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Abstract

Increasingly sophisticated tracking technology offers publishers the ability to offer

targeted advertisements to advertisers. Such targeting enhances advertising efficiency

by improving the match quality between advertisers and users, but also thins the

market of interested advertisers. Using bidding data from Microsoft’s Ad Exchange

(AdECN) platform, we show that there is often a substantial gap between the highest

and second highest willingness to pay. This motivates our new BIN-TAC mechanism,

which is effective in extracting revenue when such a gap exists. Bidders can “buy-

it-now”, or alternatively “take-a-chance” in an auction, where the top d > 1 bidders

are equally likely to win. The randomized take-a-chance allocation incentivizes high

valuation bidders to buy-it-now. We show that for a large class of distributions, this

mechanism achieves similar allocations and revenues as Myerson’s optimal mechanism,

and outperforms the second-price auction with reserve. For the AdECN data, we use

structural methods to estimate counterfactual revenues, and find that our BIN-TAC

mechanism improves revenue by 11% relative to an optimal second-price auction.
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1 Introduction

Many Internet companies generate revenue by selling the advertisement space on their web-

pages. Improved targeting technologies allow e-commerce firms to match advertisers and

consumers with ever greater efficiency. While these technologies generate a lot of surplus for

advertisers, they also tend to create thin markets where perhaps only a single advertiser has

a high willingness to pay. These environments pose special challenges for the predominant

auction mechanisms that are used to sell online ads because they reduce competition among

bidders, making it difficult for the platform to extract the surplus generated by targeting

(Bergemann and Bonatti 2010, Levin and Milgrom 2010).

For example, a sportswear firm advertising on the New York Times website may be willing

to pay much more for an advertisement placed next to a sports article than one next to

a movie review. It might pay an additional premium for a local consumer who lives in

New York City and an even higher premium if the consumer is known to browse websites

selling sportswear. Each layer of targeting increases the sportswear firm’s valuation for

the consumer but also dramatically narrows down the set of participating bidders to fellow

sportswear firms in New York City. Without competition, revenue performance may be

poor (Levin and Milgrom 2010).

Consider a simple model: When advertisers “match” with users, they have high valuation;

otherwise they have low valuation. Assume that match probabilities are independent across

bidders, and sufficiently low that the probability that any bidder matches is relatively small.

Then a second-price auction will typically get low revenue, since the probability of two

“matches” occurring in the same auction is small. On the other hand, setting a high fixed

price is not effective since the probability of zero “matches” occurring is relatively large

and many impressions would go unallocated. Hence, allowing targeting creates asymme-

tries in valuations that can increase efficiency, but decrease revenue. In fact, because of this

phenomenon, some have suggested that it is better to create thicker markets by bundling dif-

ferent impressions together (Ghosh, Nazerzadeh and Sundararajan 2007, Even-Dar, Kearns

and Wortman 2007, McAfee, Papineni and Vassilvitskii 2010).

Bundling may improve revenues, but reduces efficiency since the average quality of user-

advertiser matches is degraded. In principle, one would like to allow targeting but still extract

significant revenues. This paper outlines a new and simple mechanism which addresses this

issue. We call it buy-it-now or take-a-chance (BIN-TAC ), and it works as follows. Goods
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are auctioned with a buy-it-now price p, set relatively high. If a single bidder is willing to

pay the price, they get the good for price p. If more than one bidder takes the buy-it-now

option, a second price auction is held between those bidders with reserve p. Finally, if no-one

participates in buy-it-now, an auction is held in which the top d bidders are eligible to receive

the good, and it is randomly awarded to one of them at the (d+ 1)-st price.

In this manner, we combine the advantages of an auction and a fixed price mechanism. When

matches occur, advertisers pay for the fixed-price buy-it-now option, allowing for revenue

extraction. This is incentive compatible because in the event that they “take-a-chance” on

winning via auction, there is a significant probability that they will not win the impression.

On the other hand, when no matches occur, the auction mechanism ensures the impression

is still allocated.

The BIN-TAC mechanism is simple, and requires relatively little input from the mechanism

designer: a choice of buy-it-now price, take-a-chance parameter d and optionally a reserve in

the take-a-chance auction. This makes it flexible across a wide range of environments. The

tradeoff is that it is not the optimal mechanism analyzed by Myerson (1981). As it turns out,

the downside is small. We show that when the valuations are drawn iid from a mixture of

two regular distributions — a weighted combination of high and low valuation distributions

with disjoint supports — our mechanism is “nearly optimal” in the sense that it has very

similar allocation rules and transfer payments as the optimal mechanism. In this setting,

the second price auction with reserve is rarely optimal, and is dramatically outperformed

by the BIN-TAC mechanism. We also run simulations to show that BIN-TAC continues to

outperform the second price auction when the supports overlap.

In the last part of the paper, we demonstrate our mechanism’s effectiveness using data

from Microsoft’s Ad Exchange (AdECN) platform for selling display advertising. Since the

current auction format is a second-price auction, and it is weakly dominant for an advertiser

to bid their valuation, we can interpret bids as valuations. It becomes relatively easy to then

simulate how these bidders would counterfactually behave under a BIN-TAC format. We

find that our mechanism generates 11% more revenue than the optimal second-price auction.

Related Work Myerson (1981) proposed a general approach to design optimal mecha-

nisms when the private information of the agents is single-dimensional. However, if the

distributions are not “well-behaved”, then characterizing the optimal mechanism can be

challenging. The approach we take in this work is to look instead for a simple and “nearly
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optimal” mechanism. Hartline and Roughgarden (2009) discuss the benefits of simple mecha-

nisms, and show a variety of examples where they approximate the optimal expected revenue.

