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ABSTRACT 

 We explore practical methods of carrying out Lagrange Multiplier tests for variance components 

in two models in which the derivatives needed for the test are identically zero at the restricted estimates, 

the random effects probit model and the stochastic frontier model.   The techniques are illustrated with 

two applications. 
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1.  Introduction 

 

 The Lagrange Multiplier (LM) test has provided a standard means of testing parametric 

restrictions for a variety of models.  Its primary advantage among the trinity of tests (LM, Likelihood 

Ratio (LR) , Wald) generally used in likelihood based inference is that the LM statistic is computed using 

only the results of the null, restricted model, which is usually simpler than the alternative, unrestricted 

model.  If, under the null hypothesis, the parameter being tested lies on the boundary of the parameter 

space, an additional advantage of the LM test is that it will still have standard distributional properties, 

whereas the LR and Wald tests will not. The random effects linear regression (Greene, 2012, p. 376) is a 

prominent example; Breusch and Pagan’s (1980) LM test for random effects in a linear model is based on 

pooled OLS residuals, while estimation of the alternative model involves generalized least squares either 

based on a two step procedure or maximum likelihood. 

 The LM test can be interpreted as a Wald test of the distance from zero of the first derivative 

vector of the log likelihood function (the score vector) of the unrestricted model evaluated at the restricted 

maximum likelihood estimates.  An example that will help to focus ideas is a probit model with 

exponential heteroscedasticity: 

 

 yi* = xi+ i, i ~ N[0, {exp(zi)}
2
], yi = 1[yi* > 0]. 

 

The log likelihood function for the unrestricted model is 

 

 logL = ilog {(2yi - 1)xi / exp(zi)}, 

 

where (t) is the cumulative density function (cdf) of the standard normal distribution. The maximization 

of logL over (,) is somewhat more complicated than the maximization over (,0), which is the standard 

probit model.  But, an LM test for the absence of heteroscedasticity (=0) is based on estimates of the 

latter model and is extremely simple to carry out using standard tools.  [See, e.g., Greene (2012, p. 713).] 

Our interest here is testing for random effects in the random effects probit model using the LM 

test. This model is, after the linear regression model, by far the leading application of the more general 

class of random effects models.  But, despite the obvious simplicity of the restricted model, the standard 

probit model, the LM test for this model does not appear in the existing literature, One reason for this is 

that the usual parameterization of the model has the inconvenient feature that the score vector is 

identically zero at the restricted estimates. There are noted in the received literature a handful of other 

cases in which the score vector needed to compute the LM statistic is identically zero at the restricted 

estimates, which would seem to preclude using the LM test.  [See Chesher (1984), Lee and Chesher  

(1986) and Kiefer (1982).]  In addition to  the random effects probit model, we also examine in passing 

the stochastic frontier model for cross section data.  Both cases are examples of a problem that emerges 

when the parametric restriction in the null hypothesis puts the value of a variance parameter on the 

boundary of the parameter space.  In the random effects model, the restriction is that the standard 

deviation of the random effect equals zero.  In the stochastic frontier model, the hypothesis of no 

inefficiency is tested via the hypothesis that the standard deviation of the random variable that is 

identified as the inefficiency component equals zero. 

 While Chesher (1984), Lee and Chesher (1986) and Kiefer (1982) discuss a general theory of 

how to deal with score vectors that are zero under the null hypothesis, and despite what would seem to be 

broad appeal in a generation of applications, we have not been able to locate applications in the 

subsequent 25+ years of literature.  In this note, we will provide what we expect to be some useful 

analytical expressions for the LM test for random effects in the random effects probit modeland the 

stochastic frontier model.  We illustrate their use with two empirical applications.  [Computations were 

carried out using NLOGIT 5 (Econometric Software, Inc. 2012).  Data and command streams may be 

downloaded from http://people.stern.nyu.edu/wgreene/lmtest.zip.]  
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2.  Two Models in Which the Scores are Identically Zero 

 

 The random effects ordered probit model and the generic basic form of the stochastic frontier 

model are the subjects of many received applications. 

 

2.1  The Random Effects Probit Model 

 

 The random effects probit model is 
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where  and xit are both k1 vectors. The log likelihood for a sample of n observations, conditioned on 

the unobserved heterogeneity, u = (u1,u2,…,un),    is 
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where qit = 2yit – 1. Maximum likelihood estimation is based on the unconditional log likelihood given by 
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where(t) is the standard normal density. The computation is simplified by making the change of variable 

from ui to vi = ui/u; the resulting log likelihood is 
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Butler and Moffitt (1982) developed the estimation methods generally used in contemporary applications 

of this model.   

