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Abstract

We introduce a class of new sharing arrangements in a multi-stage supply chain in which the

retailer observes stationary autoregressive moving average demand with Gaussian white noise

(shocks). Similar to previous research, we assume each supply chain player constructs its best

linear forecast of the leadtime demand and uses it to determine the order quantity via a periodic

review myopic order-up-to policy. We demonstrate how a typical supply chain player can create

a sequence of partial information shocks (PIS) from its full information shocks FIS and share

these with an adjacent upstream player. We go on to show how such a sharing arrangement may

be beneficial to the upstream player by characterizing the player’s FIS in such a case. Hence,

we study how a player can determine its available information under PIS sharing, and use this

information to forecast leadtime demand. We characterize the value of FIS sharing for a typical

supply chain player. Furthermore, we show conditions under which a player is able to form

and share valuable PIS without (i) revealing its historic demand sequence or (ii) revealing its

FIS sequence. We also provide a way of comparing various PIS sharing arrangements with each

other and with conventional sharing arrangements involving demand sharing or FIS sharing.

We show that demand propagates through a supply chain where any player may share nothing

or a sequence of PIS shocks with an adjacent upstream player as quasi-ARMA in - quasi-ARMA

out.
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1 Introduction

In this paper we consider all possible sharing arrangements that may have value to a player in a

multi-stage supply chain in which the retailer observes covariance-stationary autoregressive moving

average (ARMA) demand with Gaussian white noise (shocks). This work extends the research

found in [Giloni et al., 2012] (hereafter GHS) and [Kovtun et al., 2012] (hereafter KGH), where

the only sharing arrangements considered were no sharing, full information shock (FIS) sharing

and demand sharing between contiguous players. Specifically we consider the possibility of partial

information shock (PIS) sharing, which at times is equivalent to no sharing, FIS sharing or demand

sharing. As we will show, the motivation for studying such arrangements is that they may also

provide value that is intermediate to the three previously described sharing arrangements. This

is appealing because players would be able to provide valuable information to other players (and

be compensated) while also protecting themselves from revealing information that may be part of

some confidentiality agreement they have with other players.

KGH described why the assumption of ARMA demand is highly appealing in the context of

supply chains. They show that under certain assumptions demand will propagate as quasi-ARMA-

in quasi-ARMA-out throughout the supply chain when no sharing, demand sharing, or FIS sharing

is allowed to occur between contiguous players. They also show how these sharing arrangements

may provide different levels of value. The value of information sharing is measured as a decrease in

a player’s mean square forecast error (MSFE) with the shared information as opposed to without

it.

We make several important contributions to the literature. The first is in describing how PIS
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shocks may be formed by a player and shared with another player. The second is in showing

the value of PIS sharing to a player by considering the player’s FIS and MSFE under such an

arrangement. Third we create a framework that allows us to compare all possible PIS sharing

arrangements as well as comparing them to no sharing, demand sharing, and FIS sharing. Fourth

is in showing that demand propagates as quasi-ARMA (QUARMA)-in quasi-ARMA-out when we

allow for any PIS sharing arrangement to occur between contiguous players throughout the supply

chain. Finally we show how such sharing arrangements can still be valuable while not revealing

possibly confidential information.

In this paper, if there is no information sharing, an upstream player receives only an order from

the adjacent downstream player. When there is PIS sharing, the downstream player provides its

current observed PIS shock in addition to placing its order with the upstream player. As in GHS,

demand or FIS sharing refers to the downstream player sharing its current observed demand or

FIS in addition to placing its order with the upstream player.

We assume that all supply chain players use a myopic order-up-to inventory policy where neg-

ative order quantities are allowed, but the probability of negative demand or negative orders is

negligible. As in [Lee et al., 2000] (hereafter LST), it is assumed that the lead time guarantee

holds, i.e., if an upstream player does not have enough stock to fill an order from the adjacent

downstream player, then the upstream player will meet the shortfall from an alternative source,

with additional cost representing the penalty cost to this shortfall. Excess demand at the retailer

is backlogged. Similar to previous research (c.f. [Zhang, 2004] (hereafter Zhang), GHS, KGH,

and [Aviv, 2001], [Aviv, 2002], [Aviv, 2003], [Aviv, 2007] (hereafter Aviv)), we assume each supply

chain player constructs its best linear forecast of leadtime demand and uses it to determine the

order quantity via a periodic review myopic order-up-to policy.

With respect to the information structure, we assume that all players know the parameters of
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the ARMA model generating the retailer’s demand and are aware of all the sharing arrangements

that occur downstream. It will become apparent within this paper that this assumption implies the

information structure assumed by others (including LST), specifically each player knows the form

and parameters of the model of its own demand and of the model generating an adjacent downstream

player’s demand. As a consequence of the assumptions in this paper, we will show that each player

in the supply chain will observe demand realizations that follow a quasi-ARMA (QUARMA) model

(as defined in GHS) with respect to the player’s full information shocks (those shocks which generate

all of the player’s information). The reader should note here that a downstream player’s demand

realizations, and full information shocks may be private knowledge, and not known to upstream

players.

2 Research Problem

In this paper we adapt the framework found in GHS and KGH. Consider a K-stage supply chain

where at discrete equally-spaced time periods, the retailer (assumed to be at stage 1) faces exter-

nal demand {D1,t} for a single item with {D1,t} following a covariance stationary ARMA process.

Although the retailer’s demand is ARMA, it will become apparent later that, following the as-

sumptions outlined in this section, a player k will observe demand series {Dk,t} that is QUARMA

(defined below) with respect to a series of observable shocks that contain all the information avail-

able to player k ({εk,t}). Henceforth {Dk,t} and {εk,t} will refer to player k’s demand series and full

information shock (FIS) series, defined below in Definition 2. We will write the observed demand

and FIS sequence at time t as {Dk,n}tn=−∞ and {εk,n}tn=−∞. We will also at times refer to this as

present and past values of {Dk,t} and {εk,t}. Player k’s demand and shock at time t will be Dk,t

and εk,t.

Definition 1. {Dk,t} is QUARMA(p, qk, Jk) with respect to a Gaussian white noise sequence {εk,t}
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if we can write

Dk,t−φ1Dk,t−1−φ2Dk,t−2− . . .−φpDk,t−p = d+εk,t−Jk
−θ1εk,t−Jk−1−θ2εk,t−Jk−2− . . .−θqkεt−Jk−qk (1)

where d is a known constant (appearing in the retailer’s demand model), Jk is a non-negative

integer, φp 6= 0, and θqk 6= 0.