The question of whether sellers should provide information that allows buyers to “target”

their bids is a question that arises in the analysis of optimal seller disclosure (see for ex-

ample Bergemann and Pesendorfer (2001)). Here we specialize to a mechanism that treats

all bidders symmetrically, and proceeds sequentially. Sequential screening models have been

proposed for revenue maximization in dynamic environments. For instance, Courty and Li

(2000) consider a setting where the buyers themselves learn their type dynamically (first

whether they are high or low, then their specific valuation). In this case, offering contracts

after the first type revelation but before the second may be optimal; see Bergemann and Said

(2010) for a survey on dynamic mechanisms. In the static setting, sequential screening and

posted-prices can be used to design optimal (or near-optimal) mechanisms when the bidders

have multi-dimensional private information (see for example Rochet and Chone (1998) and

Chawla, Hartline, Malec and Sivan (2010)). Our model deals with the static case where types

are single-dimensional and have a mixture form and buyers know their valuation from the

outset. Additionally, our model considers only the private value setting. Abraham, Athey,

Babioff and Grubb (2010), consider an adverse selection problem that arises in a common

value setting when some bidders are privately informed; this is motivated by the display ad-

vertising and advertisement exchange markets when some advertiser are better able to utilize

information obtained from cookies. They show that asymmetry of information can some-

times lead to low revenue in this market. For further discussion on advertisement exchange

markets see Muthukrishnan (2010).

Organization The paper proceeds in four parts. First, we describe the AdECN market,

providing some interesting and (to our knowledge) novel observations about this display

advertising market. In the second part we define the mechanism and an stylized environment

inspired by the AdECN market, proving existence and characterization results, and solving

for the revenue-maximizing parameter choices analytically. The third section consists of

simulation results, comparing the performance of the BIN-TAC mechanism to the SPA and

to the benchmark of full-surplus extraction, as the shape of the distributions, the probability

of high valuation and the number of bidders vary. Finally, in the fourth part we estimate

valuations and conduct counterfactual experiments using the AdECN data. All proofs are

contained in the appendix.
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2 The Display Advertising Market

In this paper we focus on situations where bidder valuations fluctuate considerably. We first

show evidence from a real-world market which drives this interest. Specifically, we examine

data from AdECN, Microsoft’s real-time auction-based neutral exchange for online display

advertising. On AdECN, advertisers, or firms acting on their behalf, may bid for display ads

on various publishers. An impression is a single advertisement slot on a given webpage to

a given user. An auction is held every time an individual browses a webpage on one of the

publishers. Consequently, a huge number of auctions are held each day. We examined the

bids for a subset of products over a 24-hour period — a data set of over 2 million auctions

(see Table 1 for an overview).

Impressions are grouped together into products, usually consisting of an advertising slot on

a particular publisher (e.g., banner ad on the main New York Times sports page). This

reduces the complexity of the market, by allowing bidders to express their bids in terms

of products, rather than individual impressions. Yet AdECN provides bidders with some

information about web page content, as well as demographic and historical information about

the users, so that bidders can vary their bids with these characteristics in order to optimize

their advertising to target audiences. The auction mechanism is a second-price auction with

reserve. Since it is weakly dominant to bid one’s valuation in a SPA, we interpret bids as

valuations.

Figure 1 shows 50 randomly selected impressions on two products. Looking at the figures, we

see that there are relatively few bidders in the market, 4 on product A and 5 on product B,

so the market is relatively thin. The highest bid varies markedly across auctions, consistent

with bidders varying their bidding strategy based on observable information about the viewer.

Most winning bids are quite low, but occasionally winning bids are much higher. Moreover,

conditional on a high bid from one bidder, the other bids do not appear to be higher, which

suggests that idiosyncratic advertiser-impression matches drive the high bids, rather than

a commonly valued component. Additionally, the value of an impression does not vary

depending on the time of day, suggesting the matches are driven by the user’s properties,

not the page or advertisement content.

Given these observations, one might expect the gap between the winning bid and the price

— the second highest bid — to be quite substantial. This is clear from the top panel of

Figure 2, a kernel density estimate of this gap.
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Figure 1: Bids over Time. The figure shows the bids made by the four leading bidders in our

data on 50 randomly chosen impressions for a given product.

The bottom panel shows the virtual valuations v − 1−F (v)
f(v)

. For both example products,

the virtual valuations are non-increasing, which implies that the SPA with reserve is not

the optimal mechanism. On the other hand, the repeated fluctuation in virtual valuation

implies the optimal mechanism is quite complex, requiring “ironing” over several regions.

This motivates our search for a middle ground: a mechanism that retains the simplicity of

the SPA while getting nearly optimal revenue performance.

3 Buy-it-Now or Take-a-Chance

We start our analysis by formally defining the BIN-TAC mechanism. A buy-it-now price p

is posted. Buyers simultaneously indicate whether they wish to buy-it-now (BIN ). In the

event that exactly one bidder elects to buy-it-now, that bidder wins the auction and pays p.

If two or more bidders elect to BIN, a second-price sealed bid auction with reserve p is held

between those bidders. Bidders who chose to BIN are obliged to participate in this auction.

Finally, if no-one elects to BIN, a sealed bid take-a-chance (TAC ) auction is held between

all bidders, with a reserve r. In that auction, one of the top d bidders is chosen uniformly

at random, and if that bidder’s bid exceeds the reserve, they win the auction and pay the
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Figure 2: Bidding Gap and Virtual Valuations. The top panel shows a kernel density

estimate of the pdf of the (normalized) gap between the highest and second highest bids in auctions

for ads A and B. The bottom panel shows the virtual valuations for all bids on ads A and B.

maximum of the reserve and the (d+ 1)-th bid.1 We call d the TAC-parameter.

3.1 The Environment

Motivated by the observations in Section 2, we define a stylized environment in which the

platform allows targeting. As a result, bidders generally do not “match” with the specific

user or publisher characteristics and have low valuation, but occasionally one or more bidders

“match” and have high valuation. This hardens in the idea that targeting may make markets

thin. Assume n bidders participate in an auction for a single good which is valued at zero by

1Ties occur when multiple bidders bid the d-th highest bid: in that case, the price is the d-th highest bid,
and all bidders who bid that amount jointly split a 1/d probability of allocation.
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the seller. Buyers are risk neutral, and draw their values Vi for the good independently and

privately from some distribution F . This F is a mixture of FL and FH , and a valuation V

takes the form V = (1−X)VL +XVH where X a Bernoulli random variable with parameter

0 ≤ α ≤ 1, VL ∼ FL and VH ∼ FH . The event X = 1 indicates that a “match” has occurred,

and we are generally interested in the case where α is close to 0. We assume FL has support

[ωL, ωL] and FH has support [ωH , ωH ], and that these supports are disjoint (so ωL < ωH).

