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Abstract

A monopolist offers a product to a market of consumers with heterogeneous quality prefer-

ences. Although initially uninformed about the product quality, they learn by observing past

purchase decisions and reviews of other consumers. Our goal is to analyze the social learn-

ing mechanism and its effect on the seller’s pricing decision. This analysis borrows from the

literature on social learning and on pricing and revenue management.

Consumers follow a naive decision rule and, under some conditions, eventually learn the

product’s quality. Using mean-field approximation, the dynamics of this learning process are

characterized for markets with high demand intensity. The relationship between the price and

the speed of learning depends on the heterogeneity of quality preferences. Two pricing strategies

are studied: a static price and a single price change. Properties of the optimal prices are

derived. Numerical experiments suggest that pricing strategies that account for social learning

may increase revenues considerably relative to strategies that do not.

Keywords: learning, information aggregation, bounded rationality, pricing, optimal pricing.

JEL Classification: D49, D83.

1 Introduction

Launching a new product involves uncertainty. Specifically, consumers may not initially know

the true quality of the new product, but learn about it through some form of a social learning

process, adjusting their estimates on its quality along the way, and making possible purchase

decisions accordingly. The dynamics of this social learning process affect the market potential

and realized sales trajectory over time. The seller’s pricing policy can tactically accelerate or

decelerate learning, which, in turn, affects sales at different points in time and the product’s lifetime
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profitability. This paper studies a monopolist’s pricing decision in a market whose quality estimates

are evolving according to such a learning process.

In broad terms the model assumes that consumers arrive to the market according to a Poisson

process and sequentially face the decision of either purchasing a product with unknown quality,

or choosing an outside option. Each consumer has a willingness-to-pay for the product that is a

function of his idiosyncratic quality preference and the product’s quality. These quality preferences

are assumed to be independently and identically drawn from a know distribution. If the true

product quality were known to consumers, this would give rise to a demand function that the

monopolist could use as a basis of her pricing decision.

In our model, however, the quality is unknown, and consumers’ estimates about it evolve accord-

ing to a social learning mechanism. Specifically, motivated by the way information gets revealed and

shared in practice, we study the following. Consumers who purchase the product report whether

they “liked” or “disliked” the product, which corresponds to whether their ex-post utility was non-

negative, or negative. Consumers do not report their quality preference, so a positive review may

result from a high quality or high idiosyncratic quality preference (not necessarily both). A new

consumer observes the information reported by a sample—or potentially all—of the consumers who

made decisions prior to him, makes an inference about the product quality, and then makes his own

purchase decision. This sequence of idiosyncratic purchase decisions affects the evolution of the

observable information set, and as such the dynamics of the demand process over time. Optimizing

the monopolist’s pricing strategy requires detailed understanding of the learning dynamics and not

just its asymptotic properties.

It is typical to assume that fully rational agents update their beliefs for the unknown quality

of the product through a Bayesian analysis, but the extraordinary analytical and computational

onus that this imposes on each agent may be hard to justify as a model of actual choice behavior.

Instead, we will postulate a “naive” and fairly intuitive learning mechanism, where consumers do

not see the sequence in which the decisions and the reports that they observe were made. Rather,

they observe the fraction of consumers who decided to purchase the product up to that point, and

out of them the fraction of buyers that liked the product and the fraction of buyers that disliked

the product. They then find the quality estimate that would be consistent with the aggregate

information that is available to them, and make their purchasing decision accordingly.

To motivate this structure, consider the establishment of a new hotel or resort. It is typically

hard to evaluate the quality of such premises without first hand experience or word-of-mouth. This

explains the huge impact online review websites such as Tripadvisor have had on the hospitality

industry1. Assume the hotel is differentiated enough from competitors so that it could be considered

1According to Tripadvisor 90% of hotel managers think that review websites are very important to their business
and 81% monitor their reviews at least weekly.
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a monopoly in some category. For example, it may be the only hotel with a private beach in

the area. Suppose it offers better services than what consumer think at first. Initially some

consumers’ idiosyncratic tastes would convince them to choose this hotel; perhaps they have strong

preferences for the private beach. These consumers would recommend the hotel by posting a

review online. This in turn increases future demand, as potential consumers learn that the hotel is

better than they previously thought. The price charged by the hotel affects this learning process

by controlling the number of guests who review the hotel and their degree of satisfaction. By

accounting for the learning process the hotelier may be able to avoid a sluggish start and so to

realize the establishment’s full potential demand faster.

This paper strives to contribute in three ways. First, in terms of modeling, by specifying a social

learning environment that tries to capture some aspects of online reviews as well as the possible

bounded rationality of the consumers. Second, in terms of analysis, by proposing a tractable

framework, based on mean-field approximations, to study the learning dynamics and related price

optimization questions in the presence of social learning. This approach is flexible enough to be

applicable in other related settings where the nature of information that consumers share and the

learning mechanism are different. Third, in addressing some of the pricing questions faced by

revenue maximizing sellers in such settings.

In more detail, the main findings of this paper are the following. First, the information reported

by consumers is subject to a self-selection bias, since only consumers with a high enough quality

preference purchase the product. If consumers ignore the self-selection bias, then they may not

learn—even asymptotically—the true product quality. On the positive side, Proposition 3.6 shows

that learning will eventually occur almost surely if consumers correct for this bias. Learning occurs

for two types of social networks, the basic network where each consumer observes the entire sequence

of past consumer decisions, and the random network where each agent independently observes each

of his predecessors with some probability, but the size of the sample grows large as the number

of agents increases to infinity. The speed of convergence, and, better yet, the learning trajectory

over time is essential in capturing the tradeoff between consumer learning and the monopolist’s

discounted revenue objective.

Second, we derive a mean-field (fluid model) asymptotic approximation for the learning dynam-

ics motivated by settings where the rate of arrival of new consumers to the system grows large.

Proposition 4.2 shows that the asymptotic learning trajectory is characterized by a system of dif-

ferential equations, and Proposition 4.4 derives its closed form solution. Learning is fast if initially

consumers overestimate the true quality of the product. It is much slower, due to the self-selection

bias, when initially they underestimate the true quality. The solution of the mean-field model gives

a crisp characterization of the dependence of the learning trajectory on the price.

Third, we study the seller’s pricing problem, starting with the effect of the price on the speed of
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the social learning process. Proposition 5.1 provides a crisp characterization of that effect, which

depends on the generalized failure rate of the preference distribution, a concept that has been

studied by Lariviere (2006). The seller’s optimal price is one that balances the learning process

with the discounted revenue objective, and is computed through an analysis of a pricing problem

driven by the aforementioned deterministic ODE that characterizes the learning process. Intuitively,

if learning is too slow with respect to the revenue discount rate, then the seller will price almost

as if all consumers’ purchasing decisions were based on their prior estimate of the product quality;

if learning is fast relative to the discount rate of revenues, then the seller’s price will approach the

one that the monopolist would set if all consumers knew the true product quality. Proposition 5.4

shows that the optimal static price in the presence of social learning is between these two extreme

points, naturally approaching the “full information” price when the learning is fast.

Lastly, we study a model where the seller has some degree of dynamic pricing capability, namely

she can change her price once, at a time of her choosing. In this case the monopolist may sacrifice

short term revenues in order to influence the social learning process in the desired direction and

capitalize on that after changing the price. Proposition 6.2 shows, under general assumptions,

that when initially consumers underestimate the true quality, the first price is lower than the

second price. This pricing strategy can accelerate learning and increase revenues considerably. The

numerical experiments of Section 6 suggest that a pricing strategy with two prices performs very

well, and that the benefit of implementing more elaborate pricing strategies may be small.

1.1 Literature Review

This paper lies in the intersection of a strand of work in economics, revenue management, en-

gineering, and computer science. The economic literature focuses on social learning and herding

behavior, the revenue management papers use dynamic models to study tactical price optimiza-

tion questions, the articles in engineering and computer science deal with decentralized learning,

sensor networks, consensus propagation, and message passing, as well as pricing and advertisement

optimization.

The social learning literature is fairly broad and spans the fields of economics, statistics, and

engineering. Much of this work can be classified into two groups depending on the learning mech-

anism, which is either Bayesian or some type of “naive” or “ad-hoc” or “engineered/optimized”

mechanism.

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992) started the literature on

observational learning where each agent observes a signal and the decisions of the agents who made

a decision before him, but not their consequent satisfaction (or lack thereof). Agents are rational

and update their beliefs in a Bayesian way. They show that at some point all agents will ignore
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their own signals and base their decisions only on the observed behavior of the previous agents.

This will prevent any further learning and therefore may lead to herding on the bad decision.2

For social learning to be successful, with positive probability an agent would reverse the herd

behavior of his predecessors. Smith and Sørensen (2000) show that this would be the case if agents’

signals have unbounded strength. Goeree, Palfrey, and Rogers (2006) show that this achieved with

enough heterogeneity in consumers’ preferences. Our Assumption 3.4, which is key in proving

learning, is similar in nature to that of Goeree et al. (2006).

Several papers have considered variations of the observational learning model with imperfect

information that are related to our paper. Smith and Sørensen (2008) and Acemoglu, Dahleh, Lobel,

and Ozdaglar (2011) consider the case where agents observe only subsets of their predecessors. In

the first, agents do not observe the sequence in which actions were made. Both papers show

that observing a finite set of predecessors may suffice for learning when signals have unbounded

strength. We, however, find that for the random network an increasing number of predecessors

has to be observed for asymptotic learning to occur. These conclusions differ not because of the

assumed bounded rationality of consumers in this paper, but due to the heterogeneity in consumers

preferences. Since the types of consumers are not observed, the choices of any finite subset of

predecessors may be driven by their idiosyncratic preference, and not by the underlying state of

the world. Banerjee and Fudenberg (2004) consider a continuum of agents who interact repeatedly

by a way of word-of-mouth (although it is not explicitly modeled). Here too a finite sample may

suffice for learning.

Herrera and Hörner (2009) consider a case where agents can observe only one of two decisions of

their predecessors. In the language of our model, their paper relaxes the assumption that consumers

who did not purchase the product are observed. Instead, in their model consumers know the time

of their arrival, which is associated with the number of predecessors who chose the unobservable

option. They show that this relaxation does not change the standard asymptotic learning result

of Smith and Sørensen (2000). A similar approach could be used to relax this assumption in our

model.

There is a growing literature in economics that studies naive learning mechanisms that employ

simpler and perhaps more plausible learning protocols by each agent, which is also related to the

growing body of engineering literature on sensor networks and decentralized algorithms. Ellison

and Fudenberg (1993, 1995) consider settings in which consumers exchange information about their

experienced utility and use naive decision rules to choose between actions. The nature of word-

of-mouth in our paper is similar, although we consider reviews and not utilities directly. Golub

2In the nineties similar problems have been considered by several authors (see, among others Welch, 1992; Lee,
1993; Chamley and Gale, 1994; Vives, 1997) and the survey by Bikhchandani, Hirshleifer, and Welch (1998). A more
recent survey by Acemoglu and Ozdaglar (2011) considers both Bayesian and non-Bayesian approaches, and many
of the extensions to this principal model.
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and Jackson (2010) and Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2011) consider naive

learning mechanism where agents average their estimates or beliefs with those of their neighbors.

Conditions for asymptotic learning are characterized. Contrary to these papers, we consider agents

whose heterogeneous preferences directly influence their decision rule.3

The area of revenue management focuses, in part, on tactical problems of price optimization4.

It is typical therein to assume that the consumer response is captured through some form of a

demand function, and to strive to optimize the seller’s pricing policy—static or dynamic—so as to

maximize her profitability. The problem that we study in this paper can be viewed as one where

the demand model is serially-correlated, and, specifically, evolves over time according to a social

learning mechanism, which itself depends on the seller’s policy.

Barring the social learning process, our problem resembles many problems in revenue manage-

ment. This problem is well behaved if consumers’ willingness-to-pay are drawn from a distribution

with an increasing generalized failure rate. Lariviere (2006) discusses this condition, which is com-

mon in revenue management, and shows that it is related to the elasticity of demand. Interestingly,

we find that the generalized failure rate is intimately related to the relationship between the price

and the speed of the social learning process.

Mean-field approximation is widely used in revenue management to study complex dynamic

demand systems and subsequently to optimize performance, for example see Gallego and van Ryzin

(1994) and Bitran, Caldentey, and Vial (2005). These approximations explore the dynamics of the

system as the market intensity, often captured by the demand rate, is increasing. We apply a result

by Kurtz (1977/78), which is also used in Bitran et al. (2005), to derive the approximation.

The learning dynamics in our model give rise to a sales trajectory (or evolution of the underlying

demand model) which, when properly interpreted, resemble the famous Bass diffusion model, see

Bass (2004)5. Contrary to the Bass model that specifies up front a differential equation governing

social dynamics, we start with a micro model of agents’ behavior and characterize its limit as the

number of agents grows large. This limit, which is given by a differential equation as well, induces

a macro level model of social dynamics. The application of mean-field approximation to our model

bridges the literature on social learning and that on social dynamics by filling the gap between the

detailed micro level model of agent behavior, and the subsequent macro level model of aggregate

dynamics.

Several papers have studied pricing considerations when agents are engaged in social learning or

3Related problems were studied in the engineering literature on aggregation of information over decentralized
sensors. For example, Tsitsiklis (1984) and Tsitsiklis, Bertsekas, and Athans (1986) consider consensus via averaging
of estimates, and Papastavrou and Athans (1992) considers a problem similar to the classic observational learning
model.

4Talluri and van Ryzin (2005) provides a good overview of that work.
5In particular, by considering a population with finite mass, and by simplifying the decision rule.
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embedded in a social network. Bose, Orosel, Ottaviani, and Vesterlund (2006) consider a variation

of the classic Bayesian model of social learning when a monopolist and agents are equally uninformed

about the value of the good. The monopolist can change the price dynamically to extract revenue

and to control the accumulation of information. Campbell (2009) studies the role of the pricing

decision in the launching of a new product in a model of social interaction that builds on percolation

theory. As such, the focus is on the connectivity of the network of consumers, which is closer to the

analysis of targeted advertising and pricing than to our analysis, which considers more conservative

pricing techniques.