Note that a QUARMA model is very similar to the frequently used ARMA model, except here,

the Jk most recent shocks are missing on the right-hand side. In the case Jk = 0 we have the

equivalence QUARMA(p, qk, 0)≡ ARMA(p, qk). Consider the backshift operator B, where BDk,t =

Dk,t−1. We can express (1) in terms of the backshift operator as

φ(B)Dk,t = d+BJkθk(B)εk,t (2)

where φ(B) = 1− φ1B − φ2B
2− . . .− φpBp and θk(B) = 1− θk,1B − θk,2B2− . . .− θk,qkBqk . Note

that φ(z) and θk(z) can be regarded as polynomials in the complex plane.

The retailer observes ARMA(p, q1) demand with respect to Gaussian shocks {ε1,t} where p ≥ 0,

q1 ≥ 0, i.e.,

φ(B)D1,t = d+ θ1(B)ε1,t (3)

where the polynomial φ(z) = 1− φ1z − φ2z
2 − . . .− φpzp has no roots inside or on the unit cirlce

and θ1(z) = 1− θ1,1z − θ1,2z
2 − . . .− θ1,q1z

q1 has no roots inside the unit circle (ie. for any root rφ

of φ(z), |rφ|> 1 and for any root rθ of θ1(z), |rθ|≥ 1 where |·| is the modulus of a complex number).

This insures that the retailer can recover {D1,n}tn=−∞ from {ε1,n}tn=−∞ and vice-versa, meaning

that both series are observable to the retailer at time t.1

As in GHS, we let the replenishment leadtime from the retailer’s supplier to the retailer be `1

periods. Excess demand at the retailer is backlogged. Let the replenishment leadtime from the

1Such an ARMA model is said to be causal and invertible (see [Brockwell and Davis, 1991], pp 83-88). If the

ARMA model is not invertible, then at time t, future values in the sequence {D1,n}∞n=t would be required to recover

{ε1,n}tn=−∞. If the ARMA model is not causal, then at time t, future values in the sequence {ε1,n}∞n=t would be

required to recover {D1,n}tn=−∞.
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player at stage k+1 to stage k be `k periods. We assume that all supply chain players use a myopic

order-up-to inventory policy where negative order quantities are allowed, but d is sufficiently large

so that the probability of negative demand or negative orders is negligible. Furthermore, hk and pk

are player k’s unit holding and shortage (or backorder) costs per time period. Player k’s required

service level is given by ck = Φ−1[ pk
pk+hk

], where Φ is the standard Normal cdf. It is assumed that

for k ≥ 1 the `k period lead time guarantee holds, i.e., if the player at stage k + 1 does not have

enough stock to fill an order from the player at stage k, then the player at stage k + 1 will meet

the shortfall from an alternative source, with additional cost representing the penalty cost to this

shortfall. [Gallego and Zipkin, 1999] show how this assumption allows one to decompose a multi-

stage system with no alternative source into single-stage systems and to approximate the cost of

the system.

Hence, at the end of time period t, after demand D1,t has been observed, the retailer observes

the inventory position and places order D2,t with its supplier. The retailer receives the shipment of

this order at the beginning of period t+ `1 + 1, where `1 ≥ 0. The sequence of events at all supply

chain players is similar. However, it is further assumed that all upstream supply chain players

observe their demand, observe their inventory positions and place their orders instantaneously at

the end of time period t.

We assume that all players place their orders based on the best linear forecast of their lead-

time demand. Thus player k’s order will be based on its best linear forecast of the demand it will

observe through time period t + `k + 1 (that is
∑`k+1

i=1 Dk,t+i). It is assumed that all upstream

supply chain players observe their demand, observe their inventory positions and place their orders

instantaneously at the end of every time period t. It is assumed that all players are aware of the

retailer’s model and all sharing arrangements that occur downstream as in GHS. It follows from

the results in this paper that for k ≥ 2 the form and parameters of the model generating player
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k− 1’s demand and k’s demand are known to player k. However player k− 1’s demand realizations

and/or full information shocks may not be observable by player k. In this paper, we assume (unlike

KGH) that, at time t, along with placing its order, a player may choose to share PIS ε?k,t, as defined

below, with an adjacent upstream player.

We show that no matter how players form their PIS when sharing with adjacent upstream

players, we can write {Dk,t} as QUARMA with respect to {εk,t} for any k ≥ 0. This is done by

mathematical induction on k in Corollary 3 of Section 3. The inductive hypothesis in the proof is

that for a particular k > 1 we can express player k − 1’s demand {Dk−1,t} in terms of {εk−1,t} as

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t (4)

We will call this player k − 1’s demand equation.

2.1 Information Sets and Full Information Shocks

Following the notation in GHS, we denote the information set available to player k at time t as

Mk
t . GHS show that there exists a white noise sequence {εk,t} such that {εk,n}tn=−∞ is observable

to player k and contains all the information available to player k at time t under the assumption

of no sharing or FIS sharing. Mathematically, this would mean that any element in Mk
t can be

found as a linear combination of elements from {1, εk,t, εk,t−1, εk,t−2, . . .} (or as the limit of a Cauchy

sequence of linear combinations of elements from {1, εk,t, εk,t−1, εk,t−2, . . .}) and player k would use

this shock sequence to create a best linear forecast of lead-time demand. Thus we define the Hilbert

space Mεk
t = sp{1, εk,t, εk,t−1, εk,t−2, . . .}, where sp{} refers to the closed linear span. GHS refer to

the shocks {εk,t} as player k’s full information shocks according to Definition 2. The space Mεk
t is

sometimes referred to as the linear past of {εk,t}.

Definition 2. Suppose that for k > 0 we can represent player k’s demand series {Dk,t} as a

QUARMA with respect to a series of shocks {εk,t}. We say that {εk,t} are player k’s Full Informa-
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tion Shocks (FIS) if Mk
t =Mεk

t .