This formalizes the idea that there are two separate types: low valuation types (draws from

FL) and high valuation types (draws from FH), although there is heterogeneity within these

groups. Here, the bidders know their exact valuation, but one could imagine a case in which

the platform does not discloseX to the advertisers. In that case they may have draws from FL

and FH but be uncertain as to which of them is their valuation. We shall analyze such a “no

targeting” case later in the paper. An important feature of this environment is that optimal

mechanism design is not straightforward. Define the virtual valuations ψ(v) ≡ v − 1−F (v)
f(v)

.

When ψ(v) is strictly increasing, the optimal mechanism is a second-price auction with

a reserve price (Myerson 1981). We assume that ψ(v) is continuous, increasing and single-

crosses zero over the regions [ωL, ωL] and [ωH , ωH ]. But the virtual valuations are (infinitely)

negative over the region (ωL, ωH) since F is unsupported on this region. In this case the

ironing of virtual values is required, and the optimal mechanism is relatively complicated

and hard to compute. What we will later argue is that the BIN-TAC mechanism is much

simpler and “nearly optimal” (see Section 3.3). First, however, we characterize equilibrium

behavior.

3.2 Equilibrium Analysis

This is a sequential mechanism which we analyze by backward induction. The auctions that

follow the initial BIN decision admit simple strategies. If multiple players choose to BIN, the

allocation mechanism reduces to a second-price auction with reserve p. Thus, it is weakly

dominant for players to bid their valuations. Since participation is obligatory at this stage,

the minimum allowable bid is p. However, it is easy to show that an individually rational

player will not choose to BIN unless her valuation is at least p, so this does not present a

problem.

Likewise, in the TAC auction it is weakly dominant for the bidders to bid their valuations.

The logic is standard: if a bidder with valuation v bids b′ > v, it can only change the
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allocation when the maximum of the d-th highest rival bid and the reserve price is in [v, b′].

But whenever this occurs, the resulting price of the object is above the bidder’s valuation

and if he wins he will regret his decision. Alternatively, if they bid b′ < v, when they win

the price is not affected, and their probability of winning will decrease.

Taking these strategies as given, we now turn to the buy-it-now decision. Intuitively, one

expects the BIN option to be more attractive to higher types: they have the most to lose

from either random allocation (they may not get the good even if they are willing to pay

the most) or from rivals taking the BIN option (they certainly do not get the good). This

suggests that in equilibrium, the BIN decision takes a threshold form: ∃ v such that types

with v ≥ v elect to BIN, and the rest do not. This is in fact the case.

Prior to stating a formal theorem, we introduce the following notation. Let the random

variable Y j be the j-th highest valuation from n − 1 iid samples from F and let Y ∗ be the

maximum of Y d and the TAC reserve r.

Theorem 1 (Equilibrium Characterization)

Assume p ≤ d−1
d
ωH + 1

d
E[Y ∗]. Then there exists a unique pure strategy Bayes-Nash equilib-

rium of the game, characterized by a unique threshold v satisfying:

v = p+
1

d
E
[
v − Y ?|Y 1 < v

]
(1)

Types with v ≥ v take the BIN option; and all types bid their valuation in any auction that

may occur.

Equation (1) is intuitive: At what point is a bidder indifferent between the BIN and TAC

options? The only time the choice is relevant is when there are no higher valuation bidders

(since they would win the BIN auction). So if a bidder has the highest value and chooses

to BIN, they get a surplus of v − p. Choosing to TAC gives 1
d
E [v − Y ?|Y 1 < v], since

they only win with probability 1
d
, although their payment of Y ∗ is on average much lower.

Equating these two yields Equation (1). The assumption that p ≤ d−1
d
ωH + 1

d
E[Y ∗] rules

out uninteresting cases where the BIN price is so high that no-one ever chooses BIN.

Now we consider the revenue-maximizing choices of the design parameters: the BIN price p,

the TAC reserve r and the TAC parameter d. One way to think about the BIN price is as a

reserve, where bidders who fail to meet the reserve still have some chance of participation.

Perhaps unsurprisingly, we get some familiar looking equations for the optimal reserves.
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Again, we must introduce some notation. Let R(v, d, r) be the conditional expected revenue

from a TAC auction when the highest valuation is exactly equal to v. Then we have the

following theorem.

Theorem 2 (Optimal Buy Price and Reserve) The revenue-maximizing TAC reserve

r satisfies:

r? =
1− F (r?)

f(r?)
(2)

There are exactly two solutions to this equation. For r∗1 ∈ [ωH , ωH ], d = 1 and any p ≥ r∗1 is

optimal. For r∗2 ∈ [ωL, ωL], then if a solution exists with v(p?, d, r) ∈ [ωH , ωH ], the optimal

BIN price is given by:

p∗ =
R(v(p∗), r, d)F (v(p∗))− (n− 1)(1− F (v(p∗)))v(p∗)

F (v(p∗))− (n− 1)(1− F (v(p∗)))
+

(1− F (v(p∗)))F (v(p∗))/vp(p
∗))

f(v(p∗))
(3)

where vp = ∂v(p,d,r)
∂p

. If no interior solution exists, p? solves v(p?, d, r) = ωH .

Equation 2 is somewhat surprising; the optimal TAC reserve is exactly the standard reserve in

Myerson (1981), ensuring that no types with negative virtual valuation are ever awarded the

object. This is despite the fact that our BIN-TAC mechanism is not the optimal mechanism.

The key insight is that the TAC reserve is relevant for the BIN choice. Raising the TAC

reserve lowers the surplus from participating in the TAC auction, and so one can also raise

the BIN price while keeping the indifferent type v constant. So the trade-off is exactly the

usual one: raising the TAC reserve extracts revenue from types above r? — even those above

v — at the cost of losing revenue from the marginal type. This is why we get the usual

solution.

On the other hand, the optimal BIN price is non-standard. To get some intuition, notice

that the BIN price in some sense sets a reserve at v. If two bidders meet the reserve, he gets

the second highest bid; if only one, the BIN price; and if none, he gets the TAC revenue.

So a marginal increase in the “reserve” has three effects. First, if the highest bidder has

valuation exactly equal to the reserve, following an increase he will shift from BIN to TAC.

This costs the seller p−R(v, d, r). Second, if the second highest bidder has valuation equal

to the reserve, an increase will knock him out of the BIN auction, and the seller’s revenue

falls by v(p) − p. Finally, if the highest bidder is above the reserve and the second highest

is below, an increase gains the seller p′(v). Working out the probabilities of these various
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events, and inverting p′(v) by the implicit function theorem, we get the result.

