a message m2(3) with probability 1. To sum up, we look for an equilibrium with the following

6The equilibrium with the largest number of partitions is the only equilibrium that satis�es the �no incentive to
separate�(NITS) condition (Chen, Kartik and Sobel (2008)).
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signaling rule:

types in [0; �) send message sequence A = (m1(1);m2(1));

types in [�; ��] send message sequence B = (m1(2);m2(2));

types in (��; 1] send message sequence C = (m1(1);m2(3)):

With this signaling rule, the optimal actions of the decision maker for periods 1 and 2 are, respec-

tively, given by:

t = 1 : y1(1) =
�2 � ��2 + 1
2(� � �� + 1)

; y1(2) =
� + ��

2
:

t = 2 : y2(1) =
�

2
; y2(2) =

� + ��

2
; y2(3) =

1 + ��

2
:

After any out-of-equilibrium message the decision maker assigns probability 1 to the state belonging

to [�; ��], and so will choose action yout = �+��
2 : With these out-of equilibrium beliefs, no type of the

expert has an incentive to send an out-of-equilibrium message.

In order for this to be an equilibrium, type � must be indi¤erent between message sequence A

and B:

�
 
�2 � ��2 + 1
2(� � �� + 1)

� � � b
!2
�
�
�

2
� � � b

�2
= �2

�
� + ��

2
� � � b

�2
(2)

and type �� must be indi¤erent between message sequence B and C :

�
 
�2 � ��2 + 1
2(� � �� + 1)

� �� � b
!2
�
�
1 + ��

2
� �� � b

�2
= �2

�
� + ��

2
� �� � b

�2
(3)

At t = 2 it must also be the case that type � prefers m2(1) to m2(3), and the reverse for type ��:

that is �( �2 � �� b)
2 � �(1+��2 � �� b)2 and �(1+��2 � ��� b)2 � �( �2 � ��� b)

2: The global incentive

compatibility constraints, requiring that all types � < � prefer sequence A to B and that all types

� > � prefer C to B; reduce to a requirement that the average induced action be monotonic, which

is implied by indi¤erence constraints (2) ; (3) :7

A solution of the system of equations (2) and (3) gives an equilibrium if 0 � � < �� � 1:We solved
this system numerically and found that the highest bias that makes this non-monotonic equilibrium

7Rearranging (3) ; the LHS is greater than the RHS for type � (so he prefers C to B) i¤�
� � �

� � y1(1)+y2(3)
2

� y1(2)
�
> 0; so we need

y1(1)+y2(3)
2

> y1(2) for this to hold 8� > �: This is implied by (3) : adding

2
�
y1(1)+y2(3)

2
� � � b

�2
to both sides and factoring yields

�
y1(2) � � � b

�2�� y1(1)+y2(3)
2

� � � b
�2
=
�
y1(1)�y2(3)

2

�2
�

0; so we need
��y1(2) � � � b�� � ��� y1(1)+y2(3)2

� � � b
��� ; since y1(2) < � + b; this implies y1(2) �

y1(1)+y2(3)
2

; as desired.

And similarly at �.
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survive is b = 0:256. For b = 0:256, we obtain � = 0:0581; �� = 0:9823. The corresponding optimal

actions for period 1 are: y1(1) = 0:253; y1(2) = 0:52; and for period 2 are: y2(1) = 0:029; y2(2) = 0:52;

y2(3) = 0:991:Note that the �rst period action is non-monotonic, but the average action is monotonic

(lowest in A; highest in C):

An important feature of the constructed non-monotonic equilibrium is that it exists even though

the only monotonic partition equilibrium in this (dynamic) game is a trivial babbling equilibrium.

To see this, note that for bias b = 0:256, the only equilibrium in the static game is babbling.

Proposition 2 then implies that the only monotonic equilibrium in the dynamic game is babbling.

At this equilibrium the decision maker takes the action yB = 0:5. The expert�s and the decision

maker�s expected disutilities are respectively given by: �0:298 and �0:167. Both the expert and
the decision maker are strictly better-o¤ at our non-monotonic equilibrium, where the disutilities

are given by �0:275 for the expert and by �0:144 for the decision maker, compared to the most
informative static equilibrium.

This example highlights how complex signalling can lead to better communication in a multi-

stage game. By pooling together the best and the worst states at t = 1; the expert is willing at

t = 2 to reveal whether the state is very good or very bad. It also has the following implication.

Proposition 3 There exist non-monotonic equilibria that are Pareto superior to all monotonic

partition equilibria.

When preferences given by (1) and b > 0:25; the only equilibrium in the static game is babbling,

hence this Proposition follows immediately from the preceding discussion.

We now construct a non-monotonic equilibrium with even higher welfare properties. The key

is to allow the expert to condition his future communication of the previously chosen action of

the decision maker. We call such strategies trigger strategies. Now the expert uses the following

signalling rule: if the state is in [0; 0:0642] [ [0:9919; 1] he tells the DM at t = 1 to choose 0:2615

and to choose 0:528 otherwise. The �rst action is above the myopic best response, which is y1(1) =
�2���2+1
2(����+1) = 0:14008: If the DM chooses the action recommended by the expert, then the expert at

t = 2 reveals whether the state is [0; 0:0642] or [0:9919; 1]; otherwise, the expert threatens to babble.

It is routine to check that this is an equilibrium. Moreover, at this equilibrium, the expert and

the decision maker are even better o¤ compared to our original non-monotonic equilibrium. Their

disutilities are respectively given by: �0:2674 for the expert and by �0:1409 for the decision maker.
The reason for the improvement, is that relying on a threat, we relax the best response constraint

of the decision maker which increases the expected payo¤ of expert and, as a consequence, that of

the decision maker (since their ex ante expected payo¤s di¤er by b2).

Our main result in the section that follows is that the dynamic set-up correlates the incentives
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of the expert and DM in such a way that full information revelation is possible. We present this

next.

5 Main Result: Full information revelation in dynamic cheap talk

games

One of the most stark results of the static strategic communication game is that there is no equi-

librium with full information revelation. Although the state can take a continuum of values, the

expert sends at most �nitely many signals to the decision maker. That is, substantial amount of

information is not transmitted. In this section, for our dynamic strategic communication model we

construct an equilibrium that is fully revealing. The construction of the equilibrium relies on two

tools: the use of separable groups, and the use of trigger strategies. These tools have no leverage

in single-round communications, but are powerful in dynamic communications.

5.1 Simple Case: Learning the Truth when the Expert is Myopic

We �rst show how to construct a fully-revealing equilibrium when the expert is myopic. The example

shows how we use separable groups of far away agents who mimic each other but not the nearby

types. With a myopic expert, there is no need to use trigger strategies.

There are two essential ingredients of this example. First, the set of types that choose the same

message at t = 1 are su¢ ciently far apart so they can be separated at t = 2. That is, each message

is chosen by a separable group of types. Second, the average of types in each group is constant.

The �rst period action is then �at. Irrespective of the state, all experts induce the same action.

This implies that the expert does not care which group he joins (since a myopic expert cares only

about the 1st-period action, which is constant across groups).

Example 2 Fully revealing equilibrium with impatient experts (�E = 0).

Consider the uniform quadratic loss case as in (1) when the bias is b < 1
16 and T = 2. The

expert is impatient (�E = 0). The construction works for any discount factor for the decision maker.

In period 1, the expert for states f18 � ";
3
8 + ";

4
8 + "; 1 � "g sends message m", for " 2 [0; 18 ]. For

states f18 + ~";
7
8 � ~"g; the expert sends a message m~" for ~" 2 (0;

1
4). That is, we have two types of

separable groups: indexed by " and ~". Given this signalling rule, the best response of the decision

maker in period 1 is to choose:

y(m") =
1
8 � "+

3
8 + "+

4
8 + "+ 1� "

4
= 0:5 for all " 2 [0; 1

8
];

y(m~") =
1
8 + ~"+

7
8 � ~"

2
= 0:5 for all ~" 2 (0; 1

4
):
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In period 2, the expert tells the truth, inducing an action equal to the state. After any out-of-

equilibrium initial message, the decision maker assigns equal probability to all states, leading to

action yout = 0:5. After any out-of-equilibrium second-period message, the decision maker assigns

probability 1 to state 0; and accordingly chooses yout = 0.

If the expert is impatient (�E = 0), then for any b < 1
16 we argue that this is an equilibrium.

First, notice that all messages (even out-of-equilibrium ones) induce the same action in period

1. Hence, the expert is indi¤erent between all possible �rst-period actions, and therefore indi¤erent

between all possible �rst-period messages if he puts zero weight on the future. So, in particular,

a myopic expert will �nd it optimal to send the �right�message, following the strategy outlined

above. Now consider, for example, the history following an initial message m": The DM�s posterior

beliefs assign probability 1
4 to each of the following types:

1
8 � ";

3
8 + ";

4
8 + " and 1� ": If at stage 2

each of these types sends a di¤erent message, namely m2(k); where k 2 f18 � ";
3
8 + ";

4
8 + "; 1� "g;

then after each of these messages, the decision maker chooses y(m2(k)) = k: To see that at t = 2 the

expert has no incentive to deviate, we consider, for instance, type � = 3
8 + " and show that he does

not have incentive to mimic type �+ 1
8 : �(����b)

2 > �(�+ 1
8 ���b)

2; or (18 �b�b)
1
8 > 0; which

is satis�ed if b < 1
16 . A similar argument holds for other types. Additionally, any out-of equilibrium

message at t = 2; leads to yout = 0 which is always worse than y2(�) = � since �b2 � �(b+ �)2 for
all � 2 [0; 1]: The situation after a message m~" is analogous.

This construction does not apply when the expert is patient, because it does not provide the

expert with incentives to join the �right�separable group as we discuss below. We now turn to the

case of a patient expert.

5.2 Full Information Revelation with a Patient Expert

The main contribution of the paper is to construct a fully revealing equilibrium when the expert is

patient.

Theorem 1 Suppose that �E = �DM = 1 and that the preferences of the expert and of the decision

maker are given by (1) : For any bias b � 1
61 ; there is an in�nite set of priors F , and a horizon T

�;

for which a fully revealing equilibrium exists whenever T � T �:

We provide a sketch of the proof and leave the details to the appendix.

There are two key constructs in the proof.

The �rst is the use of the separable groups, as in the case of the myopic expert above. Rather

than having intervals of types pool together, we construct pairs of far-away types (�partners�)

who pool together in the initial periods. The advantage is that once the expert joins one of these

separable groups, revealing the two possible true states to the DM, we no longer need to worry
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about him mimicking nearby types: his only options are to tell the truth, or to mimic his partner.

Of course, an important part of the proof is to ensure that each expert type wants to join the �right�

separable group. For a myopic expert, this is straightforward: if the expert cares only about the

�rst-period action, then to make him join the right group, it is su¢ cient that the �rst-period action

be constant across groups. (In fact, the myopic expert result relied only on separable groups,

without the need for trigger strategies: we were able to group types such that the (constant) action

recommended by each group was equal to the average type within the group, i.e. so that it coincided

with the DM�s myopically optimal choice). For a patient expert, the construction is signi�cantly

more involved, as it must take dynamic incentives into account. In particular, the actions induced

in the initial stages cannot be �at: if this were the case, then an expert who cares about the future

would simply join whichever separable group leads to the best future action: Hence, for a patient

expert, we need to construct initial action functions which provide appropriate incentives: if type

� knows that some type �0 will get a more favorable action in the revelation phase, then type ��s

group must induce an initial action which is more favorable to type � than that induced by (�0)�s

group.

The second key part of the construction is the use of the trigger strategies. The need for the

trigger strategies is closely related to the construction of the separable groups. In the revelation

stage, the decision maker gets rewarded as the experts reveal the truth. However, this revelation is

obviously costly for the expert, and, as outlined in the previous paragraph, requires initial actions

which provide appropriate rewards. These expert-incentivizing actions turn out to be incompatible

with the myopically optimal actions from the DM�s perspective. Therefore, to make the DM

cooperate with the equilibrium, we need to use trigger strategies. The expert threatens that if

the DM rejects his early advice, the expert will stop revealing information. If the DM follows the

expert�s advice, the DM will be rewarded with eventual full revelation of the state.

Before we proceed with the sketch, it is useful to simplify notation and work with a scaled

type space by dividing all actions and types by b. When we say that �type � 2 [0; 1b ] recommends
u(�) in period 1, for disutility (u(�)� � � 1)2�, we mean that (in the unscaled type space) type �b
recommends action u(�)b; for disutility (u(�)b� �b� b)2 = b2 (u(�)� � � 1)2.

We �rst partition the scaled type space [0; 1b ] into four intervals, with endpoints [0; �1; �2; �3;
1
b ].

The separable groups are as follows: at time t = 0; each type � 2 [0; �1] pools with a partner
g(�) 2 [�2; �3] to send an sequence of recommendations (u1(�); u2(�)) ; and then reveal the truth at
time t = 2 i¤ the DM followed both initial recommendations. Each type � 2 [�1; �2] initially pools
with a partner h(�) 2 [�3; �4] to recommend a sequence (v1(�); v2(�)) ; then revealing the truth at
time T�� (i¤ the expert followed their advice).8 For the purpose of this outline, take the endpoints

8Note that u1; u2; v1; v2 are functions of �; and that in our construction, the expert�s messages (�recommenda-
tions�) are equal to the actions that he wants the DM to take.
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�1; �2; �3 as given, along with the partner functions g : [0; �1] ! [�2; �3]; h : [�1; �2] ! [�3; �4]; and

recommendation functions u1; u2; v1; v2. In the appendix, we derive the parameters and functions

that work, and provide the full details of how to construct fully revealing equilibria.

We now describe the strategy for the expert and for the decision maker. For notational purposes

it is useful to further subdivide the expert types into three groups: I, II, and III.

At time t = 0, there are then three groups of experts. Group I consists of types �I 2 [�1; �2]
with their partners h

�
�I
�
2
�
�3;

1
b

�
. Group II consists of all types �II 2 [0; �1] whose initial

recommendation coincides with that of a Group I pair, together with their partners g(�II) 2 [�2; �3]:
Group III consists of all remaining types �III 2 [0; �1] and their partners g(�III) 2 [�2; �3]: In other
words, we divided the types in intervals [0; �1] [ [�2; �3] into two groups, II and III; according to
whether or not their initial messages coincide with that of a group I pair.