This definition implies two key properties of full information shocks. Player k’s information

set can be used to find player k’s full information shocks. Also, player k’s information set can be

characterized using player k’s full information shocks. In analyzing the case that player k − 1 > 0

shares nothing or shares its full information shocks with player k, GHS define two important Hilbert

spaces:

MDk
t = sp{1, Dk,t, Dk,t−1, Dk,t−2, . . .}

MDk,εk−1

t = sp{1, Dk,t, εk,t, Dk,t−1, εk,t−1, . . .}

KGH extends this by considering the case that player k − 1 shares its demand with player k and

therefore defines the information set

MDk,Dk−1

t = sp{1, Dk,t, Dk−1,t, Dk,t−1, Dk−1,t−1, . . .} (5)

In this paper we consider the case that player k − 1 shares a PIS sequence {ε?k−1}. In this case

player k’s information set will be Mk
t =MDk,ε

?
k−1

t where

MDk,ε
?
k−1

t = sp{1, Dk,t, ε
?
k−1,t, Dk,t−1, ε

?
k−1,t−1, . . .} (6)

It will turn out that MDk,ε
?
k−1

t may be such that

MDk,ε
?
k−1

t =MDk
t (7)

in which case PIS sharing is equivalent to no sharing. It can also happen that

MDk,ε
?
k−1

t =MDk,Dk−1

t (8)

in which case PIS sharing is equivalent to demand sharing. Likewise, its possible that

MDk,ε
?
k−1

t =Mεk−1

t (9)

8



in which case PIS sharing is equivalent to FIS sharing. However it may the case that MDk,ε
?
k−1

t

cannot be described by any of these three sets with MDk,ε
?
k−1

t being intermediate to two of them.

We provide conditions for all these cases, but the major contribution of this paper is in showing

how the last would occur and analyzing this case.

3 Partial Information Shock Sharing

In this section we will show how player k − 1 can construct a series of PIS shocks from its FIS

shocks {εk−1,t} and share these with player k. We go on to show how player k can determine the

form of its FIS {εk,t} and its demand equation under the assumption that player k − 1 shares its

PIS. This will also demonstrate why player k − 1’s PIS may provide value to player k.

First consider the important definition of the † operator (pronounced “dagger”).

Definition 3. Suppose a polynomial P (z) factorizes as

P (z) =

h∏
s=1

(1− z

as
)

q∏
s=h+1

(1− z

as
)

such that |as|< 1 for 1 ≤ s ≤ h and |as|≥ 1 for h+ 1 ≤ s ≤ q.

Define P †(z) as the polynomial

P †(z) =
h∏
s=1

(1− āsz)
q∏

s=h+1

(1− z

as
) (10)

where ās is the complex conjugate of as

Note that when the † operator is applied to a polynomial, it inverts and conjugates any root of

the polynomial that is inside the unit circle. The resulting polynomial will have all its roots outside

or on the unit circle.

Consider the inductive hypothesis in Corollary 3 that player k− 1 observes QUARMA demand

{Dk−1,t} with respect to its full information shocks {εk−1,t},

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t (11)
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By definition, the shocks {εk−1,t} are observable to player k − 1. Player k − 1 can thus form

another shock sequence by passing {εk−1,t} through an all-pass filter, while also possibly excluding

the most recent J?k−1 shocks. We will call any shock sequence formed in this manner as player

k − 1’s partial information shocks.

Definition 4. Suppose that for k > 0 player k − 1 observes FIS {εk−1,t}. Let

ε?k−1,t = BJ?k−1
Ak−1(B)

A†k−1(B)
εk−1,t (12)

where Ak−1(z) is some polynomial having all its roots inside the unit circle and leading coefficient

1, and J?k−1 is a nonnegative integer. We say that {εk−1,t} are player k − 1’s partial information

shocks.

The term
Ak−1(B)

A†k−1(B)
is the all-pass filter being used by player k − 1 to construct {ε?k−1,t}. We

will refer to the polynomial Ak−1(z) as the polynomial of the all pass filter of player k − 1. Since

A†k−1(z) has no roots inside or on the unit circle, the right-hand-side of (12) includes no future

values of {εk−1,t} and thus the sequence {ε?k−1,t} is observable to player k. Furthermore the fact

that
Ak−1(B)

A†k−1(B)
is an all-pass filter guarantees that {ε?k−1,t} are indeed shocks.

Note that we can rewrite (12) as

A†k−1(B)ε?k−1,t = BJ?k−1Ak−1(B)εk−1,t (13)

Along with receiving {ε?k−1,t}, we will also assume that player k will know how {ε?k−1,t} was created.

Thus player k will know the polynomial Ak−1(z) in (13) and the value of J?k−1. This is a reasonable

assumption after all since player k − 1 can easily share this information and because the shocks

{ε?k−1} will have little value otherwise. This is also why it does not matter whether or not player

k − 1 includes a constant additive term or multiplicative term in equation (12). Player k could

easily remove this term, by subtracting or dividing the shared {ε?k−1} by an appropriate constant.

Since (13) follows immediately from (12) we will refer to (13) as player k − 1’s sharing equation.
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We will show that given {ε?k−1} along with (13) player k can recover its FIS using equations

A†k−1(B)ε?k−1,t = BJ?k−1Ak−1(B)εk−1,t (14)

and

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t (15)

where the last equation is player k − 1’s order equation as defined in KGH. The form in (15) was

shown to hold in both GHS and KGH as a consequence of how demand propagates according to a

myopic order-up-to-policy, and is not related to the sharing arrangement between player k− 1 and

k. The notation of (15) is the exact notation used in this series of papers.

The following lemma is central to finding player k’s FIS using equations (14) and (15).

Lemma 1. Suppose we can represent two sequences {X1,t} and {X2,t} in terms of a zero-mean

stationary process {ηt} as

A1(B)X1,t = BJ1A2(B)(1/λ)ηt (16)

φ(B)X2,t = d+BJ2Θ(B)ηt (17)

where φ(z) and A1(z) have no roots inside the unit circle, and a leading coefficient 1. Θ(z) and

A2(z) have no roots at zero and a leading coefficient 1, and λ is a non-zero constant.

There exist functions ϑ(z) and ω(z) with one sided Laurent series representations converging

in a disk D that contains the unit circle such that ϑ(B)A1(B)X1,t + ω(B)φ(B)X2,t = ω(1)d+ ηt if

and only if the polynomials zJ1A2(z) and zJ2Θ(z) have no common common roots inside or on the

unit circle.

Lemma 1 is a slight generalization of Lemma 1 of KGH. Here we are not assuming that the

polynomials on the left-hand-side are the same, nor that the constant term d appears in both

equations. The proof however is very similar to the proof in KGH and is provided in the Appendix.

The proof of Theorem 1 will show how Lemma 1 is used so that we can find player k’s FIS for

all sharing arrangements involving shocks that are formed by passing {εk−1,t} through an all-pass

filter.
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In order to properly define player k’s FIS in such a situation, we adapt the following useful

definition from KGH:

Definition 5. For any z ∈ C and polynomial P , if z is a root of P we define m(z, P ) as the

multiplicity of z in P . If z is not a root of polynomial P we define m(z, P ) = 0.