We note that in many cases, there is no interior solution for p?. Whenever the high valuations

are substantially larger than the low valuations (i.e. ωH � ωL) it is not profitable to

randomize the allocation for high types by setting v(p, d, r) ∈ [ωH , ωH ], since the efficiency

loss would be large. In this case p? is set so that the lowest high type at ωH is indifferent

between TAC and BIN.

3.3 Performance Comparisons

We would like to compare our mechanism to three benchmark mechanisms, the second

price auction with optimal reserve and targeting, the second price auction without allowing

targeting, and the fully optimal Myerson (1981) mechanism.

Second Price Auctions The second price auction (SPA) is widely used in practice, which

owes something to the fact that it is both strategy-proof (bidding one’s valuation is optimal),

and in many cases revenue maximizing. In the case where the platform allows targeting, the

SPA with reserve r is just a special case of BIN-TAC for parameters p = ωH and d = 1.

This is clear: no one takes the BIN, and since d = 1 the TAC auction is just an SPA.

More generally, any BIN-TAC auction with parameters p ≥ r and d = 1 generates the

same revenue. To see this, notice that for any BIN price p ≥ r, there is as usual some

threshold type that is indifferent between BIN and TAC. But that type will get the object

with certainty in TAC if d = 1, and so the BIN price must be equal to his expected payment

in the TAC auction. So whenever two types have valuation above the threshold, BIN-TAC

generates the SPA revenue; whenever one type is above the threshold, BIN-TAC generates

the expected second highest bid, equal to the SPA revenue; and when all types are below

the threshold, it is exactly an SPA.

As we have already noted, the SPA mechanism with targeting may perform badly if the

valuations are much higher when a match occurs, and matches occur rarely. An alternative

that has been widely suggested is to continue using the second price mechanism, but hide the

information that reveals matches. To formalize this, we temporarily assume that FL and FH

are degenerate with all mass on vL and vH respectively. Learning X reveals to the advertiser

whether he has high valuation vH or low valuation vL. In the absence of this information,

his expected valuation is (1− α)vL + αvH .
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Let the revenue from the SPA without revealing any info be denoted RSPA
No Info, the revenue

from the SPA with info be denoted RSPA
Info and the revenue from the optimal BIN-TAC

mechanism be denoted RBIN−TAC . We know already that RBIN−TAC ≥ RSPA
Info .

Theorem 3 Suppose FL and FH are degenerate. Then the revenue from the optimal BIN-

TAC model is higher than the optimal second price auction without targeting, strictly for

n ≥ 3.

Optimal Mechanism We now compare the BIN-TAC mechanism to the optimal mech-

anism. As argued earlier, we need to use an ironing procedure to do this. We show in the

appendix that whenever αωH ≥ r?(1 − F (r?)), the optimal mechanism is a second-price

auction with reserve ωH . So assume the opposite.

Then, there exists v?, r? ≤ v? ≤ ωL, such that

(2− α− F (v?))F (v?) + α(ωH − v?)f(v?) = 1− α (4)

where r? is defined in Eq. (2). This defines the ironed virtual valuations as follows:

φ(v) =



0 v ∈ [ωL, r
?)

ψ(v) v ∈ [r?, v?]

ψ(v?) v ∈ (v?, ωH)

ψ(v) v ∈ [ωH , ωH ],

(5)

The allocation procedure is as follows: award the good to the bidder with the highest ironed

virtual valuation, breaking ties uniformly at random, provided the virtual valuation is posi-

tive. Notice that all types between v∗ and ωH get the same virtual valuations, and therefore

if they tie, the winner is selected at random. Like the BIN-TAC mechanism, this creates the

potential for inefficiency, but allows additional revenue extraction from higher types.

The payments are determined as follows. Whenever the virtual valuation of the second

highest bidder has a unique inverse (i.e. outside of the ironed region between v∗ and ωH),

the winning bidder pays the maximum of the reserve and the valuation of the second highest

bidder (as in a second price auction with reserve). Whenever both the highest and second

highest bidder have virtual valuations in the ironed region, the required payment is v∗.
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Finally, when the winning bidder has valuation above ωH , but k other bidders have valuations

in the ironed region, the winner pays 1
k+1

(kωH + v?). This last condition is easily derived

from incentive compatibility: the bidder on the top margin of the ironed region, type ωH ,

gets a payoff of v − 1
k+1

(kωH + v?) when the highest bidder; but could alternately pretend

to be in the ironed region, with payoff 1
k+1

(v − v∗) — these two are identical.

Theorem 4 (Optimal Mechanism) Suppose ψ(ωL) ≤ ψ(ωH). If αωH ≥ r?(1 − F (r?)),

then the optimal mechanism is the second-price auction with reserve ωH . If αωH < r?(1 −
F (r?)), then the ironed-mechanism described above is optimal.

The main challenge in proving this theorem is computing v?. The difficulty in even this

relatively simple case lends force to our claim that BIN-TAC is a useful mechanism for these

kinds of environments.

Having obtained this characterization, we can compare the BIN-TAC mechanism with the

optimal mechanism. It is easy to prove that as either n → ∞, α → 1 or wH/wL → ∞, the

BIN-TAC mechanism converges to the optimal mechanism. This, however, is not particularly

interesting (a second-price mechanism will also converges to optimal). The interesting cases,

both theoretically and in practice, occur for small values of the above parameters. It is here

that BIN-TAC simulates OPT much better than the optimal second price auction.

For concreteness, we assume FL is the uniform distribution over [0, 1], and FH is the uniform

distribution over [τ, τ + 1], τ ≥ 3. By Theorem 4, we have

r? =
1

2(1− α)
and v? =

(
1−

√
α(τ − 1)

1− α

)
.

Also, recall that the optimal second-price auction is equivalent to a BIN-TAC mechanism

with d = 1. Table 2 below compares the expected revenue and welfare obtained by these

mechanisms for n = 5 and τ = 3 and α = 0.05. As you can see from the table, the

performance of BIN-TAC is close to OPT (about 96%), much better than the optimal SPA

(85%). Figures 3 helps explain this. The top panel depicts the probability of allocation

and the bottom panel the expected payment of a bidder, assuming the values of the other

4 bidders are distributed according to the distribution described above. As you can see, the

BIN-TAC mechanism approximates the discontinuous increase in allocation probability at

v∗ with a smooth curve, whereas the SPA increases the probability of allocation to a much

12
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Figure 3: Comparison of Allocations and Payments. Allocation probabilities (top panel)
and expected payments (bottom panel) for the OPT, SPA and BIN-TAC mechanisms when the
distributions FL and FH are uniform. The x-axis corresponds to the bid.

higher level. As a result, the SPA cannot extract revenue from the high types (who could

easily pretend to be a lower type without losing much), while the BIN-TAC mechanism has

similar revenue performance to OPT at the top.