To form the LM statistic for the test of the null hypothesis of no random effects, u = 0, we 

require the derivative with respect to u of each term in the sum: 
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In order to compute the LM statistic, we need to evaluate this expression at u = 0.  Moving all terms not 

involving vi outside the integrals produces very simple integrals in both the numerator and denominator. 
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Given the assumed standard normal distribution for vi, the integral in the numerator is E[vi] = 0 and that in 

the denominator is ( ) 1
i

i i
v

v dv   by definition.  It follows that regardless of the value of  and the 

data,X, each derivative term in the derivative of the log likelihood with respect to u is identically zero. 

The derivatives with respect to the restricted MLE of  is also zero (again by definition). Hence, the score 

vector under the null hypothesis is identically zero. It also follows that the information matrix will be 

singular – the row and column corresponding to u are identically zero.  

 In this situation, Chesher (1984), Lee and Chesher (1986) and Cox and Hinley(1974) suggest 

reparameterization of the model as a possible strategy for obtaining the LM test.  For the probit model, we 

use  = u
2
, so that the log likelihood in the parameter space of (,) becomes 
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The necessary derivative becomes 

   

   

 

11

1

1

( ) 1
( )

2( )log ( , )

( )

1
( )

2
                    













                      


     
 

   
 









x
x

x

x

x










i i

i

i

it it it iT T

it it i i i itt

it it i
i

T

it it i i it

T

it it i tt

q q v
q v v v dv

q vL

q v v dv

q v  

   

    

   

1

1

11

1

( )

( )

( )

1

2
                   















        
      

    
 

 



 









x

x

x







i

i

i i

i

it it it iT

i i i

it it i

T

it it i i it

T T

it it i i itt

T

it i it

q q v
v v dv

q v

q v v dv

g v v dv

v dv

 

 

 
 

 
where  and  = .

   
      

     
 

x
x

x






it it it i

it it it i it

it it i

q q v
q v g

q v
 

 



5 
 

Note that gitviis the first derivative of logit  with respect to .  Evaluated at  = 0, using the same 

approach as earlier, the numerator now takes the form 0/0.  We use L’Hôpital’s rule to to evaluate the 

 numerator, taking the limits as  approaches zero from above.  Then, 
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where Li = 1


iT

itt  and  hit  is the second derivative of logit with respect to its argument.  The two
  

occurrences of 1/(2)  cancel.  The integral in the numerator now involves E[vi
2
] = 1.  Moving the now 

invariant (with respect to vi) terms out of the integrals as before, the product terms, Li, in the numerator 

and denominator cancel and we now have 
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where the superscripts on hit and git  indicate they are evaluated at  = 0. Under the null hypothesis, as Ti 

goes to infinity, each term (i) above would converge to zero by virtue of the information matrix 

inequality.  To complete the derivation, the score for  is 
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The remainder of the score vector at the restricted estimates is 
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Finally, collecting all K+1 terms, we denote the score vector as 
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The first K elements of the score vector equal zero when evaluated at the restricted (pooled probit) MLE.  

Denote by G the n(K+1) matrix with ith row equal to gi
0
′ evaluated at the restricted maximum likelihood 

estimates, and let i denote an n1 column vector of ones.  Then, taking advantage of the information 

matrix equality to estimate the covariance matrix of the score vector, we compute the LM statistic using 
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Where  gγ
0 
is the last element of the score evaluated at the restricted maximum likelihood estimates, and 

(GG)
(K+1),(K+1)

 is the (K+1),(K+1) (i.e., lower right corner) element of (GG)
-1

.
 

        Given the well-known invariance of the LM test to re-parameterization (see Dagenais and Dufour 

(1981)), it might seem peculiar that a re-parameterization can change the properties of the test. However, 

their proof of invariance requires that the matrix containing the derivatives of one set of parameters with 

respect to the other set of parameters be non-singular at the restricted parameter values. Since ∂γ/∂σu=2σu, 

this non-singularity condition will not be satisfied here at σu =0. Given the results for the parameterization 

using γ, it is easy to show that the parameterization using σu will lead to a zero score since 
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2.2  The Stochastic Frontier Model 

 The normal-half normal stochastic frontier model (Aigner, Lovell and Schmidt 1977) (ALS) is 

given by 

 yi= β’xi + vi - ui;i=1,..,n, 

where vi~ N[0,σv
2
] and ui = |Ui| where Ui ~ N[0,σu

2
].  It is assumed that the model contains a constant term. 

It is convenient to reparameterize the model at the outset, as do ALS, in terms of λ = σu/σv and  

σ
2
 = σv

2
 + σu

2
.  Then, the log likelihood for the stochastic frontier model is 
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where i = vi - ui. The hypothesis of interest is that σu = 0, or, equivalently, λ = 0.  The log likelihood for 

this model has two stationary points, one at the global MLE (with λ > 0) and a second at the point of 

interest, where λ = 0 and the estimator of β is simply the OLS coefficient vector.  The score for λ is  
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It is easy to see that at λ = 0, the remaining MLEs of β and σ
2 
are the ordinary least squares estimate of β  

and s
2
 = ee/n, where e is the vector of OLS residuals.  The score for λ evaluated at the restricted 

parameter estimates yields (0)/(0)= (2/)
1/2

=.7979 times the sum of the OLS residuals, which is zero.  