Experience goods are goods whose quality can be determined only upon consumption. Several

authors have studied pricing and social learning in the context of experience goods, for example

see Bergemann and Välimäki (2000), Caminal and Vives (1999), and Vettas (1997). Almost all

these papers consider consumers that are homogenous ex-ante, i.e., before consuming the good.

Bergemann and Välimäki (1997) consider a duopoly and heterogeneous consumers on a line who

report their experienced utility. They show that the expected price path of the new product is

increasing when initially consumers underestimate the true quality. Our Proposition 6.2 is in

accordance with their findings, even when competition is ignored.

Candogan, Bimpikis, and Ozdaglar (2011) study the optimal prices to offer a group of consumers

embedded in a social network. Consumption of the product involves network externalities, so the

optimal prices may differ between consumers depending on their social influence. In particular, the

optimal prices are shown to be proportional to consumers’ network centrality. Hartline, Mirrokni,

and Sundararajan (2008) and Kempe, Kleinberg, and Tardos (2003) study a computational ap-

proach to the problem of targeted marketing, which attempts to promote the adoption of a product

by an influential group of agents in order to accelerate word-of-mouth effects.

2 Model

2.1 The Monopolist’s Pricing Problem

A sequence of consumers, indexed by i = 1, 2, . . ., sequentially decide between purchasing a

newly launched good or service (henceforth, the product), or choosing an outside alternative. The

quality of the product, q, is initially unknown and can take values in (q, q̄) with q > 0. Consumers

are heterogeneous; this is represented by a parameter αi that determines consumer i’s willingness

to pay for quality. His utility from consuming the product is

ui = αiq − p,
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where q is the true quality of the product, and p is the price charged by the monopolist6. The

utility derived from choosing the outside alternative is normalized to zero for all consumers.

For simplicity, we assume that the preference parameters, {αi}∞i=1, are i.i.d. random variables

drawn from a known distribution function F . We denote the corresponding survival function by

F̄ (x) := 1− F (x), and assume that F has a differentiable density f with connected support either

[0, ᾱ] or [0,∞). The preference parameter can be interpreted as a premium that a consumer is

willing to pay for a unit of quality. In this model, unlike most papers in social learning, consumers

are heterogeneous and therefore even if the underlying state of the world, q, were known, not all of

them would make the same decision. Namely, only those with preference parameters αi ≥ α∗ := p/q

would decide to purchase the product, and the rest would choose the outside alternative.

The product is launched at time t = 0, and consumers arrive thereafter. Denote by ti the

random time consumer i enters the market and makes his purchasing decision. We assume that

consumers’ arrival process is Poisson with rate Λ. This arrival process is independent of product’s

quality and consumers’ preference parameters. Consumers never reenter the market after making

their purchasing decision, even if they chose the outside alternative. This assumption is reasonable

if the time horizon under consideration is not too long.

Consumers initially have some common prior on the quality of the product, q0 ∈ (q, q̄). This

prior conjecture could be the expected value of some prior distribution of the quality, or could

simply be consumers’ best guess given the product’s marketing campaign and previous encounters

with the monopolist in other categories. We abstract away from the formation of this prior guess

and assume that it is the same for all consumers.

The information transmission in our model is often called word-of-mouth communication. Con-

sumers report their purchasing decisions and, if they decide to purchase the product, they also

report a review about their experience with the product. Reviews about the personal experience

with the product take two values: ‘like’ and ‘dislike’. A consumer reports that he likes the product

if he purchased and his ex-post utility was nonnegative, taking into account the true quality of the

product and his preference parameter. If the consumer’s ex-post utility from purchasing was neg-

ative, then he reports that he dislikes the product. We view this binary report as a simplification

of the star rating scales that are ubiquitous in online review systems. In addition, a consumer that

chooses the outside alternative reports so. We denote consumer i’s review by ri which can take the

values rl, rd, or ro if he purchased and liked the product, purchased and disliked the product, or

chose the outside alternative, respectively. Since the value of a consumer’s preference parameter

is private, reviews are not fully informative. For example, a like could result from either high

6The functional form of the utility function does not play a big role in the analysis. We choose this one for
convenience.
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preference parameter or high quality (not necessarily both)7. We assume that reviews are truthful.

The information available to consumer i upon making his purchasing decision is denoted by Ii.

This may include reviews made by all or a subset of his predecessors, and possibly knowledge about

the order in which they acted. Each consumer uses his available information to decide whether to

purchase the product or to choose the outside alternative. Before describing the flow of information

and the consumers’ decision rule, we introduce the monopolist’s pricing problem, which is the main

focus of this paper. The monopolist seeks to maximize her discounted expected revenue, π(p), as

follows,

max
p
π(p) = max

p
E
[ ∞∑
i=1

e−δti p1{bi(p)}
]

= max
p

∞∑
i=1

E
[
e−δti pP

(
bi(p)|Ii

)]
, (1)

where bi(p) is the event that consumer i purchases the product, δ > 0 is the monopolist’s discount

factor, and the expectation is with respect to consumers’ arrival times and quality preferences.

Here the monopolist chooses a price once and for all (static price), and knows the true quality,

the prior quality estimate, and the distribution of quality preferences. Section 6 considers two

prices and the optimal time to switch between them. Expression (1) reveals the complexity of

the pricing problem in the presence of social learning. Consumers’ purchasing decisions influence

future revenues through the information available to successors. As such, the dynamics of the

social learning process must be understood in order to solve for the optimal price. We discuss this

optimization problem and its extensions in the sequel.

2.2 Naive Decision Rule

We consider two information structures. In the basic social network all predecessors are ob-

served. In the random social network consumer i+ 1 observes a random subset of his predecessors,

where each predecessor is drawn independently with probability ρi. We illustrate the available

information and the decision rule on the basic social network. The decision rule generalizes to the

random social network straightforwardly, and we comment about that when needed. We define the

following quantities: L(i) :=
∑i

j=1 1{rj = rl} is the number of consumers who purchased and liked

the product out of the first i consumers, and similarly D(i) and O(i) are the number of consumers

who purchased and disliked the product and the number of consumers who chose the outside al-

ternative out of the first i consumers, respectively. We denote by l(i) := L(i)/i, d(i) := D(i)/i,

7This assumption is motivated by the fairly anonymous reviews that one may get online today. One possible
extension would consider a model where consumers gather two sets of information, one from a process like the one
above, and the other from a smaller set of their “friends” whose quality preferences are known with higher accuracy.
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α

d(i) l(i)o(i)

α̂(i) = F̄−1(l(i))

Figure 1: Illustration of naive estimation

and o(i) := O(i)/i the corresponding fractions. The information available to consumer i+ 1 before

making his decision is Ii+1 = (L(i), D(i), O(i)), where O(i) could be omitted if consumer i + 1

knows that he is the (i+ 1)-st consumer.

We introduce a naive decision rule that is used by consumers to decide whether or not to

purchase the product, followed by a discussion of its various elements. This decision rule is composed

of two parts: (a) consumer i uses his available information to form a quality estimate q̂(i), and (b)

he purchases the product if and only if his estimated utility is nonpositive αiq̂(i)− p ≥ 0.

In broad terms, the naive estimation part is described as follows. Recall that consumers do not

observe the sequence in which reviews were submitted (alternatively, they ignore it to simplify their

decision). The first naive approximation a consumer makes is to assume that all his predecessors

made decisions based on the same information, i.e., based on the same quality estimate q̂. This

means that the predecessors with the highest quality preferences bought and liked the product (α ≥
max(α∗, p/q̂)), those with the lowest quality preferences chose the outside alternative (α < p/q̂), and

those with quality preferences in the middle bought and disliked the product (p/q = α∗ > α ≥ p/q̂,
if q̂ > q). The second naive approximation a consumer makes is to assume that the empirical

distribution of quality preferences among predecessors coincides with F . These two steps are

illustrated on the distribution of quality preferences in Figure 1, i.e., a mass l(i) of consumers is

placed in the right tail, and mass o(i) of consumers is placed in the left tail, and the reminder, a

mass d(i), is placed in the middle.

Following this logic, the quality preference value α̂(i) := F̄−1(l(i)) (see Figure 1) is the one that

leaves the consumer with zero utility, since predecessors with higher quality preferences liked the

product and those with lower quality preferences disliked it. Consumers’ quality estimate is the one

that rationalizes α̂(i) based on the above mentioned naive approximations, i.e., α̂(i)q̂(i)− p = 0 or

q̂(i) = p/F̄−1(l(i)). Put differently, consumers estimate α∗ = F̄ (p/q) from observations of the type

“αj < α∗” (dislike) and “αj ≥ α∗” (like) for j ≤ i. Generally, this estimation procedure should

become successful as i grows large, however in our case these observations are censored. That is,

likes and dislikes are reported condition on the decision of the predecessor to purchase the product

and therefore they are subject to a self-selection bias. In particular, when q̂ < q dislikes will not

be reported. Consumers will naively account for this bias by employing a correction term as will
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be discussed in the sequel.

In more detail, the formation of the quality estimator—part (a)—includes two steps in the

following order: (a.1) consumers account for the prior quality estimate, and for the noise in their

available information when the number of observations is small; (a.2) consumers employ the above-

mentioned estimation procedure while correcting for the self-selection bias.

To account for the prior quality estimate and for the noise in l(i) and d(i) when the number

of predecessors observed is small, in step (a.1) consumer i + 1 computes the weighted fractions of

likes and of dislikes,

lw(i) := proj[l,l̄]

(
w

w + i
l0 +

i

w + i
l(i)

)
, (2)

and

dw(i) := proj[d,d̄]

(
w

w + i
d0 +

i

w + i
d(i)

)
. (3)

The operator proj[x,x̄](x) projects x to the interval [x, x̄], and the quantity w > 0 is the weight

given to the prior quality estimate, as will be detailed later. It will be shown that for large i the

weighted fractions lw(i) and dw(i) are close to l(i) and d(i). In step (a.2) the consumer naively

corrects for the self-selection bias by inflating the weighted fraction of likes by a quantity ψ(i) ≥ 0,

which depends on the information available to him. This corresponds to moving α̂(i) in Figure 1

to the left. Following the naive estimation procedure, the quality estimate is

q̂(i+ 1) := proj[q,q̄]

(
p/F̄−1

(
lw(i) + ψ(i)

))
, (4)

where the projection to [q, q̄] ensures that it is consistent with the known range of q.

After estimating the quality of the product, consumer i+1 purchases the product if his estimated

utility from purchasing, taking into account his quality preference, is higher than the utility from

the outside alternative, that is if αi+1q̂(i+ 1)− p ≥ 0.

Definition 2.1. The decision rule for consumer i+ 1 can be described as follows:

1. Use the observed information Ii+1 = (L(i), D(i), O(i)) to form an estimate of the quality

of the product according to (4). Take l(i) = d(i) = 0 if consumer i+1 observes no reviews

(which could happen in the random network).

2. Purchase the product if the estimated utility is non-negative, αi+1q̂(i+ 1)− p ≥ 0.
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We now discuss different aspects of the formation and interpretation of the decision rule.

Step (a.1): weighted fractions of likes and dislikes. Consumers weigh the information

available to them with their prior quality estimate and project it to the appropriate interval. This

is motivated by the following. First, in the early stages reviews do not convey much information,

since the noise from the random heterogeneity dominates any information about the quality of the

product. In the extreme case, after the first consumer’s report, one of l(1), d(1) or o(1) will have

value one and the other two value zero. It is, therefore, reasonable that consumers do not forget

their prior estimate immediately after observing a few reviews, but rather they forget it gradually

as they observe more reviews. Second, consumers may simply anchor to the prior until enough

information is available. To account for these, we assume that consumer i+ 1 modifies the fraction

of likes by placing weight w/(w + i) on l0 := F̄ (p/q0), which is the fraction of likes corresponding

to q0. In addition, consumer i + 1 places the same weight on d0 = 0 when modifying the fraction

of dislikes, where d0 = 0 since if the prior were true, consumers would have made the right decision

for them resulting in no dislikes8.

Another outcome of the noise is that l(i) and d(i) may take values that do not agree with the

long run behavior of the learning process. Define l := F̄ (p/q) the fraction of consumers that would

always purchase and like the product, and l̄ := F̄ (p/q̄) the fraction of consumers that would never

purchase the product. It follows by a law of large numbers that for a large i the fraction of likes will

lie in the interval [l, l̄] regardless of the true quality of the product. Similarly it follows that d(i)

will lie in [0, d̄] eventually, where d̄ := 1− l. To account for this, consumers project the fraction of

likes and the fraction of dislikes to their corresponding intervals. Note that the weight on w/(w+ i)

diminishes with i and the projection does not bind for large i, so these corrections are in effect in

the short run only.

Step (a.2): correction term for self-selection bias ψ(i). When the quality estimate is lower

than the true quality estimate, only liking reviews are reported. This self-selection bias is in effect

only when lw(i) < l∗. It is assumed that consumers naively account for that by adding the quantity

ψ(i) ≥ 0 to lw(i) as in (4). This correction term is a function of lw(i) and dw(i). Proposition 3.2 will

show that ignoring the self-selection bias may result in biased quality estimated even asymptotically.

We now discuss a few more aspects of the model.