4 Simulations

We would like to test our mechanism against the benchmarks in a wider setting than those

considered thus far. We drop the assumption that FL and FH have disjoint support. Tthe

optimal BIN-TAC mechanism is reasonably easy to calculate. Nothing in the proof of The-

orem 2 required the disjoint supports for determining r∗ and p∗, and so these can be solved

for numerically for each d. Thus the optimization problem reduces to a one dimensional dis-

crete optimization problem, which can be quickly solved. By contrast, finding the optimal

mechanism requires solving for the ironing region, a 2-dimensional optimization problem in

continuous controls (although here too there are numeric approaches which may be prefer-

able). For this reason, we do not compare with the optimal mechanism in these simulations.

Instead, we do the following: Let MAX be the maximum amount of revenue extraction

possible; i.e. the revenue acquired if the bidder with the highest valuation wins and pay

13



exactly his valuation. MAX, though unattainable, dominates the optimal revenue, and gives

us a useful and computable baseline. To show the effectiveness of BIN-TAC, we compare it

to the optimal second price auction, and report the revenue of both as a percentage of MAX.

For our simulations, we restrict ourselves to location families where the distribution FH(·) =

FL(· −∆) for some shift-parameter ∆. This ∆ is the difference in mean valuation between

the high and low groups. We consider two different location families; FL ∼ N , FL ∼ logN ,

where both have mean 1 and variance 0.5. We allow ∆, n and α to vary across experiments,

and compute r∗, p∗ and d∗ as discussed. The results are presented in Figures 4, 5 and 6.

The default parameters we consider are n = 10, ∆ = 10, and α = .05, and we vary one

parameter at a time. Each experiment is repeated for 1000 impressions, and we report

the average. Recall that BIN-TAC generalizes the second price auction, so its performance

is always at least as good, and often significantly better. Figures 4 and 5 show how as

either n or α increases, we approach the performance of the optimal mehcanism. This

is because the expected number of bidders that can target is αn. As this increases, the

lower distribution becomes irrelevant, and the second price auction is once again a good

approximation of optimal— i.e., there is no room for improvement. The same phenomenon

can be seen for small α; here, the high distribution becomes irrelevant and again the a second

price auction approximates the optimal mechanism. However, in between the two extremes,

our mechanism performs significantly better. Figure 6 shows the dependence on the gap ∆.

As expected, the performance of BIN-TAC increases while that of a second price auction

decreases as ∆ gets larger. Since there is more revenue to be gained from high-valued bidders,

BIN-TAC can only performs better with a large ∆. However, a second price auction would

have to find a tradeoff between losing low-valued impressions and extracting revenue from

high-valued impressions, hence hurting its performance.

5 Empirical Analysis

We now test our mechanism’s performance in a real-world setting. Specifically, we recover the

valuations of advertisers in the AdECN market introduced in Section 2 from their observed

bids, and then simulate their counterfactual bidding behavior under our BIN-TAC mecha-

nism. This shows whether our mechanism has the potential to improve platform revenues in

a less stylized environment then that of our theoretical model.
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5.1 Data

Our dataset consists of all bids submitted on all products sold by a single publisher over a

24-hour period. We restricted analysis to the subset of products that averaged at least two

bidders per impression, since with zero or one bidders the BIN-TAC approach is not viable

(the threat of randomization is meaningless). This left us with ten products (placements),

with bidding patterns summarized in Table 1. Over 1M impressions were sold, with partic-

ipation ranging from 3-6 bidders per auction. Bids vary widely: the average bid below the

95th percentile is 0.07 while the average bid above it is 0.8, over 10 times greater. Sample

skewness is consistently high, even when disaggregated by product. We note two other facts.

First, the correlation of bids within an auction is consistently small, no higher than 0.09,

and often negative. This suggests that bidder valuations are private, perhaps driven by id-

iosyncratic match quality, rather than a common component. Second, the autocorrelation

within bids for a given bidder is also small, no higher than 0.02, again suggesting that there

are no dynamic patterns in the evolution of bidder valuations, and the bids do not correlate

with time of day.

5.2 Estimation Approach

Since the current auction format is a second price auction with reserve, we can infer the

distribution of valuations directly from the bids, since they should be equal (we observe bids

even when they fall below the reserve). We first normalize the bids on each product by the

mean bid on that product, calculating this mean using the first 10% of our data, which was

randomly selected for training purposes. Then we can estimate the density of normalized

valuations.

Before running the counterfactual simulations, we must choose the optimal TAC reserve

r, TAC parameter d and BIN price p. In principle, we could do this product-by-product.

Instead, we use a single set of parameters for all the different products, “un-normalizing”

our chosen normalized reserve r and BIN price p by multiplying by the product means to get

something more individual specific. This provides a much stronger test of our approach, since

we could certainly do better by conditioning our parameter choices on the individual product

valuation densities. In addition, it has the advantage of being simpler, allowing a way to

calculate parameters for very thin or new markets, and increasing incentive compatibility in

practice.
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Following our theory, we choose the reserve price r as the first time the virtual valuations

are positive, as calculated from our training data. Note that this may not be optimal. We

also fix d = 2, since the market is relatively thin. Since the data does not literally follow

a mixture model, the optimal BIN-TAC price must be calculated numerically using the

training data. Our counterfactual simulations — the procedure for which is outlined below

— are run on the remaining 90% of the data, thus avoiding a potential over-fitting problem

in our parameter choices.

The simulation procedure is as follows. For some fixed parameter choices (d, r, p), we calcu-

late the indifferent type vj for each product j = 1 · · · 10 numerically. This requires solving for

a solution to the implicit Equation 1 by iterative methods. As an input into this calculation

we need the distribution of Y ∗ conditional on Y 1 < v; we take this distribution straight from

the data. The main assumption we are making here is that bidders believe the environment

to be symmetric and iid, since then our calculated vj correctly summarizes their incentives.