The timeline of the expert�s advice is as follows:

# # # # #
Phase 1 (t = 0) Phase 2 (t = 2�0) Phase 3 (t = 2�a) Phase 4 (t = 2) Phase 5 (T � �)
Group I : v1
Groups II; III : u1

Group I :

switch to v2

Groups II; III :

switch to u2

Groups II; III :

reveal the truth

Group I :

reveal the truth
Figure 1: Timeline

where 0 < �0 � �a < 1 are speci�ed in the appendix (section D.2.1).
In words: in the initial phase, types in Group I recommend v1: v1

�
�I
�
= v1

�
h
�
�I
��
, while types

in Groups II and III recommend the action u1: u1
�
�II
�
= u1

�
g
�
�II
��
. Importantly, the recom-

mendations for the types in Group I and Group II coincide (while Group III recommendations

do not coincide with those of any Group I pair): for every �I in Group I, there exists �II in Group

II with v1
�
�I
�
= u1

�
�II
�
. This is why, for ease of exposition, we have a subdivision into Groups

II and III; upon receiving a recommendation v1(�I) = u1(�II); the DM believes that it could have

come from any of the types in
�
�I ; h

�
�I
�
; �II ; g

�
�II
�	
(see footnote 16 for why this is needed).

At time t = 2�0, group I pairs f�I ; h(�I)g change their recommendation to v2(�I) = v2(h(�
I));

while Groups II and III continue to follow the recommendation function u1 (that is, they do not

yet change their advice). Thus, at this stage, the DM learns whether he is facing a Group I, II, or

III pair. At time t = 2�a � 2�0, group II and III pairs switch to the recommendation function
u2; where �a may depend on the speci�c pair:9 Group I continues to follow the recommendation

function v2; revealing no further information at this stage. At time t = 2, group II and III pairs

separate: each type �II or �III in [0; �1] sends a message equal to his type (thus revealing the truth

for the �nal T �2 periods), and similarly their partners g(�II); g(�III) send messages equal to their

9See Lemma D7.1 in the appendix: we describe group II and III pairs parametrically as functions fx(a); g(a)g of
a variable a; along with their recommendation functions u1; u2; and specify a time t = 2�a 2 [2�0; T � � ] at which
the pair switches from recommendation u1(a) to u2(a):
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own types. At time T � � > 2, Group I pairs f�I ; h(�I)g separate, with type �I recommending
action �I and type h(�I) recommending h(�I) for the �nal � periods. It should be noted that

the times at which the DM is instructed to change his action (2�0; 2�a; T � �) are not necessarily
integers in our construction. In a continuous time setting, this clearly poses no problem; if there

are integer constraints, it is straightforward to �scale up�all the time parameters (see footnote 18

in Appendix D).

The DM�s strategy is to follow all on-path recommendations. An o¤-path recommendation

at time t = 0 is treated as a mistake coming from the pair f0; g(0)g; and subsequent o¤-path
recommendations are simply ignored as errors (full details in the appendix, section D.2).

To summarize: In the initial phase, separable groups are formed. Each expert type sends a

recommendation sequence of the form

0B@ v1(�
I)| {z }

2�0 periods

; v2(�
I)| {z }

T���2�0 periods

1CA or

0B@ u1(�
i)| {z }

2�a periods

; u2(�
i)| {z }

2(1��a) periods

1CA ;
with i 2 fII; IIIg; and such that for all �I 2 [�1; �2]; there exists �II 2 [0; �1] with v1(�I) = u1(�II):
During these phases, the decision-maker is able to infer the separable group containing the expert�s

true type, but, rather than choosing the corresponding myopically optimal action, he chooses the

actions u1; u2; v1; v2 recommended by the expert. These action functions are constructed to provide

the expert with incentives to join the right separable group at time 0. The �nal phases are the

revelation phases: The separable groups themselves separate, revealing the exact truth to the

decision-maker, provided that he has followed all of the expert�s previous advice; any deviation

results in babbling by the expert during the revelation phase.

Finally, we brie�y comment on the construction of the functions (u1; u2) and (v1; v2) ; and the

corresponding partner functions g; h (and endpoints �1; �2; �3);which are given parametrically in

the appendix (section D.1). For the expert, three sets of constraints must be satis�ed:

Expert Local IC: The �rst set of constraints can be thought of as local incentive compatibility

constraints�that is, those applying within each type ��s interval [�i; �i+1]: These (dynamic) incentive

compatibility constraints ensure that, say, the agent � 2 [0; �1] prefers to induce actions u1(�) (for
2�a periods); u2(�) (for 2(1� �a) periods); and then reveal his type � for the �nal T � 2 periods;
rather than e.g. following the sequence

�
u1(�

0); u2(�
0); �0

�
prescribed for some other type �0 in the

same interval [0; �1] (and analogously within each of the other three intervals). For types � 2 [0; �1];
this boils down to a requirement that u1; u2 satisfy the following di¤erential equation,

2�au
0
1(�) (u1(�)� � � 1) + 2(1� �a)u02(�) (u2(�)� � � 1) = T � 2 (4)

and that the �average� action, 2�au1(�) + 2(1 � �a)u2(�) + (T � 2)�; be weakly increasing in �:
Note that a longer revelation phase (that is, an increase in the RHS term (T � 2)) requires a
correspondingly larger distortion in the action functions u1; u2 : if the expert anticipates a lengthy
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phase in which the DM�s action will match the true state (whereas the expert�s bliss point is to the

right of the truth), then it becomes more di¢ cult in the initial phase to provide him with incentives

not to mimic the advice of types to his right.

Expert Global IC: The next set of constraints for the expert can be thought of as �global�

incentive compatibility constraints, ensuring that no expert type wishes to mimic any type in any

other interval. In the appendix, we show that this boils down to two additional requirements: each

endpoint type �1; �2; �3 must be indi¤erent between the two equilibrium sequences prescribed for

his type (for example, type �1 must be indi¤erent between sequences

0B@u1(�1)| {z }
2�a

; u2(�1)| {z }
2(1��a)

; �1|{z}
T�2

1CA and

0B@v1(�1)| {z }
2�0

; u2(�1)| {z }
T���2�0

; �1|{z}
�

1CA), and the �average�action must be either continuous or jump up at each
endpoint.

Expert Separation: The �nal constraint requires that each pair of types indeed be �separable�,

that is, su¢ ciently far apart that each type would rather tell the truth than mimic his partner. In

our rescaled type space, this requires choosing partner functions g; h satisfying jg(�)� �j � 2 and
jh(�)� �j � 2; which we do in the appendix (Proposition D2). It turns out to be very tricky to

satisfy the global incentive compatibility constraints together with the local constraints: it in fact

requires a minimum of two distinct actions prior to the revelation phase (this is why e.g. Group

III pairs must change their recommendation from u1 to u2 at time 2�a; even though doing so

reveals no further information), and that the type space be partitioned into a minimum of four

intervals. Moreover, for any partition into four intervals, there is in fact only one partner function

g : [0; �1] ! [�2; �3] that works, and we believe that there is no partition which would allow for

expert-incentivizing action functions which are myopically optimal from the DM�s perspective. This

is why our construction relies on trigger strategies: the expert only reveals the truth if the DM

follows all of his advice.

Incentivizing the Decision-maker: For the decision-maker, we need to make sure that the bene�t

to learning the exact state (rather than just the separable group that contains it) is large enough to

compensate him for the cost of following the expert�s initial recommendations, rather than deviating

to the myopically optimal actions. This is what limits the priors for which our construction works,

and imposes the upper bound b �= 1
61 on the bias. The construction works for the expert 8b <

1
16 :

Discussion: The true state is revealed at either time 2 or time T � � ; where in the appendix
we require T � � � 4: Thus, the decision-maker chooses his best possible action, equal to the true
state, in all but the �rst few periods. It is tempting to conclude that a long horizon means an
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equilibrium approaching the �rst-best, but unfortunately this is not true when the decision-maker

and expert are equally patient. As explained after equation (4) ; a long horizon also makes it di¢ cult

to incentivize the expert, requiring a proportionally larger distortion in the initial recommendation

functions, and thereby imposing a proportionally larger cost to the DM (from having to follow

such bad early advice in order to learn the truth). We do, however, conjecture that if the decision-

maker is more patient than the expert, our fully revealing equilibrium would have attractive welfare

properties, and work for a large range of prior beliefs: If the expert doesn�t care much about the

future, it becomes easy to incentivize him to join the right separable group, which, in turn, implies

little need to distort the initial recommendations, and therefore little cost to the DM from following

bad advice in the �rst couple of periods. The bene�t to following this advice�knowing the exact

optimal action in all but the �rst few periods�will then outweigh this cost for a patient DM.

(Section 5.1 illustrated this in the extreme case �E = 0; where the DM learned the exact truth with

no distortion in the expert�s initial advice). Also, if we look at situations where the decision maker

cares only about the ultimate decision, it is easy to see that our construction works for any prior

(for all b < 1
16), and yields the best possible outcome for the DM.

6 Concluding Remarks

This paper shows that dynamic strategic communication di¤ers from its static counterpart. Our

most striking result is that fully revealing equilibria exist. We also present a series of examples

that show how the canonical results of the static strategic communication may not hold when

communication is repeated.

The main novel ingredient of our model is that there are many (�nite) rounds of communication,

and after each round an action is chosen. The dynamic considerations of the expert allow us to

group together types that are far apart, forming �separable� groups which is the key ingredient

behind the construction of fully revealing equilibria and of non-monotonic equilibria. The dynamic

setup of our model also allows for future communication to be conditioned on past actions (trigger

strategies). We show how information revelation can be facilitated through this channel.

Our analysis highlights the nature of incentive compatibility in dynamic incentive settings. One

important characteristic is that dynamic incentive constraints can bind for a disconnected set of

types. Moreover, the fact that posteriors are endogenous, implies that earlier rounds in the game

can be used to induce posteriors that eventually allow the decision maker to learn the truth. At

those nodes in the game the information rents of the expert disappear.

The forces that we identify can be present in other dynamic environments where there is asym-

metric information and players behave sequentially rationally. Think, for example, a dynamic

contracting environment where there is limited commitment about the future, or, more generally, a
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dynamic mechanism design problem, or some other dynamic game where one imposes the require-

ment of sequential rationality. In those models as well, past behavior setups the stage for future

behavior because posteriors are endogenous. And, in contrast to the vast majority of the recent lit-

erature on dynamic mechanisms design,10 one needs to worry about global incentive compatibility

despite the fact that stage payo¤s satisfy the single-crossing property.

Lastly, given the important insights that the theory of static strategic communication has lead to

for many aspects of economics and of political science, we hope and expect that the novel aspects of

strategic communication that our analysis emphasizes will help shed new light to many interesting

phenomena. They could certainly be useful in thinking about the design of optimal communication

protocols and even about the design of questionnaires.

10 In recent years motivated by the large number and the importance of applications there has been substantial
work on dynamic mechanism design. See, for example, the survey of Bergemann and Said (2010), and the references
therein, or Athey and Segal (2007) who characterize a dynamic version of the VCG mechanism that is e¢ cient and
balances the budget.
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Appendix

A Proof of Proposition 2

When we restrict attention to monotonic partition equilibria there will be some point in the game
where the last subdivision of an interval into smaller partitions occurs. This can either happen at
the last period, or at some period before last. Assume without loss, that one interval is partitioned
into two inducing actions y1 (m1) and y2 (m2) : If it happens in the last period T of the game, then
the indi¤erence condition of the expert type - call that type �̂- that is indi¤erent between y1 and
y2 is the static one. But then, if a subinterval of the original state space can divided into two, it
cannot be the case that all static equilibria are equivalent babbling. This follows by Corollary 1 of
Crawford and Sobel (1982)).

Now, suppose that the last subdivision happens at a period before the last. Say at period T̂ :
Given that no further subdivision occurs after T̂ ; when the expert sends a message that induces y1
(resp. y2) at T̂ the same action is induced for the remaining number of periods T � T̂ : Then the
indi¤erence condition for type �̂ expert is�

T � T̂
�
uE
�
y1; �̂

�
�
�
T � T̂

�
uE
�
y2; �̂

�
;

which is equivalent to static. But then, as before, this subdivision at T̂ is not possible given that
all static equilibria are equivalent babbling.

Observe that all the arguments in this proof go through even if we allow for trigger strategies.
This is because at the point where the last subdivision occurs, it is impossible to incentivize the
decision maker to do something worse than his myopic best response. To see this, note at that
point, either the game ends - when T̂ = T , so there is no time to reward the decision maker for
choosing a suboptimal action at T or T̂ < T: Suppose that T̂ < T; and assume without loss,
that one interval is partitioned into two inducing actions ~y1 (m1) and ~y2 (m2) and suppose that ~y1
generates a payo¤ for the DM di¤erent from the myopic best response y1; then in order for the DM
to follow ~y1 it must hold�

T � T̂
�
E�
�
uDM (~y1; �) jm1

�
>
�
T � T̂

�
E�
�
uDM (y1; �) jm1

�
;

which contradicts the fact that y1 is the myopic best response given m1: Hence, the DM cannot
choose actions that give him a payo¤ di¤erent from the payo¤ at the myopic best response. This
together with the strict concavity of uDM imply that y1 = ~y1:

B Monotonic partition equilibria with more partitions

Suppose that �E = �DM = 1; types are uniformly distributed on [0; 1] and preferences satisfy (1).
Suppose that bias b = 1

12 : Using standard arguments, one can establish that game has only two
equilibria,11 a babbling equilibrium and an equilibrium with two partitions, where the space is
divided in two sub-intervals: [0; 13 ] and [

1
3 ; 1] inducing two actions

1
6 and

4
6 : Now we show that when

11The largest number of subintervals that the type space can be divided into is the largest integer that satis�es

�2bp2 + 2bp+ 1 > 0; (5)

whose solution is *
�1
2
+
1

2

r
1 +

2

b

+
; (6)

and where hxi denotes the smallest integer greater than or equal to x:
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T = 2, there exists a monotonic partition equilibrium where in the end the state space is divided
in three sub-intervals.