The following theorem gives the form of player k’s FIS when player k − 1 shares {ε?k−1,t}.

Theorem 1. Suppose that player k − 1 shares shock series {ε?k−1,t} with player k where ε?k−1,t =

BJ?k−1
Ak−1(B)

A†k−1(B)
εk−1,t. Then player k’s FIS will be {εk,t} where

εk,t =
θ̃I−CAk (B)

θ̃†I−CAk (B)
Bmin(J̃k,J

?
k−1)λk,J̃kεk−1,t (18)

where θ̃I−CAk (z) =

rk∏
j=1

(1 − z

zj
)min(m(zj ,θ̃k),m(zj ,Ak−1)), z1, . . . , zrk are the rk distinct roots of θ̃k(z)

inside the unit circle, with respective multiplicities m(z1, θ̃k), . . . ,m(zrk , θ̃k).

Furthermore player k’s demand equation is φ(B)Dk,t = d + BJkθk(B)εk,t with Jk = J̃k −

min(J̃k, J
?
k−1) and θk(z) =

θ̃k(z)

θ̃I−CAk (z)
θ̃†I−CAk (z).

Note here that we do not conclude that player k observes {εk−1,t} and computes its FIS using

equation (18). Rather the claim is that the shocks {εk,t} are observable to player k and that {εk,t}

is the result of applying (18) to {εk−1,t}. The roots of polynomial θ̃I−CAk (z) are those roots of

θ̃k(z) inside the unit circle that are also common to Ak−1(z) and the multiplicity of each root is

the minimum of the multiplicities of the root in θ̃k(z) and Ak−1(z). Also note that θk(z) will be

a polynomial with leading coefficient one since θ̃k(z) has leading coefficient one and is divisible by

θ̃I−CAk (z). The proof of Theorem 1 can be found in the Appendix. We also have the following

useful corollaries:

Corollary 1. Suppose that player k − 1 shares shock series {ε?k−1,t} with player k where ε?k−1,t =

BJ?k−1
Ak−1(B)

A†k−1(B)
εk−1,t. If zJ̃k θ̃k(z) and zJ

?
k−1Ak−1(z) have no common roots inside the unit circle,

then player k’s FIS are given by

εk,t = λk,J̃kεk−1,t (19)
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Furthermore Jk = J̃k and θk(z) = θ̃k(z).

Note that in this case player k can figure out the sequence {εk−1,t} by observing {εk,t} and

dividing this sequence by λk,J̃k .

Corollary 2. Suppose that player k − 1 shares shock series {ε?k−1,t} with player k where ε?k−1,t =

BJ?k−1
Ak−1(B)

A†k−1(B)
εk−1,t. If zJ̃k θ̃k(z) and zJ

?
k−1Ak−1(z) have at least one common root inside the unit

circle, then at time t, player k cannot recover the sequence {εk−1,n}tn=−∞.

Proof of Corollary 1. If zJ̃k θ̃k(z) and zJ
?
k−1Ak−1(z) have no common roots inside the unit circle,

then θ̃I−CAk (z) ≡ 1, θ̃†I−CAk (z) ≡ 1, θ̃NCk (z) ≡ θ̃k(z) and min(J̃k, J
?
k−1) = 0 in (18) giving the

desired result.

Proof of Corollary 2. If zJ̃k θ̃k(z) and zJ
?
k−1Ak−1(z) have a common root inside the unit circle, then

either min(J̃k, J
?
k−1) > 0 or θ̃I−CAk (z) 6≡ 1 in (18). Rewriting (18) as

εk−1,t =
θ̃†I−CAk (B)

θ̃I−CAk (B)
B−min(J̃k,J

?
k−1)(1/λk,J̃k)εk,t (20)

we see that if the former is true then, at time t, player k would need to know εk,t+min(J̃k,J
?
k−1)

to recover εk−1,t in the sequence {εk−1,n}tn=−∞. But εk,t+min(J̃k,J
?
k−1) is not known at time t if

min(J̃k, J
?
k−1) > 0. If the latter is true then the polynomial in the denominator of (20) has a

root inside the unit circle, so that at time t one would need to know future values in the sequence

{εk−1,n}∞n=t to recover {εk−1,n}tn=−∞.

As mentioned, Theorem 1 cannot be used as a way to find player k’s FIS. This is because the

sequence appearing on the right-hand-side of (18) may not be observable to player k as shown by

Corollary 2. The following is a brief discussion on how player k would recover its FIS in practice.

Consider player k − 1’s sharing and order equations (whose forms are known to player k).

A†k−1(B)ε?k−1,t = BJ?k−1Ak−1(B)εk−1,t

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t
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We can rewrite these as

A†k−1(B)ε?k−1,t = BJ?k−1AOUTk−1 (B)AINk−1(B)AONk−1(B)εk−1,t (21)

φ(B)Dk,t = d+BJ̃k θ̃OUTk (B)θ̃INk (B)θ̃ONk (B)λk,J̃kεk−1,t (22)

where the superscript ”OUT” indicates that the factors included in this polynomial have roots

outside the unit circle, ”IN” indicates that the polynomial has all roots inside the unit circle, and

”ON” indicates that all the roots are on the unit circle. It is possible that the polynomial θ̃k(z)

has no roots outside the unit circle, in which case we take θ̃OUTk (z) ≡ 1. Similar convention holds

for the rest.

As in the proof of Lemma 1 we can apply the Euclidean Algorithm to obtain polynomials Q1(z)

and Q2(z) such that

zJ
?
k−1Q1(z)Ak−1(z) + zJ̃kQ2(z)θ̃k(z)λk,J̃k = zmin(J?k−1,J̃k)θ̃I−CAk (z)θ̃OUT−CAk (z)θ̃ON−CAk (z)

where the subscript ”I-CA” indicates that this polynomial has all the roots common to θ̃INk (z)

and AINk−1(z), ”OUT-CA” indicates that the polynomial has all the roots common to θ̃OUTk (z) and

AOUTk−1 (z), and ”ON-CA” indicates that the polynomial has all the roots common to θ̃ONk (z) and

AONk−1(z). We consider a root common to two polynomials if it is a root of both polynomials. We

take the multiplicity of such a root to be the minimum of the multiplicities of the root in the two

polynomials.