Information structure. The information structure and decision rule have a particularly appealing

property: decisions depend on the history of reports only through the number of consumers who

liked and disliked the product, and are independent of the sequence in which these reports were

8This procedure is reminiscent of the linear credibility estimators used in actuarial science (see, e.g., Bühlmann
and Gisler, 2005) and of Bayesian updating with conjugate prior, that induces a linear structure of estimators (see
Diaconis and Ylvisaker, 1979). As Raiffa and Schlaifer (1968, Chapter 3) show the weight on the prior estimate can
be interpreted as the cardinality of a fictitious sample of observations similar to the ones given in the real sample.
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given. We allow for two interpretations for this property, first that the sequence of submission times

of reviews is unobservable, and second is that consumers base their decisions on some aggregate

measure of their observed information to simplify their decision making. The setting where one

observes only the aggregate number of likes and dislikes resembles the information available on many

online retailers and review aggregators like Amazon and TripAdvisor. This informational structure

usually includes a review scale (typically the 5-star scale) and textual reviews. Consumers observe

the number of reviews given to each bin in the scale without the submission time, except for reviews

that include text, and even in that case gathering the submission times requires some effort. The

information about the number of non-buyers is typically not available. As was discussed in the

literature review, Herrera and Hörner (2009) relax the assumption that this number is observable.

A similar relaxation could be applied to our model.

Random network. The decision rule generalizes to the random network case by simply consider-

ing the number of predecessors that liked, dislikes, and chose the outside alternative in the observed

subset. To keep the interpretation of the weight given to the prior estimate as the equivalent of a

fictitious sample of size w, consumer i places weight ρiw instead of w on the prior estimate.

Pricing problem. In the pricing problem (1) the monopolist chooses the price upfront once and for

all, and is assumed to know the true quality of the product, the distribution of quality preferences,

and consumers’ prior quality estimate. This is reasonable given the setup of the model, as he could

test the attractiveness of the product on a test group. A discounted revenue criterion is considered

to explore the ability and the incentive of the monopolist to affect the speed of the social learning

process via the price.

Price as a signal. It is assumed that consumers are blind to the information on the quality of the

product that is conveyed by the pricing decision. Fully rational consumers will regard the price as

a signal for the quality, and consequentially the monopolist should take that into account. Since

we do not consider a fully rational and Bayesian setting, we disregard this aspect of the pricing

decision. Nevertheless, this could be an interesting extension.

Lack of endogenous timing decision. The assumption that consumers make a once and for

all purchasing decision upon arrival may be restrictive, as some agents would elect to time their

decision based on the availability of information, see Acemoglu, Bimpikis, and Ozdaglar (2010) for

an example. In such cases we may see consumers with higher quality preferences purchasing first,

which could have an effect on the monopolist’s optimal pricing decision. We leave this to future

research.
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3 Asymptotic Learning

This section considers the asymptotic properties of the decision rule. It is of interest as most of

the literature on social learning deals with the asymptotic properties of the learning process, and

in particular with whether agents learn the true state of the world eventually. Asymptotic learning

entails that eventually all consumers make the right decisions; all consumers with αi ≥ α∗, and

only those, purchase the product. Subsequently, the fraction of consumers that like the product

will converge to l∗ = F̄ (α∗), the fraction of dislikes will go to zero, and the reminder of consumers

will choose the outside alternative.

Definition 3.1. Asymptotic learning occurs for some decision rule carried out by consumers if

(l(i), d(i), o(i))→ (l∗, 0, 1− l∗) almost surely.

We are interested in whether asymptotic learning in the sense of Definition 3.1 occurs under the

decision rule.

3.1 No Correction for Self-Selection Bias (ψ = 0)

It turns out that the answer to this question depends on the way in which consumers correct

for the self-selection bias. The next proposition shows that asymptotic learning does not occur if

consumers do not correct for the self-selection bias.

Proposition 3.2. Asymptotic learning in the sense of Definition 3.1 fails if ψ(lw, dw) = 0 for all

lw , dw.

All proofs are relegated to the appendix. To understand this result, suppose that lw(i) ≈ l(i).

When ψ = 0 we have q̂(i + 1) ≈ p/F̄−1(l(i)). If q̂(i + 1) < q, any purchase would result in a

like, and this happens with probability l(i). Therefore, l(i), and consequently q̂(i + 1), become

self-confirming. Thus, learning may stop on an underestimating quality level. This conclusion is

not symmetric; learning will not stop on an overestimating quality level, since in such a case dislikes

will accumulate and as a result the quality estimate would lower.

To further understand this result, consider the probability that consumer i + 1 will like the

product given (l(i), d(i))9,

P
(
ri+1 = rl|(l(i), d(i))

)
= P

(
αi+1q̂(i+ 1)− p ≥ 0, αi+1q − p ≥ 0|(l(i), d(i))

)
= P

(
αi+1 ≥ max

(
p/q, p/q̂(i+ 1)

))
(5)

= min
(
F̄ (p/q), F̄ (p/q̂(i+ 1))

)
= min

(
l∗, l̂(i)

)
,

9Since l(i) + d(i) + o(i) = 1 we often omit o(i).
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where l̂(i) := F̄ (p/q̂(i + 1)) = proj[l,l̄](lw(i) + ψ(i)) is the probability that consumer i + 1 will

purchase the product. For completeness, the probability that i+ 1 will dislike is

P
(
ri+1 = rd|(l(i), d(i))

)
= P

(
αi+1q̂(i+ 1)− p ≥ 0, αi+1q − p < 0|(l(i), d(i))

)
=
(
l̂(i)− l∗

)+
, (6)

where (x)+ = max(0, x). One can think of the difference P
(
ri+1 = rl|(l(i), d(i))

)
− l(i) as the drift

in the learning process. For l(i) to converge to l∗, there should be negative drift when l(i) > l∗, i.e.,

q̂(i+1) > q, and positive drift in the other case, i.e., q̂(i+1) < q. Assuming again that lw(i) is close

to l(i) and considering (5) with ψ = 0, we can see that the drift is not positive when q̂(i + 1) < q

since in this case min(l∗, l̂(i))− l(i) = l̂(i)− l(i) = l̃(i)− l(i) ≈ 0.

We can relate this negative result to the notion of herding in social learning. Without cor-

recting for the self-selection bias, consumers act in a way that confirms with the behavior of their

predecessors. This hinders accumulation of new information and prevents learning.

3.2 Correcting for the Self-Selection Bias

Proposition 3.2 shows that correcting for the self-selection bias is necessary for asymptotic

learning to occur. In order to serve its purpose, the correction term should be positive when q̂ < q,

and otherwise it should be close to zero. A clear sign for q̂ < q is that the fraction of disliking

reviews is small, since such reviews may be reported only if q̂(i) > q for some i’s. Therefore,

qualitatively the correction term ψ(i) = ψ(lw(i), dw(i)) should be positive when dw(i) is small, and

should decrease with dw(i) as it appears that q̂ > q. Correcting for the self-selection bias only when

dw(i) = 0 will not suffice, since in the early stages of the learning process the quality estimator

varies a lot due to the randomness in the quality preferences. Thus, a few disliking reviews may

be reported early on, but soon after that learning may stop on an underestimating level. However,

dw(i) will remain positive for all i, even though it decreases to zero.

We assume the following functional form for the correction term,

Assumption 3.3. The correction term ψ(lw, dw) = lwφ(dw/lw), where φ(x) = (φ0 − φ1x)+ with

φ0, φ1 > 0.

The assumed correction term is indeed decreasing in the fraction of dislikes, and it is strictly

positive when the fraction of dislikes is small10. In addition, it has two more properties that make

it appealing and also simplify the analysis of the pricing problem:

10Propositions 3.6, 4.1 and 4.2 would follow for a larger class of correction terms. For example, any decreasing,
Lipshitz continuous φ with φ(0) > 0 would suffice.
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(i) consumers normalize the fraction of dislikes by the fraction of likes, for example 2% dislikes

compared to 10% likes calls for a smaller correction term than 2% dislikes compared to 40%

likes; and

(ii) given the normalized magnitude of dislikes, the correction term increases with the popularity

of the product, for example the correction term will be twice larger for 2% dislikes and 40%

likes than for 1% dislikes and 20% likes.

Before analyzing the asymptotic behavior of the decision rule we add two assumptions.

Assumption 3.4 (Price is not prohibitive). The price charged by the monopolist is not greater

than p̄ with l = F̄ (p̄/q) > 0.

This condition says that even for the lowest possible quality of the product and the highest

possible price, some consumers will like to purchase it. It will be clearly satisfied when the support

of αi is unbounded. This assumption is similar to the unbounded belief assumption that is often

used in Bayesian social learning. Both imply that new information will enter the system (reviews

in our case, actions in the Bayesian case), which is the main requirement for learning to take place.

Assumption 3.5 (Structure of the random social network). For the random network ρi is such

that iρi = Ω(iκ), for some 0 < κ ≤ 1, and ρi > 0 for all i ≥ 1.

Recall that in the random network, for every predecessor j of i, the probability that i observes

j is ρi (independent of j). The condition ensures that as i grows large, consumers observe enough

information. In particular, consumers have to sample enough predecessors (note that the average

number of predecessors sampled is iρi). If we consider the basic network as a special case of the

random network with ρi = 1 for all i ≥ 0, then this condition is satisfied. It is interesting to compare

this requirement with social networks that permit learning in the Bayesian setting, for example see

Acemoglu et al. (2011). In contrast with some of the results there, in our case consumers must

observe an increasing number of predecessors. This is mostly due to the heterogeneity in consumers’

tastes, and not due the degree of rationality of the learning rule. If tastes are heterogeneous and

not identifiable by successors, any finite set of predecessors cannot be fully informative since the

predecessors’ tastes may dictate their decisions and not the underlying quality level.

Denote by x∗ := φ0/(1 + φ1) the unique solution to φ(x) = x, and let d∗ := min(x∗l∗, l̄ − l∗).
The following result reveals the asymptotic behavior of the decision rule.

Proposition 3.6. Under Assumptions 3.3, 3.4, and 3.5, (l(i), d(i), o(i))→ (l∗, d∗, 1− l∗−d∗). For

any ε > 0 there exists a function φ such that d∗ < ε.

Proposition 3.6 shows that asymptotic learning in the sense of Definition 3.1 is not achieved,

unless d∗ = 0. This is never the case, since the properties of φ show that x∗ is always positive,
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although it could be arbitrarily small depending on φ. The proof relays on Kushner and Yin

(2003, Theorem 2.1, Chapter 5), who use ordinary differential equations (ODEs) to identify limits

of certain continuous time stochastic processes. This method was also used in the context of social

dynamics in Ceyhan, Mousavi, and Saberi (2009). In essence, the proof shows that there is always

drift in the system in the appropriate direction. For large i (l(i), d(i)) ≈ (lw(i), dw(i)), so from (5)

we have

P
(
ri+1 = rl|(l(i), d(i))

)
− l(i) = min

(
l∗ − l(i), l̂(i)− l(i)

)
≈ min

(
l∗ − l(i), l(i)φ

(
d(i)/l(i)

))
,

where the projection is ignored for simplicity, so l̂(i) − l(i) ≈ l(i)(1 + φ(d(i)/l(i))) − l(i) =

l(i)φ(d(i)/l(i)). This drift is always negative for l(i) > l∗ and positive for l(i) < l∗ as long as

d(i) is small, which will be the case eventually if l(i) < l∗.

To understand why d(i) → d∗, note that consumers keep correcting for the self-selection bias

even when lw(i) is close to l∗. But, when they are close enough, some consumers will end up disliking

the product. Since the correction term is decreasing in the fraction of dislikes, more dislikes means

a lower correction term, which then brings about fewer dislikes and so on. A fraction d∗ of dislikes

balances these effects, and thus prevails in the limit of the learning process. To see this, note that a

fraction l∗+ l∗φ(d∗/l∗) of consumers will purchase the product in the limit of the learning process.

However, only a fraction l∗ will like it. Therefore, a fraction l∗φ(d∗/l∗) of consumers will purchase

the product and dislike it, so l∗φ(d∗/l∗) = d∗, or d∗ = x∗l∗11.

In principle we could consider nonstationary correction terms {φi}∞i=1 that decrease over time

to a limiting function φ with corresponding x∗i ↓ x∗. This would reflect the fact that the self-

selection bias is resolved over time as q̂(i) approaches q. In this case the fraction of dislikes in

equilibrium is x∗l∗, which could be made arbitrarily small. We say in the reminder of the paper

that asymptotic learning is achieved in spite of the persistent fraction of dislikes in equilibrium,

with the understanding that d∗ is small. We focus on stationary correction functions for simplicity.

We find the existence of a positive fraction of dislikes in asymptotic learning enlightening, since

in practice one usually sees a persistent sliver of disliking reviews, even for very popular products.

There are many potential explanations for this phenomenon like defects, impulsive shopping, etc.

We think that the correction for the self-selection bias on the knife edge may be another explanation.

4 Mean-Field Approximation

The previous section establishes the asymptotic properties of the social learning process. This,

however, does not alleviate the analysis of the monopolist’s pricing problem (1). Since the proba-

11If, l∗ + l∗φ(x∗) > l̄ only a fraction l̄ will purchase the product, and d∗ = l̄ − l∗.
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bility that consumer i will purchase the product depends on the information available to him, (1)

involves taking an expectation over all possible histories of the form r1, r2, . . .. This renders the

problem of choosing the optimal price intractable. In order to solve (1) the learning trajectory and

its dependency on the price have to be understood.

Instead of applying numerical methods, we investigate the limit of a sequence of systems with

increasing arrival rate of consumers. The learning trajectory of this limiting large scale model is

governed by a system of ordinary differential equations that gives rise to a deterministic path for

the weighted fractions of likes and dislikes, which in turn determines the decisions of consumers.

This system can be solved rather simply for the basic network, and for some cases of the random

network. In the reminder of the paper we restrict the attention to the basic network. We comment

about the derivation of the mean-field approximation for the random network in Subsection 4.1.

