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1 Introduction

The field of macro-finance has the potential to give us deeper insights into macroeconomics

and macroeconomic policy by using information from both aggregate quantities and asset

prices. The link between bond-pricing and monetary policy seems particularly promising if

central banks implement monetary policy through short-term interest rates, as they do in

models with Taylor rules.

If the combination of macroeconomics and finance holds promise, it also raises challenges.

We address one of them here: the challenge of identifying monetary policy parameters in a

modern macroeconomic model. Identification problems arise in many economic models, but

they play a particularly important role in assessments of monetary policy. If we see that

the short-term interest rate rises with inflation, does that reflect the policy of the central

bank or something else? How would we know? Since identification is a feature of models,

the question is what we need in a model to be able to identify the parameters governing

monetary policy.

We illustrate the problem and point to its possible resolution in a series of examples that

combine elements of New Keynesian and macro-finance models. The source of the identi-

fication problem here is that we economists do not observe the shock to monetary policy,

although the agents populating the model do. As a result, it’s difficult, and perhaps impos-

sible, to disentangle the systematic aspects of monetary policy from shocks to it. Without

more information about the shock, we may not be able to identify the parameter tying,

say, interest rate policy to the inflation rate. This issue about the difference between what

agents and economists observe goes back (at least) to work by Hansen and Sargent (1980,

1991), who considered differences in the information sets of agents and economists in dy-

namic rational expectations models. In our examples, the issue is the Taylor rule shock. If

agents observe it but economists do not, then we need restrictions on the shock to identify

the Taylor rule’s parameters. The identification problem in these models is different from

the classical Cowles Commission work on simultaneous equation systems. The central issue

is whether we observe the shock, not whether exogenous variables show up in the right

configuration. If we observe the shock, identification follows immediately. If not, then we

need restrictions on its coefficients.

We show how this works in a series of examples that illustrate how information about shocks

interacts with dynamics in forward-looking rational expectations models. The first example

is adapted from Cochrane (2011) and consists of the Fisher equation and a Taylor rule.



Later examples introduce exponential-affine pricing kernels and New Keynesian Phillips

curves. We find it helpful to separate issues concerning the observation of shocks from

those concerning the observation of the underlying state of the economy. If the state is

observed, a clear conclusion emerges: we need restrictions on the shock to the Taylor rule to

identify the rule’s parameters. In our examples, we need one restriction for each parameter

to be estimated. If the state is not observed, the same kinds of restrictions typically deliver

identification.

If this seems clear to us now, it was not when we started. We thought, at first, that

identification required shocks in other equations. We find, instead, that the conditions for

identification don’t change when we eliminate other shocks, or even when we eliminate the

other equations. It depends entirely on what we know about the shock in the equation of

interest, the Taylor rule. We also thought that knowledge of the term structure of interest

rates might help with identification. We find, instead, that knowing the term structure can

be helpful in observing the state, but knowing the state is not enough to identify the Taylor

rule. What matters in all of these examples is whether we observe the shock to the Taylor

rule, and if we do not, whether we have restrictions on its form.

Identification depends, then, on our ability to observe shocks or, failing that, to impose

restrictions on their coefficients. The answer to the next question is less clear: What kinds

of restrictions are plausible? Reasonable people can and will have different opinions about

this. We leave it for another time.

2 The problem

Two examples illustrate the nature of identification problems in macro-finance models with

Taylor rules. The first comes from Cochrane (2011). The second is an exponential-affine

bond-pricing model. The critical ingredient in each is what we observe. We assume that

economic agents observe everything, but we economists do not. In particular, we do not

observe the shock to the Taylor rule. The question is how this affects our ability to infer

the Taylor rule’s parameters. We provide answers for these two examples and discuss some

of the questions they raise about identification in similar settings.
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2.1 Cochrane’s example

Cochrane’s example consists of two equations, an asset pricing relation (the Fisher equation)

and a Taylor rule (which depends only on inflation):

it = Etπt+1 (1)

it = τπt + st. (2)

Here it is the (one-period) nominal interest rate, πt is the inflation rate, and st is a monetary

policy shock. The Taylor rule parameter τ > 1 describes how aggressively the central bank

responds to inflation. This model is extremely simple, but it’s enough to illustrate the

identification problem.

Let us say, to be specific, that the shock is a linear function of a state vector xt, st = d>xt,

and that xt is autoregressive,

xt+1 = Axt + Cwt+1, (3)

with A stable and disturbances {wt} ∼ NID(0, I). Although simple, this structure is ex-

tremely helpful for clarifying the conditions that allow identification. It also allows easy

comparison to models ranging from exponential-affine to vector autoregressions. For later

use, we denote the covariance of innovations by Vw = CE(ww>)C> = CC> and the covari-

ance matrix of the state by Vx = E(xx>), the solution to Vx = AVxA
> + CC>.

We solve the model by standard methods; see Appendix A. Here and elsewhere, we assume

agents know the model and observe all of its variables. Equations (1) and (2) imply the

forward-looking difference equation or rational expectations model

Etπt+1 = τπt + st.

The solution for inflation has the form πt = b>xt for some coefficient vector b to be deter-

mined. Then Etπt+1 = b>Etxt+1 = b>Axt. Lining up terms, we see that b satisfies

b>A = τb> + d> ⇒ b> = −d>(τI −A)−1. (4)

This is the unique stationary solution if A is stable (eigenvalues less than one in absolute

value) and τ > 1 (the so-called Taylor principle). Equation (1) then gives us it = a>xt with

a> = b>A.