We look for an equilibrium with the following signaling rule:

types in [0; �1] send message sequence A = (m1(1);m2(1));

types in [�1; �2] send message sequence B = (m1(2);m2(2));

types in [�2; 1] send message sequence C = (m1(2);m2(3)):

With this signaling rule in the �rst period the interval [0; 1] is partitioned into [0; �1] and [�1; 1].
At stage 2, [�1; 1] is partitioned further into [�1; �2] and [�2; 1]: We can express �2 in terms of �1 as
follows:

�2=

�
1� �1
2

� 4

12

�
+
2

12
+�1=

1

2
�1+

1

3
: (7)

The second period actions induced are y2(1) =
�1
2 ; y2(2) =

3
4�1 +

1
6 and y2(3) =

1
4�1 +

2
3 ; whereas the

�rst period actions induced are y1(1) =
�1
2 and y1(2) =

1+�1
2 :

After any out-of- equilibrium message the decision maker assigns probability one to the state
belonging in [0; �1] inducing yout = �1

2 : With these out-of equilibrium beliefs it is immediate to see
that no type has an incentive to send an out-of-equilibrium message.

At an equilibrium �1 must satisfy the following indi¤erence condition:

�(1 + �1
2

� �1 �
1

12
)2 � (

1
2�1 +

1
3 + �1

2
� �1 �

1

12
)2 = �2(�1

2
� �1 �

1

12
)2;

which with the help of (7) gives us 3 partitions with cuto¤s �1 = 0:25 and in turn �2 = 0:458 33:
Using this value of �1 we get that: y1(1) = y2(1) = 0:125; y1(2) = 0:625; y2(2) = 0:35417 and
y2(3) = 0:72917:

In constructing this strategy pro�le we have imposed that type �2 is indi¤erent between inducing
action y2(2) and y2(3) at t = 2 and that type �1 is indi¤erent between inducing action sequence y1(1)
and y2(1) and y1(2) and y2(2): Now we want to verify that these conditions are su¢ cient for global
incentive compatibility. At t = 2 the game is isomorphic to the static one, where the fact that
�2 is indi¤erent between y2(2) and y2(3) implies that all types above �2 prefer y2(3) and all types
below �2 prefer y2(2): To verify that types below �1 prefer message sequence A inducing y1(1) and
y2(1); and types above �1 prefer message sequence B inducing y1(2) and y2(2); we plot the di¤erence
U(A; �)� U(B; �) and show that it is positive for all � < �1 and negative for � > �1 :

0.1 0.2 0.3 0.4 0.5

0.2

0.1

0.0

0.1

theta

U(A)U(B)

At the dynamic equilibrium we constructed here the expert�s welfare is �0:065 and the decision
maker�s welfare is given by �0:0517, which are both higher than the welfare at the equilibrium
where the most informative static equilibrium is played in the �rst period, and babbling in the
second, which are respectively �0:069 and �0:055:
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C Pareto comparisons of dynamic cheap talk equilibria

The following examples demonstrate that equilibria with more partitions can be Pareto inferior to
the equilibria with fewer partitions

Take �E = �DM = 1 and b = 0:08; and consider the most informative static partition equilibrium
where the number of partitions is p = 3: At this equilibrium the state space is divided into [0; 0:013];
[0:013; 0:347] and [0:347; 1]. The corresponding optimal actions of the decision maker are given by

y1 = 0:0067 y2 = 0:18 y3 = 0:673;

from which we can calculate the ex-ante expected utility levels for the expert �0:032 and for the
decision maker �0:0263. Then, at the equilibrium of the dynamic game where the most informative
static equilibrium is played at t = 1 and babbling thereafter, the total expected utility is �0:065
for the expert, and �0:053 for the decision maker.

We now construct a dynamic equilibrium where the type space is subdivided into more subin-
tervals, but both players�ex-ante expected payo¤s are lower. We look for an equilibrium with the
following signaling rule:

types in [0; �1] send message sequence (m1(1);m2(1))

types in [�1; �2] send message sequence (m1(2);m2(2))

types in [�2; �3] send message sequence (m1(2);m2(3))

types in [�3; 1] send message sequence (m1(3);m2(4)):

So types are partitioned into four intervals in stage 2, but in stage 1, the types in [�1; �2] and
[�2; �3] pool together to send the same message m1(2): Since the signaling rule does not depend
on the decision maker�s action at stage 1, the decision maker will choose the following myopically
optimal actions:

y1(1) = y2(1) =
�1
2
;

y1(2) =
�1 + �3
2

; y2(2) =
�1 + �2
2

; y2(3) =
�2 + �3
2

;

y1(3) = y2(4) =
1 + �3
2

:

After any out-of-equilibrium message the decision maker assigns probability one to the state
belonging in [0; �1] inducing yout = �1

2 : With these out-of-equilibrium beliefs it is immediate to see
that no type has an incentive to deviate.

In equilibrium, type �1 is indi¤erent between action sequences fy1(1); y2(1)g and fy1(2); y2(2)g;
type �2 is indi¤erent between 2nd-period actions y2(2) and y2(3); and type �3 is indi¤erent between
action sequences fy1(2); y2(3)g and fy1(3); y2(4)g: Therefore, equilibrium cuto¤s are the solution to

23



the following system of equations:12

2

�
�1
2
� �1 � b

�2
�
�
�1 + �3
2

� b� �1
�2
�
�
�1 + �2
2

� b� �1
�2
= 0;�

�1 + �2
2

� b� �2
�2
�
�
�2 + �3
2

� b� �2
�2
= 0;

2

�
1 + �3
2

� b� �3
�2
�
�
�1 + �3
2

� b� �3
�2
�
�
�2 + �3
2

� b� �3
�2
= 0:

At b = 0:08; the only solution that gives numbers in [0; 1] is �1 = 0:0056; �2 = 0:015; �3 = 0:345 ;
and the actions induced for t = 1 and for t = 2 are respectively given by y1(1) = y2(1) = 0:00278;
y1(2) = 0:175; y2(2) = 0:0105, y2(3) = 0:18 and y1(3) = y2(4) = 0:673: This implies the following
total ex-ante expected utility for the expert �0:066; which is lower than 2(�0:033) = �0:0656: The
utility for the decision-maker is �0:053 which is lower than 2(�0:026) = 0:052:

This example illustrates that although the interval is divided into more subintervals here, both
players strictly worse o¤ compared to the one where the most informative static equilibrium is
played in the �rst period and babbling thereafter. The feature that less partitions lead to higher
ex-ante welfare for both players also appears in example 1 of Blume, Board and Kawamura (2007).

D Proof of Theorem 1

We will prove by construction that a fully revealing equilibrium exists. We �rst choose the endpoints
�1; �2; �3 described in the proof outline: for any bias b < 1

61 ; de�ne a < 0 by

(a � 2 + 2e�a )e2 � a =
1

b
(8)

and then set
�3 =

1

b
+ a ; �2 = �3 � 2; �1 = �2 � �3e�2 (9)

It will be convenient to describe types parametrically, via functions x : [�2; 0] ! [0; �1]; g :
[�2; 0]! [�2; �3]; z : [a ; 0]! [�1; �2]; and h : [a ; 0]! [�3;

1
b ]: Then, let u1(a; �a); u2(a; �a) denote

the �rst, second recommendations of types x(a); g(a) (for all a 2 [�2; 0]), and let v1(a; �0); v2(a; �0)
denote the �rst, second recommendations of types (z(a); h(a)) (for all a 2 [a ; 0]): With this nota-
tion, Groups I,II, III described in the text are as follows:

Group I = fz(a); h(a) j a 2 [a ; 0]g
Group II = fx(a); g(a) j a 2 [�2; 0]; and 9 a0 2 [a ; 0] with v1(a0; �0) = u1(a; �a)g
Group III = fx(a); g(a)j a 2 [�2; 0]; and x(a); g(a) =2 Group IIg

In our proposed equilibrium construction, each Group I pair fz(a); h(a)g recommends v1(a; �0) for
2�0 periods, then v2(a; �0) for T ���2�0 periods, then reveals the truth at time T �� ; each Group
II pair fx(a); g(a)g recommends u1(a; �a) for 2�a periods, then u2(a; �a) for 2(1 � �a) periods,
then separates and reveals the truth for the �nal T �2 periods; and moreover, the recommendation
u1(a; �a) coincides with the recommendation v1(a0; �0) of some Group I pair fz(a0); h(a0)g: Group
III is identical to Group II, except that their recommendations do not coincide with those of any
Group I pair.

We also specify the following o¤-path strategy for the expert: if the DM ever deviates, by
rejecting a recommendation that the expert made, then (i) if the expert himself has not previously

12 It is trivial to check exactly as we did in previous examples that these indi¤erence conditions su¢ ce for global
incentive compatibility.
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deviated: send no further recommendations (equivalently, repeat the current recommendation in
all subsequent periods). And (ii) if the expert has observably deviated in the past, behave as if the
deviation did not occur. (For example, if he sends the initial recommendation u1(0; �0) prescribed
for types fx(0); g(0)g; but then follows this with anything other than recommendation u2(0; �0) at
time 2�0; subsequently behave as if the deviation never occurred and he indeed sent u2(0; �0) at
time 2�0):

D.1 Optimality for the Expert

We prove that the expert wishes to follow the prescribed recommendation strategy via three propo-
sitions. Proposition D1 speci�es strategies and beliefs for the DM such that the expert has no
incentive to send an out-of-equilibrium recommendation sequence, so we can restrict to making
sure that he does not wish to mimic any other type. Proposition D2 shows that in the prescribed
revelation phase, the expert indeed �nds it optimal to reveal the truth, provided that there have
been no previous deviations. It remains only to show that the expert has no incentive to deviate
prior to the prescribed revelation phase - by mimicking the initial recommendations of some other
type - which we show in Proposition D3.

We specify the following strategy and beliefs for the DM:
DM Strategy and Beliefs: If there are no detectable deviations by the expert (i.e., he sends the
equilibrium recommendation sequence for some type � 2 [0; 1b ]), then follow all recommendations,
using Bayes�rule to assign beliefs at each information set. Following deviations: (i) If the expert
observably deviates at time 0 (sending an o¤-path initial recommendation), subsequently adopt
the strategy/beliefs that would follow if the expert had instead sent the recommendation u1(0; �0)
prescribed for types fx(0); g(0)g; (ii) If the expert observably deviates on his 2nd recommendation
(i.e., if an initial recommendation u1(a; �a) (or v1(a; �0)) is followed by something other than
u2(a; �a) (or v2(a; �0)); ignore it as an error, and subsequently adopt the strategy/beliefs that
would follow had the deviation not occurred; (iii) If the expert deviates observably in the revelation
phase, ignore it as an error, assigning probability 1 to the lowest type in the current information
set, and accordingly choosing this as the myopically optimal action; (iv) And �nally, if the DM
himself deviates, rejecting some recommendation by the expert, then he subsequently maintains
the current (at time of deviation) beliefs, anticipating that the expert will subsequently repeat the
current (at time of deviation) recommendation, and ignoring any other recommendations as errors.

D.1.1 Expert Optimality: O¤-Path Behavior

Proposition D1: Under the above strategy and beliefs prescribed for the DM, the expert has no
incentive to choose an o¤-path recommendation sequence.
Proof of Proposition D1: Follows trivially from the speci�ed strategy and beliefs for the DM:
(i) a deviation at time zero is equivalent to mimicking type x(0) (who recommends u1(0; �0) at
time t = 0); (ii) a deviation on the 2nd recommendation has no e¤ect, since the DM ignores it;
(iii) a deviation in the revelation phase, if there have been no previous deviations, is equivalent to
mimicking the strategy of the lowest type in the DM�s current (pre-revelation) information set; and
(iv) if the DM has previously deviated, then (by point (iv) of the above strategy-belief speci�cation)
he will chose whichever action was myopically optimal at the time of deviation, regardless of the
expert�s message; therefore, babbling is optimal for the expert, since his message has no e¤ect on
the DM�s action.