Simulations show that this deterministic learning trajectory approximates sample paths from

the original stochastic model very well. As such, we focus our analysis on this deterministic learning

trajectory to draw conclusions on the rate of convergence, and to analyze the problem of finding

the price that maximizes the expected discounted revenues. Subsection 4.1 constructs the large

scale model, motivates the converges result, and establishes it. Subsection 4.2 specifies the learn-

ing trajectory and Subsection 4.3 demonstrates the quality of the approximation via simulations.

Readers who are not interested in the derivation of the mean-field approximation may go directly

to Subsection 4.2.

4.1 Large Market Setting

We consider a sequence of systems indexed by n. In the n-th system consumers’ arrival process

is Poisson with rate Λn := nΛ̄, and the weight placed on the prior quality estimate is wn := nw̄.

Recall the interpretation of w as the number of consumers arriving during some time window. The

state variables of the n-th system at time t is given by Xn(t) :=
(
Ln(t), Dn(t), On(t)

)
, where Ln(t)

is the number of consumers that reported like by time t in the n-th system, and Dn(t) and On(t)

are defined analogously. The superscript n indicates the dependence on the arrival rate. Denote

the scaled state variable X̄n(t) := Xn(t)/n and similarly for L̄n(t), D̄n(t), and Ōn(t). This state

variable comprises the information available to the first consumer arriving after time t. We carry

the notation from the previous sections with the necessary adjustments. For example, from (5) we

have

lnw(Xn) :=
wnl0 + Ln

wn + Sn
=
w̄l0 + L̄n

w̄ + S̄n
=: lw(X̄n), (7)
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where Sn := Ln+Dn+On and S̄n := Sn/n, and analogously for dnw, l̂n, and the corresponding dw,

and l̂. Hence, with some abuse of notation we define the functions γl, γd, and γo such that

γs(X̄n) := P
(
ri = rs|Ii = Xn

)
,

with the interpretation that γs(X̄n) is the probability that a consumer who observes information

Xn reports s = l,d, o, for like, dislike, and outside alternative. For example, from (5) and (7) we

have

γl(X̄n) := P
(
ri = rl|Ii = Xn

)
= min

(
l∗, l̂n(Xn)

)
= min

(
l∗, l̂(X̄n)

)
(8)

With this notation in mind, we use a Poisson thinning argument to express the scaled state

variable as a Poisson process with time dependent rate,

L̄n(t) = N l

(
Λn
∫ t

0
γl(X̄n(s))ds

)
/n,

and similarly for D̄n and Ōn. The following shorthand notation is convenient,

X̄n(t) = N

(
Λn
∫ t

0
γ(X̄n(s))ds

)
/n,

where N := (N l, Nd, No) is a vector of independent Poisson processes with rate 1, and γ :=

(γl, γd, γo). Put differently, we break the arrival process to three groups, like, dislike, and outside

alternative, according to the probabilities given by γ, that in turn depend on X̄n(t).

As n grows large, the arrival process becomes deterministic by the functional strong law of large

numbers for Poisson processes. Therefore, it is reasonable that the path of X̄n(t) also converges to

its mean. We apply Kurtz (1977/78, Theorem 2.2) to obtain this result.

Proposition 4.1. For every t > 0,

lim
n→∞

sup
s≤t
|X̄n(s)− X̄(s)| = 0 a.s.,

where X̄(t) = (L̄(t), D̄(t), Ō(t)) is deterministic and satisfies the integral equation,

X̄(t) = Λ̄

∫ t

0
γ(X̄(s))ds. (9)
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To better understand (9) consider the expression for the scaled number of likes,

L̄(t) = Λ̄

∫ t

0
γl(X̄(s))ds = Λ̄

∫ t

0
P
(
rs = rl|Is = X̄(s)

)
ds.

This means that the scaled number of likes at t is the sum over the mass of consumers that report

like in each s ≤ t, and this mass depends on past reviews via X̄(·). It is convenient to derive from

(9) the expressions for (l̃(t), d̃(t)), the counterparts of the stochastic lw(i) and lw(i) in the limiting

(fluid) model, since these quantities determine the decision of an arriving consumer. Namely, if we

denote S̄(t) := L̄(t) + D̄(t) + Ō(t), then from (7) we have

l̃(t) := proj[l,l̄]

(
w̄

w̄ + S̄(t)
l0 +

S̄(t)

w̄ + S̄(t)

L̄(t)

S̄(t)

)
= proj[l,l̄]

(
w̄l0 + L̄(t)

w̄ + tΛ̄

)
,

where the second equality follows from S̄(t) = tΛ. Similarly,

d̃(t) := proj[d,d̄]

(
D̄(t)

w̄ + tΛ̄

)
.

The next subsection derives the ODEs that govern (l̃(t), d̃(t)) for the basic network12.

4.2 Learning Trajectory

The next proposition derives the ODEs controlling the mean-field approximation for (lw, dw)

denoted by (l̃, d̃).

Proposition 4.2. For the basic network, ˙̃
l(t)
˙̃
d(t)

 =
Λ̄

w̄ + tΛ̄

min
(
l∗, l̂(t)

)
− l̃(t)(

l̂(t)− l∗
)+ − d̃(t)

 , (10)

almost everywhere, where l̂(t) := proj[l,l̄]
(
l̃(t)(1 + φ(d̃(t)/l̃(t)))

)
is the probability that a consumer

would purchase the product at time t. The initial conditions are l̃(0) = l0 and d̃(0) = 0. Further-

more, l̃ is decreasing if l0 < l∗, increasing if l0 > l∗, and constant if l0 = l∗.

These ODEs are intuitive. A rate Λ̄l̂(t) of consumers would purchase at time t. Out of them

12The limiting learning trajectory for the random network may be similar or different from the one for the basic
network, depending on the sampling probabilities. Let ρn(S) be the probability of sampling each predecessor by the
(S + 1)-st consumer. The expected number of predecessors seen by a consumer arriving at t is Λntρn(Λnt), which
could range from linear in n to constant in n, depending on the scale of ρn. Under general conditions Proposition
4.1 will hold for all these cases, however the limiting trajectory may be different than that of the basic network. If
the number of predecessors sampled at time t grows no slower than

√
n, the limiting trajectories coincide. If it grows

slower than that, the limiting trajectories may differ.
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Λ̄ min(l∗, l̂(t)) would like the product. So, Λ̄
[

min(l∗, l̂(t))− l̃(t)
]

is the rate of change in the number

of likes at time t. To obtain the rate of change of the fraction, we normalize this quantity by the

mass that arrived by that time, w̄ + tΛ̄. A similar argument follows for dislikes. For a general

nonlinear φ function, this system of ODEs can be solved numerically. The linearity of φ simplifies

(10) to a system of nonhomogeneous first order liner ODEs that can be easily solved. To avoid

boundary cases, the next assumption requires that the projection on [l, l̄] is not binding.

Assumption 4.3. The price charged by the monopolist is no less than p, where max(F̄ (p/q0)(1 +

φ0), F̄ (p/q)(1 + x∗)) ≤ l̄.

The next proposition derives the learning trajectory that will be the basis of the monopolist’s

pricing problem.

Proposition 4.4. Under Assumption 4.3,

1. If l0(1 + φ0) < l∗, then for t ≤ T , l̃(t)
d̃(t)

 = l0

( w̄ + tΛ̄

w̄

)φ0 1

0

 , (11)

and for t > T l̃(t)
d̃(t)

 = l∗

 1

x∗

− l∗ w̄ + T Λ̄

w̄ + tΛ̄

φ0

φ1

φ̃
1

+ l∗x∗
( w̄ + T Λ̄

w̄ + tΛ̄

)1+φ1

 0

1/φ1

 , (12)

where φ̃ := φ1/(1 + φ0) and

T :=
w̄

Λ̄

[( 1

1 + φ0

l∗

l0

)1/φ0
− 1
]
. (13)

2. If l0(1 + φ0) ≥ l∗, then l̃(t)
d̃(t)

 = l∗

 1

x∗

+ (l0 − l∗)
w̄

w̄ + tΛ̄

 1

φ̃−1

+
( w̄

w̄ + tΛ̄

)1+φ1 1

φ1

 0

l∗(1 + x∗)− l0(1 + φ0)

 .
(14)

We call q0 < q the underestimating case and q0 > q the overestimating case. The limiting model

differs considerably between the two cases. In the underestimating case typically l0(1 + φ0) < l∗13.

The speed of learning depends on the aggressiveness with which consumers correct the self-selection

13If q0 is close to q from below, or if the price is very low, then it can be that l0(1 + φ0) ≥ l∗ while q0 < q. This
case is of little interest to us since social learning is almost achieved from the very beginning.
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(b) Underestimating (q0 < q)

Figure 2: The blue lines correspond to lw(t) and the red lines to dw(t). Model parameters: αi ∼ U [0, 1],
q, q0 ∈ {.3, .4}, p = 0.2, Λ̄ = 1000, w̄ = 30, φ0 = 0.05, and φ1 = 1. Note the different scales of the horizontal
axes. Scaling parameters: n = 1 in overestimating and n = 10 in underestimating (both with 100 sample
paths).

bias as captured by φ0. We suppose that consumers are careful in applying this correction in order

to avoid overshooting. Hence it is assumed that φ0 is close to zero and so learning is slow in the

underestimating case. In particular, it is proportional to (l∗/l0)1/φ0 . In this case time T is the first

time that everyone that should buy the product indeed buys it, and this leads to a kink in the

learning trajectory. In the overestimating case l0(1 + φ0) ≥ l∗, and social learning is quite fast, as

l̃ drops to l∗ in a rate of w/(w + t).

The difference in the rates of convergence between these cases is intuitive. The monopolist

cannot fool consumers for too long that the quality of the product is high since the disappointed

consumers will complain. Yet, if too few buy the product initially and consumers are slow to correct

for the self-selection bias, learning may be slow.

4.3 Simulations

Before moving to the pricing problem, we illustrate the fit of the mean-field approximation by

comparing it to simulated sample paths of the stochastic model. Figure 2b shows a typical case

where the prior quality underestimates the true quality. As such, l̃(t) converges to l∗ from below,

and the weighted fraction of dislikes starts from zero and converges to x∗l∗. We can see that the

mean of 100 sample paths essentially coincides with the mean-field approximation, and that all

sample paths lie in a band around this deterministic approximation, even for a relatively small

market (n = 10). Figure 2a shows a typical overestimating case in which the l̃(t) converges to l∗

from above. The weighted fraction of dislikes peaks early since too many consumers are tempted to

purchase the product due to the high prior estimate. Here too the mean of the sample paths is very

close to the mean-field approximation, and all sample paths lie in a band around this deterministic
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approximation, even for a small market (n = 1). These simulations illustrate that learning is much

faster in the overestimating case, where the weighted fractions are close to their limits after less

than one time unit, versus about 50 in the underestimating case (note the different time scale in

both figures).

5 Static Price

In this section we study the effect of the price chosen by the monopolist on the social learning

process. We then proceed to solve the monopolist’s problem of choosing a price once and for all

in order to maximize her profits as given in (1). Following the analysis of the previous section,

the stochastic learning trajectory is replaced by its deterministic mean-field approximation. This

enables to solve an otherwise intractable problem. It is assumed that the monopolist knows the

true quality of the product, however the signal conveyed by the price is ignored (see discussion in

Subsection 2.2). Section 6 extends the results obtained here to the case of two prices.

5.1 Price and Speed of Learning

We begin by studying the effect of the price on the speed of learning. For a given price of the

product, define the ε-time-to-learn to be T̃ (ε) := min{t
∣∣ |l̃(t)/l∗ − 1| ≤ ε}. Recall that l̃(t) is the

fraction of consumers that like the product at time t weighted by the prior quality estimate, and l∗

is the fraction of likes once learning is achieved. Thus, T (ε) is the time to be ε away from learning

the true quality of the product, measured by fraction of consumers. Note that the first time to

see dislikes in the underestimating case is T = T̃ (φ0/(1 + φ0)). Denote the generalized failure rate

(henceforth GFR) by G(x) := xf(x)/F̄ (x), where f(x)/F̄ (x) is the failure rate. A distribution is

increasing (decreasing) GFR if G(x) is increasing (decreasing) in x (henceforth IGFR and DGFR,

respectively). The next proposition determines how the ε-time-to-learn changes with the price.

Proposition 5.1. The ε-time-to-learn is increasing in the price if either the prior underestimates

and F is IGFR or if the prior overestimates and F is DGFR. The ε-time-to-learn is decreasing in

the price if either the prior underestimates and F is DGFR or if the prior overestimates and F is

IGFR.

This proposition suggests that the effect of price on learning is controlled by the distribution

of quality preferences and by the relationship between the quality and its prior estimate. The

condition on the distribution of the quality preferences is related to its tail, as IGFR distributions

have faster decaying tails than Pareto distribution and DGFR have slower decaying tails than

Pareto distribution. These conditions determine the effect of price in this way. Suppose that
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q0 < q. Then, the social learning process starts with a fraction l0 of consumers who buy and like

the product and ends with a fraction l∗ > l0 of consumers who buy and like the product. Increasing

the price lowers both l0 and l∗. If the tail of the preference distribution decays fast, l0 decreases

faster than l∗ (in relative terms), so learning takes longer. Conversely, for a slow decaying tail, l∗

decreases faster than l0 and the conclusion is reversed. In the overestimating case l0 > l∗, and the

conclusions are reversed again; learning accelerates with price for fast decaying tails, and learning

decelerates with price for slow decaying tails.

Denote the revenue function by R(p, q) := pF̄ (p/q). This is the expected revenue extracted

from a single consumer who believes the quality of the product is q. In our setting IGFR (together

with limx→∞G(x) > 1) is a sufficient condition for R to be unimodal in price. Conversely, if F

is DGFR, then it is always beneficial to increase the price, and an optimal price does not exist.

