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1 Introduction

A large body of literature in finance and macroeconomics makes the simplifying assumption

that aggregate variables are determined by the behavior of a representative agent. In reality,

different people earn different incomes, have different talents, and hold different expectations.

For this heterogeneity to be reflected in economic outcomes, incompleteness of asset markets

is essential. In reality, substantial amounts of idiosyncratic risk can only be partially insured.

Labor income risk serves as one of the prime examples. Modeling this type of idiosyncratic

risk permits a more stringent test of our current economic theory since we can use information

about the entire distribution of economic variables across the population.

This paper provides a formal analysis of a broad range of incomplete markets models with

substantial heterogeneity, i.e. an economy with finitely but arbitrarily many different agents.

This analysis leads to two findings. First, we prove existence of equilibria for an incomplete

markets economy. We discuss the relevant theory for local and global existence to make the

technique for proofs as portable as possible. Second, we find a simple but general solution

method for economies in which the state space is very large. A multitude of state variables

arises from heterogeneity but might increase if there are several variables for each individual.

As a leading example of the paper, we analyze a dynamic stochastic general equilibrium

model with aggregate risk in production and an endogenous capital stock. A firm produces a

single consumption good which households consume according to a Cobb-Douglas production

function. Future total factor productivity is uncertain due to aggregate shocks. Households

maximize expected discounted utility given by a utility function featuring constant relative

risk aversion in consumption. We add a cost of deviating from a target level of capital. This

cost serves two purposes. First, it makes borrowing costly and thus serves as an endogenous

borrowing constraint. Second, it facilitates the solution method as it determines the distri-

bution of capital in the deterministic steady-state. Given their utility function and budget

constraint, each household decides how much to consume and save each period.

We add idiosyncratic shocks to labor income which agents cannot insure against. Households

only trade claims to capital which renders markets incomplete. As a result, equilibrium

outcomes feature idiosyncratic components. Households hold different levels of capital which

translates into inequality of wealth and consumption.

The analysis of this model presents a difficult problem. Ultimately, we want to be able to

study the interaction of choices and prices with the distribution of assets. In particular, we

need a solution method that solves for individual behavior and aggregate variables including

asset prices as a function of the entire distribution of economic conditions. But, in turn, this
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distribution is affected by all individuals’ behavior. In other words, the state space might

contain several distributions of variables across the population.

We lay out the mathematical structure of equilibrium conditions. In the case where we

eliminate all uncertainty, the optimality conditions define the solution to the deterministic

economy, a collection of consumption and investment functions and prices. We discuss the

properties of the equilibrium operator which is comprised of the equilibrium conditions. It

maps functions from a Banach space to a Banach space where the equilibrium operator

itsself is differentiable. We discuss the appropriate notion of Freéchet differentiability in

detail. Differentiability is a key aspect of the operator since we want to apply methods from

nonlinear functional analysis.

We show how to use this mathematical foundation to establish existence of equilibria. We

demonstrate two different sets of results for our example economy. First, we establish local

existence, i.e. the case of small risk, and uniqueness. We obtain these implications from the

Implicit Function Theorem for operators in Banach spaces. Second, we establish existence for

the economy with large risks as well. The proof is based on the Leray-Schauder Continuation

Theorem which extends the range of the Implicit Function Theorem. This theorem lays out

sufficient conditions under which the local solution can be extended once we increase the risk

in the economy.

To compute the equilibrium of our economy, we develop a solution technique for models

with many heterogeneous agents and incomplete markets based on perturbation methods.

Perturbation methods build an approximation of the optimal policies as functions of the state

variables based on Taylor expansions. The first step is to find a special case of the model in

which the solution is known. Our model possesses a well-defined deterministic steady-state

around which we expand optimal policies with respect to all state variables. At the point of

expansion, all agents are identical in all respects and thus we have a degenerate distribution

of capital. Having pinned down the deterministic steady-state, we build an expansion with

respect to all state variables. We know that equilibrium outcomes are functions of the state

space. Thus we expand the deterministic economy in all state variables. But since we allow

for arbitrarily many agents, we might also have arbitrarily many state variables.

The novel idea lies in exploiting the symmetry of decision rules across agents. If two agents

are identical in their objectives, they respond identically in the same economic situation. For

example, starting out from a case where both agents live under the same economic condition,

a marginal increase in agent one’s wealth will impact the decision of agent two the same

way that agent one’s decision would have been impacted by the same change in agent two’s

wealth. Exploiting the symmetry, we solve for the decision rules of all agents as a function of
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the entire distribution of individual states. In a second step, we also incorporate differences

in individuals’ objectives.

The last step makes the transition from the deterministic to the stochastic economy. Since

shocks are part of the state space, the previous expansion delivers equilibrium reactions to

known, deterministic changes in shocks. For example, the previous expansion would compute

the asset price reaction if next period’s productivity was above its steady-state level. To move

to the stochastic economy, we integrate over all possible realizations of the shocks and weight

them by their probability. From this logic it follows immediately that we need a higher-order

expansion. If we were to resort to a first-order approximation, integrating over the first-order

approximation would not affect equilibrium behavior since a linear solution is certainty-

equivalent. Higher-order expansions bring in the effects of uncertainty. A second-order

approximation reflects the effect of the variance of shocks, a cubic approximation additionally

takes the skewness into account, and so on.

Our solution method is asymptotically valid and converges to the true solution. By adding

higher moments, we can eventually recover the true policy function. In practice, of course,

convergence is not complete. However, we have a means of testing the accuracy of our

solution. We plug our approximation into the equilibrium conditions to check its optimality.

The solution method is applicable to a wide range of applications. It applies whenever

equilibrium or optimality conditions for a competitive equilibrium or dynamic programming

problems imply that the choice variables are smooth functions of state variables. The dynamic

programming problem or competitive equilibrium can feature arbitrarily many state variables

and is thus interesting for a large set of economic applications. The implementation of

constraints invalidates the smoothness of choices. However, for our method to apply, there

are two ways to fix it. Either, one can smooth out the constraint such that there is no kink, or

one can implement an endogenous borrowing constraint. Our economy provides an example

for the latter.

We demonstrate the results from our solution method. First, we confirm previous research in

finding that the impact of heterogeneity has an effect on the steady-state level of capital. Since

agents face idiosyncratic risk, they respond by building up a buffer stock of precautionary

savings. With aggregate risk this channel is enforced. Due the utility specification featuring

constant relative risk aversion, agents increase their capital holdings further due to uncertain

returns to capital.

Furthermore, we show the risk factors for this incomplete markets economy. Therefore, we

present the expansion of a stochastic discount factor in closed form up to a given order. The
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expansion consists of standard risk factors such as total factor productivity and, if stochastic,

its variance but also risk due to incompleteness of markets such as the variance of idiosyncratic

labor income risk. This last factor only appears because there is a missing market that lets

agents insure against their idiosyncratic conditions.

Lastly, we compare our solution method to a standard technique which replaces the actual

law of motion to a linearized version. We solve an asset pricing economy in closed form,

using the linearized law of motion, and the solution method of this paper. We find superior

performance of our technique.

This paper contributes to a growing literature on introducing heterogeneity into economic

models. Therefore, we relate to several strands of research. After the seminal works of ? and

?, the literature has focused on idiosyncratic risk with aggregate shocks. First, in special

cases one might be able to find closed-form solutions as in ? and ?. Another promising idea

is to use a multiplier approach to characterize features of the distribution of state variables

across the population as in ? and ?. Other papers make simplifying assumptions on the

number of agents and the number of possible shocks, as in ?. Special cases with closed-form

solution can be used as a starting point for the expansion.

Most of the literature, however, is concerned with approximations. One idea is to replace the

distribution of wealth by aggregate wealth only when calculating the equation of motion for

aggregate variables. This method was developed in ? and inspired methods in the subsequent

literature, for example in ?, ?, and ? where aggregate states and prices might influence the

equation of motion. Alternatively, one might work with a limited history of shocks as in

?. Since we are particularly interested in the effect of distributions on equity prices and

the effect on new financial securities, this approximation method is not appropriate for this

research project.

Recently, alternative solution method for models with heterogeneous agents have been de-

veloped in ?, ?, ?, and ?. ? and ? parameterize the distribution of state variables. ?

approximate the equilibrium on a lower-dimensional space. This paper develops a technique

that does not require the specification of a class of distributions. Compared to ? and ?,

the method in this paper has the advantages that we can study as many agents as desired

whereas the number of agents is limited in their method. Furthermore, our method applies

to models with many state variables and choices for each individual. Furthermore, the usual

differences between perturbation and projection apply: our method returns quasi-analytical

expressions, allows to prove theorems, get intuition for the impact of parameter changes, and

is fast and simple.
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Our method builds on perturbation methods. These methods have been used in ?, ?, ?, ?, ?,

?, ?. Most recently, ? uses perturbation methods to study heterogeneity induced by private

information. This solution method was also applied in ?. This paper, however, is not the

first paper that attempts to use perturbation methods to analyze general equilibrium models

with substantial heterogeneity. An alternative idea to the one in this paper has been explored

by ? and ?. This work starts by restricting the state space from the outset. Instead, this

paper is the first to recognize the symmetry of the problem and build a solution method that

exploits it. No limitations on the state spae are required.

We also relate to the literature on the existence of equilibria. ? establish generic existence

of equilibria by constructing a correspondence for expectations. In our economy, the rank of

the span of assets cannot drop and, as a result, we obtain existence. ? and ? show conditions

under which equilibria might fail to exist. ? establishes the existence of sequential equilibria

for an economy with a continuum of agents with incomplete markets, aggregate risk, and hard

borrowing constraints. ? proved existence of a recursive equilibrium for such an economy.