D.1.2 Expert Optimality: Truth Revelation Phase

Proposition D2: In the prescribed revelation phase, (i) if there have been no previous deviations
by the DM, then the expert �nds it optimal to reveal the truth; (ii) if the DM has ever deviated,
then the expert �nds it optimal to babble (eg. by remaining silent).
Proof of Proposition D2: Part (ii) follows immediately from Proposition D1 (iv). For part (i):
our speci�cation of the expert strategy is such that at time 2�0; the DM�s information set contains
at most two types: either a pair fx(a); g(a)g (in which case he plans to choose g(a) if the expert
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recommends g(a); x(a) otherwise), or a pair fz(a); h(a)g (in which case he plans to choose h(a)
if the expert recommends it, z(a) otherwise). So, it su¢ ces to show that each type would rather
tell the truth than mimic his partner, which requires (in our rescaled state space) simply that all
paired types be at least 2 units apart. By (10) we have

min
a2[�2;0]

jg(a)� x(a)j = �2 � �1

min
a2[a ;0]

jh(a)� z(a)j = �3 � �2

And by (9), �2 � �1 = (a � 2 + 2e�a ) � 8 (for b < 1
61); and �3 � �2 = 2:

D.1.3 Expert Optimality: Initial Recommendations

Propositions D1,D2 imply that once the expert has sent the initial recommendation (u1 or v1)
prescribed for some type �; it is optimal to follow also the continuation recommendations prescribed
for that type. So, the only time when it could possibly be pro�table to deviate is at time t = 0 :
we need to make sure that each type � prefers to send the proposed equilibrium sequence of
recommendations, rather than the sequence prescribed for any other type �0:13 We now choose
parametrizations of functions x; g; z; h; along with action function u1; u2; v1; v2, which guarantee
that the expert indeed �nds it optimal to send the prescribed initial recommendation:

Proposition D3: Let the action functions and type parametrizations be as follows:

x(a) = �3 + a� �3ea; g(a) = �3 + a; z(a) =
1

b
+ a� 2ea�a ; h(a) = 1

b
+ a (10)

u1(a; �a) = �3 +K � T � 2
2

a�
r
1� �a
�a

p
T � 2

s
Cu + a

�
K � T

4
a

�
(11)

u2(a; �a) = �3 +K � T � 2
2

a+

r
�a

1� �a
p
T � 2

s
Cu + a

�
K � T

4
a

�
(12)

v1(a; �0) = �3 +
2K��(a�a)

T�� �

r
�(T���2�0)

�0

q
(T��)(T�2)

�
Cu+(T���2� )K2+2K(a�a)�T

2
(a�a)2

T�� (13)

v2(a; �0) = �3 +
2K��(a�a)

T�� +

q
4��0

T���2�0

q
(T��)(T�2)

�
Cu+(T���2� )K2+2K(a�a)�T

2
(a�a)2

T�� (14)

for constants Cu;K; and for now taking T; �0; �a as given (T is the horizon, and �a; �0 relate to
the duration of recommendations u1; v1 as described in the strategies above). Also set � (length of
the revelation phase for types in Group I) according to

�

T � 2 = � �
(�2 � �1)(�2 � �1 � 2)
(�4 � �1)(�4 � �1 � 2)

(15)

Then, for all types �; �0 2 [0; 1b ]; expert type � prefers his equilibrium recommendation sequence to
that sent by type �0; and in particular has no incentive to deviate at time t = 0 from the prescribed
strategy.
Proof of Proposition D3:

Let Du(�0j�) denote the disutility to type � from following the recommendation sequence pre-
scribed for a type �0 2 [0; �1][ [�2; �3]; and let Dv(�0j�) denote the disutility to type � from following

13This is what the text refers to as "providing incentives to join the right separable group�. We need to make sure,
for example, that type � = 0 prefers to induce the action sequence (u1(0); u2(0); 0); rather than e.g. the sequence that
type �0 6= 0 is supposed to send; by Propositions D1,D2, the choice to follow a di¤erent recommendation sequence
can only be made at time t = 0:
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the strategy prescribed for a type �0 2 [�1; �2][ [�3; 1b ]: The proof proceeds through two main Lem-
mas. Lemma D3.1 proves that the expert strategy is �locally�incentive compatible: for each interval
[�i; �i+1]; i 2 f0; 1; 2; 3g; no expert type � 2 [�i; �i+1] wishes to mimic any other type �0 2 [�i; �i+1]
from the same interval. Lemma D3.2 proves that the expert strategy is also �globally� incentive
compatible: no expert type wishes to mimic any type �0 from any other interval. The proofs will
use calculations obtained below in Lemmas D3.3 and D3.4.
Lemma D3.1 (Local IC): For each interval [�i; �i+1]; with i = 0; 1; 2; 3; and any pair of types
�; �0 2 [�i; �i+1]; the disutility to type � from mimicking type �0 is (weakly) increasing in

���0 � ��� ;
thus minimized when

���0 � ��� = 0: Therefore, for each � 2 [�i; �i+1]; truth-telling is (weakly) better
than mimicking any other type in the interval.
Proof of Lemma D3.1:

Di¤erentiating disutility expressions (20), (21) ; (22) ; and (23) (obtained below in Lemma D3.3)
gives

dDu(x(a)j�)
dx(a)

=
dDu(g(a)j�)
dx(a)

+
2(T � 2) (x(a)� � � 1)x0(a)� 2(T � 2) (g(a)� � � 1) g0(a)

x0(a)

= 0 + 2(T � 2)
�
�3 + a� �3ea � � � 1�

�3 + a� � � 1
1� �3ea

�
(by (10) )

= 2(T � 2)
�

�3e
a

�3ea � 1

�
(x(a)� �) (16)

dDv(z(a)j�)
dz(a)

=
dDv(h(a)j�)=da

z0(a)
+
2� (z(a)� � � 1) z0(a)� 2� (h(a)� � � 1)h0(a)

z0(a)

= 2�

�
2ea�a

2ea�a � 1

�
(z(a)� �) (17)

dDu(g(a)j�)
dg(a)

= 0 (18)

dDv(h(a)j�)
dh(a)

= 0 (19)

Consider �rst a type � 2 [0; �1]: By (16) ; noting that �3ea

�3ea�1 > 0 (since �3e
a � �3e�2 = �2��1 �

8; by Proposition D2), we see that dDu(x(a)j�)dx(a) has the same sign as (x(a)� �) : So if x(a)� � > 0;
then Du(x(a)j�) is increasing in x(a); thus increasing in (x(a)� �) ; while if x(a) � � < 0; then
Du(x(a)j�) is increasing in (�x(a)), thus increasing in � � x(a): Combined, these establish that
Du(x(a)j�) is strictly increasing in jx(a)� �j ; as desired.

Next consider a type � 2 [�1; �2]: By (17) ; noting that
�

2ea�a

2ea�a�1

�
> 0 (since a 2 [a ; 0] implies

2ea�a � 2); we see that dDv(z(a)j�)dz(a) has the same sign as z(a) � �; and is thus positive (disutility
increasing in z(a) � �) if z(a) > �; and negative (disutility increasing in � � z(a)) if z(a) < �:
Combined, these establish that Du(z(a)j�) is strictly increasing in jz(a)� �j ; as desired.

By (18) and (19) ; the disutility to type � from mimicking a type g(a) 2 [�2; �3] or h(a) 2 [�3; 1b ]
is independent of the particular type g(a); h(a) chosen. Thus, Du(g(a)j�) is weakly increasing (in
fact constant) in jg(a)� �j ; andDu(h(a)j�) is weakly increasing (constant) in jh(a)� �j, completing
the proof.
Lemma D3.2: For every interval [�i; �i+1] (i = 0; 1; 2; 3); and every � 2 [�i; �i+1]; following the
prescribed (truthful) recommendation sequence is better than mimicking any type �0 drawn from
any other interval [�j ; �j+1] with j 6= i:
Proof of Lemma D3.2:

Consider �rst a type � 2 [0; �1]: By Lemma D3.1, truth-telling is better than mimicking any
other type �0 2 [0; �1]; in particular type �1 = x(�2): By Lemma D3.4 (i) (below), type � 2 [0; �1]
prefers type x(�2)�s sequence to type z(0)�s sequence; and by Lemma D3.1, it is better to mimic
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type z(0) = �1; than any other type z(a) 2 (�1; �2] (since z(a) > � implies that Dv(z(a)j�) is
increasing in z(a)� �); together, these establish that mimicking a type �0 2 [�1; �2] is not optimal.
By Lemma D3.4 (ii), type � � �2 prefers z(a)�s sequence (right endpoint of [�1; �2]) to g(�2)�s
sequence (left endpoint of [�2; �3]); and by Lemma D3.1, disutility to type � from mimicking type
g(a) 2 [�2; �3] is independent of a; together, this implies that type � also does not want to mimic any
type g(a) 2 [�2; �3]: And �nally, by Lemma D3.4 (iii), type � � �2 prefers the sequence prescribed
for type g(0) (right endpoint of [�2; �3]) to that prescribed for type h(a) (left endpoint of [�3; 1b ]),
which (by Lemma D3.1) yields the same utility as mimicking any other type h(a) 2 [�3; 1b ]; thus it
is not optimal to mimic any type h(a) 2 [�3; 1b ]: This establishes that type � 2 [0; �1] does not wish
to mimic any type �0 from any other interval.

Next consider type � 2 [�1; �2]: By Lemma D3.1, truth-telling is better than mimicking any
other type z(a) 2 [�1; �2]; in particular type z(0) = �1; by Lemma D3.4 (i), type � � �1 prefers
the sequence prescribed for type z(0); to that prescribed for type x(�2); and by Lemma D3.1, it is
better to mimic x(�2) (right endpoint of [0; �1]) than any other type x(a) 2 [0; �1]; since Du(x(a)j�)
is increasing in j� � x(a)j and we have here � > x(a); together, this implies that type � does not
wish to mimic any type �0 2 [0; �1]: The proof that he doesn�t wish to mimic any type g(a) 2 [�2; �3]
or h(a) 2 [�3; 1b ] is identical to the one given in the previous paragraph.

Now consider a type � 2 [�2; �3]: As explained in the previous two paragraphs, following the
truthful recommendation sequence yields the same utility as mimicking any other type g(a) 2
[�2; �3] or h(a) 2 [�3; �4]; so we just need to make sure that it is not optimal to mimic types
�0 2 [0; �1][[�1; �2]: By Lemma D3.4 (ii), type � � �2 prefers type g(�2)�s sequence (left endpoint of
[�2; �3]) to type z(a)�s sequence (right endpoint of [�1; �2]); by Lemma D3.1, such a type � � �2 also
prefers type z(a)�s sequence to the one prescribed for any other (further-away) type z(a) 2 [�1; �2];
combined, this establishes that mimicking a type z(a) 2 [�1; �2] is not optimal. By Lemma D3.4
(i), it is better to mimic type z(0)�s sequence than x(�2)�s sequence, which in turn is better (by
Lemma D3.1) than any other type x(a)�s sequence. Thus, it is not optimal to mimic any type
x(a) 2 [0; �1]; completing the proof for types � 2 [�2; �3]:

The argument that types � 2 [�3; 1b ] don�t wish to mimic types from other intervals is identical
to the proof in the previous paragraph (for types � 2 [�2; �3]).

This completes the proof of Lemma D3.2.

D.1.4 Expert Optimality: Preliminary Calculations

Lemma D3.3: Given the type parametrizations and action functions given in Proposition D3,
disutility expressions Du

�
�0j�
�
; Dv(�

0j�) are given by

Du(x(a)j�) = Du(g(a)j�) + (T � 2) (x(a)� � � 1)2 � (T � 2) (g(a)� � � 1)2 (20)

Du(g(a)j�) = T (�3 � � � 1)2 + 4K (�3 � � � 1) + 2K2 + 2(T � 2)Cu (21)

Dv(z(a)j�) = Dv(h(a)j�)� 2� (h(a)� z(a))
�
h(a) + z(a)

2
� � � 1

�
(22)

Dv(h(a)j�) = 2K2 + 2(T � 2)Cu + 4 (�3 � � � 1)K + T (� � �3 + 1)2 (23)

Proof of Lemma D3.3:
The disutility Du(g(a)j�) to expert type � from following the strategy prescribed for type g(a) 2
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[�2; �3], using (11) ; (12) ; is

2�a (u1(a)� � � 1)2 + 2(1� �a) (u2(a)� � � 1)2 + (T � 2) (g(a)� � � 1)2 (24)

= 2(1� �a)
 
�3 +K � T � 2

2
a� � � 1 +

r
�a

1� �a
p
T � 2

s
Cu + a

�
K � T

4
a

�!

+2�a

 
�3 +K � T � 2

2
a� � � 1�

r
1� �a
�a

p
T � 2

s
Cu + a

�
K � T

4
a

�!2
+ (T � 2) (x(a)� � � 1)2

Expanding gives 14

Du(g(a)j�) = 2
�
�3 � � � 1 +K � T � 2

2
a

�2
+2(T�2)

�
Cu + a

�
K � T

4
a

��
+(T�2) (�3 + a� � � 1)2

If we now expand this expression, the coe¢ cients on a2; a reduce to zero (this is due to our choice
g(a) = �3 + a); leaving

Du(g(a)j�) = 2 (�3 � � � 1 +K)2 + 2(T � 2)Cu + (T � 2) (�3 � � � 1)2

which rearranges to expression (21) :
The disutility to type � from following the strategy prescribed for type x(a) 2 [0; �1]; Du(x(a)j�);

is given by (24) ; just replacing g(a) with x(a) : this gives the desired expression (20) :
The disutility to type � from following the strategy prescribed for type h(a) 2 [�3; �4] is

Dv(h(a)j�) = 2�0 (v1(a)� � � 1)2 + (T � � � 2�0) (v2(a)� � � 1)2 + � (h(a)� � � 1)2

Again, the coe¢ cients on the square root terms in v1; v2 were chosen to make both disutility and
average action independent of �0 : substituting (13) ; (14) into the above expression and expanding,
we get

Dv(h(a)j�) = (T � �)
�
�3 +

2K + �a
T � � � �

T � � a� � � 1
�2
+ � (h(a)� � � 1)2

+2�

 
(T � 2)
�

Cu +

�
T���2
�

�
K2 + 2K (a� a)� T

2 (a� a)
2

T � �

!

Substituting in h(a) = �4+ a; using �3 = �4+ a ; and expanding, we �nd (this is due to our choice
h0(a) = 1) that the coe¢ cients on both a2; a reduce to zero, so that our expression simpli�es further
to (23) : Finally, using the fact that the strategies for types h(a); z(a) di¤er only in the revelation
phase, so

Dv(h(a)j�)�Dv(z(a)j�) = � (h(a)� � � 1)2 � � (z(a)� � � 1)2

we obtain (22) : This completes the proof.
Lemma D3.4: (utility at the endpoints)

Under the expressions given in Proposition D3, we have that (i) endpoint �1 = x(�2) = z(0) :
type � (weakly) prefers type x(�2)�s recommendation sequence to z(0)�s sequence i¤ � 2 [0; �1]; (ii)
endpoint �2 = z(a) = g(�2) : type � prefers z(a)�s sequence to g(�2)�s sequence i¤ � 2 [0; �2];
and (iii) endpoint �3 = g(0) = h(a) : all types are indi¤erent between the sequences sent by types

14Note that the coe¢ cients on the square roots were chosen to make this independent of �a; as mentioned in
Appendix E - Derivations.
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g(0); h(a):
15

Proof of Lemma D3.4:
At �1 = x(�2) = z(0); we have (using the expressions in Lemma D3.3 and simplifying) that

Dv(z(0)j�)�Du(x(�2)j�) equals

(T � 2) (�2 � �1) (�1 + �2 � 2� � 2)� � (�4 � �1) (�4 + �1 � 2� � 2)

Using �(�4 � �1) = (T � 2) (�2��1)(�2��1�2)(�4��1�2) (by (15)); this simpli�es to

Dv(z(0)j�)�Du(x(�2)j�) = 2(T � 2) (�2 � �1) (�4 � �2)
�

�1 � �
�4 � �1 � 2

�
(25)

This is negative, meaning that type � prefers z(0)�s strategy to x(�2)�s strategy, i¤ � > �1; thus
establishing part (i).