Furthermore, if we think of F̄ (p/q) as the demand function, then G(p) is the price elasticity of

demand (see Lariviere (2006) for more details). As such, IFGR is a standard assumption in the

field of revenue management14, which in our case entails that the ε-time-to-learn increases with the

price in the underestimating case, and decreasing with the price in the overestimating case. This

condition is important for the two-prices problem of Section 6.

Suppose that we are interested only in the effect of the price on learning, and ignore its effect

on the revenue accumulation. Then the monopolist would like to speed up learning if consumers

initially underestimate the quality of the product, otherwise slowing down learning would be pre-

ferred. It follows from Proposition 5.1 that this can be achieved by lowering the price, i.e., learning

will slow down if consumers overestimate the quality, and learning will speed up if consumers un-

derestimate the quality. In the DGFR case, which is uncommon, increasing the price would achieve

this in both cases.

5.2 Optimal Static Price

With Proposition 4.4, the seller’s discounted revenues in (1) simplify to

π(p) = p

∫ ∞
0

e−δt F̄ (p/q̂(t))dt = p

∫ ∞
0

e−δt
[
(1 + φ0)l̃(t)− φ1d̃(t)

]
dt,

where for notational clarity we rescale time to make Λ̄ = 1. We denote by p∗ the price that

maximizes π in the interval [p, p̄], i.e., p∗ = arg maxp∈[p,p̄] π(p). The following assumption is common

in the literature.

Assumption 5.2. The revenue function, R(p, q), is unimodal in p for all q.

With this assumption we can define p(q) := maxp∈R+ R(p, q), which equates the marginal rev-

14It is satisfied by many distributions including exponential, uniform, normal, lognormal, and Pareto (weakly).
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enue function, R′(p, q), to zero. The following assumption focuses the pricing problem on the most

relevant cases.

Assumption 5.3. 1. The price interval is such that, p̄ ≥ max(p(q), p(q0)) and, 0 < p ≤
min(p(q), p(q0)).

2. In the underestimating case (q0 < q), F̄ (p/q0)(1 + φ0) ≤ F̄ (p/q) for all p ∈ [p, p̄].

Assumption 5.3.1 ensures that the price interval is not too small, so that prices that are likely

to be in the region of p∗ are included in the interval. Assumption 5.3.2 can be interpreted as a

condition on the difference between q and q0 in the underestimating case, as a condition on the

magnitude of correction of the self-selection, or as a condition on the price. In all three cases it

requires that learning does not occur immediately in the underestimating case. This restricts the

analysis to what we think is the interesting case.

We consider the first order conditions of the unconstrained optimization problem, and then

check that the conditions of Assumption 5.3 are not violated. For the underestimating case the

first order condition is

∂π(p)

∂p
= R′(p, q0)s1 +R′(p, q)s2 − [G(p/q0)−G(p/q)]s3 = 0, (15)

and for the overestimating case it is

∂π(p)

∂p
= R′(p, q0)h1 +R′(p, q)h2 = 0, (16)

where {sj}3j=1 and {hj}2j=1 are positive and depend on the learning trajectory and on the price

(see the proof of Proposition 5.4 for details). These first order conditions have the nice property

that they are a mixture of the marginal revenue functions under the prior estimate and under the

true quality. In addition, the underestimating case includes a third term whose sign depends on

whether the price speeds up or slows down learning. As {sj}3j=1 and {hj}2j=1 are non-analytical

integrals, obtaining a closed form for p∗ is not possible, even if the marginal revenue function, R′,

is invertible. It is, however, interesting to compare p∗ to the optimal price that would be charged if

the true quality were known upfront, and to the optimal price that would be charged if consumers

did not engage in social learning and consequently used only the prior estimate to make decisions.

Proposition 5.4. In the underestimating case p(q0) ≤ p∗ ≤ p(q), and in the overestimating case

p(q0) ≥ p∗ ≥ p(q).

This result follows from the first order conditions. Since

p ≤ min(p(q), p(q0)) ≤ p∗ ≤ max(p(q), p(q0)) ≤ p̄,
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the solution to the first order conditions does not violate Assumption 5.3, and this is also the

optimal solution to the constrained problem. The result is intuitive, in both the underestimating

and the overestimating cases consumers’ quality estimate goes from q0 to q over time. For each

estimated quality level along the way a price between p(q0) and p(q) will be optimal. The optimal

price that accounts for the dynamics of social learning remains in this interval. In Section 6 we will

show that when the monopolist has the freedom to choose more than one price, she may choose a

price that lies outside this interval to accelerate learning.

The static pricing problem is generally not concave, so computation may require a line search,

which Proposition 5.4 limits to a relatively small interval. Nevertheless, concavity holds under

certain conditions, as we show in the next lemma.

Proposition 5.5. Assume that the revenue function R(p, q) is concave in p and that F is IGFR,

then π(p) is concave for all p ∈ [p(q0), p(q)] in the underestimating case and p ∈ [p(q), p(q0)] in the

overestimating case.

It is not surprising that concavity of R with respect to price is necessary for concavity of π, as this

condition is necessary even if the quality was known.

6 Dynamic Pricing

Social learning implies a time varying demand process. As such, the ability to modify the price

over time is valuable. Indeed, it is common for sellers to modify the prices of their products in

proximity to their launching, for example by setting a low introductory price. Many factors and

considerations, either related or unrelated to social learning, can support such pricing strategies.

A few examples include learning-by-doing, demand estimation, seasonality, and endogenous timing

of the purchasing decision (consumers with high valuations purchase first). These considerations

may agree or conflict with the optimal price path we find here. We hope that future research will

highlight their interplay. For simplicity, we focus the analysis on one price change.

6.1 Optimal Price Path

Consider the case where the monopolist can adjust her price once. In this case the first price

has a dual role, in addition to extracting short term revenue, it controls the speed of the learning

process. Therefore, the monopolist may sacrifice revenue in the short run in order to push the

learning process in the desired direction.

The social learning procedure has to be adapted to account for the price change, since consumers’

reviews depend on the price they were charged. To see this, suppose that the price goes up at some
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point in time. A consumer that reported like before the price change may report dislike after the

price change, as the higher price decreases his net utility from purchase. Thus, we need to specify

the information consumers have post-change about the first price and the reviews made under

it. Given this information, the post-change decision rule has to be determined. The pre-change

decision rule and information structure follow that of the single price model.

We assume the information structure and decision rule that follows most naturally from the

static price model. At the time of the price change consumers aggregate all the information conveyed

by the reviews posted up to that point to a new prior quality estimate. After the price change,

consumers consider only reviews that were made post-change, which are weighted together with

the new prior quality estimate that aggregates the information from reviews made pre-change. In

addition, the fraction of dislikes, if different than zero, is reinterpreted based on the new price in a

way that keeps the normalized fraction of dislikes (d/l) unaffected by the price change. This will

give rise to two update equations that will determine the new prior estimates l1 and d1. Then at

the time of the price change, τ , the learning process would restart with a new single price, and with

(l1, d1) replacing (l0, d0) as prior estimates.

Denote by p0 and by p1 the first price and the second price, respectively. The social learning

process starts with p0 and evolves as described in Proposition 4.4 until time τ . For clarity of

notation we denote this process up to time τ by (l̃0(t), d̃0(t)). After τ the social learning process

restarts, this time with (l1, d1) as prior estimates that receive weight w + τ , corresponding to the

initial weight and to the mass of reviews that formed those estimates. The initial conditions for

(l̃1(t), d̃1(t)), the social learning trajectory after τ , are determined by these prior estimates (l1, d1).

Following (4) the estimated quality at time τ , without accounting for the self-selection bias, is

q̂0 := p0/F̄
−1(l̃0(τ)). This quality estimate is translated to l1 in this way,

l1 := F̄ (p1/q̂0) = F̄
(p1

p0
F̄−1(l̃0(τ))

)
. (17)

Consumers do not account for the self-selection bias here to avoid duplication, as it will be accounted

for in the decision rule. This equation reveals only part of the information about the system before

τ , since it does not take into account the fraction of dislikes, which is related to the magnitude of

the self-selection bias. To keep the normalized fraction of dislikes unaffected by the price change,

d1 is given by

d1 := l1
d̃0(τ)

l̃0(τ)
. (18)

With the specification of (l1, d1), the learning path after τ can be obtained similarly to Proposition
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4.4. The two-price profit function is then

π(p0, p1, τ) = p0

∫ τ

0
e−δt

[
(1 + φ0)l̃0(t)− φ1d̃0(t)

]
dt+ p1

∫ ∞
τ

e−δt
[
(1 + φ0)l̃1(t)− φ1d̃1(t)

]
dt. (19)

We focus on the underestimating case, since there learning is relatively slow and so the first price

may have a big impact on the learning process and consequently on the revenue. Recall that in

the underestimating case with a static price, T is the first time that dislikes start to appear, which

implies that learning was almost achieved (|l̃(T )−l∗| ≤ φ0 which is assumed to be small). Therefore,

if τ > T , setting p1 = p(q), the price that corresponds to the true quality, will be close to optimal,

which leaves two effective controls only. Denote by T̄ the first time that dislikes appear in the

two price case. We concentrate on the most interesting case where τ < T̄ , so that all controls are

effective. We call this the regular underestimating case.

Three regions comprise the learning trajectory in this case: the learning phase before τ , the

learning phase after τ and finally the post-learning phase. This is a natural extension to the static

price case, since if we take p0 = p1 = p the revenue and the learning process would be identical to

the ones in the static price case.

An inspection of the pricing problem after time τ reveals that this problem is identical to the

static price problem with prior quality q̂0 = p0/F̄ (l̃0(τ)) < q that receives weight w+τ . The optimal

choice of p0 balances between the short run revenue and its effect on the social learning process.

The second effect is summarized by q̂0, the estimated quality at the time of the price change. The

first price expedites learning if q̂0 is increasing in p0, and it delays learning if the converse holds.

This effect is summarized in the next lemma.

Lemma 6.1. The estimated quality at the time of the price change, q̂0, is decreasing (increasing)

in p0 if F is IGFR (DGFR).

This result complements Proposition 5.1 that shows the relationship between monotonicity of

the GFR and the effect of price on the speed of learning. The next proposition analyzes the optimal

price path.

Proposition 6.2. The revenue function of the regular underestimating case is

π(p0, p1, τ) = p0

∫ τ

0
e−δtl0

[
(1 + φ0)(

w + t

w
)φ0
]
dt+ p1

∫ T̄

τ
e−δtl1

[
(1 + φ0)(

w + t

w + τ
)φ0
]
dt

+ p1

∫ ∞
T̄

e−δtl∗1
[
1 + x∗ − x∗

(w + T

w + t

)1+φ1]
dt, (20)
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where l∗1 := F̄ (p1/q). Assume F is IGFR. Let p∗0, p∗1, and τ∗ be the optimal controls of the problem

max
p0,p1∈[p,p̄]

τ≤T̄

π(p0, p1, τ),

then p∗0 < p∗1 and p∗1 ∈ [p(q̂0), p(q)].

This result shows that an increasing price path is optimal when consumers underestimate the

quality of the product. By setting a lower price initially, the monopolist expedites social learning,

and consequently increases her revenue in later periods. The benefit from expediting social learning

can be so high that the monopolist would initially price below the optimal price corresponding to

the prior estimate, as will be shown in the next subsection.

6.2 Comparison of Pricing Strategies

In this subsection we numerically test the pricing strategies of Sections 5 and 6. We consider

the underestimating case of Figure 2b (expect that here w̄ = 250) with a demand rate of 1000

potential consumers per week. The two most important parameters in the pricing problem are the

monopolist’s discount factor and the error in consumers’ prior estimate relative to the true quality.

Considerations pertaining to social learning are more central to the pricing strategy the longer it

takes consumers to learn the true quality, relative to the monopolist’s discount rate of revenues.

Three different prior estimates, q0 ∈ {.35, .3, .25}, of the true quality q = .4 are considered,

for which learning is fast, medium, and slow, respectively. The monopolist is either patient, semi-

patient, or impatient, corresponding to annual discount rates of 5%, 10% and 25%. Nine different

cases in the intersection of these parameters are tested. For each one of them the optimal static

price, and the optimal two prices and switching time are computed. We also report T and T̄ that

are measures of the length of the learning phase in each of these cases. In addition, the revenues

of different pricing strategies are compared.

Table 1 shows that the optimal static price is decreasing in the patience of the monopolist,

and in the time it takes consumers to learn (or increases in q0). This is to be expected given the

discussion above. The optimal static price is always higher than the optimal first price in the two

prices case. The optimal second price in the two prices case is in all cases higher than the optimal

static price, and it is very close to ptrue = p(q) = .2. The low first price allows the monopolist to

speed up the learning process considerably in a very short time; the optimal switching time ranges

from half a week to less than two months. This allows the monopolists to choose a price that is

close to ptrue in the second stage to maximize revenues when consumers learn the true quality.

We report the percentage increase in revenues of the optimal static price over charging ptrue and
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static price two prices % increase in profits

p∗ T p∗0 p∗1 τ∗ T̄ static
true

static
prior

two
static

full
two

q0 = .35 0.20 1.81 0.18 0.20 0.50 1.30 0 2 0 0
q0 = .30 0.19 123.32 0.12 0.20 2.00 9.63 1 5 1 0

p
at

ie
n
t

q0 = .25 0.14 396.73 0.10 0.20 7.50 72.85 50 5 10 1

q0 = .35 0.20 1.80 0.18 0.20 0.50 1.31 0 2 0 0
q0 = .30 0.18 81.07 0.12 0.20 2.00 9.63 2 5 2 0

se
m

i-
p

at
ie

n
t

q0 = .25 0.14 230.62 0.10 0.19 7.50 61.44 52 3 12 1

q0 = .35 0.20 1.80 0.18 0.20 0.50 1.31 0 2 0 0
q0 = .30 0.17 37.84 0.11 0.20 1.00 8.12 5 4 3 1

im
-

p
a
ti

en
t

q0 = .25 0.13 138.65 0.10 0.19 7.50 52.30 56 1 13 3

Table 1: Comparison of pricing strategies and revenues.

pprior = p(q0) = q0/2, see static
true and static

prior in the table, respectively. In the patient case and when

the prior estimate is close to the true quality, the static price wins the monopolist a few percentage

points over these suboptimal prices. If, however, learning takes a long time, the improvement over

ptrue is at least 50%, even for the patient monopolist. This sharp increase is due to the nonlinearity

of the time-to-learn with respect to the prior estimate. In the cases where learning is slow, the

two-prices strategy performs at least 10% better than the static price, see two
static in the table. In

other cases the improvement is smaller to nonexistent.