Now consider estimation. Do we have enough information to estimate the Taylor rule

parameter τ? We might try to estimate equation (2) by running a regression of it on πt,
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with the shock st as the residual. That won’t work because st drives both it and πt, and we

need to distinguish its direct effect on it from its indirect effect through πt. Least squares

would deliver a coefficient of Var(π)−1Cov(π, i) = (b>Vxb)
−1b>Vxa, which is not in general

equal to τ .

How then can we estimate τ? The critical issue is whether we observe the shock st. Let

us say that we — the economists — observe the state xt, but may or may not observe the

shock st or the coefficient vector d that connects it to the state. Because we observe xt, we

can estimate A and Vx. We can also estimate the parameter vectors a and b connecting the

interest rate and inflation to the state. If we observe the shock st, then we can estimate

the parameter vector d. We now have all the components of (4) but τ , which we can infer.

Evidently the Taylor rule parameter is identified. In fact, it is over-identified. If x has

dimension n, we have n equations that each determine τ .

However, if we don’t observe st, and therefore do not know d, we’re in trouble. In economic

terms, we can’t distinguish the effects on the interest rate of inflation (the parameter τ)

and the shock (the coefficient vector d). In this model, there’s not much we can do about

that.

2.2 An exponential-affine example

Another perspective on the identification problem is that we can’t distinguish the pricing

relation (1) from the Taylor rule (2). Sims and Zha (2006, page 57) put it this way: “The

... problem ... is that the Fisher relation is always lurking in the background. The Fisher

relation connects current nominal rates to expected future inflation rates and to real interest

rates[.] ... So one might easily find an equation that had the form of the forward-looking

Taylor rule, satisfied the identifying restrictions, but was something other than a policy

reaction function.” Cochrane (2011, page 598) echoes the point: “If we regress interest rates

on output and inflation, how do we know that we are recovering the Fed’s policy response,

and not the parameters of the consumer’s first-order condition?” We’ll see exactly this issue

in the next example, in which we introduce an exponential-affine model into the problem.

In finance, it’s common to model interest rates with exponential-affine models, in which

bond yields are linear functions of the state. In the macro-finance branch of this literature,

the state includes macroeconomic variables like inflation and output growth. Examples in-

clude Ang and Piazzesi (2003), Chernov and Mueller (2012), Jardet, Monfort, and Pegoraro
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(2012), Moench (2008), Rudebusch and Wu (2008), and Smith and Taylor (2009). In these

models the short rate depends on, among other things, inflation.

An illustrative example follows from the log pricing kernel,

m$
t+1 = −λ>λ/2− δ>xt + λ>wt+1, (5)

and the linear law of motion (3). Here the nominal (log) pricing kernel m$
t is connected to

the real (log) pricing kernel mt by m$
t = mt − πt. The one-period nominal interest rate is

then

it = − logEt exp(mt+1 − πt+1) (6)

= − logEt exp(m$
t+1) = δ>xt. (7)

If we observe the state xt, we can estimate δ by projecting the interest rate on it.

If the first element of xt is the inflation rate, it’s tempting to interpret equation (7) as a

Taylor rule, with the first element of δ the inflation coefficient τ . But is it? The logic of

equation (7) is closer to the asset-pricing relation, equation (1), than to the Taylor rule,

equation (2). But without more structure, we can’t say whether it’s one, the other, or

something else altogether. This is, of course, the point made by Sims and Zha and echoed

by Cochrane. Joslin, Le, and Singleton (2013) make a similar point.

More formally, consider an interpretation of (7) as a Taylor rule (2). Since we observe

inflation πt and the state xt, we can estimate the coefficient vector b connecting the two:

πt = b>xt. Then the Taylor rule implies

it = τπt + st = τb>xt + d>xt.

Equating our two interest rate relations gives us δ> = τb>+d>. It’s clear, now, that we have

the same difficulty we had in the previous example: If we do not know the shock parameter

d, we cannot infer τ from estimates of δ. If xt has dimension n, we have n equations to

solve for n+ 1 unknowns (d and τ).

If we interpret (7) as an asset pricing relation, then it’s evident that we can’t distinguish

asset pricing (represented by δ) from monetary policy (represented by τb+d) without more

information about the shock coefficients d. Generalizing the asset pricing relation from (2)

to (7) has no effect on this conclusion.
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2.3 Discussion

These examples illustrate the challenge we face in identifying the parameters of the Taylor

rule, but they also suggest follow-up questions that might lead to a solution.

One such question is whether we can put shocks in other places and use them for iden-

tification. Gertler (private communication) suggests putting a shock in Cochrane’s first

equation, so that the example becomes

it = Etπt+1 + s1t

it = τπt + s2t.

Can the additional shock identify the Taylor rule?

Suppose, as Gertler suggests, that s1t and s2t are independent. Then if s1t is observed, we

can use it as an instrument for πt to estimate the Taylor rule equation, which gives us an

estimate of τ . Given τ , we can then back out the shock s2t. We’ll see in the next section that

this example is misleading in one respect — we do not need a shock in the other equation

— but there are two conclusions here of more general interest. One is that identification

requires a restriction on the Taylor rule shock. Here the restriction is independence, but

in later examples other restrictions serve the same purpose. The other is that identifying

τ and backing out the unobserved shock are complementary activities. Generally if we can

do one, we can do the other.