At �2 = g(�2) = z(a); we have (by (22) and (21)

Du(g(�2)j�)�Dv(z(a)j�) = �(�3 � �2) (�3 + �2 � 2� � 2)
= 4� (�2 � �) (using �3 � �2 = 2) (26)

This is negative, meaning that type � prefers g(�2)�s strategy to z(a)�s strategy, i¤ � > �2; proving
part (ii).

At �3; we have (by (21) and (23)),

Du(g(0)j�)�Dv(h(a)j�) = 0 (27)

so that all types are indi¤erent between the strategies prescribed for type g(0) = �3; h(a) = �3;
as desired to complete the proof.

D.2 Optimality for the DM

Let the expert strategy be as speci�ed in the previous subsection, using the action functions and
parametrizations from Proposition D3, with � = �(T � 2) as in (15) : Recall that we had the
following free parameters: constants K;Cu; the horizon T , a number �0 2 [0; 1]; and numbers
�a 2 [0; 1] 8a 2 [�2; 0]: We wish to show that the speci�ed strategies constitute a fully revealing
PBE: since we established expert optimality in the previous section, and since the beliefs and o¤-
path strategies speci�ed for the DM (see Proposition D1) trivially satisfy all PBE requirements, all
that remains is to prove that the DM�s on-path strategy is optimal.

Recall the timeline presented in Figure 1 (section 5). It is immediately clear that during the
revelation phase, when the expert�s recommendation is equal (with probability 1) to the true state,
the DM indeed �nds it optimal to follow the recommendation. In between time 2�0 (when Group
I separates from Group II by switching to v2) and the revelation phase, no new information is
revealed, but any failure by the decision-maker to follow the expert�s recommendations will result in
the expert subsequently babbling, rather than revealing the truth. So, the best possible deviation
is to choose the myopically optimal action in all subsequent periods, and the strongest incentive
to do so occurs at the earliest time that new information is revealed (when the �reward phase�,
revelation of the truth, is furthest away). So to prove DM optimality, we need only show that he
does not want to deviate to the myopically optimal action either at time t = 0; or at time t = 2�0
if he learns that he is in fact facing a Group I pair. We summarize this as:

15For example, consider part (i). In our construction, type �1 is both the right endpoint x(�2) of the interval
[0; �1]; and the left endpoint z(0) of the interval [�1; �2] : part (i) says that type �1 is indi¤erent between the two
sequences prescribed for his type, and that everyone below �1 prefers the strategy of type x(�2); everyone above �1
prefers the strategy of type z(0):
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Observation D4: If the DM cannot gain by deviating at time t 2 f0; 2�0g; then the prescribed
strategy is optimal.

D.2.1 Optimality for the DM: Outline and Parameter Choices

Given T; �0 (and with � = �(T � 2) as speci�ed by (15) ; we set the constants Cu;K according to

Cu =
1� �0
�0

K2

T � 2 (28)

K =

�0�a

�
1 +

q
(T�2�0)(T��)

2��0

�
(T � � � 2�0)

(29)

And choose a horizon T satisfying(
if �a2 < 8 : T � � = 4, T = T1

if �a2 > 8 : 6 � T � minfT1; T2g
(30)

where T1 =
2(2��)
1�� ; and T2 =

2b�2
1�b�2(1��) ; with b� solving ln

� b�2
1+b�
�
= 1, b� �= 3:4959: Note that with

� as speci�ed in (15) ; �a2 < 8, a ' �3:18: In the range �a2 > 8; we also have minfT1; T2g = T2
whenever � > :95825; and that T1 > 11:5; T2 > 24: All proofs use �0 near 1 when �a2 < 8; and
�0 near 0 when �a2 > 8: The parameter �a (relating to the time 2�a at which Group II and III
pairs fx(a); g(a)g switch from u1 to u2) may depend on the speci�c pair fx(a); g(a)g; but is chosen
in Lemma D7.1 to satisfy �0 � �a � 1 8a:

The constants Cu;K from (28) ; (29) are chosen in Lemma D7.1, in order to facilitate the
overlap of the functions u1; v1: The need for this overlap is as follows: the DM�s gain to following
the expert�s advice is large at information sets containing only a Group II or III pair, but would
be negative at time t = 0, for all priors, if his information set contained only a Group I pair.16

So, for the equilibrium to work, we need to make sure that each Group I pair�s initial message
coincides with that of a Group II pair, and then ensure (via the prior and construction details)
that the weight the DM places on the Group II pair is high enough to make him want to follow the
recommendation. Speci�cally, Lemma D7.1 proves that under (28) ; (29) ; if we set T � T1; with
equality if �a2 < 8; then for every a

0 2 [a ; 0]; there exists a 2 [�2; 0] and �a 2 [�0; 1] such that
each Group I recommendation v1(a0; �0) coincides with Group II recommendation u1(a; �a) (and
moreover both recommendations are real-valued); the result imposes a lower bound �0 < 1 on �0
when �a2 < 8 (so in particular it holds for �0 near 1), and an upper bound �0 > 0 on �0 when
�a2 > 8 (so in particular it holds for �0 near zero).

Proposition D6 shows that for a range of priors, the DM�s gain to deviating at time t = 0 (or
later) is strictly negative at any information set containing only a group II or III pair fx(a); g(a)g.
This then implies also that at time t = 0; if he gets a message v1(a; �0) which could have been
sent by either a Group II pair (in which case he wants to follow the advice) or a Group I pair (in
which case he might want to reject the advice), he will �nd it optimal to follow the recommendation
as long as his posterior beliefs assign a high enough weight to the Group II pair, so we conclude
that there exist beliefs for which the DM has no incentive to deviate at time t = 0: It is also
Proposition D6 that places an upper bound on the biases b for which the equilibrium works. The
proof speci�cally uses posteriors near 50-50, but in fact the range of priors that work is quite large.

16 It may in fact be shown (see Section E.2) that this is necessarily true of any fully revealing construction:
the expert�s local + global IC constraints imply a su¢ ciently large distortion in some interval of types�(and their
partners�) recommendations that, if the DM were certain that he was facing one of these pairs, he would rather forego
learning the exact truth than follow their advice.
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Proposition D5 shows that if the expert sends a message v2(a; �0) at time t = 2�0; thus revealing
to the DM that he is facing a Group I pair fz(a); h(a)g; then there exist posteriors on the two types
for which the DM will �nd it optimal to choose the action v2(a; �0): Speci�cally, we prove that if
�a2 < 8 the incentive constraints are slack in the limit as �0 ! 1; and if �a2 > 8 the incentive
constraints are slack in the limit as �0 ! 0: It is also this result which places the additional upper
bound T � T2 (from (30)) on the horizon.

Finally, Proposition D7 completes the proof, by proving that there exist priors which generate
the posteriors used Propositions D5, D6.

Finally, we brie�y comment on the timeline. First, note that Theorem 1 places only a lower
bound on the horizon T �; whereas the constraint (30) in fact also places an upper bound on
the horizon (as b ! 0 , a ! �1; the constraint T � T2 from Proposition D5 binds, with
T2 ! 24:443): However, the construction may trivially be extended for larger horizons in two ways:
(i) add a babbling phase at the beginning; or (ii) scale everything up. All that matters is the ratios
�the length of each initial recommendation compared to the length of the revelation phase �so e.g.
the analysis for a T -period equilibrium (where Groups II; III reveal the truth at time 2; Group I
at time T ��) is identical to the anlysis for a T�-period equilibrium (with Groups II; III revealing
the truth at time 2�; Group I at time (T � �)�; for � any positive number):17 It should also be
noted that the times at which the expert instructs the DM to change his action �namely, times
2�0; 2�a; T � � �are not necessarily integers in our construction. In a continuous time setting,
where action changes can be made frequently, this clearly poses no problem. In a discrete time
setting, it is possible to scale everything up to obtain integers.18

D.2.2 Optimality for the DM: Deviations at time t = 2�0

Proposition D5: Suppose that the DM receives recommendation v2(a) at time t = 2�0; and
assigns probabilities qa; 1� qa to the two types z(a); h(a) in his information set. Under (28) ; (29) ;
and (30) ; there exists a range of values for qa

1�qa such that (i) if �a
2
 < 8; the DM�s gain to deviating

at time 2�0 is strictly negative for �0 near 1, and (ii) if �a2 > 8; the gain to deviating is strictly
negative for �0 near zero.
Proof of Proposition D5:

If the DM follows recommendation v2(a) (expecting to choose this action until time T � � ; then
learn the truth); his expected disutility is

(T � � � 2�0)
�
qa (v2(a)� z(a))2 + (1� qa) (v2(a)� h(a))2

�
+ �(0)

The best possible deviation is to instead choose myopically optimal action qaz(a) + (1� qa)h(a) in
all remaining T � 2�0 periods, for disutility

(T � 2�a)
�
qa (qaz(a) + (1� qa)h(a)� z(a))2 + (1� qa) (qaz(a) + (1� qa)h(a)� h(a))2

�
= (T � 2�)qa(1� qa) (h(a)� z(a))2

17This follows immediately from the derivations in Appendix E.
18This is not completely trivial, due to the fact that the coe¢ cient �

T�2 speci�ed in (15) may not be rational, but
this can be easily modi�ed via minor changes to the construction. Speci�cally, given bias b; the easiest way to make
� rational is to change the h-function (specifying how Group I types are paired), as follows: �rst, choose a rational

number b� which is smaller than �: Solve the pair of equations b� = �
�a��2+2e

�a�
��
�a��4+2e

�a�
�

(��1)a�
�
2e
�a�+�a�

�
+2e

�a�
�
(��1)a�+2e

�a��2
� ;

1
b
=
�
�a� � 2 + 2e�a�

�
e2 � �a� for � and a� (b� < � will give � > 1; as required by the expert�s S.O.C.�s). In all

analysis, replace a with a� ; and change the h-function from h(a) = 1
b
+ a to h(a) = 1

b
+ �a; this requires changing

the endpoints speci�ed in (9) to �3 = 1
b
+ �a� ; with (as before) �2 = �3 � 2; �1 = �2 � �3e�2: To satisfy the expert�s

modi�ed local IC constraints, simply plug the new h-function into the recommendation functions v1; v2 speci�ed by
(54). To satisfy the expert�s modi�ed global IC constraints; replace � with b�; and change the constant Cv (from
(57)) in the v-functions (speci�ed in (54)) by replacing a with a� , and also subtracting the term

(��1)
2
a� (a� + 2) ;

no change to the constant kv: For b� su¢ ciently close to �; the changes to the analysis for the DM are negligible.
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So to prove the Proposition, we need to show that there are qa�s s.t. the following inequality holds:

0 �
�
qa (v2(a)� z(a))2 + (1� qa) (v2(a)� h(a))2

�
� (T � 2�0)
(T � � � 2�0)

qa(1� qa) (h(a)� z(a))2

= qa

�
2

�
v2(a)� h(a)
h(a)� z(a)

�
+ 1

�
+

�
v2(a)� h(a)
h(a)� z(a)

�2
� T � 2�0
T � � � 2�0

qa(1� qa) (31)

This is easiest to satisfy (RHS is minimized) at

qa = q
�
a �

1

2
�

�
v2(a)�h(a)
h(a)�z(a)

�
+ 1

2

T�2�0
T���2�0

(32)

where (31) becomes

�2 � 1
4�2

�
2

�
v2(a)� h(a)
h(a)� z(a)

�
+ �+ 1

��
2

�
v2(a)� h(a)
h(a)� z(a)

�
+ 1� �

�
� 0 (33)

with �2 =
T � 2�0

T � � � 2�0
(34)

Thus, a su¢ cient condition for the DM�s IC constraint (31) to hold is

��� 1 � 2
�
v2(a)� h(a)
h(a)� z(a)

�
� �� 1 (35)

which implies both that (33) holds (so the DM does not want to deviate), and that q�a (from (32))
is indeed a probability, since we have

2

�
v2(a)� h(a)
h(a)� z(a)

�
+ 1 + �2 > 2

�
v2(a)� h(a)
h(a)� z(a)

�
+ 1 + � � 0) q�a < 1

2

�
v2(a)� h(a)
h(a)� z(a)

�
+ 1� �2 < 2

�
v2(a)� h(a)
h(a)� z(a)

�
+ 1� � � 0) q�a = 0

Substituting Cu = 1��0
�0

K2

T�2 (from (28)) into (14) ; we obtain that v2(a; �0)� h(a) equals

�3 +
2K��(a�a)

T�� +

q
4��0

T���2�0

r
(T��)(T�2)

�
1��0
�0

K2

T�2+(
T���2

� )K2+2K(a�a)�T
2
(a�a)2

T�� � h(a)

Simplifying, and using h(a)� z(a) = 2a�a and �3 � �4 = a (from (10) and (9)), this implies that

2
v2(a; �0)� h(a)
h(a)� z(a) =

2K � T (a� a) +
q

2�0
T���2�0

r
2T���2�0�0

K2 + 2�
�
2K (a� a)� T

2 (a� a)
2
�

(T � �)ea�a

=
k � ty +

q
k2 + (�2 � t) (2ky � ty2)

ey

where k � 2K
T�� ; t �

T
T�� ; and y � a�a (with � de�ned in (34)): So by (35), we wish to show that

33



for all y 2 [0;�a ];

k � ty +
q
k2 + (�2 � t) (2ky � ty2)

ey
2 [��� 1; �� 1] (36)

By construction, the value of K speci�ed in (29) sets the square root portion of v1; v2 equal to zero
at a = 0, y = �a (see Lemma D7.1), so we have

k = a

�
�2 � t+ �

q
�2 � t

�
We �rst prove (ii). Suppose �a2 > 8; in which case Lemma D7.1 requires

T��
2 � 2; and �0 � �0

(for some �0 2 (0; 1)). Consider what happens as �0 ! 0 (in which case we trivially satisfy
�0 � �0): then �2 � t = T�2�0

T���2�0 �
T
T�� ! 0; implying also that k ! 0; so we have

min
y2[0;�a ]

�
k � ty +

q
k2 + (�2 � t) (2ky � ty2) + (1 + �)ey

�
! min

y2[0;�a ]

�
��2y + (�+ 1)ey

�
max

y2[0;�a ]

�
k � ty +

q
k2 + (�2 � t) (2ky � ty2) + (1� �)ey

�
! max

a2[0;�a ]

�
��2y + (1� �)ey

�
In the second line, the limit is clearly decreasing in y (noting that �!

q
T
T�� > 1); thus maximized

at y = 0 : here, the value is 1��; the desired upper bound in (36). In the �rst line, note that if we
set � s.t.