Lastly, we compare the performance of the two-prices strategy against the full information case,

a scenario when consumers know the true quality, and it is optimal to charge ptrue, see full
two in the

table. Interestingly, the two-prices strategy recovers almost all the revenue of the full information

case, with a loss of 3% at most. We can think of this quantity as the cost to the monopolist of

the underestimation in consumers’ prior estimate. By accounting for this in designing the pricing

strategy, the monopolist is able to recover almost the entire loss, even with two prices only.

7 Conclusions

Motivated by the increasing importance of social review systems in consumers’ decisions, this

paper introduces a model of social learning. The contribution of this paper is a social learning model

with heterogeneous preferences, whose asymptotic learning properties and learning dynamics are

characterized. This is achieved by a fluid model that bridges the literatures on social learning

and on social dynamics. We hope that this framework will be used to study other social learning

dynamics in settings with many agents. Our analysis of the pricing problems contributes to the

relatively sparse literature in pricing and social learning by: (a) deriving a crisp characterization of
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the relationship between the price and the speed of learning, (b) deriving structural results for the

optimal pricing strategies with one and two prices, (c) evaluating the performance of these pricing

strategies in numerical experiments.

The assumption that consumers observe predecessors that chose not to purchase the product is

perhaps the most limiting assumption in the model. We discuss one approach to relax it in Section

2. We conjecture that it could also be done by including more informative reviews. This would

enable consumers to learn something about the predecessor’s private quality preference.

Several interesting directions of future analysis arise. One natural extension concerns endoge-

nous timing of the purchasing decision. Naturally, consumers who elect to postpone the purchasing

decision will observe more information, yet waiting might be costly. It would be interesting to

introduce this new dimension to the consumers decision rule. Another possible extension would

consider a joint learning framework, where consumers learn the quality of the product and the

monopolist learns the distribution of preference parameters. This is related to the literature in rev-

enue management that balances demand estimation and revenue extraction. In addition, one could

consider the role of price as a signal for the quality. This would be more naturally implemented in

a Bayesian setting.
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A Proofs

A.1 Preliminaries

The following notation will be used in several proofs. Denote by θ = (l, d) ∈ [0, 1]2. With some

abuse of notation, define

lw(θ) := proj[l,l̄](l), (21)

dw(θ) := proj[d,d̄](d), and (22)

l̂(θ) := proj[l,l̄]
(
lw(θ)(1 + φ(dw(θ)/lw(θ)))

)
. (23)

which are to the weighted fractions of likes and dislikes, and the corresponding probability that a

consumer will purchase the product. It is also useful to define the equivalent with i consumers,

lw(θ, i) := lw
(
((wl0 + il)/(w + i)

)
, (24)

dw(θ, i) := dw
(
id/(w + i)

)
, and (25)

l̂(θ, i) := proj[l,l̄]
(
lw(θ, i)(1 + φ(dw(θ, i)/lw(θ, i)))

)
. (26)

Throughout this appendix for a vector x = (x1, . . . , xk) we denote by |x| = ‖x‖1 =
∑k

j=1 |xj |,
and for a univariate function x(t) we denote by x′(t) the derivative with respect the variable t.

To reduce the notational burden we rescale time such that Λ = Λ̄ = 1. The first lemma is used

repeatedly in different proofs.
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Lemma A.1. 1. |min(x, y)−min(z, y)| ≤ |x− y| and |max(x, y)−max(z, y)| ≤ |x− z|.

2. There exist a Γ̂ <∞ such that |l̂(θ)− l̂(θ′)| ≤ Γ̂|θ − θ′|.

3. For x1, x2, y1, y2 ≥ 0 and z > 0,∣∣∣ x1

z + x1 + y1
− x2

z + x2 + y2

∣∣∣ ≤ 1

z
[|x1 − x2|+ |y1 − y2|].

Proof. 1. Minimum operator: If x, z = y or x, z ≤ y this holds trivially. If x ≤ y and z ≥ y then

|min(x, y)−min(z, y)| = |x− y| = y − x ≤ z − x = |x− z|. For the maximum operator take

−x, −y, and −z.

2. Let θ = (l, d) and θ′ = (l′, d′). From the triangular inequality, and from Lemma A.1.1,

|φ(dw(θ)/lw(θ)− φ(dw(θ′)/lw(θ′))| ≤ φ1|dw(θ)/lw(θ)− dw(θ′)/lw(θ′)|

= φ1|dw(θ)lw(θ′)− dw(θ′)lw(θ)|/lw(θ)lw(θ′)

≤ (φ1/l
2)|dw(θ)lw(θ′)− (dw(θ′)− dw(θ) + dw(θ))lw(θ)|

≤ (φ1/l
2)d̄|lw(θ′)− lw(θ)|+ 1

l2
l̄|dw(θ′)− d2(θ)|

≤ (φ1 max(d̄, l̄)/l2)|θ − θ′|.

Now,

|l̂(θ)− l̂(θ′)| ≤ |lw(θ)− lw(θ′)|+ lw(θ)|φ(dw(θ)/lw(θ)− φ(dw(θ′)/lw(θ′))|

+ φ(dw(θ′)/lw(θ′))|lw(θ)− lw(θ′)|

≤ (1 + φ0)|l − l′|+ (φ1 max(d̄, l̄)/l2)|θ − θ′|

≤ Γ̂|θ − θ′|,

where the first inequality follows from the triangular inequality, and the second follows from

Lemma A.1.1, |φ(x)| ≤ φ0 and Γ̂ := 1 + φ0 + φ1 max(d̄, l̄)/l2.

3. From the triangular inequality,∣∣∣ x1

z + x1 + y1
− x2

z + x2 + y2

∣∣∣ ≤ ∣∣∣ x1

z + x1 + y1
− x1

z + x1 + y2

∣∣∣+
∣∣∣ x1

z + x1 + y2
− x2

z + x2 + y2

∣∣∣
=

x1

w + x1 + y1

∣∣∣ y1 − y2

w + x1 + y2

∣∣∣+
w + y2

w + x1 + y2

∣∣∣ x1 − x2

w + x2 + y2

∣∣∣
≤ 1

w
[|x1 − x2|+ |y1 − y2|].
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A.2 Proofs

Proof of Proposition 3.2. The proof relays on the derivation of the probability of reporting a liking

review in (5). For convenience suppose l = 0, l̄ = 1 and l0 < l∗. Then,

E[l(i+ 1)] = E[E[l(i+ 1)|l(i)]]

=
1

i+ 1
E[il(i) + E[1{ri+1 = rl}|l(i)]]

=
1

i+ 1
E[il(i) + min(l∗, (wl0 + il(i))/(w + i))]

≤ 1

i+ 1
E[il(i) + (wl0 + il(i))/(w + i)],

where the third inequality follows by assumption and by (5). Note that E[l(1)] = l0 (recall l(0) = 0).

It follows that

E[l(2)] =
1

2
E[l(1) + (wl0 + l(1))/(w + 1)] = l0

and by iterating this further we get E[l(i)] = l0 for all i ≥ 1. Since l0 < l∗ and l(i) ∈ [0, 1] this

completes the proof, since if l(i) → l∗ then the mean would have converged to l∗ as well. We

comment that for large i the weight of l0 vanishes over i, so with positive probability l(i) < l∗ even

for l0 > l∗ and the result follows. Similarly, the assumption on l and l̄ can be removed.

Lemma A.2 (Theorem 2.3. of Kushner and Yin (2003)). Let {θ(i) : i ≥ 0} in H =
∏r
j=1[aj , bj ]

be a multivariate stochastic process satisfying,

θ(i+ i) = θ(i) + εiY (i), (27)

where Y (i) = M(i) + β(i) + g(θi, i) is composed of a martingale difference noise M(i) = Y (i) −
E[Y (i)|θ0, Y (j), j < i], a random variable β(i), and a measurable function of g(·, i). Assume that,

1.
∑

i E|Y (i)|2 <∞.

2. g(·, i) are continuous uniformly in i, and for each θ ∈ H

lim
i→∞

∥∥∥m(ti+t)∑
j=i

(g(θ, j)− g(θ))/(j + 1)
∥∥∥

2
= 0, (28)

where m(x) := {i|ti ≤ t < ti+1}.

3. εi ≥ 0,
∑

i εi =∞, and
∑

i ε
2
i <∞.

4. β(i)→ 0 w.p. 1.
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If AH ⊂ H is locally asymptotically stable in the sense of Lyapunov for ODE θ̇(t) := ∂θ(t)/∂t =

g(θ(t)) and θ(i) is in some compact set in the domain of attraction of AH infinitely often with

probability at least ν, then θ(i)→ AH with at least probability ν.

Proof of Proposition 3.6. We begin by proving the second statement of the proposition. Note that

x∗ = φ0/(1 + φ1). Fix ε > 0 and choose φ1 > (−1 + φ0/ε)
+.

The proof of the first statement relays on Kushner and Yin (2003, Theorem 2.3, Chapter 5),

which is repeated for convenience in Lemma A.2. We start by writing the processes l(i) and d(i) as

iterative processes with martingale difference noise and a drift term. Then we use the theorem to

show that these processes converge to a set containing solutions of a certain ODE. We characterize

the unique solution of this ODE on the subset C = {(l, d) ∈ [0, 1]2
∣∣ l + d ≤ 1} using a Lyapunov

function. For reference on stability of autonomous systems (Lyapunov theorem) see Khalil (2002).

We consider the basic network first and then comment on the random network case.

Denote by θ(i) = (l(i), d(i)) ∈ [0, 1]2 the state of the system. If follows that,

l(i+ 1) = l(i) +
1

i+ 1
δM1(i) +

1

i+ 1
g1(θ(i), i), (29)

where δM1(i) := 1{ri+1 = rl} − E[1{ri+1 = rl}|θ(i)] is a martingale difference noise, and

g1(θ, i) : = E[1{ri+1 = rl}|θ(i)]− l = min(l∗, l̂(θ, i))− l, (30)

by (2) and (5). Similarly,

d(i+ 1) = d(i) +
1

i+ 1
δM2(i) +

1

i+ 1
g2(θ(i), i), (31)

where δM2(i) := 1{ri+1 = rd} − E[1{ri+1 = rd}|θ(i)] is a martingale difference noise, and

g2(θ, i) : = E[1{ri+1 = rd}|θ(i)]− d = (l̂(θ, i)− l∗)+ − d (32)

by (3) and (6). It is convenient to use the notation of Kushner and Yin (2003), Yj(i) = gj(θ(i), i) +

δMj(i) for j ∈ {1, 2} with the vector notation Y (i) = (Y1(i), Y2(i)), g(θ, i) = (g1(θ, i), g2(θ, i), and

δM(i) = (δM1(i), δM2(i)). A close inspection of the drift functions g(θ, i) shows that they converge

to a function g(θ) that govern the drift of the process in the limit as i→∞. Thus, we define

g(θ) =

g1(θ)

g2(θ)

 =

min(l∗, l̂(θ))− l
(l̂(θ)− l∗)+ − d

 . (33)

We now verify the conditions of the theorem:
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1. supi E|Y (i)|2 ≤ 4 <∞ since |g(·; i)| < 1 and |δM | ≤ 1.

2. E[Y (i)|θ(i)] = g(θ, i) by construction of the martingale difference noise.

3. g(θ) is continuous since φ is continuous and l > 0 (Assumptions 3.4 and 3.3).

4.
∑

i≥1
1
i+1 =∞ and

∑
i≥1( 1

i+1)2 <∞.

5. Lemma A.3 will show that,

lim
i→∞

∥∥∥m(ti+t)∑
j=i

(g(θ, j)− g(θ))/(j + 1)
∥∥∥

2
= 0, (34)

where m(x) := {i|ti ≤ t < ti+1}.

We apply Theorem 2.3 of Kushner and Yin (2003) to conclude that θ(i) converges almost surely to

the set of limit trajectories of the mean limit ODE,

θ̇ = g(θ). (35)

Denote by A the set of solutions to (35). Therefore, we need to show that A = {θ∗}, where

θ∗ := (l∗, d∗).

Define the candidate Lyaponuv function,

V (θ) = B
1

2
(l − l∗)2 +K

1

2
(d− x∗l + z∗)2,

where B := 1+B2
1 +K(1+φ0) with B1 :=

(
l∗(1+x∗)−l(1+φ1)

)
/
(
(1+x∗)2(l∗−l)

)
, K := 4/(1+x∗)2,

and z∗ := ((1 + x∗)l∗− l̄)+. In the reminder of the proof assume that d∗ is interior, so that z∗ = 0,

i.e., assume

l∗(1 + x∗) ≤ l̄.

The boundary case with z∗ > 0 follows immediately. The gradient of V is,

∇V (θ) =
(
B(l − l∗)− x∗K(d− x∗l),K(d− x∗l)

)
.

We show that V̇ (θ) = ∇V (θ)>g(θ) < 0 for every θ ∈ C and V̇ (θ∗) = 0. This will verify that θ∗ is

the unique solution of (35) in C by the theorem of Lyapunov. We consider the cases l̂(θ) ≥ l∗ and

l̂(θ) < l∗ for which

g(θ) =

(l∗ − l, l̂(θ)− l∗ − d), if l̂(θ) ≥ l∗

(l̂(θ)− l,−d), if l̂(θ) < l∗.
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Case a: l̂(θ) ≥ l∗.