This appears to be a reasonable assumption since there is little bid correlation and autocor-

relation, although the symmetry assumption is probably too strong. To get the simulated

BIN-TAC outcomes, we re-run the auctions in turn, assuming the highest bidder takes the

BIN option if their valuation is above vj, and otherwise the object allocation is randomized

between the top two highest bidders. We run this procedure on the training data for various

p in order to determine p?.

5.3 Results

Once these parameters have been determined, we run the mechanism on the remaining 90%

of the data to calculate counterfactual revenues. For comparison purposes, we also look

at the optimal SPA, the second-price auction with reserve r∗. We find r∗ numerically, and

somewhat surprisingly r is very close r∗ (the first time the virtual valuations are positive). 2

Thus, the optimal reserve price for the SPA for our data is the first time the virtual valuation

is nonnegative. The results are shown in Table 3. Notice that a large fraction of the revenue

in the BIN-TAC mechanism is coming from the BIN prices: this right tail of valuations

contributes 53.6%. This reflects the skewness in the observed valuations. The main finding

is that the BIN-TAC mechanism increases revenues by 11% relative to the optimal SPA,

which in turn improves on the current AdECN mechanism by 11%. This demonstrates the

2See (Ostrovsky and Schwarz 2009) for a further discussion on reserve prices.
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BIN-TAC mechanism is effective in extracting revenue, yet still allows targeting.

6 Conclusion and Future Work

We presented the BIN-TAC mechanism, particularly suited for environments where the distri-

bution of valuations is irregular. We showed this mechanism closely approximates Myerson’s

optimal mechanism with ironing, achieving similar allocations and revenues performs at least

as well — and often much better — than the optimal second-price-auction. In addition, in

a sequence of simulations we showed that our mechanism is flexible and applicable in many

settings. We demonstrated this further by applying our mechanism to data from Microsoft’s

AdECN platform, and attained a marked increase in revenue.
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7 Appendix

7.1 Proof of Theorem 1

Fix an equilibrium of the form in the theorem, and let the payoffs to taking taking BIN be

πB(v) and to TAC be πT (v). They are given by:

πB(v) = E
[
1(v > Y 1 > v)(v − Y 1)

]
+ E

[
1(Y 1 < v)(v − p)

]
πT (v) = E

[
1(Y 1 < v)1(Y ? < v)

1

d
(v − Y ?)

]
The threshold type v must be indifferent, so

πB(v) = E
[
1(Y 1 < v)(v − p)

]
(6)

= E
[
1(Y 1 < v)

1

d
(v − Y ?)

]
= πT (v).

We next show that no other type wants to deviate. Suppose v > v. Then:

πB(v) = E[1(v > Y 1 > v)(v − Y 1)]

+E[1(Y 1 < v)(v − v)] + E[1(Y 1 < v)(v − p)]

≥ E[1(Y 1 < v)(v − v)] + πT (v)

= E[1(Y 1 < v)(v − v)] + E[1(Y 1 < v)
1

d
(v − Y ?)]

≥ 1

d

(
E[1(Y 1 < v)(v − v)] + E[1(Y 1 < v)(v − Y ?)]

)
= πT (v)

Similarly, for v < v, we have:

πT (v) = E
[
1(Y 1 < v)1(Y ? < v)

1

d
(v − Y ?)

]
≥ E

[
1(Y 1 < v)

1

d
(v − Y ?)

]
=

1

d
E
[
1(Y 1 < v)(v − Y ?)

]
−1

d
E
[
1(Y 1 < v)(v − v)

]
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Combining this with Equation (6), we get,

πT (v) ≥ E
[
1(Y 1 < v)(v − p)

]
− E

[
1(Y 1 < v)(v − v)

]
= πB(v)

Next, we show a v satisfying Eq. (1) exists and is unique. Suppose d > 1. Then the right

hand side of Eq. (1) is a function of v with first derivative 1
d
(1 − ∂

∂v
E[Y ?|Y 1 < v]) < 1.

Since at v = 0 it has value p > 0 and globally has slope less than 1, it must cross the

45◦ line exactly once. Thus there is exactly one solution to the implicit Eq. (1). On the

other hand, suppose d = 1; then by assumption p < E[Y 1]. Hence, Eq. (1) simplifies to

E[Y 1|Y 1 < v] = p, which has a solution since E[Y 1|Y 1 < v] = p < E[Y 1].

Finally, we need to argue there are no other pure strategy equilibria. Let A be the set

of types who elect BIN, vA be the infimum of this set and vB be the supremum of its

complement. Since v is uniquely defined, any such equilibrium cannot have a threshold form,

so vB > vA. Then reasoning similar to the above shows that vA − p ≥ 1
d
E[vA − Y ?|Y−i 6∈ A]

but vB − p < 1
d
E[vB − Y ?|Y−i 6∈ A], which implies vB < vA, a contradiction.

7.2 Proof of Theorem 2

By assumption, ψ(v) single-crosses zero from below over both [ωL, ωL] and [ωH , ωH ], so the

implicit equation for r∗ has exactly two solutions. Also p < r cannot be better than weakly

optimal, since everyone takes the BIN price, turning it into an SPA with reserve p. We next

show that whenever p ≥ r, the equation must hold at an optimum. So fix d and v > p ≥ r

and define p(r) implicitly as the BIN price that holds v constant as r changes. Then there

are two effects of increasing the reserve r slightly: first, you can raise the BIN price without

changing v, increasing revenues when there is a single bidder who takes BIN; second, if

all bidders TAC, increasing the reserve raises the expected payment of some types, while

decreasing the probability of sale. The marginal increase in revenue due to the first effect is:

nF (v)n−1(1− F (v))
1

d
Pr(Y d ≤ r)
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With probability F (v)n there are no BIN bidders. Writing Fv for F (v|v < v):

F (v)n
1

d

d∑
k=1

[ d∑
j=k

(
n

j

)
(1− Fv(r))jFv(r)n−jr

+

∫ v

r

n!

d!(n− 1− d)!
fv(s)Fv(s)

n−d−1(1− Fv(s))dds
]

Taking a first order condition in r, canceling telescoping terms and simplifying:

F (v)n
1

d

d∑
k=1

(
n

k

)
k(1− Fv(r))k−1Fv(r)n−k (1− Fv(r)− rfv(r))

Summing both marginal effects and expanding P (Y d ≤ r):

n(1− F (v))

(
d−1∑
k=0

(
n− 1

k

)
(1− Fv(r))kFv(r)n−1−k

)
+

F (v)
d∑

k=1

(
n

k

)
k(1− Fv(r))k−1Fv(r)n−k (1− Fv(r)− rfv(r))

Changing summation limits, factorizing, eliminating constants and setting the FOC = 0:

(1− F (v)) + (1− Fv(r)− rfv(r))F (v) = 0

Now since Fv = F (v|v < v) = F (v)/F (v), we can simplify and solve to get r? = 1−F (r?)
f(r?)