A second question is whether we can use long-term interest rates to help with identification.

The answer is no if the idea is to use long rates to observe the state. In exponential-affine

models, the state spans bond yields of all maturities. In many cases of interest, we can

invert the mapping and express the state as a linear function of a subset of yields. In this

sense, we can imagine using a vector of bond yields to observe the state. We have seen,

though, that observing the state is not enough. We observe the state in both examples,

yet cannot identify the Taylor rule. We explore the issue of state observability further in

Section 5.

3 Macro-finance models with Taylor rules

Macro-finance models, which combine elements of macroeconomic and asset-pricing models,

bring evidence from both macroeconomic and financial variables to bear on our understand-
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ing of monetary policy. It’s not easy to reconcile the two, but if we do, we gain perspective

that’s missing from either approach on its own.

We show how Gertler’s insight can be developed to identify the Taylor rule in such models.

We use two examples, one based on a representative agent, the other on an exponential-

affine model. We explore identification in these models when we observe the state, the short

rate, and inflation, but not the shock to the Taylor rule. The identification issues are the

same: we need one restriction on the shock to identify the (one) policy parameter.

3.1 A representative-agent model

One line of macro-finance research combines representative-agent asset pricing with a rule

governing monetary policy. Gallmeyer, Hollifield, and Zin (2005) is a prominent example.

We simplify their model, using power utility instead of recursive preferences and a simpler

law of motion for the state.

The model consists of equation (6) plus

mt = −ρ− αgt (8)

gt = g + s1t (9)

it = r + τπt + s2t. (10)

Equations (6) and (10) mirror the two equations of Cochrane’s example. The former is

a variant of equation (7), a more complex version of equation (1) that represents the fi-

nance component of the model. The latter is a Taylor rule, representing monetary policy.

Equations (8) and (9) characterize the real pricing kernel. The first is the logarithm of

the marginal rate of substitution of a power utility agent with discount rate ρ, curvature

parameter α, and log consumption growth gt. The second connects fluctuations in log con-

sumption growth to a shock s1t. As in Section 2, the state xt follows the law of motion (3)

and shocks are linear functions of it: sit = d>i xt for i = 1, 2. For simplicity, we choose r to

reconcile the two interest rate equations, which makes mean inflation zero.

The solution now combines asset pricing with a forward-looking difference equation. We

posit a solution of the form πt = b>xt. Solving (6) then gives us

it = ρ+ αg − Vm/2 + a>xt, (11)
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with

a> = (αd>1 + b>)A

Vm = a>CC>a.

Note that the short rate equation (11) now has a shock, as Gertler suggests. Equating (10)

and (11) gives us

(ρ+ αg − Vm/2) + (αd>1 + b>)Axt = r + (τb> + d>2 )xt.

Lining up similar terms, we have r = ρ+ αg − Vm/2 and

(αd>1 + b>)A = τb> + d>2 ⇒ b> = (αd>1 A− d>2 )(τI −A)−1.

As before, this gives us a unique stationary solution under the stated conditions: A stable

and τ > 1.

Now consider identification. Suppose we observe the state xt, the interest rate it, the

inflation rate πt, and log consumption growth gt, but not the shock s2t to the Taylor rule.

From observations of the state, we can estimate the autoregressive matrix A, and from

observations of consumption growth we can estimate the shock coefficients d1. We can also

estimate a and b by projecting it and πt on the state. With a> = (αd>1 + b>)A known, that

leaves us to solve

a> = τb> + d>2 (12)

for the Taylor rule’s inflation parameter τ and shock coefficients d2: n equations in the

n+1 unknowns (τ, d2). The identification problem is the same as Section 2: without further

restrictions, the Taylor rule is not identified. This is Cochrane’s conclusion in somewhat

more general form.

We can, however, identify the monetary policy rule if we place one or more restrictions on

the shock coefficients d2. One example was mentioned earlier: choose d1 and d2 so that the

shocks s1t and s2t are independent. We’ll return to this shortly. Another example is a zero

in the vector d2 — what is traditionally termed an exclusion restriction. Suppose the ith

element of d2 is zero. Then the ith element of (12) is

ai = τbi.

If bi 6= 0 (a regularity condition we’ll come back to), this determines τ . Given τ , and our

estimates of a and b, we can now solve (12) for the remaining components of d2. We can do

8



the same thing with restrictions based on linear combinations. Suppose d>2 e = 0 for some

known vector e. Then we find τ from a>e = τb>e. Any such linear restriction on the shock

coefficient d2 allows us to identify the Taylor rule.

Cochrane’s example is a special case with shocks to consumption growth turned off: d1 = 0.

As a result, all the variation in inflation and the short rate comes from monetary policy

shocks s2t. Special case or not, the conclusion is the same: we need one restriction on d2 to

identify the (one) Taylor rule parameter τ . Note well: The restriction applies to the Taylor

rule shock, and does not require a shock in the other equation.

3.2 An exponential-affine model

We take a similar approach to an exponential-affine model, adding a Taylor rule to an

otherwise standard bond-pricing model. The model consists of a real pricing kernel, a

Taylor rule, and the law of motion (3) for the state. The first two are

mt+1 = −ρ− s1t + λ>wt+1

it = r + τπt + s2t.

As usual, the shocks are linear functions of the state: sit = d>i xt. This model differs from

the example in Section 2.2 in having a Taylor rule as well as a bond pricing relation.