We can multiply (21) and (22) by Q1(z) and Q2(z) and add them together to get

Q1(B)φ(B)A†k−1(B)ε?k−1,t +Q2(B)φ(B)Dk,t − C = Bmin(J?
k−1,J̃k)θ̃OUT−CA

k (B)θ̃I−CA
k (B)θ̃ON−CA

k (B)εk−1,t

where C = Q2(B)d. Dividing both sides by θ̃OUT−Ck (B)θ̃ON−Ck (B)θ̃†I−Ck (B) and multiplying by

λk,J̃k we have

λk,J̃k

θ̃OUT−CA
k (B)θ̃ON−CA

k (B)θ̃†I−CA
k (B)

(
Q1(B)A†k−1(B)ε?k−1,t+Q2(B)φ(B)Dk,t−C

)
= λk,J̃k

Bmin(J?
k−1,J̃k)

θ̃I−CA
k (B)

θ̃†I−CA
k (B)

εk−1,t

14



Note that the right-hand side of this equation is the right-hand-side of (18). The polynomials

in the denominator on the left-hand-side contain no roots inside the unit circle. Therefore the

expression can be computed without using any future values of {ε?k−1,t} and {Dk,t} and can therefore

be found from historical data.

Using the results developed we can show that demand propagates according to the QUARMA-in

QUARMA-out property of GHS. We will do this by induction. We have already used the inductive

hypothesis of the following corollary to show the expression of player k’s FIS in Theorem 1). We

will now show that demand propagates as QUARMA-in QUARMA-out as a consequence of this

expression.

Corollary 3. Suppose the retailer observes causal and invertible ARMA demand

φ(B)D1,t = d+ θ1(B)ε1,t

and for any k > 0, player k − 1 can share shocks {ε?k−1,t} with an adjacent upstream player where

εk−1,t = BJ?k−1
Ak−1(B)

A†k−1(B)
εk−1,t for some polynomial Ak−1(z) having all its roots inside the unit circle

(but not at zero) and leading coefficient 1.

Then for any k > 0 we can express player k’s demand as QUARMA with respect to player k’s

full information shocks:

φ(B)Dk,t = d+BJkθk(B)εk,t (23)

where θk(z) has a leading coefficient 1 and no roots at zero.

Proof of Corollary 3. The proof follows by induction immediately from Theorem 1.

For k = 1, we have the retailer observing (23) with J1 = 0.

Now assume that (23) holds for some k > 1 where player k − 1’s demand is QUARMA with

respect to its FIS:

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t

Suppose player k − 1 shares shocks {ε?k−1,t} with player k.

By Theorem 1, we have that player k observes QUARMA demand with respect to its FIS:

φ(B)Dk,t = d+BJkθk(B)εk,t
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where Jk and θk(z) are provided by the theorem.

4 Comparing Various Sharing Arrangements

We saw in the previous section that player k−1 can share many different shock sequences with player

k. This section will be devoted to a discussion on the potential of these sharing arrangements to

have different value to player k. We will see that we can compare the different sharing arrangements

by comparing player k’s FIS under the various sharing arrangements as well as the resulting MSFE.

We will compare the value of player k−’s PIS that it shares with player k with other possible PIS.

We will also compare the value of player k − 1’s PIS to player k with the value of no sharing,

demand sharing, and full information shock sharing discussed in KGH. We will see that there are

situations where player k − 1 can construct PIS that will provide more value to player k than no

sharing, but less value to player k than demand sharing. Furthermore, as we will discuss, in these

situations player k would be unable to recover player k− 1’s demand sequence as a result. We will

specify a whole class of all-pass filters player k−1 could use to achieve this result. Likewise, we will

find instances where player k − 1 can construct PIS that will provide more value to player k than

demand sharing, but less value to player k than full information shock sharing. We will discuss the

class of all-pass filters that would achieve this result as well. By the end of this section, for any

conceivable order equation (15) of player k − 1, we would be able to specify the various sharing

arrangements from player k − 1 to k that would lead to different information levels for player k.

Furthermore we would instantly be able to tell the most profitable sharing arrangements for player

k.

As we will see, the value of player k − 1’s PIS to player k centers around the θ̃k(z) polynomial

appearing in (15). Since we will refer to this equation frequently in this section, we rewrite this

equation here.
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φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t (24)

Using Theorem 1 (or Corollary 1) and Proposition 2 of KGH, we have the following proposition.

Proposition 1. For some k > 0 if zJ̃k θ̃k(z) in (24) has no roots inside the unit circle, then player

k’s FIS will be {λk,J̃kεk−1,t} regardless of the sharing arrangement between player k − 1 and k.

This proposition implies that there is no value to information sharing between player k− 1 and

k when J̃k = 0 and θ̃k(z) has no roots inside the unit circle. Thus no sequence of PIS will have

value to player k. The gain in value from PIS sharing will only occur when either or both of these

conditions fail. The following remark shows that the variance of player k’s FIS is proportional to

the variance player k − 1’s FIS, and depends on the roots of θ̃I−CAk (z).

Remark 1. The variance of player k’s FIS (σ2
εk,Ak−1

) when player k − 1 shares {ε?k−1,t} where

ε?k−1,t = BJ?k−1
Ak−1(B)

A†k−1(B)
εk−1,t is given by

σ2
εk,Ak−1

= λ2
k,J̃k

σ2
εk−1

nc∏
j=1

1

|rj |2

where r1, ..., rnc are the roots of θ̃I−CAk (z).

Note that this remark gives the variance of player k’s FIS given by Theorem 1. Furthermore,

each root rj that is common to θ̃k(z) and Ak−1(z) inside the unit circle will increase the variance of

player k’s FIS since 1
|rj | > 1. The lower the product of the modulus of roots of θ̃I−CAk (z), the lower

the innovation variance of player k’s FIS. The remark follows immediately from the all-pass filter

appearing in (18) that creates εk,t from {εk−1,t} (see [Brockwell and Davis, 1991] pp. 127-129).

A vital question to ask is how many different FIS can player k observe having different innovation

variances under all possible PIS sharing arrangements with player k − 1. Looking at the previous

remark we see that the variance of player k’s FIS is a product of λ2
k,J̃k

, σ2
εk−1

and the modulus

of the inverse of the squared-modulus of all the roots of θ̃I−CAk (z). Of these, only the latter will
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change based on the sequence of PIS. Thus, the all-pass filter used by player k−1 to create the PIS

{ε?k−1} will impact the term θ̃I−CAk (z) and hence the variance of player k’s FIS. Looking at how this

polynomial is constructed, we see that its roots can be any combination of (possibly non-distinct)

roots of θ̃k(z) inside the unit circle. This combination of roots depends on whether the roots are

also roots of Ak−1(z).