.

For the higher solution r∗1 ∈ [ωH , ωH ], the virtual valuations are strictly increasing above the

reserve, and so a second-price auction is optimal, implying d = 1 and p ≥ r∗1.

So fix the reserve at the second solution r∗2 ∈ [ωL, ωL]. Since the virtual valuations are

increasing on [ωL, ωL], it must be that p is set so that v ≥ ωH . Write R(v) for the expected

revenue from the TAC mechanism when V 1 = v. There are three effects of a marginal

increase in v. First, the second highest bidder may have valuation v and choose not to

take BIN, which decreases revenue by v − p(v). The probability of V 2 = v is given by

n(n−1)f(v)(1−F (v))F (v)n−2. The second is that that highest bidder may have valuation v

and choose not to take BIN, reducing revenue by p(v)−R(v). This happens with probability

nf(v)F (v)n−1. Finally, the highest bidder may have valuation above v and the second

highest below it, in which case this raises revenue by p′(v). This happens with probability
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n(1− F (v))F (v)n−1.

Setting the sum of these effects equal to zero, and eliminating common factors we get:

f(v) (((n− 1)(1− F (v))(v − p(v)) + F (v)(p(v)−R(v))) = (1− F (v))F (v)p′(v)

Solving for the optimal p(v∗):

p(v∗) =
R(v∗)F (v∗)− (n− 1)(1− F (v∗))v∗

F (v∗)− (n− 1)(1− F (v∗))
+

(1− F (v∗))F (v∗)p′(v∗)

f(v∗)

Equivalently, the optimal BIN price is given by:

p∗ =
R(v(p∗), r, d)F (v(p∗))− (n− 1)(1− F (v(p∗)))v(p∗)

F (v(p∗))− (n− 1)(1− F (v(p∗)))
+

(1− F (v(p∗)))F (v(p∗))/vp(p
∗))

f(v(p∗))

7.3 Proof of Theorem 3

The optimal BIN-TAC mechanism in this case threatens to randomize among all bidders to

induce a high BIN price, so d = n, and has a reserve of vL. It follows that the optimal BIN

price is vH − (vH−vL)
n

= n−1
n
vH + 1

n
vL. Then we can expand the revenue of BIN-TAC:

RBIN−TAC =
(
1− (1− α)n − nα(1− α)n−1

)
vH + nα(1− α)n−1pBIN + (1− α)nvL

=
(
1− (1− α)n − nα(1− α)n−1

)
vH + nα(1− α)n−1

(
n− 1

n
vH +

1

n
vL

)
+ (1− α)nvL

=
(
1− (1− α)n − α(1− α)n−1

)
vH +

(
α(1− α)n−1 + (1− α)n

)
vL

and similarly for the SPA without info:

RSPA
no Info = (αvH + (1− α)vL)(2:n)

= (αvH + (1− α)vL) (degeneracy)

Since these are both probability distributions with two point support, to rank revenues

it suffices to show that the mass on vL is lower under BIN-TAC. So we must show that

(α(1− α)n−1 + (1− α)n) < (1 − α). After a bit of simple algebra, this is equivalent to

showing (1− α)(1− α(1− α)n−2 − (1− α)n−1 ≥ 0, which holds by binomial expansion of 1

with equality for n = 2 and strictly for n > 2. This proves the claim.
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7.4 Proof of Theorem 4

Since the payment structure is well-known given the ironed virtual valuations, the challenge

is to compute the ironed virtual values. We follow the approach proposed by Myerson (1981).

This approach requires the distribution of values, F , to be strictly increasing.3 Hence, we

consider the following distribution of the values.

fε(x) =


βfL(x) x ∈ [ωL, ωL]

ε x ∈ (ωL, ωH)

fH(x)α x ∈ [ωH , ωH ]

Fε(x) =


βFL(x) x ∈ [ωL, ωL]

β + ε(x− ωL) x ∈ (ωL, ωH)

(1− α) + αFH(x− ωH) ∈ [ωH , ωH ]

where β + ε(ωH − ωL) + α = 1. As ε tends to 0 we get the original model back. We need to

“iron” the virtual values. For q ∈ [0, 1], let F−1ε (q) be the inverse of Fε(·). Define:

h(q) = F−1ε (q)− 1− q
fε (F−1ε (q))

H(q) =

∫ q

0

h(y)dy

G(q) = min
λ,r1,r2∈[0,1],λr1+(1−λ)r2=q

{λH(r1) + (1− λ)H(r2)}

This implies that G(·) is the highest convex function on [0, 1] such that G(q) ≤ H(q) for every

q. Define φ(v) = G′(F (v)) as the virtual value of type v. By Theorem 6.1 (Myerson 1981),

the optimal mechanism randomly allocates the item to one of the bidders with the highest

positive virtual value. We first show that the ironed virtual values are the same as the

original virtual valuations, except for a set of quantiles between q∗ and (1− α):

Lemma 1 Let q? = (1− α)v? and v? be the solution of

−F 2(v?) + (2− α)F (v?) + α(ωH − v?)f(v?) = 1− α.
3See (Monteiro and Svaiter 2010, Pai and Vohra 2009) for optimal mechanisms when distributions have

discrete support.
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Under the assumption of Theorem 4, as ε→ 0,

G′(q) =


h(q) q ∈ [0, q?]

h(q?) q ∈ (q?, 1− α)

h(q) q ∈ [1− α, 1]

Proof First note that H(q) is convex in [0, β] because of the assumption that x− 1−F (x)
f(x)

is

increasing in [ωL, ωL]. It is also decreasing in [0, q0] and increasing in [q0, β], where q0 = F (r?)

is the minimum of H(·) in this range. Also, observe that H(q) is decreasing in [β, 1 − α]

because h(q) < 0 in this interval. In addition, by Assumption ??, H(q) is increasing and

convex in [1−α, 1]. Therefore, G(·) includes the tangent line from the point (1−α,H(1−α))

to H(q) in [0, β]. Let q? be the tangent point. We have

G(q) =


H(q) q ∈ [0, q?]