V̇ (θ) = −B(l∗ − l)2 − x∗K(d− x∗l)(l∗ − l) +K(d− x∗l)(l̂(θ)− l∗ − d)

= −B(l∗ − l)2 −K(d− x∗l)2 −K(d− x∗l)(l∗(1 + x∗)− l̂(θ)).

Since the first two terms are non-positive, we focus the attention on the third term.

Case a.1: d ≤ x∗l. Suppose l ≤ l̄. Then φ(dw(θ)/lw(θ)) ≥ x∗. If l(1 + x∗) ≤ l̄, then the third

term is −K(d− x∗l)(l∗(1 + x∗)− l̂(θ)) < −(1 + x∗)K(d− x∗l)(l∗− l) = −2
√
K(d− x∗l)(l∗− l), and

V̇ (θ) < −(l∗ − l + K(d − x∗l))2 − (B − 1)(l∗ − l)2 < 0 with equality only if θ = θ∗. If, however,

l(1 + x∗) > l̄, then the third term is −K(d− x∗l)(l∗(1 + x∗)− l̂(θ)) ≤ −K(d− x∗l)(l∗(1 + x∗)− l̄),
which is negative by assumption that d∗ is interior.

Suppose l > l̄ then the third term is −K(d− x∗l)(l∗(1 + x∗)− l̄) which is again nonpositive by

assumption that d∗ is interior.

Case a.2: d > x∗l. Suppose d ≤ d̄ and l ≥ l. Then, φ(dw(θ)/lw(θ)) < x∗. The third term is

−K(d− x∗l)
(
l∗(1 + x∗)− l̂(θ)

)
< −K(d− x∗l)

(
l∗(1 + x∗)− proj[l,l̄](l(1 + x∗))

)
< −(1 + x∗)K(d− x∗l)(l∗ − l),

and we can again complete a sum of perfect squares to show V̇ (θ) < 0.

Suppose l < l (this includes the case d > d̄ since l + d ≤ 1). The third term is less than

−(1 +x∗)K(d−x∗l)(l∗− l(1 +φ0)/(1 +x∗)) ≤ −(1 +x∗)KB1(d−x∗l)(l∗− l) < −(1 +x∗)KB1(d−
x∗l)(l∗ − l), and the a perfect square can be completed to show V̇ (θ) < 0.

Case b: l̂(θ) < l∗. This implies l < l∗ < l̄ since l̂(θ) ≥ l for all θ. Therefore, the time derivative

of V is

V̇ (θ) = B(l − l∗)(−l̂(θ) + l)−K(d− x∗l)(x∗ l̂(θ)− x∗l + d).

Note that the first term is nonpositive.

Case b.1: d ≥ x∗l. Here V̇ (θ) < 0, since l̂(θ) ≥ l for all l ≤ l̄.
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Case b.2: d < x∗l.

V̇ (θ) < B(l − l∗)(l̂(θ)− l)−K(x∗l)(x∗ l̂(θ))

≤ −x∗l
(
B(l̂(θ)− l)−Kx∗ l̂(θ)

)
≤ x∗l

(
B(max(l, l)(1 + x∗)− l)−Kx∗max(l, l)(1 + φ0)

)
≤ (x∗)2lmax(l, l)

(
B −K(1 + φ0)

)
< 0,

where the first inequality follows from −K(d − x∗l)2 < 0 and −Kdx∗ l̂(θ) < 0. To see the second

inequality note that since l ≤ l̄ we have φ(dw(θ)/lw(θ)) ≥ φ(d/l) > x∗. So, l∗ > l̂(θ) ≥ l(1 + x∗),

and l − l∗ > −x∗l. The third inequality follows from the same inequality, from l < l̄ and from

φ ≤ φ0. The last step follows by construction of B and K.

We conclude that in all cases V̇ (θ) < 0 for θ ∈ C expect for V̇ (θ∗) = 0. Therefore, A = {θ∗} is

locally asymptotically stable for θ ∈ C. Since C is visited infinitely often w.p.1 θ(i)→ θ∗ w.p.1.

Random network. When consumers sample predecessors the proof has to be modified to account

for the randomness in consumers’ observations. Given θ(i) and i, define by Ls(i), Ds(i), Os(i) the

number of likes, dislikes, and no-purchases observed by consumer i. Note that Ls(i) is a binomial

random variable with probability ρi and L(i) trials (analogously for dislikes and no-purchases).

Denote by ls(i) = Ls(i)/Ss(i) and by ds(i) := Ds(i)/Ss(i) the sampled fraction of likes and of

dislikes, respectively, where Ss(i) = Ls(i) +Ds(i) +Os(i) (take ls(i) = ds(i) = 0 if no predecessor

is sampled). Define the shorthand notation θs(i) = (ls(i), ds(i)). By (5),

E
[
1{ri+1 = rl}|θ(i)

]
= E

[
E
[
1{ri+1 = rl}|Ls(i), Ds(i), Os(i)

]
|θ(i)

]
= E

[
min(l∗, l̂(θs(i), i)|θ(i)

]
,

and similarly for dislikes,

E
[
1{ri+1 = rd}|θ(i)

]
= E

[
(l̂(θs(i)− l∗)+|θ(i)

]
.

We modify (29) and (31) to account for the random samples,

θ(i+ 1) = θ(i) +
1

i+ 1
δM(i) + β(i) +

1

i+ 1
g(θ(i); i),
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where

β(i) =

β1(i)

β2(i)

 :=

E[1{ri+1 = rl}|θ(i)]−min(l∗, l̂(θ(i)))

E[1{ri+1 = rd}|θ(i)]− (l̂(θ(i))− l∗)+

 .
In other words β1(i) is the difference between the probability that consumer i will like the product

in the random network, and the probability that consumer i will like the product in the basic

network, and analogously β2(i) is the difference in probabilities of a dislike under the different

networks. By Kushner and Yin (2003, Theorem 2.3, Chapter 5) it suffices to show that βj(i)→ 0

for j = 1, 2 to conclude that θ(i) → θ∗. Under Assumption 3.5 it can be shown that the sampled

fractions of likes and dislikes are close to their corresponding fractions in the population for large

i. Coupled with the Lipschitz continuity of l̂ (Lemma A.1.2), it can be shown that β → 0 almost

surely.

Lemma A.3. Let g(θ) = (g1(θ), g2(θ)) and g(θ, i) = (g1(θ, i), g2(θ, i)) as defined in (30),(32), and

(33). The following holds for every θ ∈ [0, 1]2, and every t > 0,

lim
i→∞

∥∥∥m(ti+t)∑
j=i

(g(θ, j)− g(θ))/(j + 1)
∥∥∥

2
= 0, (36)

where m(x) := {i|ti ≤ t < ti+1}.

Proof. Note that

g(θ, i) = g

(
wl0 + il

w + i
,
id

w + i

)
.

It follows that,∣∣∣∣g1(θ, i)− g1(θ)

∣∣∣∣ =

∣∣∣∣min

(
l∗, l̂
(
wl0 + il

w + i
,
id

w + i

))
− l −min(l∗, l̂(θ) + l

∣∣∣∣
≤ Γ̂

[∣∣∣∣wl0 + il

w + i
− l
∣∣∣∣+

∣∣∣∣ id

w + i
− d
∣∣∣∣]

≤ 2Γ̂
w

w + i
,

where the first inequality follows from Lemma A.1.2, and the second inequality from 0 ≤ d, l0, l ≤ 1.
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Similarly, we conclude that |g2(θ; i)− g2(θ)| ≤ 2Γ̂/(w + i), and

∥∥∥m(ti+t)∑
j=i

(g(θ, j)− g(θ))/(j + 1)
∥∥∥

2
≤
∞∑
j=i

∥∥∥g(θ, j)− g(θ)
∥∥∥

2
/(j + 1)

≤ 2Γ̂

∞∑
j=i

1

(w + j)(1 + j)

≤ 2Γ̂
∞∑
j=i

1

(min(w, 1) + j)2

≤ 2Γ̂
1

w − 1 + i
,

where the first inequality follows from the triangular inequality, and the last inequality follows from

an integral bound.

Lemma A.4 (Theorem 2.2 of Kurtz (1977/78)). Let X̄n(t) be a Markov chain with state space

{k/n|k ∈ Zv} for n ≥ 1. Assume there exist nonnegative functions γ and {γn}n≥1 from Rv to Rv

such that for each x, y ∈ Rv,

γn(x) ≤ Γ1(1 + |x|), (37)

|γn(x)− γ(x)| ≤ Γ2

n
(1 + |x|), (38)

and,

|γ(x)− γ(y)| ≤ Γ3|x− y|, (39)

for some finite positive constants Γ1, Γ2, and Γ3. Further assume that X̄(t) satisfies,

X̄n(t) = X̄n(0) +N

(∫ t

0
γn(X̄n(s))ds

)
/n, (40)

where N is a vector of v independent Poisson processes with rate 1, X̄n(0) is independent of N ,

and X̄n(0)→ X̄(0). Then for every t̄ > 0,

lim
n→∞

sup
0≤t≤t̄

|X̄n(t)− X̄(t)| = 0,

where X̄(t) is the deterministic limit,

X̄(t) = X̄(0) +

∫ t

0
γ(X̄(s))ds.
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Proof of Proposition 4.1. We verify the conditions of Lemma A.4 for the basic network. Since

Xn(t) ∈ Z3
+, X̄n(t) = Xn(t)/n ∈ {k/n|k ∈ Z3

+}. The integral form of X̄n(t) in (40) follows from

Poisson arrivals and Poisson thinning. For example, L̄n(t) can be written in the form,

L̄n(t) =

∫ t

0
1{rs = rl|X̄n(s)}dAn(s)/n

= N

(∫ t

0
P(rs = rl|X̄n(s))ds

)
/n

= N

(∫ t

0
γl(X̄n(s))ds

)
/n,

where An is a Poisson process with rate n and, with some abuse of notation, rs is a review given by a

consumer arriving at time s. The second equality follows from splitting the Poisson process to likes,

dislikes, and outside options, based on the probability that an arriving consumer would submit each

type of review, which depends on his quality preference and on his observable information X̄n(s).

The property of Poisson processes known as Poisson thinning guarantees that the process that

counts only those consumers who like the product is still Poisson with rate proportional to the

probability of liking the product. Similarly, this can be shown for Dn(t) and On(t). Condition (37)

holds for Γ1 = 1 since γs are probabilities for s = l, d, o, hence 0 ≤ γ ≤ 1. Condition (38) holds

since γn = γ (see (8)). We derive condition (39) for γl,

|γl(X̄1)− γl(X̄2)| ≤
∣∣∣∣l̂( w̄l0 + L̄1

w̄ + S̄1
,

D̄1

w̄ + S̄1

)
− l̂
(
w̄l0 + L̄2

w̄ + S̄2
,

D̄2

w̄ + S̄2

)∣∣∣∣
≤ Γ̂

[∣∣∣∣ w̄l0 + L̄1

w̄ + S̄1
− w̄l0 + L̄2

w̄ + S̄2

∣∣∣∣+

∣∣∣∣ D̄1

w̄ + S̄1
− D̄2

w̄ + S̄2

∣∣∣∣
]

≤ Γ̂

[
wl0

∣∣∣∣ 1

w̄ + S̄1
− 1

w̄ + S̄2

∣∣∣∣+

∣∣∣∣ L̄1

w̄ + S̄1
− L̄2

w̄ + S̄2

∣∣∣∣+

∣∣∣∣ D̄1

w̄ + S̄1
− D̄2

w̄ + S̄2

∣∣∣∣
]

≤ Γ̂

[
|S̄1 − S̄2|+

1

w̄

[
|L̄1 − L̄2|+ |D̄1 + Ō1 − D̄2 − Ō2|

+ |D̄1 − D̄2|+ |L̄1 + Ō1 − L̄2 − Ō2|
]]

≤ (w̄ + 2)

w̄
Γ̂
[
|X̄1 − X̄2|

]
,

where the first and second inequalities follow from Lemmas A.1.1-2, the third and last inequalities

follow from the triangular inequality, and the forth inequality follows from Lemma A.1.3 since

S̄j = L̄j + D̄j + Ōj for j = 1, 2. Similarly, one can show that γd and γo are Lipschitz continuous

(recall that γl(X̄) + γd(X̄) + γo(X̄) = 1). Finally, in our case X̄n(0) = 0 for all n ≥ 1, which

completes the proof for the basic network case.
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Proof of Proposition 4.2. We first do this for the case where l̃(t) ∈ [l, l̄] and d̃(t) ∈ [d, d̄] for all

t ≥ 0, so that some of the projections can be omitted. Then we show that the solution remains in

C := [l, l̄]× [d, d̄]. When the projections are dropped

˙̃
l(t) =

L̄′(t)
w̄ + Λ̄t

− Λ̄

w̄ + tΛ̄

w̄l0 + L̄(t)

w̄ + Λ̄t

=
Λ̄

w̄ + Λ̄t

[
γl(X̄(t))− l̃(t)

]
=

Λ̄

w̄ + Λ̄t

[
min(l∗, l̂(t))− l̃(t)

]
,

where L̄′(t) = γl(X̄(t)) follows from (9). The derivative exists almost everywhere since X̄(t) is

absolutely continuous and thus so is L̄(t). To see this observe that
∣∣X̄(t)− X̄(s)

∣∣ ≤ Λ̄
∣∣t− s∣∣ since

0 ≤ γ ≤ 1. The initial condition is l̃(0) = l0 since L̄(0) = 0. Similarly,

˙̃
d(t) =

Λ̄

w̄ + Λ̄t

[
(l̂(t)− l∗)+ − d̃(t)

]
by substituting for the definition of γd with initial condition d̃(0) = 0 since D̄(0) = 0. It remains

to show that (l̃(t), d̃(t)), as defined by these ODEs, remains in C for all t ≥ 0. First note that the

initial conditions are in C. In addition that for l̃(t) ≥ l∗, ˙̃
l(t) ≤ 0, for l̃(t) < l∗, ˙̃

l(t) ≥ 0. Finally,

l̃ is continuous and converges to l∗ ∈ C, which shows that l̃(t) ∈ [l, l̄] for all t ≥ 0. Moreover,

0 ≤ d̃(t) ≤ 1− l̃(t) ≤ 1− l = d̄, which completes the proof.