Instead, we focus on endogenous borrowing constraints and smooth solutions and provide a

recipe for proving existence in a broad class of economies. The reason why we can focus on

2 Example: An economy with heterogeneous agents

This section introduces our leading example, a standard dynamic stochastic general equilib-

rium model with idiosyncratic and aggregate risk.

2.1 Households

A finite number of I households lives for an infinite number of periods indexed by t. House-

holds are each endowed with one unit of time which they devote towards labor inelastically.

While they are identical in their preferences, households differ in their productivity. Each

period, a household receives an idiosyncratic shock to their productivity and thus their labor

income. There is no asset available that lets households insure against their individual pro-

ductivity. Therefore, agents can only partially insure against this shock by holding saving

to buffer the shocks. A tradable contract consists of claims to capital which is risky due to

aggregate productivity shocks. A second tradable contract is a bond with a risk-free payoff.

Each household builds rational expectations and chooses streams of consumption, labor sup-
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ply, and capital holdings to maximize expected discounted utility

max
cit,k

i
t+1,b

i
t+1

∞∑
t=0

βtE0

[
uc(c

i
t)− uk(k

i
t, b

i
t)
]

i = 1, . . . , I (1)

where β is the time discount factor, cit is household i’s consumption choice in period t,

kit are household i’s capital and bit bond holdings. The utility function is comprised of two

additively separable parts. The first part is a standard utility function defined over individual

consumption. To pin down the functional form, we impose constant relative risk aversion over

consumption.

The second term in the utility specification incorporates a penalty function which serves two

purposes. First, it incorporates an endogenous borrowing constraint. Second, it pins down

the distribution of capital and bond holdings in the deterministic steady-state.1 We choose

penalty functions for savings greater than some lower bound of the form

uk(k
i
t, b

i
t) = ν1

1

(kit + bit − k)2
+ ν2(k

i
t − k̄)2 + ν3(b

i
t)
2 + ν4(k

i
t + bit) (2)

where k̄ denotes the target level of capital, k a lower bound on savings, and ν· > 0 parameters

for the penalty function. We impose the ristriction ν4 = ν1
2

(k̄−k)3
to ensure that the penalty

function has its global minimum at k̄. Its derivative with respect to capital vanishes at its

target level k̄. For savings kit + bit < k, we set the penalty to infinity.

The first part of the penalty function imposes the asymmetry between borrowing and saving.

Borrowing is penalized in order to build in an endogenous borrowing constraint.2 Note that

the penalty function only takes effect when going to higher expansions. A singularity appears

in the penalty function while any Taylor series approximation will not have this feature. The

singularity ensures though that higher-order approximations deliver stronger penalties.

The remaining three terms represent technical matters that should have negligible effects on

choices. We will see later that the coefficients on these terms can be arbitrarily small. The

second term is responsible for fixing the steady-state distribution of capital while the third

part determines portfolio choice at the steady-state. The last term merely ensures that the

choice between capital and bonds is well defined in the deterministic steady-state.

1The same goal can be achieved by endogenizing the interest rate or discount factor.
2An alternative approach would be to fix the budget constraint through an exogenous borrowing constraint

which would result in a Lagrangian that takes a similar form. We do not pursue this approach because hard
constraints can induce non-differentiability at certain points. A hard constraint can, however, be reformulated
as a limiting sequence of penalty functions (see appendix ??).
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Households maximize utility subject to their budget constraint

cit + kit+1 + pbtb
i
t+1 = (1 + rkt )kt + bt + wt

eψ
i
t

Ψt
. (3)

The rate of return on capital is denoted by rkt , the price of bonds by pbt , and wages by

wt. To keep a concise notation, we introduce capital case letters for aggregate quantities of

consumption, capital, bonds, and labor productivity

Ct =

I∑
i=1

cit Kt =

I∑
i=1

kit Bt =

I∑
i=1

bit Ψt =

I∑
i=1

eψ
i
t .

There is a shock to individual productivity denoted by ψit which is independent and identically

distributed across households. It follows a stochastic process of the form

ψit+1 = φ̄ψ + φψψ
i
t + φθ(ψ

i
t)σθ

i
t+1. (4)

The parameter φψ governs the degree of persistence in the evolution of the shock. φ̄ψ adjusts

the long-run mean and φθ(ψ
i
t) governs the standard deviation of the shock which we allow

to be a function of ψit. θ is white noise with unit variance. Agents cannot directly insure

against this shock since there is no tradable asset contingent on individual labor productivity.

Since we work with a finite number of households, the law of large numbers does not kick

in and shocks might not be purely idiosyncratic. To circumvent this problem, we normalize

productivity by average individual productivity Ψt which ensures that markets clear.

2.2 Technology

Aggregate capital and labor enter the production process for the single consumption good

which is characterized by a Cobb-Douglas production function. The parameter for the pro-

duction function α leads to a functional form for output given by Y = f(K,L, z) = ezKαL1−α

where ez denotes the shock to total factor productivity, K aggregate capital and L aggregate

labor demand. The logarithm of total factor productivity follows an AR(1) process

zt+1 = φ̄z + φzzt + φεσεt (5)

where the parameter φz determines the degree of mean reversion in total factor productivity.

Firms maximize output net of costs for capital and labor. Given the constant returns to scale
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of the production function, wages and dividends pay their marginal product

rkt = αeztKα−1
t L1−α

t

wt = (1− α)eztKα
t L

−α
t

(6)

Due to the shocks to total factor productivity, the returns to capital and wages are risky.

Only one shock is driving the uncertainty of proceeds for both factor inputs. As a result,

labor income and returns to capital are conditionally positively correlated.

We specify all shocks to z and ψ to have a uniform distribution on a compact support which

means that there are bounds ε and ε̄ resp. θ and θ̄. The support increases with the scaling

of the standard deviations σ. We use φ̄z and φ̄ψ to adjust the mean of the random variables

ez and eψ by setting φ̄z = log((ε̄− ε)/(eε̄ − eε)), analogously for ψ.

2.3 Definition of equilibrium

The aggregate resource constraint is given by the following equation

Ct +Kt+1 − (1− δ)Kt = Yt (7)

which shows how current output and depreciated capital can be used for consumption or next

period’s capital stock. The derivation follows from the households’ budget constraints and

the two market clearing conditions for capital

I∑
i=1

kit = Kt (8)

and bonds being in zero net supply
I∑
i=1

bit = 0. (9)

Optimal choices obey the first-order conditions

u′c(c
i
t) = βEt

[
(1 + rkt+1)u

′
c(c

i
t+1)− u

(1)
k (kit+1, b

i
t+1)

]
(10)

and

u′c(c
i
t) = βEt

[
(1 + rbt )u

′
c(c

i
t+1)− u

(2)
k (kit+1, b

i
t+1)

]
(11)

where u
(l)
k denotes the derivative with respect to the l-th argument and rbt = 1/pbt − 1 the
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return on bonds. If we set all parameters ν· to zero in the utility function, these optimality

conditions result in standard Euler equations. With the parameters ν being non-zero, we

impose an endogenous borrowing constraint. Since the penalty function, which imposes

the borrowing constraint in the following period, depends on next period’s capital stock, a

marginal unit of consumption today marginally increases the expected penalty.

The state space of this economy consists of the set of individidual capital holdings of each

of the I households, their bond holdings, and the level of their individual productivity. Fur-

thermore, we keep track of aggregate productivity. To define the state space in a concise

manner, we introduce the following notational convention. We denote vectors by a small case

bold letter and a matrix by an upper case bold font letter. Furthermore, we clarify whether

the state space belongs to a stochastic or deterministic economy by making each function

dependent on σ ∈ [0, 1], a variable that scales the standard deviation of all shocks propor-

tionately. When the standard deviation of shocks σ equals one, we refer to the stochastic

economy. The deterministic counterpart is denoted by σ = 0. An element of the state space

is denoted by (Xt, zt) ∈ R3I+1. An equilibrium consists of price, choice, and transition func-

tions. We denote transition functions by X(Xt, zt, σ) and z(Xt, zt, σ) or, in a slight abuse of

notation, by X(σ) resp. z(σ). And to simplify the notation further, we denote an element

(X(σ), z(σ),C(σ),p(σ)) by B(σ).

We collect all equilibrium conditions in a single operator G

G(B(σ), σ)(Xt, zt) =

(
Et [g1(Xt, zt,X(σ), z(σ),C(σ),p(σ))]

X(Xt, zt, σ)− g2(Xt, zt,C,p)

)
. (12)

The operator takes the state variables as its inputs along with the collection of choice variables

C, price functions p, and transitions for state variables and shocks as functions of the state

space. The operator g1 consists of all 2× I Euler equations stacked in one large vector along

with the budget constraints. g2 stacks the equation of motion for aggregate capital (??), its

definition, market clearing for bonds, the stochastic processes for z and ψ, and the conditions

for wages and returns paying their marginal products.

Definition 1 (Definition of Equilibrium for Economy)

An equilibrium of the economy is a collection of consumption functions and portfolio choice de-

cision C and price functions p together with the law of motion such that G(B(σ), σ)(Xt, zt) =

0.

If we find such a function, all agents are at their optimum. There is one point in the state

space which is of particular interest.
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Definition 2 (Deterministic Steady-State)

A deterministic steady-state is a point in the state space (X0, z0, 0) such that each household’s

first-order conditions are satisfied, consumption is constant, and capital does not change.