(q−q?)H(q?)+(1−α−q)H(1−α)
1−α−q? q ∈ (q?, 1− α)

H(q) q ∈ [1− α, 1]

which immediately leads to the claim. �

In the rest we compute q?. For q ∈ [0, β],

H(q) =

∫ q

0

(
F−1ε (y)− 1− y

fε (F−1ε (y))

)
dy

=

∫ F−1(q)

ωL

(
x− 1− Fε(x)

fε(x)

)
fε(x)dx

=

∫ F−1(q)

ωL

((xfε(x) + Fε(x))− 1) dx

= (q − 1)F−1ε (q) + ωL

In particular,

H(β) = (β − 1)ωL + ωL
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For q ∈ (β, 1− α), because h(q) = 2q−(1+β)
ε

+ ωL, we get

H(q) = H(β) +

[
x2 − (1 + β − εωL)x

ε

]q
β

= (β − 1)ωL + ωL +
q2 − β2 − (q − β)(1 + β − εωL)

ε

= (q − 1)ωL + ωL + (q − β)
q − 1

ε
(7)

H(1− α) = −αωL + ωL + (1− α− β)
−α
ε

= −αωH + ωL (8)

To iron the distribution, we compute the tangent from H(1− α) to H(q), for q ∈ [0, 1− α].

Note that if q? is the tangent point then

h(q?) =
H(1− α)−H(q?)

1− α− q?
(9)

Observe that by Eq. (7) we have

H(1− α)−H(q?)

1− α− q?

=
(−αωH + ωL)− ((q? − 1)F−1ε (q?) + ωL)

1− α− q?

=
−αωH − (q? − 1)F−1ε (q?)

1− α− q?

Let v? = F−1ε (q?), i.e., q? = Fε(v
?) = βFL(v?). Therefore,

H(1− α)−H(q?)

1− α− q?
=
−αωH − (Fε(v

?)− 1)v?

1− α− Fε(v?)

h(q?) = v? − 1− Fε(v?)
fε(v?)

As ε→ 0, the Fε(·)→ F (·). Plugging into Eq. (9) we get

(v?f(v?)− 1 + F (v?))(1− α− F (v?))

= f(v?)
(
−αωH − (F (v?)− 1)v?

)
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Hence, rearranging the terms,

−F 2(v?) + (2− α)F (v?) + α(ωH − v?)f(v?) = 1− α

Observe that only if H(1− α) > H(q0), then h(q?) is positive.

−αωH + ωL ≥ (q0 − 1)F−1 (q0) + ωL = (F (r?)− 1)r? + ωL

This is equivalent to αωH ≤ (1− F (r?))r?. If this fails, the optimal reserve r∗ is above the

ironed region, and so a second price auction is optimal.

Finally, observe that

h(q?) ≤ h(β) = ωL ≤ ωH −
1− Fε(ωH)

fε(ωH)

which shows that G(·) is convex and completes the proof.
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Figure 4: Relative Performance 1: Number of bidders. This figure shows simulated
expected revenues for different mechanisms as the number of bidders n varies.
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Figure 5: Relative Performance 2: Match Probability. This figure shows simulated
expected revenues for different mechanisms as the probability of a match α varies.
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Figure 6: Relative Performance 3: Size of Gap. We show simulated expected revenues
for different mechanisms as the size of the gap between the low and high distributions ∆ varies.
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Products: All 1 2 3 4 5 6 7 8 9 10

# Bids (000’s) 2592 30 482 406 224 3 6 711 1 241 489
# Impressions (000’s) 1146 19 223 256 103 1 4 215 1 108 217
# Bidders 6 3 4 3 4 5 3 5 5 3 3
% Total Bid Value 100 1.10 11.2 15.5 4.98 0.28 0.16 51.9 0.08 3.95 10.8
Avg Bid 0.114 0.108 0.069 0.113 0.066 0.281 0.078 0.216 0.340 0.049 0.066
σ Bid 0.46 0.097 0.075 0.15 0.049 0.46 0.074 0.34 0.50 0.52 0.88
5th percentile 0.011 0.013 0.010 0.015 0.020 0.001 0.017 0.021 0.010 0.010 0.10
95th percentile 0.341 0.193 0.230 0.572 0.115 1.500 0.150 1.186 1.500 0.098 0.120
Avg Bid above 95th 0.796 0.349 0.353 0.677 0.200 1.500 0.341 1.472 1.500 0.232 0.172
Avg Bid below 95th 0.070 0.094 0.054 0.082 0.057 0.137 0.064 0.150 0.210 0.038 0.033
Sample Skew 164.8 10.4 3.59 3.10 5.72 2.08 3.48 2.75 1.72 183.5 107.2
Correlation -0.012 -0.033 0.055 0.043 0.010 0.038 -0.044 0.084 -0.021 0.004 0.001
Autocorrelation 0.003 0.012 0 -0.002 -0.004 0.013 0.020 -0.001 -0.009 -0.001 0.001

Table 1: Statistics for the data set used in our experiment, which consisted of one publisher and all products
with at least two bidders per impression on average over a 24-hr time period. Summary statistics for each
product are shown separately. Monetary units are cents.

Mechanism: OPT SPA BIN-TAC, d=2 BIN-TAC, d=3

E[Revenue] 0.89 0.76 0.85 0.83
E[Welfare] 1.40 1.43 1.33 1.23

Table 2: Expected revenue and welfare under different mechanisms, for the uniform environment
with τ = 3, α = 0.05 and the number of bidders n = 5.

Mechanism: AdECN Opt SPA BIN-TAC

Total Rev 761.8 851.8 945.6
% from BIN 0 0 53.6
% Imp Unallocated 0.001 0.014 0.017

Table 3: Counterfactual revenue results (in dollars) for the mechanisms in question. AdECN is the
mechanism currently used by AdECN. Opt SPA is the second-price auction with optimal reserve
(r = 0.067). BIN-TAC uses this same reserve, d = 2, and the optimal price p = 3.8.
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