Suppose θ̃k(z) has q̃k,IN roots inside the unit circle. A suitable Ak−1(z) can be picked so that

any combination of the q̃k,IN roots are also roots of θ̃I−CAk (z) with the exception that if a complex

root of θ̃k(z) is in the combination, so is its complex conjugate (which is guaranteed to be a root

of θ̃k(z) as well). This is to insure that the polynomial Ak−1(z) has real coefficients. This leads to

the following remark.

Remark 2. Suppose that θ̃k(z) has r real roots inside the unit circle and q̃k,IN − r complex roots

inside the unit circle. Then there are 2
q̃k,IN+r

2 possible combinations of roots that θ̃I−CAk (z) may have

and 2
q̃k,IN+r

2 possible full information shock sequences that player k may have, possibly containing

different innovation variances, based on different sharing arrangements.

Note that q̃k,IN − r will be even. The way to compare the innovation variance resulting from

two different sharing arrangements is given by the following proposition.

Proposition 2. Suppose for k > 0, player k − 1’s order equation is given by (24). Consider two

all-pass filters
Ak−1,1(B)

A†k−1,1(B)
and

Ak−1,2(z)

A†k−1,2(z)
where Ak−1,1(z) has distinct roots a1,1, ..., a1,nAk−1,1

inside

the unit circle and Ak−1,2(z) has distinct roots a2,1, ..., a2,nAk−1,2
inside the unit circle. Let σ2

εk,1

be the variance of player k’s FIS if player k − 1 were to share shocks that were formed by passing

{εk−1,t} through the all-pass filter
Ak−1,1(B)

A†k−1,1(B)
. Let σ2

εk,2
be the variance of player k’s FIS if player

k−1 were to share shocks that were formed by passing {εk−1,t} through the all-pass filter
Ak−1,2(B)

A†k−1,2(B)
.
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Then

σ2
εk,1

=

nAk−1,2∏
j=1

|a2,j |2·min[m(a2,j ,Ak−1,2),m(a2,j ,θ̃k)]

nAk−1,1∏
j=1

|a1,j |2·min[m(a1,j ,Ak−1,1),m(a1,j ,θ̃k)]

· σ2
εk,2

In KGH it was assumed that each player could share nothing, its demand, or its full information

shocks with an adjacent upstream player. The case of demand sharing could easily be related to

the framework we have here. Namely there is a sequence of shocks, that could be formed by passing

{εk−1,t} through an all-pass filter, that contain the same amount of information as player k − 1’s

demand series {Dk−1,t}. We can see this by applying player k − 1’s demand equation given by

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t (25)

which can be rewritten as

φ(B)

θOUTk−1

Dk−1,t =
1

θOUTk−1 (B)
d+BJk−1θINk−1(B)εk−1,t (26)

Proposition 3. The sequence of shocks {ε∗k−1,t} given by

ε∗k−1,t = BJk−1
θINk−1(B)

θ†INk−1(B)
εk−1,t (27)

contains the same amount of information as Dk−1,t.

Proof. To see this, rewrite (26) in terms of ε∗k−1,t given by

φ(B)

θOUTk−1

Dk−1,t =
1

θOUTk−1 (B)
d+ θ†INk−1(B)ε∗k−1,t (28)

The polynomials on the left and right hand sides of the equation have no roots inside the unit

circle and therefore MDk−1

t ≡Mε∗k−1

t .

Proposition 2 and (27) allow us to compare the variances of player k’s FIS when receiving PIS

{ε?k−1}, formed by passing {εk−1} through some all-pass filter, with the variance of player k’s FIS
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when receiving player k − 1’s demand {Dk−1,t}. If we assume that Jk−1 = 0, we can classify the

shock sequence as being less valuable to player k than demand sharing, more valuable to player k

than demand sharing, or equally valuable to player k than demand sharing.

Remark 3. Suppose player k− 1 shares a series of shocks {ε?k−1,t} with player k which are formed

by passing {εk−1,t} through the all-pass filter
Ak−1

A†k−1

with Ak−1 having roots a1, ..., anAk−1
inside the

unit circle. Suppose further that Jk−1 = 0.

If

nAk−1∏
j=1

|aj |2·min[m(aj ,Ak−1),m(aj ,θ̃k)]>

n
θIN
k−1∏
j=1

|aj |2·min[m(aj ,θ
IN
k−1),m(aj ,θ̃k)] then {ε?k−1,t} is less valuable

to player k than demand sharing.

If

nAk−1∏
j=1

|aj |2·min[m(aj ,Ak−1),m(aj ,θ̃k)]<

n
θIN
k−1∏
j=1

|aj |2·min[m(aj ,θ
IN
k−1),m(aj ,θ̃k)] then {ε?k−1,t} is more valu-

able to player k than demand sharing.

If

nAk−1∏
j=1

|aj |2·min[m(aj ,Ak−1),m(aj ,θ̃k)]=

n
θIN
k−1∏
j=1

|aj |2·min[m(aj ,θ
IN
k−1),m(aj ,θ̃k)] then {ε?k−1,t} is as valuable

to player k as demand sharing.

4.1 When Can Player k Recover {Dk−1,t}

Player k can recover player k−1’s demand series {Dk−1,t} when if it can write player k−1 demand

at time t as a linear combination of FIS observed up to time t. Recall Theorem 1 which tells us

that player k’s FIS are given by

εk,t =
θ̃I−CAk (B)

θ̃†I−CAk (B)
Bmin(J̃k,J

?
k−1)λk,J̃kεk−1,t.

This can be rewritten as

εk−1,t =
θ̃†I−CAk (B)

θ̃I−CAk (B)
B−min(J̃k,J

?
k−1)(1/λk,J̃k)εk,t. (29)

Now recall player k − 1’s demand equation (25),

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t
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Substituting the expression for εk−1,t we have

φ(B)Dk−1,t = d+BJk−1−min(J̃k,J
?
k−1)θk−1(B)

θ̃†I−CAk (B)

θ̃I−CAk (B)
(1/λk,J̃k)εk,t (30)

Note that there is a polynomial in the denominator on the RHS of this equation. If θ̃I−CAk (z) 6≡ 1

then this polynomial will have roots inside the unit circle. This leads to the following Proposition:

Proposition 4. Player k can recover {Dk−1,t} using present and past values of {εk,t} if and only

if the roots of θ̃I−CAk (z) are also roots of θk−1(z) and Jk−1 ≥ min(J̃k, J
?
k−1).