Proof of Proposition 4.4. If l0(1 + φ0) < l∗ then
˙̃
d(0) =

(
(l0(1 + φ0) − l∗)+ − d̃(0)

)
/w = 0 and

subsequently d̃(t) = 0 for t small. Therefore, for small t,
˙̃
l(t) = l̃(t)φ0/(w + t) with the solution

l̃(t) = l0((w + t)/w)φ0 . At time T (see (13)) this is no longer the case since l̃(T )(1 + φ0) = l∗, and

dislikes appear for the first time. We first guess that after time T l̄ ≥ l̃(t)(1 + φ(d̃(t)/l̃(t))) ≥ l∗

and then check that is indeed the case. This is a system of first order nonhomogeneous liner ODE

and the solution is given in (12). It is then easy to check that indeed l̄ ≥ l̃(t)(1 +φ(d̃(t)/l̃(t))) ≥ l∗.

If l0(1 + φ0) < l∗ then
˙̃
d(0) > 0. We guess that l̄ ≥ l̃(t)(1 + φ(d̃(t)/l̃(t))) ≥ l∗, solve the system

of ODEs and verify that the condition holds.

Proof of Proposition 5.4. Consider the first order conditions (15) and (16) with

s1 :=

∫ T

0
(1 + φ0)e−δt

(w + t

w

)φ0
dt,

s2 :=

∫ ∞
T

e−δt
[
1 + x∗ − x∗

(w + T

w + t

)1+φ1]
dt,
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s3 := F̄ (p/q)

∫ ∞
T

e−δt
(w + T

w + t

)1+φ1
dt,

h1 :=

∫ ∞
0

e−δt(1 + φ0)
(w + t

w

)−1−φ1
dt,

and

h2 :=

∫ ∞
0

e−δt(1 + x∗)
(

1−
(w + t

w

)−1−φ1)
dt.

The derivation of {sj}3j=1 follows by substituting for T , and ∂T/∂p.

First we show that q < q′ implies p(q) ≤ p(q′). Take q < q′ and assume by contradiction

p(q) > p(q′). Note that R′(p, q) = F̄ (p/q) + (p/q)f(p/q). By unimodality, 0 > R′(p(q), q′) =

R′(p(q)q/q′, q) > R′(p(q), q) = 0, where the second inequality follows from p(q)q/q′ < p(q). This is

a contradiction, hence p(q) ≤ p(q′).

In the overestimating case, R′(p′, q0) and R′(p′, q) are both positive for all p′ < p(q), and are

both negative for all p′ > p(q0). Since h1 > 0 and h2 > 0, we conclude that the optimal price must

lie in the specified interval. In the underestimating case for p′ < p(q0) we have

∂π(p)

∂p

∣∣∣∣∣
p=p′

= R′(p′, q0)s1 +R′(p′, q)s2 + F̄ (p/q)[r(p/q0)− r(p/q)])s3

>
[
R′(p′, q)− F (p/q)[G(p/q0)−G(p/q)]

][
s2 − s3

]
≥
[
R′(p′, q)− F (p/q)[1−G(p/q)]

][
s2 − s3

]
= 0,

where the first inequality follows since R′(p′, q0) > 0, which also implies that G(p′/q0) < 1. This

together with the fact that s2 ≥ s3 justifies the second inequality. For p′ > p(q)

∂π(p)

∂p

∣∣∣∣∣
p=p′

<
[
R′(p′, q)− F (p/q)[G(p/q0)−G(p/q)]

][
s2 − s3

]
≤
[
R′(p′, q)− F (p/q)[1− r(p/q)]

][
s2(t)− s3(t)

]
= 0,

where the first inequality follows since R′(p′, q0) < 0, which also implies that G(p′/q0) > 1, and that

justifies the second inequality. Therefore, in this case too, the optimal price lies in the specified

interval. Since p ≤ min(p(q), p(q0)) ≤ p∗ ≤ max(p(q), p(q0)) ≤ p̄, the global optimum is also the

local optimum in the specified price interval.

Proof of Lemma 5.5. Denote by R′′(p, q) := ∂2/∂p2R(p, q) = −2f(p/q)/q − f ′(p/q)p/q2, which is

45



nonpositive by assumption. In the overestimating case

∂2π(p)

∂p2
= R′′(p, q0)h1 +R′′(p, q)h2 < 0,

since h1, h2 > 0. In the underestimating case,

∂2π(p)

∂p2
= R′′(p, q0)s1 +R′′(p, q)s2

+
[
f(p/q)G(p/q0)/q − F̄ (p/q)G′(p/q0)/q0 + f(p/q)/q + f ′(p, q)p/q2

]
s3(t)

+

∫ ∞
T

e−δt
[
− x∗R′(p, q)− F̄ (p/q)[G(p/q0)−G(p/q)]

]∂T
∂p

(1 + φ1)
(w + T )φ2

(w + t)1+φ1
dt

+ e−δT
[
R′(p, q0)F̄ (p/q)/F̄ (p/q0)−R′(p, q) + F̄ (p/q)G(p/q0)− (p/q)f(p/q)

]
≤
[
R′′(p, q) + f(p/q)G(p/q0)/q − F̄ (p/q)G′(p/q0)/q0 + f(p/q)/q + f ′(p, q)p/q2

]
s3(t),

where the first equality follows by substituting for T in s2 and s3, and G′(x) = dG(x)/dx. The

inequality follows from nonpositivity of R′′, the fact that s2 > s3 ≥ 0, from nonnegativity of ∂T/∂p

under IGFR, and from the fact the last term after the equality equals zero. It suffices to focus on

the terms in brackets,

R′′(p, q) + f(p/q)G(p/q0)/q − F̄ (p/q)G′(p/q0)/q0 + f(p/q)/q + f ′(p, q)p/q2

= −f(p/q)/q + f(p/q)G(p/q0)/q − F̄ (p/q)G′(p/q0)/q0

≤ f(p/q)/q
[
− 1 +G(p/q0)−G′(p/q0)p/q0

]
= f(p/q)/q

[
− 1 +G(p/q0)− p/q0

f(p/q0) + (p/q0)f ′(p/q0)

F̄ (p/q0)
− (G(p/q0))2

]
≤ f(p/q)/q

[
− 1 +G(p/q0) +G(p/q0)− (G(p/q0))2

]
= −f(p/q)/q

[
G(p/q0)− 1

]2

≤ 0,

where the first inequality follows from G′ ≥ 0 by assumption IGFR and since R′(p, q) = F̄ (p/q)−
(p/q)f(p/q) ≥ 0 since p ∈ [p(q0), p(q)] by assumption. The second equality follows by substituting

for G′(p/q0), and the second inequality follows from concavity, −f(p/q0)−(p/q0)f ′(p/q0) ≤ f(p/q0).

Proof of Lemma 6.1. Note that,

∂F̄−1(l̃0(τ))

∂p0
=

f(p0/q0)/q0

f(F̄−1(l̃0(τ)))

(
w + t

w

)φ0
,
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since whenever a function, h, and its inverse are differentiable, dh−1(x)/dx = −1/h′(h−1(x)).

Therefore,

∂q̂0

∂p0
= C(p0)

[
F̄−1(l̃0(τ))f(F̄−1(l̃0(τ)))− f(p0/q0)(p0/q0)

(w + t

w

)φ0]
= C(p0)

[
F̄ (F̄−1(l̃0(τ)))G(F̄−1(l̃0(τ)))− F̄ (p0/q0)

(w + t

w

)φ0G(p0/q0)
]

= C(p0)l̃0(τ)
[
G(F̄−1(l̃0(τ)))−G(p0/q0)

]
,

where C(p0) = (F̄−1(l̃0(τ)))−2/f(F̄−1(l̃0(τ))) > 0, and G is the generalized failure rate. The second

equality above follows by dividing and multiplying the first term by F̄ (F̄−1(l̃0(τ))), so it becomes

F̄ (x)xf(x)/F̄ (x) = F̄ (x)G(x), where x = F̄−1(l̃0(τ)). The second term follows similarly. Since

F̄−1(l̃0(τ)) < p0/q0 for τ > 0, and IGFR is assumed, we conclude that q̂0 is decreasing in p0.

Lemma A.5. If F is IGFR, then ∂T̄1/∂τ ≤ (≥)0 if p0 ≤ (≥)p1.

∂T̄1

∂τ
=
( 1

1 + φ0

l∗1
l1

)1/φ0[
1−G

(p1

p0
F̄−1(l̃0(τ))

)/
G
(
F̄−1(l̃0(τ))

)]
Proof. First compute

∂l1
∂τ

= l0
p1

p0
φ0

((w + t)φ0−1

wφ0

)
f
(p1

p0
F̄−1(l̃0(τ))

)/
f
(
F̄−1(l̃0(τ))

)
,

which follows from dF̄−1(x)/dx = −1/f
(
F̄−1(x)

)
. We use this to compute

∂T̄1

∂τ
=
( 1

1 + φ0

l∗1
l1

)1/φ0[
1− w + τ

φ0l1

∂l1
∂τ

]
=
( 1

1 + φ0

l∗1
l1

)1/φ0[
1−

p1
p0
F̄−1(l̃0(τ))f

(
p1
p0
F̄−1(l̃0(τ))

)
l1

F̄ (F̄−1(l̃0(τ)))

F̄−1(l̃0(τ))f(F̄−1(l̃0(τ)))

]
=
( 1

1 + φ0

l∗1
l1

)1/φ0[
1−G

(p1

p0
F̄−1(l̃0(τ))

)/
G
(
F̄−1(l̃0(τ))

)]
.

Since F is IGFR, then G is nondecreasing and the result follows.

Proof of Proposition 6.2. Define the first time dislikes would appear under p0,

T0 = w
( 1

1 + φ0

l∗0
l0

)1/φ0
− w.

This is identical to T in the static price. In order for τ ≤ T̄ , the constraint τ ≤ T0 surely must be

imposed. Define by T1 the first time dislikes would appear under p1, assuming they did not appear

47



at time τ ,

T1 = (w + τ)
( 1

1 + φ0

l∗1
l1

)1/φ0
− w.

Therefore, T̄ = max(τ, T1). The optimization problem assumes that T̄ = T1. It is later shown that

this is indeed the case. In addition, the constraints on the prices are ignored, except for p0 ≥ p,

and their validity is later verified. The proof establishes the result for the unconstraint case and

the p∗0 = p case, and then shows by contradiction that p∗0 ≥ p∗1 is not possible when the constraint

τ ≤ T0 is binding. The associated Lagrangian is,

L = π(p0, p1, τ) + µ1[T0 − τ ] + µ2[p0 − p],

where µ1, µ2 ≥ 0. The revenue after τ follows the same structure of the static pricing problem

with initial weight w + τ and prior quality estimate q̂0. Moreover, p1 does not interact with the

constraints. Thus, we conclude that p∗1 ∈ [p(q̂0), p(q)]. In the reminder of this proof we will use the

notation ck to denote a nonnegative quantity (which may depend on the controls) unless otherwise

mentioned. Computation shows that

∂L

∂p0
= R′(p0, q0)c1 +

∂l1
∂p0

c2 −
∂T1

∂p0
c3 + µ1

∂T0

∂p0
+ µ2.

Recall that l1 = F̄ (p1/q̂0) and that ∂q̂0/∂p0 < 0 (Lemma 6.1). This shows ∂l1/∂p0 ≤ 0. By the

same token, ∂T1/∂p0 = −c4∂l1/∂p0 ≥ 0. Suppose that the constraints are not binding so that

µ1 = µ2 = 0, then it must be the case that R′(p∗0, q0) > 0, and from unimodality p∗0 < p(q0).

If the constrain p0 ≥ p is binding, then p∗0 = p < p(q0) by Assumption 5.3. So, in both cases

p∗0 < p(q0) < p∗1. Thus, we need to check that p∗0 ≥ p∗1 is not possible when τ∗ = T0. The first order

condition for τ is

∂L

∂τ
= e−δτ (1 + φ0)[p0 l̃0(τ)− p1l1]− c5 − c6

∂T1

∂τ
− µ1.

Suppose that p∗0 ≥ p∗1, then p∗1l1 = R(p∗1, q̂0) = R(p∗1, p
∗
0/F̄

−1(l̃0(τ))) > R(p∗0, p
∗
0/F̄

−1(l̃0(τ))) =

p∗0F̄ (F̄−1(l̃0(τ))) = p∗0 l̃0(τ). Also from Lemma A.5, ∂T1/∂τ ≥ 0. We conclude that ∂L /∂τ < 0,

which contradict the Kuhn Tucker conditions, so p∗0 ≥ p∗1 is not possible if τ = T0.

It is easy to see that the omitted constraints on the prices are not binding, p ≤ p∗0 < p∗1 ≤ p(q) <
p̄. To conclude the proof we show that T1 = T̄ , by showing T1 ≥ τ . Note that F̄ (p/q)/F̄ (p/q′) is
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increasing in p for q > q′ and F IGFR. Therefore,

τ ≤ w
( 1

1 + φ0

F̄ (p∗0/q)
F̄ (p∗0/q̂0)

)1/φ0
− w

≤ (w + τ)
( 1

1 + φ0

F̄ (p∗1/q)
F̄ (p∗1/q̂0)

)1/φ0
− w

= T1,

which concludes the proof.
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