We solve the model by the usual method. Given a guess πt = b>xt for inflation, the nominal

pricing kernel is

m$
t+1 = mt+1 − πt+1 = −ρ− (d>1 + b>A)xt + (λ> − b>C)wt+1.

The short rate follows from (7):

it = ρ− Vm/2 + (d>1 + b>A)>xt,

where Vm = (λ> − b>C)(λ−C>b). Equating this to the Taylor rule gives us r = ρ− Vm/2
and

d>1 + b>A = τb> + d>2 ⇒ b> = (d>1 − d>2 )(τI −A)−1.

This is the unique stationary solution for b under the usual conditions.

Identification follows the same logic as the preceding example. Let us say, again, that

we observe the state xt, the short rate it, and inflation πt. From the latter we estimate
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a = d>1 + b>A and b. That gives us n equations in the n+ 1 unknowns (τ, d2). The model is

identified only when we impose one or more restrictions on the parameter vector d2 of the

monetary policy shock. If, for example, the ith element of d2 is zero, then τ follows from

ai = τbi as long as bi 6= 0.

This model is a generalization of the previous one in which we’ve given the real pricing

kernel a more flexible structure. Evidently the structure of the pricing kernel has little

bearing on identification. We need instead more structure on the shock to the Taylor rule

to compensate for not observing it.

3.3 Discussion

We have seen that one restriction suffices to identify the Taylor rule in these examples. The

question is why this works. Is it similar to the use of exclusion restrictions in simultaneous

equations models? Most econometrics textbooks illustrate exclusions of this kind with

supply and demand. There we need a variable in one equation that’s missing — excluded

— from the other. To identify the demand equation, we need a variable in the supply

equation that’s excluded from demand. That’s not the case here. We can identify the

Taylor rule even when there are no shocks in the other equation if we have a restriction on

the Taylor rule shock. The issue is not whether we have the right configuration of shocks

across equations, but whether we observe them. When we don’t observe the shock to the

Taylor rule, we need additional structure in the same equation to deduce its parameters.

The same logic applies to Gertler’s example in Section 2.3, where we used independence

of the two shocks to identify the Taylor rule. Doesn’t that involve shocks in the second

equation? Well, yes, but the critical feature of independence here is the restriction it places

on the Taylor rule shock. The shocks are uncorrelated, hence independent, if d>2 Vxd1 = 0.

But that’s a linear restriction d>2 e = 0 on the coefficient vector d2 of the Taylor rule shock.

In this case, e = Vxd1. The same holds for restrictions on innovations to the shocks. They’re

independent and uncorrelated if d>2 Vwd1 = 0. In the representative agent model of Section

3.1, such a restriction is easily implemented. If we observe consumption growth (9), then

we also observe s1t and can use it to estimate d1 and compute the restriction on d2, the

coefficient vector of the Taylor rule shock. We give numerical examples in Appendix B.

These restrictions have no particular economic rationale in this case, but they illustrate

how independence works. Similar “orthogonality conditions” appear throughout the New

Keynesian literature.
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A similar question arises with restrictions on interest rate coefficients. Suppose we know

that a linear combination of interest rate coefficients is zero: a>e = 0 for some known e.

Then (12) gives us a restriction connecting the Taylor rule shock and its coefficient vector:

τb>e + d>e = 0. One interpretation is that we’ve used a restriction from another part of

the model to identify the model. We would say instead that any such restriction on interest

rate behavior implies a restriction on the Taylor rule, which identifies the policy rule for

the usual reasons.

Another difference from traditional simultaneous equation methods is that single-equation

estimation methods generally won’t work. We need information about the whole model

to deduce the Taylor rule. In the model of Section 3.1, for example, we need to estimate

an interest rate equation to find a and an inflation equation to find b, before applying

(12) to find τ . This reflects what Hansen and Sargent (1980, page 37) call the “hallmark”

of rational expectations models: cross-equation restrictions connect the parameters in one

equation to the parameters in the others.

4 A model with a Phillips curve

We apply the same logic to an example with a stronger New Keynesian flavor. We add

a Phillips curve to the model and an output gap to the Taylor rule. Models with similar

features are described by Carrillo, Feve, and Matheron (2007), Canova and Sala (2009),

Christiano, Eichenbaum, and Evans (2005), Clarida, Gali, and Gertler (1999), Cochrane

(2011), Gali (2008), King (2000), Shapiro (2008), Woodford (2003), and many others. Our

contribution is a modest one: to add an asset pricing relation, which we think of as an

illustration of how asset prices might be introduced into the analysis.

Despite the additional economic structure, the logic for identification is the same: we need

restrictions on the shock coefficients to identify the Taylor rule. What changes is that we

need two restrictions, one for each of the two parameters of the rule. We face similar issues

in identifying the Phillips curve. If its shock isn’t observed, we need restrictions to identify

its parameters.

Our model consists of equations (6) and (8) plus

πt = βEtπt+1 + κgt + s1t

it = r + τ1πt + τ2gt + s2t.
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The first equation is a New Keynesian Phillips curve and the second is a Taylor rule, which

now includes an output term. In addition, we have the law of motion (3) for the state, and

the shocks sit = d>i xt for i = 1, 2.