(�+ 1)e > �2 , 1 > ln
�2

�+ 1
, � < 3:4959

then the limiting expression (��2y + (1 + �)ey); which is minimized at y = ln �2

�+1 < 1; has a
minimum value of

��2 ln �2

�+ 1
+ �2 = �2

�
1� ln �2

�+ 1

�
which is positive, thus trivially satisfying the desired lower bound in (36).

So to complete the proof of (ii), we just need to show that for �0 near zero, we can �nd a
horizon T which satis�es both the requirement � � 2 (from Proposition D6 and Lemma D7.1), as
well as r

T

T � � = lim
�!0

� < 3:4959

Using � = �(T � 2); which implies T = 2(���)
1�� ; the above inequality binds if � > (3:4959)2�1

(3:4959)2� 1
2

=

0:957 34; and otherwise is implied by � � 2 , T � 4�2�
1�� ; this gives the horizon constraint (30)

speci�ed in the Proposition.
Finally we prove (i). Suppose �a2 < 8; in which case Lemma D7.1 uses T��

2 � � = 2 and
requires �0 � �0; for some �0 2 [0; 1]: So, set � = 2; and consider what happens as �0 ! 1 : then

t! T

4
=

2� �
2(1� �) ; �

2 ! T � 2
T � � � 2 =

1

1� � ; k !
�a

2(1� �)

�
1 +

r
2

�

�
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De�ne f(y) � k � ty +
q
k2 + (�2 � t) (2ky � ty2); we want to prove that

�(1 + �) � f(y)

ey
� �� 1 for all y 2 [0;�a ] (37)

To this end, note that

f 0(y) = �t+ (�2 � t)(k � ty)q
k2 + (�2 � t) (2ky � ty2)

< 0 (by �2 � t > 0; y > 0; and k < 0)

f 00(y) =
�(�2 � t)k2�2�

k2 + (�2 � t) (2ky � ty2)
� 3
2

< 0

This implies that f(y) reaches a maximum (over y 2 [0;�a ]) at y = 0, and lies above the straight
line connecting the points (0; f(0)) and (�a ; f(�a)) : since we have f(�a) = k+ ta (the square
root term is zero here by construction), and f(0) = k +

p
k2 = 0; this line ef is given by

ef(y)� ef(0) = ef(�a)� ef(0)
�a

(y � 0)) ef(y) = ��k
a

� t
�
y

Substituting in k = �a
2(1��)

�
1 +

q
2
�

�
; this becomes ef(y) = � 1+

q
�
2

1��

!
y: Then, the upper bound

in (37) follows from the fact that

max
y2[0;�a ]

f(y)

ey
�
maxy2[0;�a ] f(0)

miny2[0;�a ] e
y
= 0 � �� 1

while the lower bound in (37) follows from

min
y2[0;�a ]

f(y)

ey
� min
y2[0;�a ]

ef(y)
ey

= min
y2[0;�a ]

�

0@1 +
q

�
2

1� �

1A y

ey
=

�
�
1 +

q
�
2

�
(1� �)e

So, using � = 1p
1�� ; to show that miny2[0;�a ]

f(y)
ey + (1 + �) � 0; it su¢ ces to show that

�
�
1 +

q
�
2

�
(1� �)e + 1 +

r
1

1� � � 0, e �

�
1 +

q
�
2

�
1� � +

p
1� �

Noting that the RHS is clearly increasing in �; it may be easily veri�ed numerically that the
above expression holds for all � � 0:82035; which is implied by the range under consideration
(�a2 < 8 , a ' �3:18 implies � < 0:8): This completes the proof for a � �3:2 , �a2 < 8;

showing that if we set T = 4�2�
1�� ; then all DM IC constraints are slack in the limit as �0 ! 1 (and

so, by continuity, hold for all �0 su¢ ciently high, which satisfy the bounds in Lemma D7.1). This
completes the proof.

D.2.3 Optimality for the DM: Deviations at time t = 0
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Proposition D6: For all b < 1
61 , a � �1:7726; and for all a 2 [�2; 0]; there exists a range of

values pa such that if the DM assigns probabilities pa; 1 � pa to types x(a); g(a); then his gain to
deviating at information set fx(a); g(a)g is strictly negative at any time t � 0:
Proof of Proposition D6: As explained in Observation D4, it su¢ ces to prove that the gain to
deviating is negative at time t = 0: Substituting x(a) = �3 + a� �3ea and g(a) = �3 + a into (58) ;
we obtain that the DM�s gain to deviating at information set fx(a); g(a)g; if he assigns probability
pa to type x(a); is

2pa

�
K � T

2
a+ �3e

a

�2
+ 2(1� pa)

�
K � T

2
a

�2
+ 2(T � 2)a

�
K � T

4
a

�
� Tpa(1� pa) (�3ea)2 + 2(T � 2)Cu

= 2K2 + 4K (pa�3e
a � a) + T (pa�3ea � a)2 � (T � 2)pa(�3ea)2 + 2(T � 2)Cu (38)

If we make pa = p constant, the derivative of this expression w.r.t. a is

2(p�3e
a � 1)

"
2K � Ta+ Tp�3ea �

(T � 2)p (�3ea)2

(p�3ea � 1)

#
� 2(p�3e

a � 1) [2K � Ta� ((1� p)T � 2)�3ea] (39)

So, it su¢ ces to choose a value p s.t. (39) is negative 8a (implying that the DM�s gain to deviating
is largest�making the IC constraint most di¢ cult to satisfy�at a = �2); and such that this maximal
gain to deviating at a = �2 is negative. In the proof below, we will set p � 1

2 ; in which case (30)
implies that (1 � p)T � 2 > 0; from which it immediately follows that the square bracketed term
in (39) is decreasing in a; thus negative everywhere if it is negative at a = �2. Using this and
rearranging, (39) requires

�3e
�2 � 2K + 2T

(1� p)T � 2 (40)

For the maximal gain to deviating to be negative, evaluate (38) at a = �2 and solve for �3e�2, to
get

�3e
�2 �

(2K + 2T ) +
q

2(T�2)
p ((1� p)K2 + 4K + 2T + ((1� p)T � 2)Cu)

(1� p)T � 2 (41)

This trivially implies the inequality (40) : So, it is su¢ cient to choose a value p � 1
2 which satis�es

(41) ; and then set pa = p 8a 2 [�2; 0]:
If a > �1:7786, �3e

�2 < 8; this is impossible (see Appendix E: this is what yields the upper
bound b �= 1

61 on the biases for which our construction works).
If a 2 [�2;�1:7786]; set p = 1

4 ; by (30) and (29) ; recalling that in this range we use �0 ! 1 ;
we have

T =
4� 2�
1� � ; K ! �a

1� �

�
1 +

r
2

�

�
; Cu ! 0

Substituting these values into (41) ; along with �3e�2 = a � 2 + 2e�a ; and simplifying, (41)
becomes

0 � a�2+2e�a�8

0@1 +
q

2
�

1 + 2
�

1A
0B@�a

2
� 1 +

r
2

�

�
+

vuuut3

4

�
a2
1� �

�
+
4

�

�
a � 1 +

q
2
�

�
�
1 +

q
2
�

�
1CA (42)

Using � =
(a�2+2e�a )(a�4+2e�a )

2e�a (2e�a�2)
from (15) ; this holds for a 2 [�2;�1:7726]; as shown in the

graph below.
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If a � �2; set p = 1
2 ; so that (41) becomes

�3e
�2 � 4

(K + T ) +

r�
T�2
2

� �
(K + 4)2 + 4(T � 4) + (T � 4)Cu

�
T � 4

Substituting in (28) and (29) ; this becomes

�3e
�2

4
�

�0�a

�
1+

r
(T�2�0)(T��)

2��0

�
(T���2�0) +T+

vuuuut (T�4+2�0)
2�0

0B@�0�a

 
1+

r
(T�2�0)(T��)

2��0

!
(T���2�0)

1CA
2

+(T�2)

0B@ 4�0�a

 
1+

r
(T�2�0)(T��)

2��0

!
(T���2�0)

+2T

1CA
T�4

(43)
If �a2 > 8, a / �3:18; our proof uses �0 ! 0 : in this case, taking limits in (43) yields

�3e
�2

4
�
T +

r
T (T � 2)

�
(T�4)
4

�a2
(T��) + 2

�
T � 4

Since � < 1 and T � � � 2 = (1� �)(T � 2) > 0 (by (15)), an upper bound on the RHS is attained
at � = 1; T � � = 2; with this, using �3e�2 = a � 2 + 2e�a ; and rearranging, it is su¢ cient to
prove that �

T � 4
4

�
a � 2 + 2e�a

�
� T

�2
� T (T � 2)

�
(T � 4)
8

a2 + 2

�
Expanding and dividing through by T (T � 4) ; this becomes�

T � 4
4T

��
a � 2 + 2e�a

2

�2
�
�
a � 2 + 2e�a

2

�
� (T � 2)

8
a2 � 1 � 0

The derivative of the LHS is increasing in T; so that the expression becomes easier to satisfy as T
increases, whenever �

a � 2 + 2e�a
2T

�2
�
a2
8
� 0, T � a � 2 + 2e�a

�ap
2

Using (15) ; this is implied by the restriction T � 4�2�
1�� from (30) (whenever a . �1:3691); and so

our expression is most di¢ cult to satisfy when T is small; choosing T � 6 is su¢ cient for the range
a . �3:18 under consideration; yielding the lower bound on T given in (30) :

Finally, for a 2 [�3:18;�2]; we proved Proposition D5 using �0 ! 1 (which implies Cu ! 0;

K ! �a
1��

�
1 +

q
2
�

�
) and T = 4�2�

1�� : Substituting into (43) ; we need

�
2

�

�0@�a �1 +r 2

�

�
+ 4� 2� +

vuut (1� �)� �a
1� �

�
1 +

r
2

�

�
+ 4

�2
+ 8�

!1A�a+2�2e�a � 0
(44)

Substituting in � = (a�2+2e�a )(a�4+2e�a )
2e�a (2e�a�2) (from (15)), this holds as desired for a 2 [�3:18;�2];

as shown in the Fig D below.
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Fig D: DM�s ex ante gain to deviating

(This shows (44) for a 2 [�3:18;�2]; and (42) for a 2 [�1:7726]; both strictly negative as desired).
This completes the proof of Proposition D6.19

D.2.4 Optimality for the DM: Completing the Proof

As explained at the beginning of this section, it remains only to prove that there are many priors
� generating posteriors which satisfy the conditions in Propositions D5, D6, which we prove here:
Proposition D7: For any continuous functions p : [�2; 0] ! [0; 1]; q : [a ; 0] ! [0; 1]; and r :
[a ; 0]! [0; 1], there exists a density f over the state space such that, in our construction, a Bayesian
DM will hold the following beliefs: (i) Pr (x(a)jfx(a); g(a)g) = p(a); (ii) Pr (z(a)jfz(a); h(a)g) =
q(a); (iii) Pr(fz(a); h(a)g j fz(a); h(a); x(ba); g(ba)g = r(a):
Proof of Proposition D7: Bayesian beliefs satisfy

Pr (x(a)jfx(a); g(a)g)
Pr (g(a)jfx(a); g(a)g) =

f(x(a))

f(g(a))
(�3e

a � 1)

Pr (z(a)jfz(a); h(a)g)
Pr (h(a)jfz(a); h(a)g) =

f (z(a))

f(h(a))

�
2ea�a � 1

�
Pr(fz(a); h(a)g)
Pr (fx(ba); g(ba)g) =

f(z(a))

f(bx(a)) p(ba)q(a)

2ea�a � 1
�3eba(a) � 1 �

1

jba0(a)j
where ba(a) = u�11 (v1(a

0)) (as explained in Section E.2.1). We want the �rst expression to equal
p(a)
1�p(a) , the second expression to equal

q(a)
1�q(a) , and the third expression to equal

r(a)
1�r(a) : It is straight-

forward to construct such a density f : for example, for each a 2 [�2; 0]; set

f(x(a)) =
1

M

withM a constant to be determined (this assigns probabilities to [0; �1]). Then, assign probabilities

19 It should be noted that, for brevity of exposition, we made p equal a constant pa 2 f 1
4
; 1
2
g; which works

throughout the range. But for each speci�c value of a ; the set of beliefs that work is in fact much wider than a
small interval around pa:
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to types g(a) 2 [�2; �3] using this and the �rst expression above, i.e. set

f(g(a)) = f(x(a))(�3e
a � 1)

�
1� p(a)
p(a)

�
=
(�3e

a � 1)
M

1� p(a)
p(a)

Next, for each a 2 [a ; 0]; set f(z(a)) to satisfy the 3rd bound above, i.e.

f(z(a)) =

q(a)
p(ba) �3eba(a)�12ea�a�1 � jba0(a)j

M

r(a)

1� r(a)

(This assigns a prior for types z(a) 2 [�1; �2]). And similarly, now use this and the second expression
above to assign beliefs to types h(a) 2 [�3; �4]: Finally, choose M so that the total measure of the
type space integrates to 1 (This is possible since (11) ; (13) imply that u1; v1 and their derivatives
w.r.t. a are �nite and non-zero except perhaps at a single point a; from which it follows that
jba0(a)j is bounded (again, except perhaps at a single point a); which implies that all of the desired
probabilities �(x(a)); �(g(a)); �(z(a)) speci�ed above are bounded - in particular �nite numbers
divided by a number M - so that integrating over the state space will yield a �nite number divided
by M: Choose M so that this number equals 1.)