3 Existence

This section discusses existence and uniqueness of equilibria for the economy of the previous

sections. Since the method for proving these results is more general than the particular

application, we lay out the mathematical foundations that should make the methodology for

proofs as portable as possible. We demonstrate existence and uniqueness results in two parts.

First, we deal with existence locally around the deterministic case. Second, we deal with the

case of large risk.

3.1 Local existence

We exploit the differentiability of equilibrium conditions to show existence of equilibria for

our economy with small risks. We determine optimal policy functions for the stochastic case

using the implicit function theorem around the deterministic case. The solution consists of

functions of the state space. Hence we need to build derivatives with respect to a function.

We review the necessary concepts in this section.

The starting point for our analysis is the solution to the deterministic economy, i.e. σ = 0.

The existence of the solution is known for this case and we obtain differentiability of optimal

policies for this case. For example, the analysis in ? shows that the optimal policy will

be infinitely often differentiable, i.e. it lies in the space C∞. Furthermore, by applying the

contraction mapping theorem for this case, the optimal policy is unique. We stick to the

class of continuously differentiable functions and thus rule out L1, L2, and L∞ spaces.

Our economy has an infinitely often differentiable solution to the deterministic economy.

Once we introduce risk, we have to make sure that there are no unit roots and nobody can

run a Ponzi scheme. These conditions are insured by the endogenous borrowing constraint

in (??). Furthermore, our economy does not run the risk that the span of the assets can ever

collapse since prices are constant and dividends risky.

The operator G in equation (??) defines the equilibrium operates on a Banach space (i.e.

a complete normed vector space) if we define the choice, transition, and price functions on

an appropriately chosen compact domain Ω. We can thus write G : B1 × R → B2 where
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B1 = Ck[Ω]6I+3 and B2 are Banach spaces. The Banach space B1 consists of elements B(σ)

defined above equation (??). The domain Ω is a compact subset of R3I+1 (the exact choice is

presented in appendix ??). We define Ωσ = Ω× [−1, 1] which is a combination of elements in

the state space and scaling of standard deviations ωσ = (ω, σ). The Banach space possesses

the norm

‖B(σ)‖B1 =
∑

U∈{X,z,C,p}

k∑
κ=0

(
sup
ωσ∈Ωσ

|Uκ(ωσ)|
)

(13)

where the superscript κ indicates the order of the derivative. To investigate the behavior

close to a solution, we define derivatives of the operator G. Since the operator is defined over

functions, we define the Fréchet derivative of the operator.

Definition 3 (Fréchet derivative)

A bounded linear map DG(B∗, σ∗) : B1×R → B2 is called Fréchet derivative of G at (B∗, σ∗)

if

G(B∗ + ε, σ∗) = G(B∗, σ∗) +DG(B∗, σ∗)ε+ o(‖ε‖B1)

where o(‖ε‖B1) means
o(‖ε‖B1

)

‖ε‖B1
→ 0 for ‖ε‖B1 → 0.

We define higher-order derivatives, as long as they exist, by induction.

Definition 4 (Higher-order derivatives)

A higher-order derivative is a bounded linear map DmG(B∗, σ∗) : B1 × R → B2 defined as

DmG = D(Dm−1G).

Equipped with derivatives, we can now make use of the fact that the Implicit Function

Theorem carries over to Banach spaces. The idea will be that we parameterize our economy

with the standard deviation of shocks such that a value of zero represents the deterministic

economy and a value of one the stochastic economy. For the local results, we simply focus on

a ball around the deterministic economy. We denote the Fréchet derivative of G with respect

to the element in the Banach space B1 by D1G. Then the following theorem holds.

Theorem 1 (Implicit Function Theorem for Banach Spaces)

Suppose G : B1×R → B2 is continuously differentiable in a neighborhood of the point (B∗, 0)

and that G(B∗, 0) = 0. Further suppose that the map DG is a linear homeomorphism of B1

onto B2. Then there exist open subsets around B∗ and 0 such that G(B(σ), σ) = 0.

The assumption of the Fréchet derivative being a linear homeomorphism simply states that

the derivative and its inverse at the point of expansion exist and constitute linear mappings
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between the two Banach spaces. The proof of the theorem is an application of the Contraction

Mapping Theorem and can be found in standard nonlinear analysis textbooks, for example

?.

Proposition 1 (Existence of local solutions)

The equilibrium of the incomplete markets economy of section ?? exists for small amounts of

risk. Furthermore, the consumption and savings functions are infinitely often differentiable,

i.e. elements of C∞.

The proof is essentially given by the Implicit Function theorem. Further details are discussed

in appendix ??. As corollary to our proposition, we find that the solution is unique.

Corollary 1 (Uniqueness) The solution of the economy with small risk is unique.

3.2 Global existence

We now establish existence of equilibria for an economy with large risks. As in the previous

section, the scaling variable for the standard deviations σ delivers a mapping between the

deterministic and the stochastic economy. We show that the solution can be extended beyond

the domain of the Implicit Function Theorem. Extending from a simpler case to the desired

solution is generally referred to as a homotopy method and these ideas have been used to

prove existence of partial differential equations. We adapt the theory to make it available for

our purposes.

We define a bounded open subset U ⊂ B1 × [0, 1] and let U(σ) : {u ∈ B1|(u, σ) ∈ U} be

the subset of B1 corresponding to a particular σ. We study the map G : B1 × [0, 1] → B2

introduced in equation (??) to establish solutions to the equation G(B, σ) ≡ 0.

To prove existence, we apply the Leray-Schauder continuation theorem for which we follow

the discussion in ?. Therefore, we define the operator Ĝ(B, σ) = G(B, σ) +B such that the

equation to solve becomes G(B, σ) = Ĝ(B, σ) − B = 0. If we show that the operator Ĝ is

completely continuous on the closure of U , Ū , and furthermore G(B, σ) 6= 0 for all σ ∈ [0, 1]

and B on the boundary of U(σ), ∂U(σ), then we can trace the solution all the way from the

deterministic (σ = 0) to the stochastic (σ = 1) economy. For a more detailed discussion of

the underlying theory, see ?.

Theorem 2 (Leray-Schauder Continuation)

If Ĝ is completely continuous and G(B, σ) 6= 0 for all σ ∈ [0, 1] and all B on the boundary
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of U(σ), then there exists a continuum C ⊆ {(B, σ) ∈ Ū |G(B, σ) = 0} such that C ∩ U(0) 6=
∅ 6= C ∩ U(1).

Once we apply this theorem to our economy, we get the existence for the economy with large

risks. The challenge here is to define the subsets in such a way that we are able to show the

assumptions necessary to apply the Leray-Schauder continuation theorem.

Proposition 2 (Existence of Equilibria with Large Risks)

The equilibrium of our incomplete markets economy with standard deviations σz < σ̄z and

constant standard deviation σψ < σ̄z also exists for large risks σ = 1.

A proof can be found in appendix ??. Essentially, the proof amounts to defining the operator

on the right subset U on which we can show complete continuity. The subset needs to be

designed in a way that keeps all the solutions within the set.

4 Numerical method

This section uses the previous analysis to develop a solution method for incomplete market

models with substantial heterogeneity. We apply perturbation methods to derive a higher-

order approximation to the solution. As in the previous section, we first shut down all

uncertainty and find the deterministic steady-state of the economy. Then we exploit the

symmetry of the model to keep the high-dimensionality of the model tractable.

4.1 General Setup

This paper’s solution method handles competitive equilibria as well as dynamic programming

problems. To demonstrate the generality of the solution method, we define a matrix of

individual state variables Xt ∈ RC×I and a vector of aggregate shocks zt ∈ RZ where C

denotes the number of individual state variables and Z the number of aggregate shocks. We

write the first-order conditions (resp. Bellman equation) along with the equation of motions,

market clearing conditions, and budget constraints in the general form given in (??). To

apply our method, we require three main assumptions for the models.

First, we require the model to feature smooth policy functions. We apply perturbation

methods to the problem which build a Taylor series expansion of the optimal policies around

a deterministic steady-state. In many economic problems, optimal policies are analytic which

implies they possess all derivatives. If policies are smooth, the Taylor series converges within
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a radius and we obtain a global approximation within that region. Second, we require the

economy to have a well-defined ergodic distribution to avoid unit roots. And third, we require

the existence of a deterministic steady-state at which all agents are identical.3

For most purposes, we impose complete symmetry on the functional g1. For example, in our

competitive equilibrium all agents’ first-order conditions are the same. If we denote Xi↔j

the matrix of state variables where we exchange the state variables of agent i with agent j

and vice versa and the same for policy functions P i↔j , then we can express the symmetry

requirement as

gik(Xt, zt,X(σ), z(σ),C(σ),p(σ)) = gjk(X
i↔j
t , zt,X(σ)i↔j , z(σ),C(σ)i↔j ,p(σ)) k = 1, 2.

(14)

As a consequence, we can restrict ourselves to building an approximate solution for only one

agent.

4.2 Deterministic steady-state

To solve for the deterministic steady-state, we set the standard deviation of all shocks to zero.

Since agents are heterogeneous only with respect to their idiosyncratic labor income shocks

in our model, the deterministic steady-state features identical agents and no heterogeneity.

At this point, the penalty function approach we used for our example comes in. Without any

penalty, the steady-state distribution of capital would be indeterminate. To see this, we look

at the steady-state condition

1− δ + fK(Kt, Lt, 0) =
1

β
= 1 + rbt (15)

which only depends on aggregate capital and not on the distribution of wealth. In our setup,

however, agents obtain small disutility from deviating from a target level of capital. This

penalty function implies that there is a unique distribution of capital in the deterministic

steady-state, irrespective of how small the penalty from deviating from the target is.