Reparameterization of the model, as we did for the probit model earlier, does not help here.  However, 

Lee and Chesher (1984) obtained a result for testing λ = 0 based on higher moments.  The statistic they 

derived is given by 
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where ei is the OLS residual for the ith observation, m3 is the third moment of the OLS residuals, and s is 

the standard deviation of the OLS residuals. The limiting distribution of LM
2
 would be  
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The notable feature of this result is that this chi squared version of the test is just the skewness component 

of the Jarque-Bera (1987) test for normality based on the OLS residuals in a linear regression. (See also 

Bowman and Shenton’s (1975) normality test.)  It is of course natural to be testing for skewness in this 

context – the entire model hangs on the disturbance being distributed with a left skewed distribution.  It is 

surprising that this statistic is not a standard part of the reported results for stochastic frontier models, 

since the likelihood ratio test of the same hypothesis usually is reported. 

 

 

3.  Applications 

 

Riphahn, Wambach and Million (2003) used data from the German Socioeconomic Panel Survey 

over the period 1984-95 to model the number of times a patient visits a doctor in a year.  Here, we restrict 

their sample to a balanced panel where the data are observed in each of the relevant years. This gives a 

panel data set with 7 years of data on 887 households for a total of 6209 observations.The variables used 

to modelthe decision of whether or not to visit a doctor in a calendar year (Y) are age (AGE), the years of 

schooling (EDUC), health satisfaction (HSAT), household income (HHINCOME), marital status 

(MARRIED), and a dummy variable for whether or not there are children under the age of 16 in the 

household (HHKIDS). The results of estimated the restricted pooled probit model and the random effects 

probit model are reported in Table 1. 
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Table 1: Estimated Probit Models 

 Pooled Probit  Random Effect Probit 

  

 
Coefficients t-statistics 

 
Coefficients t-statistics 

Constant    1.72326***  11.23 
 

  1.62003***    5.76 

AGE    0.00399*    1.85 
 

  0.01334***    3.34 

EDUC  -0.03943*** -  4.78 
 

-0.04930***   -2.83 

HSAT  -0.18107*** -21.61 
 

-0.19446*** -16.98 

HHINCOME   0.09388    0.86 
 

  0.1357      0.94 

MARRIED   0.15919***    3.21 
 

  0.13719    1.62 

HHKIDS -0.13394***   -3.41 
 

-0.11585*     -1.94 

ρ 
   

 0.43203***     20.1 

Log-Likelihood -3760.5374 
 

-3396.4481 

  Note:  *, **, *** denote significance at the 10%, 5% and 1% levels, respectively. 

 

The computed value of the LM test is 244.2, which clearly rejects the null hypothesis of no random 

effects. The values of the Wald and LR tests are 403.8 and 728.2, respectively. Even if we take account of 

their non-standard distribution  in this case (see Andrews (2001)), they also clearly reject the null 

hypothesis. 

The second example is based on production data for a panel of 247 Spanish dairy farms used in 

Alvarez, Arias and Greene (2004).  The data are the logs of milk output (YIT) and four inputs, labor (X1), 

land (X2), cows (X3) and feed (X4). The test statistic for skewness (21.67) clearly rejects the null 

hypothesis of zero inefficiency. Likewise, even taking account of their non-standard distributions, the 

Wald test (294.8) and the LR test (26.0) also clearly reject the null hypothesis. 

Table 2: Estimated Stochastic Frontier Models 

 
Coefficients t-statistics 

 
Coefficients t-statistics 

Constant 11.5775*** 3175.52 
 

11.7014*** 2614.87 

X1 .59518*** 30.39 
 

.58369*** 30.93 

X2 .02305** 2.05 
 

.03555*** 3.2 

X3 .02319* 1.78 
 

.02256* 1.76 

X4 .45176*** 41.89 
 

.44948*** 43.42 

λ        0 
  

1.50164*** 17.17 

σ .14012 
  

.18710*** 1698.9 

Log-Likelihood 809.67609 
  

822.68831 
 

  Note:  As for Table 1. 

 

4.  Conclusion 

 

 The test apparatus developed here appears in Lee and Chesher  (1986) and Chesher (1984).  

(Though the LM test for the frontier model is presented in rather more opaque terms.)  We find it 

surprising that neither appears to be in wide use, in spite of the fact that the null hypothesis being tested in 

both cases is routinely part of the analysis.  The result for the stochastic frontier model has an intuitively 

appealing form.  We have found no applications for the random effects probit model, despite its surprising 

simplicity.  The result for the random effects case can actually be easily extended to other index function 

models.  The function (.) is the contribution to the likelihood function of the it’th observation and 

subsequent results are based on the first and second derivatives of log(.). 
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