D.2.5 Optimality for the DM: Preliminary Calculations

Lemma D7.1: De�ne

�
�0; �0

�
�

24 (T � �) + �a
q

T��
2�

2 + (��a)
�
2(T�2)
T + T�4

T

q
T��
2�

� ; 1� (T � � � 2) s 1

2�(T � �) �
1

��a

!35
Then (i) T � � � 4 and �a2 > 8 implies that �0 < 0 < �0; (ii) T � � = 4 and �a2 < 8 implies
�0 < 1 < �0, (iii) �0 2 [�0; �0] implies that ut; vt are both real-valued, and (iv) �0 2 [�0; �0]
implies that for every a 2 [a ; 0]; there exists a pair (ba(a); �a); with �a � �0 and ba(a) 2 [�2; 0];
such that

u1(ba(a); �a) = v1(a; �0)
Proof of Lemma D7.1: We �rst prove (i). If T � � � 4 < �a2

2 ; then

(T � �) <

s
�a2(T � �)

2
= ��a

s
T � �
2�

Thus the numerator in the expression for �0 is negative, while the denominator is clearly positive,
so we obtain �0 < 0: To complete the proof of (i), we need to show that �0 > 0 : we have

T � � 2 [1; 4]) (T � � � 2)2 � (T � �)

< 2�(T � �) for � > 1

2
(implied by �a2 > 8)

) T � � � 2 <
1q
1

2�(T��)

<
1�q

1
2�(T��) �

1
��a

�
and so �0 = 1� (T � � � 2)

�q
1

2�(T��) �
1

��a

�
> 0; as desired.
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For part (ii), set T � � = 4 : then

�a2 < 8)
�a2
2
< T � � )

s
1

2�(T � �) <
s

1

�2a2
) �0 > 1

so we just need to prove that

�0 �
(T � �) + �a

q
T��
2�

2 + (��a)
�
2(T�2)
T + T�4

T

q
T��
2�

� < 1
Rearranging gives

T

2
<

(T � 2)
T � � � 2(��a)

 
1 +

s
T � �
2�

!
=

�
��a
1� �

� 
1 +

s
T � �
2�

!

Setting � � T��
2 = (1��)T+2�

2 , T
2 =

���
1�� ; this rearranges to the inequality a < 1�

q
�
� , which

is implied by a � �1:7726) � � :4172 and � = 2; establishing (ii).
Now for (iii) and (iv): with Cu as speci�ed by (28) ; the equations in (11) ; (12) become

u1(a; �a)� �3 = K � T � 2
2

a�

s
1� �a
�a

1� �0
�0

K2 +
1� �a
�a

(T � 2)a
�
K � T

4
a

�
(45)

v1(a; �0)� �3 =

2K � �(a� a)�
q

T���2�0
2�0

r
2T���2�0�0

K2 + 2�
�
2K (a� a)� T

2 (a� a)
2
�

T � � (46)

We �rst prove (iii). To show that v1 (�) is real-valued, note that the term in square roots is
decreasing in a (derivative w.r.t. a has the same sign as 2K�T (a�a); which is negative by K < 0
and a � a); so we just need to show that minimum value, which is at a = 0; is non-negative: that
is, we need

0 � T � � � 2�0
��0

K2 � 2Ka �
T

2
a2

The value ofK speci�ed in (29) is precisely the negative root of this equation, so the above inequality
holds by construction. For u1 (�) to be real-valued, we need

0 � 1� �0
�0

K2 + (T � 2) min
a2[�2;0]

a

�
K � T

4
a

�
The 2nd term is either minimized at a = 0 (in which case the expression clearly holds), or at
a = �2; in which case it holds (for K < 0) i¤

K � �0(T � 2)
1� �0

 
1�

s
T � 2�0
�0(T � 2)

!
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For this to be satis�ed by the K-value in our construction, we need

�0�(�a)
�
1 +

q
(T�2�0)(T��)

2��0

�
(T � � � 2�0)

� �0(T � 2)
1� �0

 s
T � 2�0
�0(T � 2)

� 1
!

, (��a)(1� �0)
(T � � � 2�0)

� T (1� �0)�p
�0(T � 2)(T � 2�0)

�
1 +

q
T��
2�

�
+ (T � 2�0)

q
T��
2� + �0(T � 2)

�
(2nd line obtained from 1st by (i) replacing � with �(T � 2) in the LHS numerator; (ii) mul-
tiplying both sides by 1��0

�0(T�2)
�
1+

r
(T�2�0)(T��)

2��0

� ; and �nally (iii) on the resulting RHS, multi-
plying both numerator and denominator by

p
�0(T � 2)

�p
T � 2�0 +

p
�0(T � 2)

�
). Note thatp

�0(T � 2)(T � 2�0) � �0(T � 2); so the RHS is at most

T (1� �0)�
�0(T � 2)

�
1 +

q
T��
2�

�
+ (T � 2�0)

q
T��
2� + �0(T � 2)

� = T (1� �0)�
(T � 2�0 + �0(T � 2))

q
T��
2� + 2�0(T � 2)

�
Therefore, to prove the desired inequality, it is su¢ cient to show that the following holds:

(��a)
(T � � � 2�0)

� T�
(T � 2�0 + �0(T � 2))

q
T��
2� + 2�0(T � 2)

�
, �0 �

(T � �) + �a
q

T��
2�

2 + (��a)
�
2(T�2)
T + T�4

T

q
T��
2�

�
The RHS is precisely the value �0 de�ned in the Lemma, so �0 � �0 is su¢ cient to guarantee that
ut (�) is real-valued. This completes the proof of (iii).

Finally, to prove (iv): by (45) and (46) we have u1(0; �0) = K � 1��0
�0

p
K2 = K

�
1 + 1��0

�0

�
=

K
�0
; and u1(�2; 1) = K + T � 2: So, if we set �(0) = �0 and �(�2) = 1; then

h
K
�0
;K + T � 2

i
�

[umin1 ; umax1 ]: On the other hand,

T � �
�

dv1(a; �0)

da
= �1 +

�
T
2 (a� a)�K

�r
K2 + ��0

T���2�0

�
2K (a� a)� T

2 (a� a)
2
�

T � �
2

d2v1(a; �0)

da2
=

T
2

r
K2 + �0

T���2�0 �
�
2K (a� a)� T

2 (a� a)
2
�2
+ ��0

T���2�0
�
T
2 (a� a)�K

�2
r
K2 + ��0

T���2�0

�
2K (a� a)� T

2 (a� a)
2
�3

Clearly the second expression is positive, so we have that

a � a )
T � �
�

dv1(a; �0)

da
� T � �

�

dv1(a; �0)

da

����
a=a

= �1 + (�K)p
K2

= 0
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That is, v1 (�) is strictly increasing on [a ; 0]; with

vmin1 � �3 = v1(a ; �0)� �3 =
2K �

q
T���2�0

2�0

q
2T���2�0�0

K2

T � � =
2K

�
1 + T���2�0

2�0

�
T � � =

K

�0

vmax1 � �3 = v1(0; �0)� �3 =
2K + �a �

q
T���2�0

2�0

r
2�
�
T���2�0
��0

K2 � 2Ka � T
2 a

2


�
T � �

=
2K + �a
T � �

So we immediately have vmin1 = u1(0; �0): To show that vmax1 � u1(�2; 1); we need to show that

K + T � 2 � 2K + �a
T � � , (T � � � 2)

(T � 2) K >
�a
T � 2 � (T � �)

Substituting in our value K =
a

�
��0+

q
(T�2�0)(��0)(T��)

2

�
(T���2�0) , using � = �(T � 2); and dividing by a

(which �ips the inequality), this becomes

a

�
��0 +

q
(T�2�0)(��0)(T��)

2

�
(T � � � 2�0)

>
�a � (T � �)

1� � ,
(T � 2)

�
��0 +

q
(T�2�0)(��0)(T��)

2(T�2)

�
(T � � � 2�0)

<
� + (T��)

(�a)
1� �

For this, it is su¢ cient to prove the following (which replaces the 2nd numerator term on the LHS
with its maximum value (at �0 = 1)):

(T � 2)
�
��0 +

q
�(T��)

2

�
(T � � � 2�0)

<
� + (T��)

�a
1� �

Multiplying both sides by (1� �)(T � � � 2�0), this rearranges as

(T � � � 2)
r
� (T � �)

2
� (T � � � 2�0)

(T � �)
�a

< � (T � �) (1� �0)

Replacing the LHS with the upper bound at �0 = 1; and dividing through by �(T � �); we obtain
the following su¢ cient condition:

�0 � 1� (T � � � 2)
 s

1

2�(T � �) �
1

��a

!

The RHS is precisely the value �0 de�ned in the Lemma: that is, �0 � �0 implies that [vmin1 ; vmax1 ] �
[u1(0; �0); u1(�2; 1)]; which, by continuity, implies that for every a 2 [a ; 0], v1(a) 2 [vmin1 ; vmax1 ];
there exists ba(a) 2 [�2; 0] and �a � �0 s.t. v1(a; �0) = u1(ba(a); �a): This proves (iv).
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E Appendix E: Derivations

In this section, we explain how the functions and parameters in our fully revealing construction
were chosen.

E.1 For the Expert:

Suppose we wanted an equilibrium in which each type � 2 [0; �1] pools with a type g(�) 2 [�2; �3];
to recommend an action u1(�) in period 1, u2(�) in period 2, and then reveal the truth at time
T � 2. The disutility to type � from following the strategies prescribed for types �0; g(�0) is then

Du(�
0j�) =

�
u1(�

0)� � � 1
�2
+
�
u2(�

0)� � � 1
�2
+ (T � 2)

�
�0 � � � 1

�2 (47)

Du(g(�
0)j�) =

�
u1(�

0)� g(�)� 1
�2
+
�
u2(�

0)� g(�)� 1
�2
+ (T � 2)

�
g(�0)� g(�)� 1

�2
In order for this to be an equilibrium, it must be that Du(�0j�) reaches a minimum over [0; �1] at
�0 = � (so that type � earns a lower disutility by telling the truth than by mimicking any other type
�0 in the interval [0; �1]), and that Du(g(�0)jg(�)) reaches a minimum at g(�0) = g(�): We can do
this by simply choosing functions that satisfy the corresponding �rst- and second-order conditions:
beginning with the F.O.C.�s, we need

0 =
1

2

d

d�0
Du(�

0j�)
����
�0=�

= u01(�) (u1(�)� � � 1)) + u02(�) (u2(�)� � � 1)� (T � 2) (48)

0 =
1

2

d

d�0
Du(�

0j�)
����
�0=�

= u01(�) (u1(�)� g(�)� 1) + u02(�)(u2(�)� � � 1)� (T � 2)g0(�)(49)

Subtracting the 2nd expression from the 1st, we get�
u01(�) + u

0
2(�)

�
(g(�)� �) = (T � 2)(1� g0(�))

If we de�ne a(�) � ln g(�)��
g(�1)��1 ; so that a

0(�) = g0(�)�1
g(�)�� ; this becomes

u01(�) + u
0
2(�) = �(T � 2)a0(�)) u1(�) + u2(�) = ku � (T � 2)a(�); ku a constant (50)

Now: the disutility from telling the truth is

Du(�j�) � Du(�) = (u1(�)� � � 1)2 + (u2(�)� � � 1)2 + (T � 2) (51)

) D0u(�)

2
= (u01(�)� 1) (u1(�)� � � 1) + u02(�) (u2(�)� � � 1)

Substituting (48) into this expression, we get

D0u(�)

2
= T � 2� (u1(�) + u2(�)) + 2(� + 1)

= T + 2� � ku + (T � 2)a(�) (by (50) )

Integrating w.r.t. �; we get

Du(�) = Du(0) + 2� (T + � � ku)� 2(T � 2)
Z �

0
(a(�0))d�0
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Setting u1(0) � u0 and using expression (50) to obtain u2(0) = ku� (T � 2)a(0)� u1(0) = ku� u0;
this becomes

Du(�) = (u0 � 1)2 + (ku � u0 � 1)2 + (T � 2)| {z }
Du(0)

+ 2�(T + � � ku) + 2(T � 2)
Z �

0
a(�0)d�0

= 2

�
ku
2
� u0

�2
+ 2

�
ku
2
� � � 1

�2
+ 2� (T � 2) + 2(T � 2)

Z �

0
a(�0)d�0 + (T � 2)

It will be convenient to change variables: rather than describing g as a function from [0; �1] !
[�2; �3]; and using a(�) � ln g(�)��g(0)�0 ; we ��ip�variables, describing each type � 2 [0; �1] as a para-
metric function x(a) of the variable a; and each type in [�2; �3] as a parametric function g(a) of
the variable a; where a takes on all values between 0 and a1 = ln

g(�1)��1
g(0)�0 , and g(a); x(a) hold the

relationship (g(a)� x(a)) = (g(0)� x(0)) ea: With this, rewriting
R �
0 a(�

0)d�0 as
R a
0 sx

0(s)ds; and
noting that � =

R a
0 x

0(s)ds; our above disutility expression for type � = x(a) becomes

Du(x(a)) = 2

�
ku
2
� x(a)� 1

�2
+ 2(T � 2)

Z a

0
(s+ 1)x0(s)ds+ (T � 2) + 2(T � 2)Cu (52)

where Cu �
( ku2 �u0)

2

T�2 may be any non-negative constant. Setting this equal to type x(a)0s truth-
telling disutility (evaluate (51) at � = x(a)), using u2(a) = k � (T � 2)a � u1(a) (from (50)); and
solving for u1(a); u2(a); we obtain

u1(a) =
ku
2
� T � 2

2
a�

p
T � 2

s
Cu +

ku
2
a� a(x(a) + 1)� T � 2

4
a2 +

Z a

0
(s+ 1)x0(s)ds(53)

=
ku
2
� T � 2

2
a�

p
T � 2

s
Cu +

ku
2
a� a(g(a) + 1)� T � 2

4
a2 +

Z a

0
(s+ 1)g0(s)ds

with u2(a) = ku � (T � 2)a� u1(a): Evaluating this at x(a) = �3 + a� �3ea and ku
2 = K + �3 gives

precisely our expression u1(a; �a) in (11) evaluated at �a = 1
2 ; the expressions in (11) ; (12) were

�rescaled� (via the coe¢ cients on the square roots) such that both disutility and average actions
are independent of �a:

Now, for our S.O.C.�s: di¤erentiating (47) w.r.t. �0 gives

1

2

dDu(�
0j�)

d�0
= u01(�

0)
�
u1(�

0)� �0 � 1
�
+ u02(�

0)
�
u2(�

0)� �0 � 1
�
� (T � 2)| {z }

=0 by (48)

+(�0 � �)
�
u01(�

0) + u02(�
0) + T � 2

�| {z }
= d
d�0 (u1(�

0)+u2(�0)+(T�2)�0)

This implies that a su¢ cient condition for truth-telling to indeed yield a minimum on disutility is
that the average action induced by each type �; u1(�)+u2(�)+(T �2)�; be increasing: in this case,
dDu(�

0j�)
d�0

is positive for any �0 > � (as type � contemplates mimicking types �0 further above him,
disutility increases, making him worse o¤), and negative for �0 < � (as he moves further below the
truth, disutility increases, also making him worse o¤), but zero at �0 = � : thus, telling the truth is
better than mimicking any other type in the interval.