We now have a two-dimensional rational expectations model in the forward-looking variables

πt and gt. The solution of such models is described in Appendix A, but we can illustrate the

challenges of identification with our usual guess-and-verify procedure. We guess a solution

that includes πt = b>xt and gt = c>xt. Then the pricing relation gives us

it = ρ− Vm/2 + a>xt

with a> = (αc>+ b>)A and Vm = a>CC>a. If we equate this to the Taylor rule and collect

terms, we have r = ρ− Vm/2 and

a> = τ1b
> + τ2c

> + d>2 . (13)

The Phillips curve implies

b> = βAb> + κc> + d>1 . (14)

As others have noted, the conditions for this to have a unique stationary solution are more

stringent than before. We’ll assume that they’re satisfied.

Let’s turn to identification. Suppose we, the economists, observe the state xt, the interest

rate it, the inflation rate πt, and log consumption growth gt. From them, we can estimate

the autoregressive matrix A and the coefficient vectors (a, b, c). In the Taylor rule, the

unknowns are the policy parameters (τ1, τ2) and the coefficient vector d2 for the shock. If

we observe the shock s2t, equation (13) gives us n equations to solve for τ1 and τ2. As long

as the dimension n of the state is at least two, the Taylor rule parameters are identified.

If we do not observe the shock, then we need two restrictions on its coefficient vector d2.

The conclusion is the same as before, but with two parameters to identify we need two

restrictions on the vector of shock coefficients.

The same logic applies to identifying the parameters of the Phillips curve. If we observe the

shock s1t, equation (14) gives us n equations to solve for the parameters β and κ. If we do

not observe its shock s1t, then two restrictions are needed to identify its two parameters.

The identification problem for the Phillips curve has the same structure as the Taylor rule,

although in practice they’ve been treated separately. For more on the subject, see the

extensive discussions in Canova and Sala (2009), Gali and Gertler (1999), Nason and Smith

(2008), and Shapiro (2008).

12



Standard implementations of New Keynesian models typically assume independent AR(1)

shocks. See, for example, Gali (2008, ch 3). In our framework, this amounts to n− 1 zero

restrictions on the coefficient vectors di. That’s generally sufficient to identify the structural

parameters of the model, including those of the Taylor rule, but more restrictive than

necessary. With respect to the Taylor rule parameter, each element i for which d2i = 0 leads,

via equation (13), to an equation of the form ai = τ1bi+τ2ci. As long as (ai, bi, ci) 6= (0, 0, 0),

any two such equations will identify the Taylor rule parameters (τ1, τ2). Similar logic applies

to the Phillips curve.

5 Observing the state

We have seen, in a number of examples, that to identify the parameter(s) of the Taylor rule,

we need information about its shock. If we do not observe the shock, then we must impose

restrictions on its form.

Our approach so far is predicated on observing the state. What happens if we observe the

state indirectly? Or a noisy signal of the state? We show that neither changes the nature

of the identification problem.

5.1 Indirect observation of the state

In many applications, the state variable is latent: we don’t observe it directly, but we may

be able to infer something about it. Examples include dynamic factor models, exponential-

affine bond-pricing models, and structural vector autogressions.

In some of these models, the state is not completely determined: linear transformations of

the state are observationally equivalent. Consider a model based on the linear law of motion

(3). If the state xt is not observed directly, then it is indistinguishable from a model with

state x̂t = Txt, where T is an arbitrary square matrix of full rank. The law of motion is

x̂t+1 = TAT−1x̂t + TCwt+1 = Âx̂t + Ĉwt+1. (15)

where Â = TAT−1 and Ĉ = TC. By the same logic, the shocks are sit = d̂>i x̂t with

d̂>i = d>i T
−1.

We can transform the rest of the model the same way. Consider the representative agent

model described in Section 3.1. For any choice of state x̂t, we can estimate the associated
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parameter vectors for the observables. The short rate is then related to the state by it =

r + â>x̂t with â> = a>T−1. Similarly, inflation is related by πt = b̂>x̂t with b̂> = b>T−1.

The Taylor rule then implies

â> = τ b̂> + d̂>2 ,

the analog of equation (12) for the transformed state.

Consider the problem of identifying τ when we observe the transformed state x̂t but not

the original state xt or the transforming matrix T . The identification problem is the same

as before: we need one restriction on d̂2 to identify the single Taylor rule parameter τ . The

only question is whether the restrictions we place on d2 are intelligible when we translate

them to d̂2. Consider a general linear restriction d>2 e = 0, where at least one element of e is

non-zero. This restriction can be expressed d̂>2 Te = 0, so the restricting vector is ê = Te.

But if we don’t know T , can we deduce ê?

There are at least two cases where the restrictions translate naturally to the transformed

state. These cases have nearly opposite economic interpretations, so they offer a range of

choices that can lead to identification.

In the first case, suppose the Taylor rule shock is uncorrelated with the other shock. Such

“orthogonality conditions” are standard in the New Keynesian literature, where most shocks

are independent of the others. We saw an example in Section 3.3. In terms of the original

state xt, the restriction takes the form d>2 Vxd1 = 0. In terms of the transformed state x̂t,

we have

d̂>2 E(x̂x̂>)d̂1 = (d>2 T
−1)(TVxT

>)(d>1 T
−1)> = d>2 Vxd1.

It’s clear that this restriction is invariant to linear transformations of the state. We show

how this might work in practice in Appendix B.