Due to the portfolio choice problem, a second penalty term is needed to avoid indeterminacies.

arises. As equation (??) shows, the return to capital and bonds must be identical to rule

out arbitrage opportunities. The perfect substitutability implies an indeterminacy of the

portfolio in the deterministic steady-state. The introduction of a small penalty for deviating

3Imposing identical agents in that steady-state does not mean that we cannot allow for heterogeneity. We
can expand in the dimension in which agents are heterogeneous, for example with respect to their risk aversion.
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from identical portfolios across agents circumvents this problem.4

4.3 Higher-order expansion

Computing a higher-order Taylor series for the equilibrium policy functions, quantities, and

prices is essential to our solution method. There are two reasons for it. First, heterogeneity

manifests its impact only in higher-order terms and second, so does stochasticity. To compute

high-order derivatives, a high precision arithmetic might be necessary as ? points out.

A Taylor series expansion of high order serves as a good approximation to equilibrium out-

comes. For analytic functions, the approximation will converge within the radius of conver-

gence when we increase the order of the expansion. In practice, of course, we have to truncate

the Taylor series at a finite level. But the stage at which we stop can be endogenous to the

accuracy of the solution.

Taylor expansions are at the heart of perturbation methods and we state them using the

standard multi-index notation. For a reference, see, for example, ? (p. 3-16). We denote

a C-tuple of integers by ιi = (ιi1, ιi2, . . . , ιiC) to index individual states for agent i. Let

I = {ι1, . . . , ιI} be the collection of such indices for all agents. Furthermore, j is a Z-

tuple of integers to index all aggregate shocks. The order of differentiation is then given by

‖I‖+ |j|+ k where ‖I‖ =
∑I

i=1

∑C
χ=1 ιiχ and |j| =

∑Z
ξ=1 jξ. We also define the product of all

entries I! =
∏I
i=1

∏C
χ=1 ιiχ and j! =

∏Z
ξ=1 jξ. A concise notation for a derivative of choice C

reads

C(I,j,k)(X0, z0, 0) =

 I∏
i=1

C∏
χ=1

∂ιiχ

 Z∏
ξ=1

∂ξ

 ∂kC(X0, z0, 0) (16)

where ∂ιiχ = ∂ιiχ/∂X
ιiχ
iχ , ∂ξ = ∂jξ/∂z

jξ
ξ , and ∂k = ∂k/∂σk. Lastly, we define the monomials

in the Taylor series accordingly. Let (X−X0)I =
∏I
i=1

∏C
χ=1(Xi,χ−X0

iχ)
ιiχ and analogously

(z− z0)j =
∏Z
ξ=1(zξ − z0ξ)

jξ .

Once we know the derivatives at a specific point, we can recover the choice variable of the

$’s choice of agent i from the Taylor series

Ci
$(X, z, σ) =

∞∑
o=0

∑
‖I‖+|j|+k=o

1

I! · j! · k!
C(I,j,k)(X0, z0, 0)(X−X0)I(z− z0)jσk. (17)

4A penalty term might not be necessary for a stochastic economy since the risk premium guarantees a
unique portfolio allocation. For the existence, however, we would have to work with the Bifurcation Theorem
instead of the Implicit Function Theorem.
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Note that equation (??) displays a function over the state space.

To obtain derivatives at the deterministic steady-state, we employ perturbation methods.

Ultimately, we are interested in a solution to equation (??). Perturbation methods tell

us to take derivatives of each equation with respect to all state variables successively and

evaluating the resulting equations at the deterministic steady-state. By the chain rule, we

obtain equations for the derivatives of the policy function at the deterministic steady-state

which we can then solve for. Plugging them into equation (??) results in an approximation

of the policy function. To give an example, take a first-order condition of the form (??). We

take the derivative with respect to the first individual state variable x11

u′′c
∂cit
∂x11

− β
∂rbt
∂x11

u′c + (1 + rbt )u
′′
c

dcit+1

dx11
− u12k

∂kit+1

∂x11
− u22k

∂bit+1

∂x11
= 0 (18)

where arguments of the utility function are suppressed. The derivative dcit+1/dx
1
1 is a long

object since cit+1 is a function of Xt+1 and zt+1 for which we have to apply the chain rule.

More generally, we need to take derivatives of every equilibrium equation g1i or g2i

dg·i
dx11

=
∂g·i
∂x11

+
∂g·i
∂Ct

∂Ct

∂x11
+
∂g·i
∂pt

∂pt

∂x11
+

∂g·i
∂Xt+1

∂Xt+1

∂x11
+

∂g·i
∂zt+1

∂zt+1

∂x11
+

∂g·i
∂Ct+1

dCt+1

dx11
+

∂g·i
∂pt+1

dpt+1

dx11
(19)

and plug in steady-state values.

Now we use the fact that all the partial derivatives of g1i are known. They are simply the

derivatives of the equilibrium conditions (in the example of the Euler equation, these deriva-

tives entail differentiating marginal utilities). When evaluating them at the deterministic

steady-state, the only remaining variables in the differentiated equilibrium conditions are the

derivatives of the optimal policies C and prices p at the deterministic steady-state. These

are the coefficients in the Taylor series of the optimal policies.

The key innovation of this paper lies in recognizing the symmetry of the problem. In principle,

we would have to start with agent one, differentiate his first-order conditions with respect to

each agent’s state variables, move to agent two and so on. However, we do not have to go

through this entire process. There are two crucial ways in which the problem is symmetric.

First, all derivatives with respect to state variables of other agents than the one whose

policy we approximate are identical. For example, when differentiating agent one’s first-

order condition, there are only two different coefficients in the first-order expansion: The

derivative with respect to the agent’s own state varaibles and those of any other agent. These

two numbers are sufficient because the coefficients on other agents’ state variables have to
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be the same since they are all given the same fundamentals. Second, we only have to take

all derivatives of first-order conditions for agent one. Agent two’s first-order conditions look

identical and thus lead to the same result. The symmetry here is that agent one’s response

to a marginal increase in agent two’s state variable is the same as agent two’s response to a

marginal increase in agent one’s state variable. This carries over to all derivatives.

Exploiting this symmetry, a first-order approximation requires two coefficients to be computed

for each state variable. One coefficient returns the change in policy of an agent in response to

a change in her own wealth. The second coefficient asks for this agent’s reaction in response

to a change in the state variable by somebody else. For the second order term, the system

becomes slightly more complex. For each state variable, we have to compute four values:

an agent’s change in response to a change in her state variable to a change in response to

her wealth, an agent’s change in response to a change in her state variable to a change

in response to somebody else’s state variable, an agent’s change in response to a change

in somebody else’s state variable to a change in response this person’s state variable, and

an agent’s change in response to a change in somebody else’s state variable to a change in

response to a third person’s state variable. Increasing the order, we have quadratic growth

in the number of coefficients which stays manageable. Although the economic interpretation

is tedious, solving the system of equations is straightforward. From the second order on, the

system of equations for the unknown coefficients is linear.

A first-order approximation implements standard linearization which is not sufficient for

our purposes. Due to linearity, heterogeneity does not affect equilibrium outcomes because

under these rules, the average choice is the choice of the average person. Heterogeneity only

enters through higher-order terms, starting with a second-order approximation. For the same

reason, stochasticity impacts equilibrium only through higher-order terms. The first-order

approximation is certainty equivalent while higher-order terms add the effects of variance,

skewness, and higher moments.

4.4 Uncertainty

Having obtained a high order approximation of the deterministic economy, we move towards

its stochastic counterpart. We accomplish the transition by varying the scaling variable for

the standard deviation of shocks σ.

Taking a first-order expansion with respect to the scaling of the standard deviation produces

coefficients which are all zero. The reason lies in the fact that the first-order expansion of the

standard deviation introduces shocks only into the linearized, and thus certainty equivalent,
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economy. Hence, uncertainty does not play a role. Only through second- and higher-order

terms do we recover the solution to the stochastic system. The second-order term introduces

shocks into the quadratic economy. This approximation is no longer certainty equivalent and

uncertainty takes effect. To be more precise, the second-order term introduces a constant

effect due to the variance of shocks, the third-order term recovers the reaction to skewness

and time-variation in the variance of shocks, and so on.

We can interpret the way uncertainty enters the equilibrium as effectively altering the coeffi-

cients in the Taylor series. Building the expansion with respect to the standard deviation of

shocks effectively alters the coefficients to the Taylor series of the deterministic system. To

see this, we truncate equation (??) after O terms and rewrite it in the form

Ci
$(X, z, σ) =

∞∑
o=0

∑
‖I‖+|j|=o

1

I! · j!

( ∞∑
k=0

I! · j!
I! · j! · k!

C(I,j,k)(X0, z0, 0)σk

)
(X−X0)I(z− z0)j

The rearrangement demonstrates that the expansion of the stochastic system looks just like

the deterministic system except that the coefficients (in brackets) contain a “correction term”

for the stochasticity of the function.

We can see this term graphically as depicted in figure ??. In the second-order, the function

shifts while the third-order term would also tilt the function while even higher orders change

its curvature.

x

Effect of Expansion with respect to standard deviation σ
 

Deterministic
Second order σ
Third order σ

Figure 1: Perturbation methods build an approximation in state variables around the deter-
ministic steady-state (thick solid line). The expansion with respect to the standard deviation
shifts (second order) and tilts this line (third order).
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4.5 The Law of Motion

Perturbation methods deliver a polynomial representation of the approxmation. The law of

motion is no exception to this rule. In our approximate solution, the equation of motion is not

only a function of an aggregate statistic of state variables but the entire distribution as the

theory would tell us. With every increase in the order of approximation, our solution method

includes the corresponding moments from the distribution of state variables. In this sense,

the solution method proposes a set of approximating statistics with which to approximate

policy functions. As an additional feature, a better approximation adds moments to the

previous approximation without the necessity to recompute previous approximations.