To sum up, this has shown that given arbitrary interval endpoints �1; �2; �3; functions x :

44



[a1; 0] ! [0; �1] and g : [a1; 0] ! [�2; �3]; and with a1 � ln g(a1)�x(a1)g(0)�x(0) = ln �2��1�3�0 and g(a)� x(a) =
�3e

a; if we want an equilibrium in which types x(a); g(a) recommend u1(a) for one period, then
u2(a) for one period, then separate and reveal the truth, then truth-telling satis�es the F.O.C. for
disutility minimization i¤ u1; u2 are as speci�ed by (53) and u2(a) = ku � (T � 2)a � u1(a): If
we additionally impose the requirement that average action be increasing in type, then we satisfy
also the S.O.C.�s; this requires that each of x0(a); g0(a) is either negative or � 1: Analogously, for
arbitrary functions z : [a ; 0] ! [�1; �2]; h : [a ; 0] ! [�3; �4]; with a = ln

h(a)�z(a)
h(0)�z(0) = �3��2

�4��1 and
h(a) � z(a) = (�4 � �1)ea; if we want an equilibrium in which types z(a); h(a) recommend v1(a)
for T��2 periods, then v2(a) for T��2 periods, then separate and reveal the truth, the F.O.C.�s for
truth-telling to minimize disutility yield the following equations:

v1(a) =
kv
2
� �

T � � a�
r

2�

T � �

s
Cv +

kv
2
a� a(h(a) + 1)� �

2(T � �)a
2 +

Z a

0
(s+ 1)h0(s)ds (54)

with v2(a) = kv � 2�
T�� a� v1(a); kv and Cv constants. And the S.O.C.�s, guaranteeing that truth-

telling indeed yields a disutility minimum over the interval, reduce to the requirement that each
of z0(a); h0(a) is either negative or � 1: The proof that no expert type wishes to deviate after the
initial recommendation follows almost trivially from the prescribed strategies.

It remains to show that no expert type wishes to mimic the initial recommendation of any
type from any other interval. This reduces to the additional requirements that at each endpoint
�i 2 f�1; �2; �3g; the average action is non-decreasing at �i (if discontinuous), and type �i is indif-
ferent between the two sequences that he can induce. Our construction chooses the speci�c para-
meterizations g(a) = �3 + a and h(a) = �4 + a, with x(a) = g(a)� �3ea; z(a) = h(a)� (�4 � �1)ea:
Then we have x0(a) = 1� �3ea � 1� �3e�2; z0(a) = 1� 2ea�a � �1; and g0(a) = h0(a) = 1; which
clearly satisfy the S.O.C.�s (provided that �3e�2 � 2; we in fact will restrict to �3e�2 � 8): With
this, the expressions in (53) ; (54) become (with K � ku

2 � �3)

u1(a) = K + �3 �
T � 2
2

a�
p
T � 2

r
Cu +Ka�

T

4
a2 (55)

v1(a) =
kv
2
� �

T � � a�
r

2�

T � �

s
Cv +

�
kv
2
� �4

�
a� T

2(T � �)a
2 (56)

We chose a1 = �2 and g0(a) = 1 because this is in fact the only way that the indi¤erence constraint
at �2 can hold simultaneously with both the indi¤erence constraint at �3; and the increasing-
average-action requirement at �2: We chose h0(a) = 1 just for simplicity. With it, the remaining
increasing-average-action constraints do not bind, and the indi¤erence conditions reduce to the
following requirements on the relationships between kv; Cv; � (parameters from the vt-functions)
and ku; Cu; T (parameters from the ut-functions):

kv
2 � �3 =

2K+�a
T��

Cv =
(T�2)Cu

� +
T���2

�
K2�2Ka�T

2
a2

(T��)
�

T�2 = � �
(�2��1)(�2��1�2)
(�4��1)(�4��1�2)

(57)

With this, the expressions in (55) ; (56) simplify exactly to the expressions for u1(a; �a) in (11) and
v1(a; �0) in (13) ; at �a = 1

2 ; �0 =
T��
4 ; in Proposition D3, we then rescaled (11) ; (13) for other

values of �a; �0 in such a way that incentives are not a¤ected.

45



E.2 For the DM:

Suppose the DM receives the recommendation u1(a; �a) in period 1. If he assigns probabilities
(pa; 1� pa) to types x(a); g(a); then his disutility from following all recommendations is

pa

�
2�a (u1(a; �a)� x(a))2 + 2(1� �a) (u2(a; �a)� x(a))2

�
+(1� pa)

�
2�a (u1(a; �a)� g(a))2 + 2(1� �a) (u2(a; �a)� g(a))2

�
Substituting in the expression for u1(a; �a),u2(a; �a) from (11) ; (12) ; and expanding, this becomes

2pa

�
K + �3 �

T � 2
2

a� x(a)
�2
+2(1�pa)

�
K + �3 �

T � 2
2

a� g(a)
�2
+2(T�2)Cu+2(T�2)a

�
K � T

4
a

�
The best possible deviation is to choose the myopically optimal action pax(a) + (1� pa)g(a) in all
T periods, resulting in disutility

Tpa (pax(a) + (1� pa)g(a)� x(a))2 + T (1� pa) (pax(a) + 1� pa)g(a)� g(a))2

= Tpa(1� pa) (g(a)� x(a))2

Therefore, incentive compatibility of our strategies for the DM refers that the following expression
(the gain to deviating at fx(a); g(a)g) be weakly negative for all a 2 [�2; 0] :

2pa

�
K + �3 �

T � 2
2

a� x(a)
�2
+ 2(1� pa)

�
K + �3 �

T � 2
2

a� g(a)
�2

(58)

+2(T � 2)Cu + 2(T � 2)a
�
K � T

4
a

�
� Tpa(1� pa) (g(a)� x(a))2

Substituting in g(a) = �3+a; x(a) = �3+a� �3ea and solving for K; we obtain that the DM�s gain
to deviating at information set fx(a); g(a)g is negative if and only if

K 2
h
a� pa�3ea �

p
T � 2�(a); a� pa�3ea +

p
T � 2�(a)

i
(59)

where �(a) �
r
1

2
pa(1� pa) (�3ea)2 + pa (�3aea)�

a2

2
� Cu

For there to exist a value of K which satis�es this expression, we need �(a) to be real-valued, i.e.
the term in square roots must be positive; at a = �2; this holds i¤

pa 2

24�3e�2 � 4
2(�3e�2)

� 1
2

s
�3e�2 � 8
�3e�2

;
�3e

�2 � 4
2(�3e�2)

+
1

2

s
�3e�2 � 8
�3e�2

35
which in turn is possible (for some belief system) to satisfy only if �3 � 8e2: For our construction,
with g0 = h0 = 1; this corresponds to

a = ln
�3 � �2
�4 � �1

= ln
2

�a + 2 + �3e�2
� �1:7726, b � 1

60:885

That is, it is possible to satisfy the DM IC constraints in a straightforward manner only if the bias
satis�es b � 1

60:885 ; which is why our construction speci�es b <
1
61 :
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Similarly, if the DM receives the recommendation v1(a) in period 1 and assigns probabilities
qa; 1� qa to types z(a); h(a); his maximum gain to deviating is

qa

�
2�0 (v1(a; �0)� z(a))2 + (T � � � 2�0) (v2(a; �0)� z(a))2

�
+(1� qa)

�
2�0 (v1(a; �0)� h(a))2 + (T � � � 2�0) (v2(a; �0)� h(a))2

�
� Tqa(1� qa) (h(a)� z(a))2

Recalling that the expressions in (13) ; (14) were scaled to make the above expression independent
of �0; we can without loss of generality set �0 = 1; in which case v1 is given by (56) ; and v2 =
kv � 2�

T�� a� v1; substituting into the above expression for the DM�s gain to deviating, we obtain

(T � �)
 
qa

�
kv
2
� �

T � � a� z
�2
+ (1� qa)

�
kv
2
� �

T � � a� h
�2!

+ 2�Cv

+2�a

�
kv
2
� �4 �

T

2(T � �)a
�
� Tqa(1� qa)(h� z)2 (60)

Setting h(a) = �4 + a; z(a) = �4 + a� (�4 � �1)ea = �4 + a� 2ea�a and solving for kv2 ; we obtain
that the DM�s gain to deviating at fz(a); h(a)g is negative if and only if

kv
2

2
"
�4 + a� qa

�
2ea�a

�
�
r

2�

T � �
e�(a); �4 + a� qa �2ea�a�+r 2�

T � �
e�(a)#

where e�(a) �
r
1

2
qa(1� qa)(2ea�a )2 + qa (2aea�a )�

a2

2
� Cv

This constraint by itself is problematic. To understand the di¢ culty, note that at a = a ; there
exists a value of kv satisfying the above expression only if e�(a) is real-valued, requiring

2qa(1� qa + a)�
a2
2
� Cv � 0

We showed in the previous paragraph that the IC constraints at information sets of the form
fx(a); g(a)g can only hold if a � �1:7726; in this case, the �rst term in the above inequality is
negative (since we need qa � 0 and 1 + a < 0); the second term is clearly negative, and the third
must be negative (i.e. we need Cv � 0) in order for the functions v1; v2to be real-valued at a = 0:
Therefore, if the DM �nds it optimal to follow all recommendations sent by pairs fx(a); g(a)g;
then he necessarily will have an incentive to deviate if his information set contains only types
fz(a); h(a)g = f�2; �3g: To solve this problem, we will �bunch�pairs - scaling our action functions
such that whenever the DM would have an incentive to deviate after a recommendation v1 sent
by a pair fz(a); h(a)g; he believes that the recommendation is also sent (for the same length of
time) by a pair fx(a0); g(a0)g; and such that the expected bene�t to following the recommendation
(likelihood that it was sent by the pair (x(a0); g(a0)); times the gain in this case) exceeds the cost
(which is the likelihood that it was sent by pair (z(a); h(a)); times the cost in this case).

E.2.1 DM Beliefs

Our incentive constraints for the DM were speci�ed in terms of arbitrary probabilities pa; qa; which
in turn depend both on his prior F , and on the precise details of our construction. We assume that
the DM is Bayesian: if he believes that the expert�s �rst-period messages are given by a function
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M : [0; 1]! R; with the property that

M(x) =M(p(x))

for all x in some interval [x; x] and p : [x; x] ! [0; 1]n[x; x] some continuous di¤erentiable function
(i.e., types x and p(x) are �partners�who follow the same messaging strategy), then, after receiving
the message m =M(x) =M(p(x)); the DM�s beliefs satisfy

Pr(xjm)
Pr(p(x)jm) = lim

�!0

F (x+�)� F (x��)
F (p(x+�))� F (p(x��)) =(if F has a density f)

f(x)

f(p(x))

���� 1

p0(x)

���� (61)

This says that the likelihood of type x relative to p(x) is equal to the unconditional likelihood
ratio (determined by the prior F ); times a term which depends on the shape of the p-function,
in particular due to its in�uence on the size of the interval of p-types compared to their partner
interval, [x; x] : For our construction, (61) becomes:

� after a message (or message sequence) sent by types fx(a); g(a)g; a 2 [�2; 0] :

pa
1� pa

� Pr(x(a))

Pr(g(a))
=
f (x(a))

f (g(a))
�
����x0(a)g0(a)

���� = f (x(a))

f (g(a))
(�3e

a � 1)

� after a message (or message sequence) sent by types fz(a); h(a)g; a 2 [a ; 0] :

qa
1� qa

� Pr(z(a)

Pr(h(a)
=
f (z(a))

f (h(a))
�
���� z0(a)h0(a)

���� = f (z(a))

f (h(a))
(2ea�a � 1)

� and, after a message sent by types fz(a); h(a); x (ba(a)) ; g (ba(a))g; with u1 (ba(a)�ba) = v1(a; �0) :
Pr(x(ba(a)))
Pr(z(a))

=
f(x(ba))
f (z(a))

�
����x0 (ba))z0(a)

���� � ��ba0(a)��
so, denoting bI(ba) = fx(ba); g(ba)g and I(a) = fz(a); h(a)g; the DM�s beliefs at the pooled
(4-type) information set bI(ba) [ I(a) satisfy

P �

1� P � � Pr(bI(ba))
Pr(I(a))

=
Pr(x(ba)) � �1 + Pr(g(ba))

Pr(x(ba))
�

Pr(z(a)) �
�
1 + Pr(h(a)

Pr(z(a)

�
=

�(x(ba))
� (z(a))

�
 
�3e

ba(a) � 1
2ea�a � 1

!��ba0(a)�� � � qa
pa

�

(with pa; qa as de�ned in the �rst two bullet points; the �nal term in the �rst line numerator
is 1 + 1�pa

pa
= 1

pa
; and similarly �nal denominator term is 1 + 1�qa

qa
1
qa
):
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