In the second case, optimal monetary policy dictates a connection between shocks s1t and

s2t. See, for example, Gali (2008) and Woodford (2003). When a monetary authority

minimizes an objective function, all variables of interest are affected by by s1t. As a result,

an optimal policy rule will make s2t proportional to s1t. If we express this by s2t = ks1t

for some constant k, it implies the restriction d>2 − kd>1 = 0 in terms of the original state

variable xt. In terms of the transformed state x̂t, the restriction is

d̂>2 − kd̂>1 = d>2 T
−1 − kd>1 T−1 = (d>2 − kd>1 )T−1 = 0,

14



which is independent of the transformation T .

These restrictions apply to a given transformed state x̂t. One way to determine x̂t is to

choose a set of observable variables of the same dimension. We give some examples in

Appendix B. Another is to select a specific transformation. This typically involves restric-

tions on both C and A. For the former, a common example is T = C−1, which gives each

state equation an independent innovation with unit variance. For the latter, the typical

approach is to consider rotations: transformation by orthogonal matrices. Rotations that

deliver lower-triangular Â are a common choice, but not a necessary one. Variants of this

approach are used in dynamic factor models (Bai and Wang, 2012, and Bernanke, Boivin,

and Eliasz, 2005), exponential-affine term structure models (Joslin, Singleton, and Zhu,

2011), and structural vector autoregressions (Leeper, Sims, and Zha, 1996, and Watson,

1994).

5.2 Noisy observation of the state

In other cases we may observe the state with noise, even after appropriate transformation.

One example is a state with dimension n > 2 with observations of only the two variables

it and πt. Another is a larger collection of observables in which each variable is measured

with error.

The Kalman filter deals with precisely this problem. Here we have three sets of variables.

The state xt follows the usual linear law of motion (3). Endogenous variables zt are related

to the state by zt = Bxt, where each row of B represents one of the model’s endogenous

variables. In our examples, zt includes the one-period interest rate it, the inflation rate πt,

and so on. Finally, we have a set of variables yt that we observe, which can include some

or all of zt.

A state-space model adds a measurement equation for the observables to the law of motion

for the state:

yt = Gxt +Hvt. (16)

We posit measurement errors vt ∼ NID(0, I) that are independent of wt, but could easily

incorporate arbitrary correlation between them. The observables are likely to include at

least some of the endogenous variables, including those mentioned above, and possibly some

of the state variables, too. In modern “data-rich” applications, the dimension of yt is large

relative to that of xt, but the filter works even in the opposite situation.
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Our question becomes how well observations of yt substitute for observations of the state

xt. The question is a classical one and has a standard answer based on the Kalman filter:

use yt to estimate the state xt and proceed as before using the estimate in place of the state.

The Kalman filter is widely used in macroeconomics, so our treatment will be brief. Some

of the essentials are given in Appendix C.

Two conditions guarantee that the state is, for our purposes, observed. First, we need the

law of motion (3) to generate a state of dimension n, not a lower dimensional subspace.

It’s sufficient to assume that C has rank n, but when (3) is in companion form that’s not

realistic. In formal terms, we need (A,C) to be controllable, so that we can attain any xt

in Rn with some realization of disturbances wt. If that’s not the case, we should reduce the

dimension of our problem. Second, and more critically, we need (A,G) to be observable;

for the matrix

O =


G
GA

...
GAn−1


to have rank n. Roughly speaking: the state xt must generate enough variation in the

observed variables yt that we can (approximately) reverse engineer the state. With these

two conditions, we can estimate the state from observations of the infinite history yt =

(yt, yt−1, . . .).

The state typically isn’t recovered exactly, but the Kalman filter generates recursive esti-

mates from the history of observables, which we might represent by

xt|t = E
(
xt|yt

)
.

The state itself therefore includes an error: xt = xt|t + εt with the error εt orthogonal to

the history yt.

Now think about how we use the state: we need it to estimate the coefficient vectors tying

endogenous variables to the state. Consider a specific endogenous variable zit connected to

the state by zit = b>xt, where b> is the ith row of B. The inflation rate is a good example.

Then

zit = b>xt = b>xt|t + b>εt.

If zit is one of the observables, then the last term is noise, orthogonal to the history yt

and therefore to xt|t. We can estimate b by projecting zit on xt|t. By doing this for each

observable variable, we can estimate coefficient vectors as before using xt|t in place of xt.
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5.3 Discussion

The challenges of observing the state raise a number of questions. One is how to observe the

state in practice. In some cases, we may find that the state is spanned by some collection

of observables. We think financial variables and forecasts are likely to be helpful here.

Models that have an exponential-affine structure, including all of the models in this paper,

have a structure that makes forward rates natural state variables. If qht is the price at date

t if a claim to one dollar at t+ h, then continuously-compounded forward rates are defined

by fht = log(qht /q
h+1
t ). The short rate is it = f0t . In all of our models, the short rate takes

the form (ignoring the intercept) it = a>xt and forward rates are fht = a>Ahxt. The vector

ft of the first h forward rates has the form

ft =


f0t
f1t
...

fh−1t

 =


a>

a>A
...

a>Ah−1

xt = Uxt.

You may notice a resemblance to the observability condition here, in this case the observ-

ability of (A, a>). If the dimension of the state and the number of forward rates are the

same, and U is invertible, we find xt by inverting the mapping from states to forward rates:

xt = U−1ft. If not, we can use them as inputs to the Kalman filter. Yields, defined by

iht = h−1
∑h

j=1 f
j−1
t , are linear functions of forward rates, so they can be used the same

way.