The first-order expansion results in a law of motion of the form

1

I
Kt+1 ≈k0 + (k1X11

− k1X21
+ IkiX21

)(X1 − X̄11) + (k1X12
− k1X22

+ IkiX22
)(X2 − X̄12)

+ Ik1z1(z1 − z̄1) + Ik1z2(z2 − z̄2) + Ik1z3(z3 − z̄3) + . . .

where Xj = 1
I

∑I
i=1Xij , X̄1· is the value of the state variable at the deterministic steady-

state, and k1X11
= ∂k1

∂X11
, see appendix ?? for a derivation.

The second-order approximation depends both on the cross-sectional variance of individual

state variables as well as a quadratic term in aggregate state variable. It thus depends

not only on the cross-section but also nonlinearly on the time-series variation of aggregate

quantities.

The above expression is not particular to the law of motion. Any function which depends

identically on agents’ choices, will be approximated in this fashion. Appendix ?? contains

details.

4.6 Distribution of Equilibrium Variables

Given our approximation method, we compute the distribution of any equilibrium outcomes

or nonlinear functions thereof. We therefore combine perturbation methods with a non-linear

change of variables.5 For example, from capital and bond holdings we compute portfolio

weights or Sharpe ratios of individual portfolios.

Suppose we have some economic variable of interest which is a nonlinear function h(X, z,P)

of the state variables and choices which we approximate with a Taylor series. The coefficients

5?, ?, and ? explain nonlinear changes of variables in conjunction with perturbation methods.
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can be computed as follows

dh

dxis
=

∂h

∂X

∂X

∂xit
+
∂C

∂X

∂X

∂xit
+
∂p

∂X

∂X

∂xit
(20)

and analogously for other state variables. All partial derivatives of h are given through its

functional form while the derivatives of state variables, choices, and prices were previously

computed through perturbation methods.

The computation of the coefficient is trivial once we make the observation that the first term

is given by the derivative of H (which is given) and the second one has already been computed

in the previous approximation. Thus, computing the distribution of any variable of interest

within the economy is not more intricate than computing the distribution of capital.

4.7 Accuracy

The solution method comes with a natural way to check for its accuracy. The equilibrium

conditions are satisfied when the functional G in equation (??) returns zero values for all

of its components. Since we have asymptotic validity of the solution method, we specify a

tolerance as a threshold for the error. Once the error is below the tolerance in some norm,

we terminate the approximation process.

To get a meaningful measurement for the error, it makes sense to normalize the optimality

conditions such that they are unit-free. For example, we rewrite the Euler equation (??) in

the form

βEt

[
(1 + rkt+1)

u′c(c
i
t+1)

u′c(c
i
t)

−
u
(1)
k (kit+1, b

i
t+1)

u′c(c
i
t)

]
= 0 (21)

to avoid the error scaling with marginal utility. This measurement provides a way to check for

accuracy after adding an order of approximation. Thus one can decide at each step whether

the approximation suffices the criteria or not. As an additional benefit, there is no need

to recompute previous orders after each step. The approximation method keeps previous

coefficients unaltered when refining the solution.

5 Results

This section summarizes the findings for the particular economy of section ??. We first

discuss the choice of functional forms and parameter values. Then we show the accuracy

of the solution method before discussing findings with respect to the two versions of the
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economy.

5.1 Calibration

Most of the parameters and functional forms are standard in the literature. In large parts,

there is a concensus on how to calibrate a real business cycle model. And the introduction

of heterogeneity has predecessors in the literature. For comparability of our results, we aim

at matching the same parameter combination.

We choose constant relative risk aversion as functional form for our utility specification defined

over consumption. We set the coefficient of relative risk aversion to 2. The time preference

factor is chosen to be 0.95.

We implement the penalty function for deviations from steady-state capital and bond holdings

that imposes an endogenous borrowing constraint. Therefore, we set the parameter ν1 = 3 to

ensure that the borrowing constraint receives a lot of weight. The parameter ν2 = 0.01 is set

to a small number since it merely ensures that the steady-state is defined for the deterministic

economy. Finally, we set ν3 = 0.00001 for the deterministic economy and to zero once we

move to the stochastic version. To implement the borrowing constraint, we set k = −0.1. As

a consequence, for almost all cases, borrowing becomes prohibitively costly. The parameter

k̄ corresponds to the steady-state value of capital which is set such that the return on capital

equals the reciprocal of the time preference factor in the deterministic steady-state.

The parameters governing the macreconomic considerations do not vary much across different

works in the literature. We set the capital share of output to α to 1/3 and the parameter for

depreciation to 0.1.

For the shocks to aggregate productivity and shocks to individual labor productivity, we

follow the calibration in ? via ?. We set the stochastic process for aggregate uncertainty to

be

zt+1 = 0.25 + 0.75zt + 0.00661εt+1.

Idiosyncratic shocks to labor income evolve according to

ψit+1 = 0.4 + 0.55555ψit + (0.48989− 0.28381ψit)θ
i
t+1

We set upper and lower bounds for innovations to ±0.1.

The question remaining question concerns the number of agents in the economy. As demon-

strated when describing the solution method, the computing power required is the same for
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any number of individuals. To generate the results of this section, we set this number to 100.

5.2 Convergence

As mentioned in section ??, the numerical method leads to a natural check of the accuracy of

the solution. We normalize the Euler equation by dividing by marginal utility on both sides

as in equation (??).

Figure ?? plots the logarithm of the Euler equation error as a function of one agent’s capital

stock. This check for accuracy corresponds to the deterministic version of the economy.

10 15 20 25 30 35
k

10-5

10-4

0.001

0.01

logHErrorL
Equation Error Euler

3 Level

2 Level

Level

Figure 2: Euler equation error for the deterministic version of our economy.

The deterministic steady-state satisfies the deterministic optimality conditions. Thus the

Euler equation error is zero at this point and its logarithm at negative infinity.

Two observations stand out from this graph. First, we see convergence. The Euler equation

error decreases for the interval. And second, the result approximates the solution not just

locally but globally on a sizeable interval.

5.3 Impact of heterogeneity

Heterogeneity with aggregate risk increases the steady-state level of capital. This result is

known from the previous literature. There are two reasons for it. First, idiosyncratic risk

leads to precautionary savings on the part of households. Since households cannot trade

claims contingent on their labor income, they try to partially insure against these shocks by

building up a buffer stock of savings. Second, due to aggregate productivity shocks, holding
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capital is risky. There are two opposing forces. On the one hand, agents are risk averse

and demand a higher risk premium for holding risky capital. Each unit should thus return a

higher dividend which implies a higher marginal product of capital and thus a lower steady-

state level of capital. On the other hand though, since returns to capital are risky, agents

again respond by building up savings which implies a higher steady-state level of capital.

With our utility specification of constant relative risk aversion, the latter effect dominates.

Thus, heterogeneity with aggregate risk increases the steady-state level of capital.

With respect to the pricing of assets, we study the impact of heterogeneity on the stochastic

discount factor. We see that an aggregate stochastic discount factor defined as the average

of all individual discount factors is approximated by

β

I

I∑
i=1

u′c(c
i
t+1)

u′c(c
i
t)

= c(Xt, zt,Xt+1) +
(
c(1)z ezt+1 + c(2)z var(ezt+1) + . . .

)
+
(
c
(2)
ψ var(ψi) + . . .

)
(22)

The derivation of this expression can be found in appendix ??. The first term as well as all

coefficients in the expansion are known at time t. The approximation thus tells us directly

which assets demand a risk premium. Every security that comoves with total factor produc-

tivity, its variance (which we kept constant in our example), and higher moments will carry

a risk premium.

But heterogeneity also enters the pricing of securities. The variance of individual labor income

shocks is a risk factor. A time- or state-dependent variance will induce a risk premium for

all assets that comove with this variance.

6 Comparison between Methods for an Asset Pricing Problem

We demonstrate the performance of our solution method in comparison with an approach

that has been used frequently in the literature where you replace the law of motion by a

linear function in the state variables.

To see the difference, we study a particularly simple asset pricing problem.6 We move to this

particular economy because we obtain a closed-form solution which is not available for the

previous example.

A representative agent prices a stochastic stream of endowments Ct according to the following

6We borrow this problem from Stavros Panageas who introduced it to show that the linear law of motion
can lead to erroneous results.
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stochastic process

logCt+1 = logCt + µ+ εt+1 (23)

where the innovation ε is distributed ε ∼ N(0, σ2ε). The representative agent’s expected

utility is given by the discounted stream of per-period utilities that feature constant relative

risk aversion and two preference shocks A and B

Ut = Et

[ ∞∑
t=0

βtAtBtC
1−γ
t

]
. (24)

The preference shocks evolve according to the stochastic processes

logAt+1 = ρA logAt + σAηt+1 (25)

logBt+1 = ρB logBt + σBηt+1. (26)

where the innovations are standard normally distributed.