From this proposition we see that player k cannot recover {Dk−1,t} whenever θ̃I−CAk (z) has a

root that is not a root of θk−1(z). Thus player k−1 can form and share a PIS sequence with player

k without revealing its historic demand as long as the polynomial A(z) it uses in its all-pass filter

has a common root inside the unit circle with θ̃k(z), which is not also common with θk−1(z). Note

that this sharing arrangement will be valuable as long as θ̃k(z) has a root inside the unit circle not

common with A(z). Another way to say this is that the variance of player k FIS will decrease when

player k − 1 shares {ε?k−1,t} as long as θ̃I−CAk (z) 6≡ θ̃k(z). If this is not the case, player k’s forecast

may still improve as long as J?k−1 < `k ≤ J̃k.

The question of when can player k recover {εk−1,t} is much simpler. This is in fact already

provided by Corollaries 1 and 2. We combine these two into the following proposition.

Proposition 5. Player k can recover {εk−1,t} using present and past values of {εk,t} if and only if

zJ̃k θ̃k(z) and zJ
?
k−1Ak−1(z) have no common roots inside the unit circle.

5 Summary and Conclusion

In this paper we describe demand propagation under sharing arrangements involving a player pass-

ing its shocks through an all-pass-filter and sharing the resulting sequence. We create a framework

under which we can compare all such arrangements and compare these to conventional sharing
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arrangements of no sharing, demand sharing, and shock sharing. We also describe how demand

will propagate up the supply chain when any such sharing arrangement is allowed to occur between

contiguous players.

We show that it is possible for a player to form a partial shock sequence that will be valuable

to an adjacent player, but may yet protect its interests by keeping the player from recovering its

demand sequence. This is important because it may not want its demand sequence revealed due

to an agreement with other players or because of privacy issues.

We make several important contributions to the literature. The first is in describing how PIS

shocks may be formed by a player and shared with another player. The second is in showing

the value of PIS sharing to a player by considering the player’s FIS and MSFE under such an

arrangement. Third we create a framework that allows us to compare all possible PIS sharing

arrangements as well as comparing them to no sharing, demand sharing, and FIS sharing. Fourth

is in showing that demand propagates as quasi-ARMA (QUARMA)-in quasi-ARMA-out when we

allow for any PIS sharing arrangement to occur between contiguous players throughout the supply

chain. Finally we show how such sharing arrangements can still be valuable while not revealing

possibly confidential information.

6 Appendix

Proof of Lemma 1. We can rewrite (16) and (17) as

A1(B)

AOUT2 (B)
X1,t = BJ1AIN2 (B)AON2 (B)(1/λ)ηt (31)

φ(B)

ΘOUT (B)
X2,t =

d

ΘOUT (1)
+BJ2ΘIN (B)ΘON (B)ηt (32)

where the superscript ”OUT” indicates that the factors included in this polynomial have roots

outside the unit circle, ”IN” indicates that the polynomial has all roots inside the unit circle,

and ”ON” indicates that the factors included in this polynomial have roots on the unit circle. It
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is possible that the polynomial Θ(z) has no roots outside the unit circle, in which case we take

θ̃OUTk (z) ≡ 1. Similar convention holds for the rest.

Consider the polynomials P1(z) = (1/λ)zJ1AIN2 (z)AON2 (z) and P2(z) = zJ2ΘIN (z)ΘON (z).

Suppose P2(z) has r2 distinct non-zero roots b1, ..., br2 .

Define

GCD(P1, P2) := zmin(J1,J2)
r2∏
j=1

(1− z

bj
)min[m(bj ,P1),m(bj ,P2)]

The roots of GCD(P1, P2) are those roots that are common to both P1 and P2. Furthermore

the multiplicity of each root is the minimum of the multiplicities of the root in P1 and P2. By

construction, the coefficient in front of the lowest power of z of GCD(P1, P2) is 1.

By the Euclidean Algorithm for polynomials (cf. Koblitz (1998) pg 63) we know that there

exist polynomials Q1(z) and Q2(z) such that

Q1P1 +Q2P2 = GCD(P1, P2) (33)

Suppose AON2 (z) has ron distinct roots b1, ..., bron . Define AON−C2 as

AON−C2 :=

ron∏
j=1

(1− z

bj
)min[m(bj ,A

ON
2 ),m(bj ,Θ

ON )]

Note that if AON2 (z) and ΘON (z) have no common roots, then AON−C2 ≡ 1.

Noting that GCD((1/λ)zJ1AIN2 (z)AON2 (z), zJ2ΘIN (z)ΘON (z)) = zmin(J1,J2)AI−C2 (z)AON−C2 (z)

the Euclidean Algorithm tells us how to find polynomials Q1(z) and Q2(z) such that

(1/λ)zJ1Q1(z)AIN2 (z) + zJ2Q2(z)ΘIN (z) = zmin(J1,J2)AI−C2 (z)AON−C2 (z) (34)

Therefore multiplying (31) and (32) by Q1(B) and Q2(B) and summing we get

1

AOUT2 (B)
A1(B)Q1(B)X1,t +

1

ΘOUT (B)
φ(B)Q2(B)X2,t = C +Bmin(J1,J2)AI−C2 (B)AON−C2 ηt (35)

where C = Q2(1)d
ΘOUT (1)

is a constant.

IfBJ1AIN2 (z)AON2 (z) andBJ2ΘIN (z)ΘON (z) have no common roots thenAI−C2 (z) ≡ 1, AON−C2 (z) ≡

1 (and min(J1, J2) = 0) in (35) and therefore we can take ϑ(z) = Q1(z)

AOUT2 (z)
and ω(z) = Q2(z)

ΘOUT (z)
to

get

ϑ(B)A1(B)X1,t + ω(z)φ(B)X2,t = C + ηt
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Furthermore since AOUT2 (z) and ΘOUT (z) have no roots inside or on the unit circle by construc-

tion, their reciprocals have one-sided Laurent series representations that converge in a disk D that

contains the unit circle. Therefore the constructed ϑ(z) and ω(z) have one-sided Laurent Series

Representations that converge for all z ∈ D. Note that C = ω(1)d.

Now suppose that there exist functions ϑ(z) and ω(z) with one sided Laurent Series Represen-

tations that converge in D such that ϑ(B)A1(B)X1,t + ω(B)φ(B)X2,t = ω(1)d+ ηt.