Forecasts have a similar mathematical structure. Even noisy measurements of conditional

expectations can be helpful. Consider the forecast of variable zit h periods ahead. If

zit = b>xt for some coefficient vector b, then a forecast might be expressed

Ftzi,t+h = Etzi,t+h + ut,t+h = b>Ahxt+h + ut,t+h,

with some distribution of noise ut,t+h. Surveys provide forecasts for a range of h’s, each of

which can be a useful input into a Kalman filter estimate of the state. Chernov and Mueller

(2012), Chun (2011), and Kim and Orphanides (2012) are examples that use survey forecasts

in state-space frameworks.

Another question is whether we can proceed if the observability condition fails, leaving

us with hidden states. In some cases, it may be possible to proceed with the observable

subspace of the state. Suppose, for example, that xt|t has dimension k < n. We can still
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project endogenous variables on this estimate of the state and use these projections to

estimate the Taylor rule. We simply need restrictions on the projection of the Taylor rule

shock onto this subspace. The number of restrictions needed for identification does not

change: one in the examples of Section 3, two in the example of Section 4.

6 Conclusion

Identification is always an issue in applied economic work, perhaps nowhere more so than

in the study of monetary policy. That’s still true. We have shown, however, that (i) the

problem of identifying the systematic component of monetary policy (the Taylor rule pa-

rameters) in macro-finance models stems from our inability to observe the nonsystematic

component (the shock to the rule) and (ii) the solution is to impose restrictions on the

shock. We are left where we often are in matters of identification: trying to decide which

restrictions are plausible, and which are not.
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A Solution of rational expectations models

Consider the class of forward-looking linear rational expectations models,

zt = ΛEtzt+1 +Dxt

xt+1 = Axt + Cwt+1.

Here xt is the state, Λ is stable (eigenvalues less than one in absolute value), A is also stable,
and wt ∼ NID(0, I). The goal is to solve the model and link zt to the state xt.

One-dimensional case. If zt is a scalar and the shock is st = d>xt, we have

zt = λEtzt+1 + d>xt. (17)

Substituting repeatedly gives us

zt =

∞∑
j=0

λjd>Etxt+j = d>
∞∑
j=0

λjAjxt = d>(I − λA)−1xt.

The last step follows from the matrix geometric series if A is stable and |λ| < 1. Under
these conditions, this is the unique stationary solution.

The same solution follows from the method of undetermined coefficients, but the rationale
for stability is less clear. We guess zt = b>xt for some vector b. Then the difference equation
tells us

b>xt = b>λAxt + d>xt.

Collecting terms in xt gives us b> = d>(I − λA)−1.

This model is close enough to the examples of Sections 2 and 3 that we can illustrate their
identification issues in a more abstract setting. Suppose we observe the state xt and the
endogenous variable zt, but not the shock st. Then we can estimate A and b. Equation (17)
then gives us

b> = λb>A+ d>.

If x has dimension n, we have n equations in the n + 1 unknowns (λ, d); we need one
restriction on d to identify the parameter λ.

Multi-dimensional case. If zt is a vector, as in Section 4, we have

zt = ΛEtzt+1 +D>xt.

Repeated substitution gives us

zt =
∞∑
j=0

ΛjDAjxt.
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That gives us the solution zt = Bxt where

B = D + ΛBA =
∞∑
j=0

ΛjDAj .

The solution is

vec(B) = (I −A> ⊗ Λ)−1vec(D).

See, for example, Anderson, Hansen, McGrattan, and Sargent (1996, Section 6) or Klein
(2000, Appendix B). The same sources also explain how to solve rational expectations
models with endogenous state variables.

B Numerical examples

We illustrate some of the issues raised in the paper with numerical examples of the model
in Section 3.1: a representative agent with power utility and given consumption growth.
We show how identification works when we observe the state and when we observe only a
linear transformation of the state. In each case we use an orthogonality restriction on the
shock to the Taylor rule.

We give the model a two-dimensional state and and choose parameter values τ = 1.5, α = 5,
and

A =

[
0 1

−0.05 0.9

]
, C =

[
0.0078 0
−0.0004 0.0003

]
.

The consumption growth shock is governed by d>1 = (1, 0). The monetary policy shock is
d>2 = (δ, 1), with δ chosen to make s2 uncorrelated with s1. These inputs imply

Vx =

[
0.6432 −0.0069
−0.0069 0.0258

]
· 10−4,

so d>2 Vxd1 = 0 implies δ = 0.0108.

These are the inputs, the source of data that we can use to estimate the Taylor rule. The
question is whether we can do that under different assumptions about observability of the
state.

State observed. Suppose, first, that we observe the state xt. Then we can use observations
of the interest rate it and inflation rate πt to recover the coefficient vectors

a =

[
−0.3152
10.4566

]
, b =

[
−0.2174

6.3044

]
.
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Similarly, observations of consumption growth allow us to recover d1. We do not observe
the Taylor rule shock s2t, so its coefficient vector d2 remains unknown. A least squares
estimate of the Taylor rule here gives us τ = 1.6510 which, of course, isn’t the value that
generates the data.

Identification requires a restriction on d2. We know d2 satisfies the orthogonality condition
d>2 e = 0 with e = Vxd1. With our numbers, e> = (0.6364,−0.0069)·10−4. We post-multiply
(12) by e to get a>e = τb>e. This implies τ = 1.5, the value we started with. We can now
recover d2 from the same equation: d>2 = a> − τb> = (0.0108, 1.0000).