6.1 A closed-form solution

To determine the value of the tree, we use the representative agent’s Euler equation

P0A0B0C
−γ
0 = βEt

[
A1B1C

−γ
1 (P1 + C1)

]
(27)

and iterate forward to get

P0

C0
=

∞∑
t=1

βte−γµt+
γ2σ2

ε
2

tA
ρtA−1
0 B

ρtB−1
0 e

1
2

[
σ2
A

1−ρ2tA
1−ρ2

A

+σ2
B

1−ρ2tB
1−ρ2

B

+2σAσB
1−ρtAρtB
1−ρAρB

]
. (28)

The derivation of this equation might not be immediate. Appendix ?? contains a derivation.

We can evaluate the quasi-closed-form solution with arbitrary accuracy by forward iteration

given by equation (??). This reference solution serves as a benchmark for two approximation

methods. First, we can assume a linear law of motion. Second, we can use the approximation

method described in this paper to solve for the pricing.
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6.2 Approximation with linear and quadratic laws of motion

We re-write Euler equation (??) in terms of the price-dividend ratios

P0

C0
= Et

[
β
A1

A0

B1

B0

(
C1

C0

)1−γ (P1

C1
+ 1

)]
. (29)

A linear law of motion now describes the process for the price-dividend ratio

Pt+1

Ct+1
= α+ ρp

Pt
Ct

+ δηt+1. (30)

Using this linear law of motion, we arrive at a closed-form expression for the price dividend

ratio given by

P0

C0
=
βe−γµ+

γ2σ2
ε

2 AρA−1
0 BρB−1

0 e
1
2
(σA+σB)2 ((1 + α) + δ(σA + σB))

1− ρpβe
−γµ+ γ2σ2

ε
2 AρA−1

0 BρB−1
0 e

1
2
(σA+σB)2

(31)

Details on the derivation of this closed-form expression and on the quadratic law of motion

are in appendix ??.

The coefficients in the linear law are chosen to maximize the fit with the dynamic evolution

under this law of motion. Therefore, fix some coefficients, solve, and simulate the economy.

Run a linear regression of next period’s price-consumption ratio on this period’s ratio. Use

the resulting coefficients as a new law of motion and iterate until a fixed point is found.

6.3 Approximation with our solution technique

This problem features only a very mild level of heterogeneity. There are only two different

taste shocks that enter the economy. The purpose of this section is to show that even for this

mild level of heterogeneity, standard solution techniques might fail to provide an accurate

solution.

We apply the solution method of this paper to Euler equation (??). The price-dividend

ratio is a function of the two state variables At and Bt. We start with the deterministic

steady-state around which we approximate the price-dividend ratio. Then we procede in the

standard fashion by building a high-order perturbation in the two state variables. Finally,

we take the derivatives (and cross-derivatives with the two state variables) with respect to

the standard deviation of the shocks.
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This is a particularly hard problem for the solution technique because the price-consumption

ratios in the stochastic economy are in a different range from their deterministic counterparts

which lies at a price consumption ratio of roughly 15. If we set the standard deviations in

equation (??) to zero, the deterministic price-consumption ration will be far smaller. In our

later calibration, the stochastic price-consumption ratios will be more than ten times larger

than the deterministic steady-state.

6.4 Comparison

We solve the economy for a particular parameter combination taken from Panageas. For this

parameter combination, the R2 criterion for the linear law of motion provides values above

98%. Specifically, these paramters are a growth rate µ = 1.4%, risk aversion at γ = 8, and

the time discount factor β = 1.05. The persistence of the two shocks is set to ρA = 0.98 and

ρB = 0.8. The standard deviations are fixed at σε = 0.04, σA = 0.1, and σB = 0.04.
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Figure 3: Comparison between the true solution and approximation methods using a linear
law of motion and the perturbation approach of this paper.

Figure ?? compares the true solution to the approximations using a linear law of motion and

the solution method of this paper. For the perturbation method, we choose an approximation

of order 5. We see that it fits the true solution closely while a linear law of motion deviates

substantially although the R2 diagnostic indicates a good fit. The implementation for the

quadratic law of motion is numerically unstable the iteration only terminated when a high

tolerance for the fixed point was chosen. Compared to the closed-form expression, the linear

law of motion does not capture the variance of the time series.

This example was chosen to demonstrate difficulties when assuming a linear or quadratic law

of motion. A linear/quadratic law of motion might deliver a poor approximation when the
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model is either highly nonlinear or when it is comprised of several state variables with different

persistence. In the latter case, the sum of the state variables is not a good approximation to

the joint distribution of the two variables.

7 Conclusion

In this paper, we presented the mathematical foundations for a class of incomplete market

models with substantial heterogeneity. The analysis resulted in a proof of existence of equi-

libria both for small and large risks as well as a solution method. This method builds on

perturbation methods which use Taylor series expansions around a deterministic steady-state.

This solution method is particularly useful for models with many state and choice variables.

Generally, this idea can be employed not only to competitive equilibria but also to dynamic

programming problems. This feature suggests that the analysis can be applied to settings

with recursive preferences. As a first example, we solved a dynamic stochastic general equi-

librium model with idiosyncratic shocks to labor income. We demonstrated the convergence

properties for this particular example. Furthermore, we showed that heterogeneity impacts

macroeconomic quantities as well as the pricing of risk.
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A Penalty Functions

For an optimization problem of the form

max
x

f(x) subject to ci(x) ≥ 0 (32)

where i serves as an index for constraints ci, we can write a smooth version as

max
x

f(x)− µ
∑
i

B(ci(x)) (33)

where B(·) is continuously differentiable and limx→0B(x) = ∞. Take a sequence of penalty

parameters {µk} which leads to a sequence of solutions {x∗k} to (??). Then every limit point

x∗ of the sequence of solutions {x∗k} is a global solution to the constrained optimization

problem (??). For details, e.g. see ?.

B Proofs for section ??

B.1 Construction of Compact Domain

The compact domain Ω has to be chosen such that the equilibrium conditions are non-singular

on this domain. For example, we need to rule out combinations of capital that lead aggregate

capital to be negative while still allowing for short-selling of capital by individuals.

We define the domain through the boundaries in all directions in the 3I+1-dimensional space.

To facilitate the definition of Ω, we make it symmetric across individuals. Thus we only

specify upper and lower bounds for the combination of state variables k1, k2, b1, b2, ψ1, ψ2,

and z. All other restrictions follow by symmetry: for example, the restrictions on k3 and k4

are identical to those between k1 and k2.

We define restriction on shocks independent on where we are at the state space. We specify

shocks to be on a compact support which increases with the perturbation variable σ. We

thus calculate upper and lower bounds such that the shock in the following period always

remains in the same domain. For the productivity shock, we achieve lower and upper bounds

z =
1

1− φz
ε and z̄ =

1

1− φz
ε̄. (34)
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Analogously, we obtain lower and upper bounds for individual labor income shocks via

ψ =
φ

1− φψ
+

φθ
1− φψ

θ and ψ̄ =
φ

1− φψ
+

φθ
1− φψ

θ̄. (35)

We specify the domain for the remaining variables k1, k2, b1, and b2 via the four combinations.

After invoking symmetry, we are left with four upper and lower bounds. In the direction of

k1 and k2, we impose
I∑
i=1

ki > k + δ and

I∑
i=1

ki < Ik̄ (36)

The first constraint ensures positive levels of aggregate capital while allowing for short selling.

The second level puts an upper bound on aggregate capital which is chosen large enough to

ensure that at this point, agents chose to consume enough to decrease next period’s capital

stock.

Individual capital, however, has an upper bound given by the borrowing constraint

ki + bi > k + δ and ki + bi ≤ k̄. (37)

To pin down upper bounds on each variable, we use bounds such that the borrowing constraint

cannot be violated even with zero consumption. We take

f1(Ik̄, L, z)ki ≥ f1(Ik, L, 1)bi + eψf2(Ik, L, z)

− f1(Ik, L, z̄)ki ≤ f1(k̄, L, 1)b+ eψf2(Ik, L, z)
(38)

The first constraint ensures that long positions in capital do not lead to large violations of

the endogenous borrowing constraint, the second is for short positions. Optimal choices will

always obey these boundaries of the domain.

In the direction of bonds, we allow for small band

−δ ≤
I∑
i=1

bi ≤ δ (39)

which is sufficient due to market clearing. The market clearing condition and the borrow-

ing/leverage constraint also bound the domain in the ki-kj direction.
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B.2 Local Existence

First, we need to make sure that a solution close to the deterministic steady-state stays within

the same Banach space. Therefore, the solution cannot leave the domain Ω defined in ??. By

construction, the shocks will remain within Ω for all σ ∈ [0, 1]. For the deterministic economy,

the solution is such that over time you converge towards the deterministic steady-state, i.e.

it is asymptotically stable. For the stochastic economy, the penalty function imposes a force

towards the steady-state. By choosing δ small enough, we can increase the domain so far

that the endogenous borrowing constraint induces more saving and assures that we remain

on the domain.

Second, the equilibrium operator G(B(σ), σ) is differentiable at the deterministic steady-state

since every first-order condition, budget constraint, and market clearing condition is differ-

entiable on the domain. If we choose a slightly different choice or price function, the norm in

the Banach space is bounded by the sum of the largest derivatives. Due to differentiability,

this is a finite number. Thus we can derive the Fréchet derivative and the following lemma

applies.

Lemma 1 If the operator G lies in Cm as does the solution to the deterministic economy B̄.

Then we get, for a sufficiently small r > 0 defining a ball Br = {B ∈ Bk1 |‖B − B̄‖Bk
1
} such

that G : Br × [−σ̄, σ̄] for some σ̄.