From (16) and (17) we can rewrite this as

ω(1)d+BJ1ϑ(B)A2(B)(1/λ)ηt +BJ2ω(B)Θ(B)ηt = ω(1)d+ ηt

which simplifies to

BJ1ϑ(B)A2(B)(1/λ)ηt +BJ2ω(B)Θ(B)ηt = ηt (36)

Define L(z) := zJ1ϑ(z)A2(z)(1/λ) + zJ2ω(z)Θ(z) − 1. Note that (36) implies that for all µ ∈

[−π, π], L(e−iµ) ≡ 0. Consider the Laurent series expansion of L(z) for z ∈ D,

L(z) =

∞∑
k=−∞

gkz
k = zJ1ϑ(z)A2(z)(1/λ) + zJ2ω(z)Θ(z)− 1 (37)

The Laurent Series (37) must have the same coefficients gk as the Fourier series expansion

L(e−iµ) =
∞∑

k=−∞
gke
−iµk = e−iµJ1ϑ(e−iµ)A2(e−iµ)(1/λ) + e−iµJ2ω(e−iµ)Θ(e−iµ)− 1 (38)

Since L(e−iµ) ≡ 0, gk ≡ 0 for all k in (38) and therefore in (37). This shows that L(z) ≡ 0 for

all z ∈ D.

If A2(z) and Θ(z) had a common root z0 inside or on the unit circle then we would have

L(z0) = −1 in (37) which is a contradiction.

Proof of Theorem 1. We would like to show thatMDk,ε
?
k−1

t =Mεk
t and that we can represent {Dk,t}

as QUARMA with respect to {εk,t}. Consider player k − 1’s sharing and order equations

A†k−1(B)ε?k−1,t = BJ?k−1Ak−1(B)εk−1,t (39)

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t (40)

We can use (18) to rewrite these in terms of εk,t as
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A†k−1(B)ε?k−1,t = BJ?k−1Ak−1(B)
θ̃†I−CAk (B)

θ̃I−CAk (B)
B−min(J̃k,J

?
k−1)(1/λk,J̃k)εk,t

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃k
θ̃†I−CAk (B)

θ̃I−CAk (B)
B−min(J̃k,J

?
k−1)(1/λk,J̃k)εk,t

Using the fact that the roots of θ̃I−CAk (z) are roots of Ak−1(z) and θ̃k(z) by definition, these

simplify to

A†k−1(B)ε?k−1,t = BJ?k−1−min(J̃k,J
?
k−1)ANCk−1(B)θ̃†I−CAk (B)(1/λk,J̃k)εk,t (41)

φ(B)Dk,t = d+BJ̃k−min(J̃k,J
?
k−1)θ̃NCk (B)θ̃†I−CAk (B)εk,t (42)

where ANCk−1(z) =
Ak−1(z)

θ̃I−CAk (z)
and θ̃NCk (z) =

θ̃k(B)

θ̃I−CAk (z)
are polynomials. Furthermore J?k−1 −

min(J̃k, J
?
k−1) ≥ 0 and J̃k − min(J̃k, J

?
k−1) ≥ 0 so that no future values from {εk,n}∞n=t appear

in (41) and (42).

Since A†k−1(z) and φ(z) have no roots inside or on the unit circle, there exist one-sided Laurent

series representations of
1

A†k−1(z)
and

1

φ(z)
, called LA†(z) and Lφ(z). Thus we can rewrite (41)

and (42) as

ε?k−1,t = BJ?k−1−min(J̃k,J
?
k−1)LA

†
(B)ANCk−1(B)θ̃†I−CAk (B)(1/λk,J̃k)εk,t

and

Dk,t = d+BJ̃k−min(J̃k,J
?
k−1)Lφ(z)θ̃NCk (B)θ̃†I−CAk (B)εk,t

Since the right-had-side of either of these equations contains no future values from {εk,n}∞n=t, it is

clear that MDk,ε
?
k−1

t ⊂Mεk
t .

Now consider (41) and (42) rewritten here

A†k−1(B)ε?k−1,t = BJ?k−1−min(J̃k,J
?
k−1)ANCk−1(B)θ̃†I−CAk (B)(1/λk,J̃k)εk,t

φ(B)Dk,t = d+BJ̃k−min(J̃k,J
?
k−1)θ̃NCk (B)θ̃†I−CAk (B)εk,t
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Suppose θ̃NCk (B) has no roots on the unit circle. Then the assumptions of Lemma 1 hold and

there exist functions ϑ(z) and ω(z) with one sided Laurent series representations converging in a

disk D that contains the unit circle such that ϑ(B)A†k−1(B)ε?k−1,t + ω(B)φ(B)Dk,t = ω(1)d + εk,t.

Thus here we have that Mεk
t ⊂M

Dk,ε
?
k−1

t .

Now suppose θ̃NCk (B) has h > 0 distinct roots on the unit circle b1, ..., bh. Let θON−CA(z) =
h∏
j=1

(1− z

bj
)min(m(bj ,θ̃

NC
k ),m(bj ,A

NC
k−1)). Furthermore let

γk,t = θON−CA(z)εk,t (43)

We can rewrite (41) and (42) in terms of γk,t as

A†k−1(B)ε?k−1,t = BJ?k−1−min(J̃k,J
?
k−1)A∗k−1(B)θ̃†I−CAk (B)(1/λk,J̃k)γk,t

φ(B)Dk,t = d+BJ̃k−min(J̃k,J
?
k−1)θ̃∗k(B)θ̃†I−CAk (B)γk,t

where A∗k−1(z) =
ANCk−1(z)

θON−CA(z)
and θ̃∗k(z) =

θ̃NCk (B)

θON−CA(z)
.

By Lemma 1 there exist functions ϑ(z) and ω(z) with one sided Laurent series representations

converging in a disk D that contains the unit circle such that ϑ(B)A†k−1(B)ε?k−1,t+ω(B)φ(B)Dk,t =

ω(1)d + γk,t. Thus here we have that Mγk
t ⊂ MDk,ε

?
k−1

t . But applying Brockwell & Davis

(1991)Proposition 4.4.1 to (43), we see that Mεk
t ⊂ M

γk
t . Therefore Mεk

t ⊂ M
Dk,ε

?
k−1

t in this

case as well. Thus we have that Mεk
t =MDk,ε

?
k−1

t .

Finally we must confirm that player k’s demand {Dk,t} can be written as QUARMA with

respect to εk,t. Indeed, looking at equation (42), we see that

φ(B)Dk,t = d+BJ̃k−min(J̃k,J
?
k−1)θ̃NCk (B)θ̃†I−CAk (B)εk,t

where we take Jk = J̃k −min(J̃k, J
?
k−1) and θk(z) = θ̃NCk (z)θ̃†I−CAk (z).
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