This is simply the procedure we outlined in Section 3.1, but it gives us a concrete basis of
comparison for situations in which we don’t directly observe the state.

State observed indirectly. Now suppose we don’t observe the state, but we observe enough
variables to deduce a linear transformation of the state. We consider two examples.

In our first example, we observe the interest rate and inflation rate and use them as our
transformed state: x̂t = (it, πt)

>. Then x̂t = Txt with

T =

[
a>

b>

]
.

This has something of the flavor of a structural vector autoregression, albeit a simple one.
The law of motion for the transformed state is equation (15) with

Â =

[
−4.6170 9.1006
−2.8044 5.5170

]
,

which is easily estimated.

Now consider identification. If we regress it, πt, and log consumption growth on x̂t, we get
the coefficient vectors

â =

[
1
0

]
, b̂ =

[
0
1

]
, d̂1 =

[
22.07
−36.60

]
.

From observations of x̂t, we can estimate its covariance matrix

Vx̂ =

[
0.2932 0.1775
0.1775 0.1075

]
· 10−3.

Finally, the orthogonality condition in these coordinates is d̂>2 ê = 0 with ê = Vx̂d̂1. With our
numbers, we have ê> = (−0.2718,−0.1812) · 10−4. As before, we apply the orthogonality
condition to equation (12), which gives us τ = â>ê/b̂>ê = 1.5, the number we started
with. It is clear from this that we are still able to recover the Taylor rule from this linear
transformation of the state.
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In our second example, we use the first two forward rates as the state: x̂t = (f0t = it, f
1
t )>.

As we saw in Section 5.3, forward rates are connected to the original state xt by x̂t = Txt,
where

T =

[
a>

a>A

]
.

The same series of calculations gives us τ .

C Elements of Kalman filtering

We outline some of the essential elements of Kalman filtering. Hansen and Sargent (2013)
is a standard reference for economists. Anderson and Moore (1979) and Boyd (2009) are
good technical references.

The starting point is the state-space system

xt+1 = Axt + Cwt+1

yt = Gxt +Hvt.

Here {wt} and {vt} are vectors of independent standard normals — independent element
by element, with each other, and across time. We refer to xt as the state and yt as the
measurement. The state has dimension n, the measurement dimension p. In the technical
literature, it’s common to use wt in place of wt+1 in the first equation, but since neither
xt+1 nor wt+1 is ever observed, it’s a convention without content.

Controllability and observability. We say (A,C) is controllable if

C =
[
C AC · · · An−1C

]
has rank n. The word controllable is misleading in this context; the idea is simply that wt

generates variation across all n dimensions of xt. We say (A,G) is observable if

O =


G
GA

...
GAn−1


has rank n. The issue is similar to the previous one. The idea is that the condition
guarantees us that observing the history of yt is enough to come up with a full-rank estimate
of xt.

Controllability example. Here’s one with xt of dimension two and wt of dimension one that
fails:

A =

[
a11 a12
0 a22

]
, C =

[
c1
0

]
⇒ C =

[
c1 a11c1
0 0

]
,
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which has rank 1 < n = 2. Here the innovation wt never generates variation in x2t, so we
don’t span the whole two-dimensional state. However, if a21 is nonzero we get controllability,
because wt affects x2t with a one-period lag through its impact on x1t. A similar example
is an AR(2) in companion form.

Observability example. The logic is similar. Suppose xt is n-dimensional and the nth
column of G consists of zeros. There’s no direct impact of the nth state variable on the
observations yt. In the bond-pricing literature, this might be a case in which one of the state
variables doesn’t appear in bond yields of any maturity. Nevertheless, the nth state variable
might be (indirectly) observable if it feeds into other state variables: if ajn is nonzero for
some j 6= n. Here’s an example similar to our previous one:

A =

[
a11 a12
0 a22

]
, G =

[
g1 0

]
⇒ O =

[
g1 0

a11g1 a12g1

]
,

which has rank two. Since a12 = 0, the condition fails.

D Stochastic volatility

We consider a representative agent model with stochastic volatility: the conditional variance
is itself a stochastic process.

The model is similar to the one in Section 3.1, with these changes. The law of motion for
xt is now

xt+1 = Axt + Ctwt+1,

where

Ct = C
√
St, Siit = αi + βivt, Sijt = 0,

vt = (1− ν)v + νvt−1 + σv
√
vt−1ε

v
t , σ2v/2 < (1− ν)v

The state now includes xt and vt. Shocks are sit = d>i xt + divvt.

We solve by guess and verify. If we guess πt = b>xt + bvvt, the pricing relation gives us

it = ρ+ αg − a>CtC
>
t a/2 + a>xt + ν(bv + αd1v)vt + (bv + αd1v)2vt/2,

where a is the same as before. The interest rate is therefore it = a>xt + avvt, with av =
(bv + αd1v)2/2. Equating it to the Taylor rule implies

a> = τb> + d>2

av = −a>CBC>a/2 + ν(bv + αd1v) + (bv + αd1v)2/2 = τbv + d2v,

where B is a diagonal matrix with elements βi.

With respect to identification this has the same structure as the constant volatility version.
What’s new is the presence of volatility as a state variable. If we think monetary policy does
not respond to volatility, then we can use the restriction d2v = 0 to achieve identification.
Normandin and Phaneuf (2004) do something similar.
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