Proof: Due to the construction of the domain Ω and the fact that the deterministic solution

is asymptotically stable, G(B(σ), σ) exists and consumption is positive for all ω ∈ Ω. As long

as operator and solution are part of Ck, the order k derivatives of G with respect to X, z,

and σ exist. Therefore, for a solution B with ‖B− B̄‖Bk
1
sufficiently small, G(B(σ), σ) exists

and, by the chain rule, inherits differentiability. �

Third, and last, we need invertibility of the derivative. We aim at a constructive proof and dif-

ferentiate the equilibrium mapping with respect to σ to arrive at the equationGB(B(0), 0)Bσ+

Gσ(B(0), 0). When solving for choices and prices, we realize that invertibility is a crucial

property of equilibrium operators: Bσ = −GB(B(0), 0)−1Gσ(B(0), 0). We aim at obtaining

solutions of the form

B(σ) = B(0) +
∂B

∂σ
(0)σ +

1

2

∂2B

∂σ2
(0)σ2 + . . . . (40)

Now we study the effects of the first-order term.

Lemma 2 The deterministic solution does not solve any economy with small risks σ ∈
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[−σ̄, σ̄].

Proof: Plugging in the deterministic solution into the Euler equation with small risks leads

to Euler equations of the form

u′(cit) = β(1 + rbt )Et[u
′(cit+1)] (41)

and

u′(cit) = βEt[1 + rkt ]Et[u
′(cit+1)] + βCov(1 + rkt , u

′(cit+1)). (42)

Both equations cannot be satisfied simultaneously for the solution to the deterministic econ-

omy when the return to capital is risky. �

Hence, the equilibrium operator produces locally separate solutions. For the deterministic

economy, we had a unique solution. The operator being bijective implies invertibility of

equilibrium conditions.

Lemma 3 The inverse operator DG−1(B(0), 0) exists as a continuous linear operator if and

only if the partial Fréchet derivative DG(B(0), 0) is bijective.

For a proof, see ?. Putting steps one to three together, we satisfy the conditions for the

Implicit Function Theorem which guarantees local existence of equilibria.

B.3 Proof of Proposition ??

To prove the proposition, we first revisit the underlying structure behind the Leray-Schauder

continuation theorem. The previous section dealt with the local nature of the problem using

the Implicit Function Theorem. To analyze the global nature, we revisit degree theory. A

degree indicates whether a function has a solution to the equation f(ω) = 0 on a certain

domain Ω with a boundary ∂Ω. We start by defining the degree for finite-dimensional maps

from Ω ⊂ RN to RN . For a mapping f which satisfies the properties

(1) 0 /∈ f(∂Ω)

(2) f is continuously differentiable on Ω

(3) If ω ∈ Ω such that f(ω) = 0, then det Df(ω) 6= 0.
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For these mappings, one can define the Brower degree via

d(f,Ω, 0) =
∑

ω∈f−1(0)

sign det Df(ω). (43)

As a result, if the degree takes on a value of −1, it means that the mapping crossed zero at

least once from a positive value to a negative value over the domain. A value of zero indicates

no or an equal number of crossings and a value of one suggests one or an uneven number of

crossings from negative to positive. The Brouwer degree has several useful properties:

Normalization The degree of the identity map I is

d(I,Ω, 0) =

{
1, 0 ∈ Ω

0, 0 /∈ Ω

Solution Property If d(f,Ω, 0) 6= 0, then there exists ω ∈ Ω such that f(ω) = 0.

Homotopy Invariance If H : [0, 1] × Ω̄ → RN is continuous, with H(σ, ω) 6= 0 for all

ω ∈ ∂Ω and σ ∈ [0, 1], then d(H(σ, ·),Ω, 0) is constant (i.e. independent of σ).

Excision If U is a closed subset of Ω̄ and f has no zeros in U , then d(f,Ω, 0) = d(f,Ω\U, 0).

As described in ?, the definition of Brouwer degrees allows for a direct proof of the Brouwer

Fixed Point Theorem which allows to show the existence of solutions.

Schauder achieved a generalization of the Brouwer degree to infinite-dimensionsal mappings.

The difficulty lies in the fact that the closed unit ball in infinite-dimensional spaces is not

compact and will, in general, not have a fixed point property. The important ingredient in

making progress is some kind of compactness in Banach spaces B.

Definition 5 (Compact mapping)

A mapping G : B → B is compact if for each bounded set B ⊂ B, the set G(B) is compact.

Using compactness, we define complete continuity which is one of the pillars of the Leray-

Schauder principle.

Definition 6 (Completely continuous)

A mapping G : B → B is completely continuous if it is compact and continuous.
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Definition 7 (Completely continuous perturbation of the identity)

A mapping of the form Ĝ = I − G, where G is completely continuous is called a completely

continuous perturbation of the identity.

It turns out that compact sets in Banach spaces are nearly finite dimensional in the sense

that one can approximate compact sets with finite dimensional sets.

Lemma 4 (Schauder projection)

Let K be a compact subset of the Banach space B. Given ε > 0, there exists a finite dimen-

sional convex set Y ⊂ B and a map Pε : K → Y such that

‖Pε(x)− x‖ < ε for all x ∈ K

The map Pε is called Schauder projection.

Since the Schauder projection is arbitrarily close to the identity, compact subsets can be

shown to be nearly finite-dimensional. For completely continuous mappings, the Brouwer

degree can be generalized as the Leray-Schauder degree. Then for every completely continuous

map G : Ω̄ → B such that ω − G(ω) 6= 0 for all ω ∈ ∂Ω, there exists a unique integer

d(I −G,Ω, 0) with similar properties to the ones above.

Normalization The degree of the identity map I is

d(I,Ω, 0) =

{
1, 0 ∈ Ω

0, 0 /∈ Ω

Solution Property If d(I −G,Ω, 0) 6= 0, then there exists ω ∈ Ω such that G(ω) = ω.

Homotopy Invariance If H : [0, 1]× Ω̄ → RN is completely continuous, with ω 6= H(σ, ω)

for all ω ∈ ∂Ω and σ ∈ [0, 1], then d(H(σ, ·),Ω, 0) is constant.

Excision If K is a closed subset of Ω̄ and F has no fixed points in K, then d(I −G,Ω, 0) =

d(I −G,Ω \K, 0).

Theorem 3 (Schauder fixed point theorem)

If K is a closed, bounded, and convex subset of B and G : K → K is completely continuous,

then G has a fixed point in K.

Leray and Schauder developed a method to continue solutions based on the ideas underlying

the fixed point theorem. Therefore, we let O denote a bounded open subset of B1 × [σ, σ̄]

34



and let Oσ = {B ∈ B1 : (B, σ) ∈ O} denote the projection onto B1. We define Ĝ by

Ĝ(B, σ) = B−G(B, σ) (44)

where G : Ū → B1 is completely continuous and

G(B, σ) 6= 0 for all σ ∈ [σ, σ̄] and B ∈ ∂O. (45)

Then the following lemma holds.

Lemma 5 (Generalized Homotopy)

If Ĝ is defined by (??) and satisfies (??), then d(Ĝ(·, σ),Oσ, 0) is independent of σ.

Theorem 4 (Leray-Schauder Continuation)

Let Ĝ be defined by (??) and satisfy (??). If d(Ĝ,Oσ, 0) 6= 0, then there exists a continuum

C such that C ∩ Oσ 6= ∅ 6= C ∩ Oσ̄.

The Leray-Schauder continuation theorem gives conditions under which we can continue the

local solution to the case of larger risk. Therefore, we need to make sure that the domain is

large enough for the solution to map elements of the domain into it. Hence we set ε1 > 0

small enough in the definition of the domain Ω. We define the compact interval for the

solution as k = ε1 and k̄ = 2k̄∗−ε1 where k̄∗ denotes the amount of capital in the symmetric

deterministic steady-state. Then we choose ε2 � ε1 to define the subset of our Banach space

Bp = {(c,k)|ci(k, ψ, z, σ) ≥ ε2 ∀k, ψ, z, σ ∀i and ‖c̄‖ ≤ 2f(2k∗, l)} (46)

This allows us to define a subset of the space B1 via B = I×Bp.

The major step in the proof of the proposition remains to show that the operator G is

completely continuous on the subset B. Therefore, we need to show that, taken an arbitrary

bounded subset of B, the image under the operator G(B) is compact, i.e. the closure of the

image is compact.

Lemma 6 (Boundedness of the operator)

A bounded subset B ⊂ Ω has a bounded image under the operator Ĝ.

Proof: To get an upper and lower bound, we go to the boundary of B and map it using

the operator Ĝ. We know that marginal utility will be high and the discrepancy from 0 the

highest if we set consumption to its lowest level. However, since we are bounded away from

zero, we will have a bounded image. �
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Lemma 7 (Convergence of sequences)

An arbitrary bounded sequence in B is mapped into a sequence {yn}n∈N in G(B). The se-

quence {yn}n∈N has a convergent subsequence.

Proof: Since the operator G maps into a Banach space, we can measure the norm of the

sequence. Our image G(B) is bounded and so will be the norms of all the elements in the

image. Since the sequence {‖Gσ‖}n∈N is bounded as well, we can find a subsequence whose

norm converges. Take that subsequence. Its norms converge in B2 and the limiting element

will lie in the closure of the image. �

From the previous two lemmas, we get that the image is compact which implies that G is

completely continuous on B. We now need to establish the behavior of the operator on the

boundary.

Lemma 8 (Absence of solutions on the boundary)

The operator G does not possess solutions on the boundary of B × [0, 1], i.e.

G(ω, σ) 6= 0 ∀ω ∈ ∂Ω. (47)

Proof: We set up the set B in a way that agents either overconsume on one side of the

boundary and underconsume on the other. On one side of the boundary, consumption is

very close to zero for all levels of capital and on the other side of the boundary consumption

equals or exceeds wealth. These elements are suboptimal and do not represent solutions. �

We are now in the position to apply the Leray Schauder continuation theorem. Thus we can

now transform the deterministic solution into a solution for the large case of risk. �
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C Approximation of the Law of Motion

C.1 The Linear Law of Motion

Next period’s average capital as 1
IKt+1 = 1

I

∑I
i=1 k

i
t+1(Xt, zt, σ). Using equation (??), we

get a first-order approximation of the form

1

I
Kt+1 ≈k0

+
I∑
i=1

kiX11
(X11 − X̄11) + kiX21

(X21 − X̄21) + kiX31
(X31 − X̄31) + kiX41

(X41 − X̄41) + . . .

+

I∑
i=1

kiX12
(X12 − X̄12) + kiX22

(X22 − X̄22) + kiX32
(X32 − X̄32) + kiX42

(X42 − X̄42) + . . .

+ . . .

+

I∑
i=1

kiz1(z1 − z̄1) + kiz2(z2 − z̄2) + kiz3(z3 − z̄3) + . . .

where X̄·1 is the deterministic steady-state value.

With the assumptions on symmetry, coefficients on expansions as well as steady-state values

are identical and summarize to

1

I
Kt+1 ≈k0

+ (k1X11
− k1X21

)(X1 − X̄11) + IkiX21
(X1 − X̄11)

+ (k1X12
− k1X22

)(X2 − X̄12) + IkiX22
(X2 − X̄12)

+

I∑
i=1

kiz1(z1 − z̄1) + kiz2(z2 − z̄2) + kiz3(z3 − z̄3) + . . .

where Xj =
1
I

∑I
i=1Xij .

C.2 The Quadratic Law of Motion

For the second-order terms, we again build an expansion for one policy and sum up over all

agents. Thereby, we invoke symmetry in the analogous fashion. Simply regrouping the terms
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from equation (??)

k1(X, z) ≈k0 + first-order terms

+ (k1X11,X11
− k1X21,X21

− 2k1X11,X21
+ k1X21,X31

)(X11 − X̄1)
2

+ (k1X21,X21
− k1X21,X31

)

I∑
i=1

(Xi1 − X̄1)
2

+ (2k1X11,X21
− k1X21,X31

)(X11 − X̄1)(X1 − X̄1)

+ k1X21,X31
(X1 − X̄1)

2

To get to average capital, we average across all agents and invoke symmetry

1

I

I∑
i=1

ki(X, z) ≈k0 + first-order terms

+ (k1X11,X11
− 2k1X11,X21

)

I∑
i=1

(Xi1 − X̄1)
2 + 2k1X11,X21

(X1 − X̄1)
2

C.3 Approximation of any symmetric variable

The previous logic goes through for every approximation of a variable f(k) where

∂f

∂ki
=

∂f

∂kj
∀i, j

The first-order expansion

f(X) ≈ f(X̄) + fX11(X̄)(X1 − X̄1) + fX21(X̄)(X2 − X̄2) + . . .

The symmetry conditions are simply

(i) d2f
dx2i

= d2f
dx21

(ii) d2f
dxidxj

= d2f
dx1dx2

for i 6= j

Using these conditions, we can simplify the expansion of f analogously to before. We get

f(X) ≈ f0 + first-order terms + I(
d2f

dx21
− d2f

dx1dx2
+ I2

d2f

dx1dx2
)(X1 − X̄1)

2

38



D Approximation of a Stochastic Discount Factor

One stochastic discount factor is given by the average individual stochastic discount factor.

We use the technique of a nonlinear change of variables to approximate it with pertubation

methods. Therefore, we recognize that the marginal utility of next period’s consumption is

a function of Xt+1 and zt+1 while the marginal utility of consumption today is a function

of today’s state variables. Together, we build one Taylor expansion with respect to all these

state variables. Applying the logic from equation (??), we arrive at

β

I

I∑
i=1

u′(cit+1)

u′(cit
≈

∞∑
o=0

∑
‖I‖+|j|+k=o

1

I! · j! · k!
(ht,I,j,k(Xt, zt) + ht+1,I,j,k(Xt+1, zt+1)) (48)

where h·,I,j,k(Xt, zt) = U(I,j,k)(X0, z0, 0)(X· −X0)I(z· − z0)jσk. The function U is represents

marginal utility of consumption for period t + 1 and the inverse thereof for period t. The

derivatives at the deterministic steady-state are computed using the nonlinear change of

variables.

Given this expansion, collect all monomial terms merely depending on state variables known

in period t, i.e. Xt, zt, and Xt+1. The collection of those terms is denoted by c(Xt, zt,Xt+1)

in equation (??). Next, collect all terms in which total factor productivity appears linearly.

These terms are the first-order term in the expansion of productivity and all cross-terms

with variables known at time t. Collect those in a term c
(1)
z (Xt, zt,Xt+1) where we drop the

arguments in equation (??). We similarly collect the terms for second-order expansions with

respect to total factor and individual productivity and arrive at equation (??).

E Asset Pricing Example — Derivations

E.1 Derivation of the Closed Form Solution for the Asset Pricing Economy

We start from the Euler equation of the tree (??) which we rewrite in the following form

P0

C0
= Et

[
β
A1

A0

B1

B0

(
C1

C0

)1−γ (P1

C1
+ 1

)]
(49)

and iterate to get

P0

C0
= Et

[ ∞∑
t=1

βt
At
A0

Bt
B0

(
Ct
C0

)1−γ
]
. (50)
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Now we plug in the stochastic processes which we iterate to get

At
A0

= A
ρtA−1
0 eσA

∑t−1
j=0 ρ

j
Aηt−j (51)

and
Bt
B0

= B
ρtB−1
0 eσB

∑t−1
j=0 ρ

j
Bηt−j . (52)

As a result, the expectation over the product of these ratios reads

Et

[
At
A0

Bt
B0

]
=A

ρtA−1
0 B

ρtB−1
0 e

∑t−1
j=0(σAρ

j
A+σBρ

j
B)ηt−j

= A
ρtA−1
0 B

ρtB−1
0 e

1
2

[
σ2
A

1−ρ2tA
1−ρ2

A

+σ2B
1−ρ2tB
1−ρ2

B

+2σAσB
1−ρtAρtB
1−ρAρB

]
.

(53)

We plug this equation in our iterated Euler equation

P0

C0
=

∞∑
t=1

Et

[
βt
C1−γ
t

C1−γ
0

]
· Et

[
At
A0

Bt
B0

]

=

∞∑
t=1

βte−γµt+
γ2σ2

ε
2

tA
ρtA−1
0 B

ρtB−1
0 e

1
2

[
σ2
A

1−ρ2tA
1−ρ2

A

+σ2
B

1−ρ2tB
1−ρ2

B

+2σAσB
1−ρtAρtB
1−ρAρB

] (54)

which yields our result in equation (??).

E.2 Linear Law of Motion

From the linear law of motion (??) and the Euler equation (??), we receive an equation

P0

C0
= E0

[
β
A1

A0

B1

B0

(
C1

C0

)1−γ (
1 + α+ ρp

P0

C0
+ δη1

)]
(55)

that we need to solve. We rearrange it to

P0

C0
=
βe−γµ+

γ2σ2
ε

2 E0

[
A1
A0

B1
B0

(1 + α+ δη1)
]

1− ρpβe
−γµ+ γ2σ2

ε
2

(56)

and solve for the different parts. First note that

E0

[
A1

A0

B1

B0

]
= AρA−1

t BρB−1
t e

1
2
(σA+σB)2 (57)
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which simplifies the denominator. For the numerator, we make use of the fact that consump-

tion growth and growth of taste shocks are independent. Thus, we can treat the terms in the

expectation separately. For the preference shocks, we get

E1

[
A1

A0

B1

B0
(1 + α+ δeη1)

]
= AρA−1

1 BρB−1
1

(
e

1
2
(σA+σB)2(1 + α) + δ(σA + σB)e

(σA+σB)2

2

)
(58)

where the first part comes from a standard iteration as before. The second part follows from

E1

[
A1

A0

B1

B0
δη1

]
= AρA−1

0 BρB−1
0 δE0

[
e(σA+σB)η1η1

]
. (59)

The last expectation can be computed by solving the integral∫ ∞

−∞

1√
2π
xe−

1
2
(x−(σA+σB))2e−

x2

2 dx = e
(σA+σB)2

2

∫ ∞

−∞

1√
2π
xe−

1
2
(x−(σA+σB))2dx

= (σA + σB)e
(σA+σB)2

2

(60)

E.3 Quadratic law of motion

Agents perceive the equation of motion to be

Pt+1

Ct+1
= α+ ρp1

Pt
Ct

+ ρp2

(
Pt
Ct

)2

+ δηt+1

Plug the equation of motion into the Euler equation to get

Pt
Ct

= Et

[
β
At+1

At

Bt+1

Bt

(
Ct+1

Ct

)1−γ
(
α+ ρp1

Pt
Ct

+ ρp2

(
Pt
Ct

)2

+ δηt+1 + 1

)]

or simplified as

Ψt(α+ 1) + (ρp1Ψt − 1)
Pt
Ct

+Ψtρp1

(
Pt
Ct

)2

+ Et

[
β
At+1

At

Bt+1

Bt

(
Ct+1

Ct

)1−γ
δηt+1

]
= 0

where

Ψt = Et

[
β
At+1

At

Bt+1

Bt

(
Ct+1

Ct

)1−γ
]

The formula for quadratic equations delivers two solutions, one of which is the desired one.
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