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Abstract

Traditional event models underlying naive Bayes classifiers assume probability
distributions that are not appropriate for binary data generated by human be-
haviour. In this work, we develop a new event model, based on a somewhat
forgotten distribution created by Kenneth Ted Wallenius in 1963. We show that
it achieves superior performance using less data on a collection of Facebook
datasets, where the task is to predict personality traits, based on likes.

1 Description of the data/context

MAny data-analysis settings involve interactions of many entities of one kind with many entities
of another. Often we find that there are resource constraints on the nature of these interactions.

For instance, consider a dataset containing ingredient shopping lists of restaurants. Although there
is a huge variety of ingredients, any one restaurant will only order so many of them (i.e. there are
only so many distinct types of dishes a chef will make). The end result of such interactions are
very high-dimensional datasets (in terms of variables), with relatively scarce information on any one
data point (instance). Factoring in external properties such as seasonal and geological availability of
certain ingredients, correlations between ingredients, cost, etc. results in datasets that are impossible
to model perfectly. The usual approach is to simply ignore these difficulties and do a best-effort
heuristic approach in which you try to model the data using faulty (or naive) assumptions. One
well-known example are naive Bayes models, which have been shown to work extremely well in
many settings despite their obvious defects. We would like to argue that in some cases (namely the
one described before), it might be worth to account for (at least some) of the characteristics of the
data. The main motivating example for the development of the work described in this manuscript
are datasets that are a direct result from human behaviour.

As humans, we are faced with choices every day throughout the course of our lives. At the same
time, we are often limited in the number of choices that we can actually make due to our bounded
“behavioural capital”, resulting from constraints like time, resources, etc. [10]. It is therefore not
inconceivable to think that the select decisions we make, follow certain personal maxims which
reason prescribes to us [12]. In a similar vein, Bourdieux argued in “La Distinction” [1] that we
define ourselves through the choices that we make and as such they serve as a mirror for our own
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predilections 1. In many applications, one is interested in predicting properties over humans based
on such predilections (recent examples include fraud detection [14], churn prediction [17] and direct
marketing [15]).

To date it is still impossible to directly measure the intrinsic drivers behind these choices due to the
intangibility of the human mind. Fortunately, recent socio-technological evolutions have allowed us
to measure (and thus to study) the choices people make at a never before seen scale. As such it has
now become possible to study how we distinguish ourselves through these various decisions.

In our set-up, we are concerned with subjects of two particular groups (hereafter called classes; e.g.,
smokers vs. non-smokers). Each of the subjects is allowed to make various choices, one by one,
based on her intrinsic drivers. A subject can choose an option only once and is limited in the number
of choices she can make. Can we then, given a history of such choices, predict what class a subject
belongs to? The hypothesis is that due to the within-class similarity in intrinsic drivers, we could
indeed correlate behaviour to particular groups.

2 Existing literature

2.1 Mathematical formulation of the problem

In our two-class set-up, we model the choices of an individual i as a vector xi. Each of its entries xi,j
is Boolean valued and represents whether the user has chosen an item j or not. The full dataset then
consists of set of labelled examples D = {xi, yi}ni=1, where the label yi represents the class of
the individual (either 0 or 1). The question is then whether we can predict the class labels for not
previously seen individuals.

2.2 Multinomial Naive Bayes

The main idea behind the multinomial event model is that each input sample is a result from a series
of independent trials from a bag of features (items). For each item j, present in an input vector
xi, an independent trial is undertaken from an underlying multinomial distribution (for a total of
|x| trials), each time picking one feature from all possible features (X1 . . . Xm) with replacement.
The probability of one such trial (picking a feature Xj from all possible features) is written as
P (Xj = x|C = c) and is independent of j, i.e., P (Xj1 = x|C = c) = P (Xj2 = x|C = c). The
aggregated probability of seeing the input vector given that it belongs to a certain class can then be
modelled as a multinomial:

P (xi|C = c) = P (|xi|) · |xi|! ·
m∏
j=1

P (Xj = xi,j |C = c)xi,j

xi,j !
(1)

The parameters for this model are the probabilities for each feature. Assuming a Laplacian prior on
the parameters θ, we become the Bayes-optimal (maximal likelihood) estimates of the parameters
for the formulation in Eq. 1 [16]:

θ̂Xj=xj |C=c = P (Xj = xj |C = c; θ̂c)

=
1 +

∑n
i=1 xi,jP (C = c|xi)

m+
∑m
j=1

∑n
i=1 xi,jP (C = c|xi)

In the case of binary data this becomes:

θ̂Xj=xj |C=c =
1 + |Xj = 1 ∧ C = c|

m+
∑m
k=1 |Xk = 1 ∧ C = c|

(2)

One of the main advantages of this formulation is that it only requires two passes over the active
elements for all of the parameters to be estimated. Unfortunately, multinomial naive Bayes is not
well aligned with our problem setting though. The cause of this is two-fold a) it was originally

1We must caution that Bourdieux limited himself to social class. We argue that, just like Hesse’s Steppen-
wolf [9], it could very well be that there are many latent dimensions that define the choices we make and thus
our character as a whole.
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designed to work with frequency information (as opposed to binary information) and b) it does not
take into account the influence of previous choices. As we will see in Section 3.3, this can result
in heavily skewed posterior probability estimates. Previous research has shown that it is possible to
incorporate additional dependencies, but the price of such bona-fide probability distributions is an
exponential increase in time as the number of dependencies grows [7, 6].

2.3 Multi-Variate Bernouilli Naive Bayes

The multi-variate Bernoulli event model for naive Bayes assumes that the data ought to be generated
according to a Bernoulli process. The resulting class conditional probability then becomes

P (xi|C = c) =

m∏
j=1

(θj)
xi,j (1− θj)(1−xi,j) (3a)

Where θj is class conditional probability of feature j appearing in xi,j . Optimizing the log likeli-
hood, equating to zero and taking a Laplacian prior, yields the following parameter estimates for
binary data [10]:

θ̂Xj=1|C=c = P (Xj = xj |C = c; θ̂c)

=
1 + |Xj = 1 ∧ C = c|

2 + |C = c|
Just like the multinomial event model, the multi-variate event model is very fast to compute, but
does not take into account influence of context or correlations of the choices by design. Each choice
is treated as a coin-flip with a fixed probability, estimated on the training data. As we will see
in Section 3.3, this results in even more skewed posterior probabilities than the multinomial event
model for human behavioural datasets.

3 Wallenius Naive Bayes

In this section we will first describe the general intuition behind the Wallenius distribution which lies
at the core of our event model, followed by some refinements, technical remarks and a comparison
to the previously mentioned event models.

3.1 A tale of fish

Imagine fishing for a meal from a pond of fish with m types of fish. There are mj fish of type j for a
total ofN =

∑m
j=1mj fish. We are fishing for a meal of exactly n fish, one by one. It turns out, that

some fish are slower swimmers than others and are thus easier to catch. We will encode this as the
easiness wj for a type of fish j. The chances of a fish being caught are proportional to its easiness
wj and inversely proportional to the total easiness of the pond we are fishing at. Moreover, we are
particularly hungry and eat the fish immediately after catching them. As such, once they are caught,
their destiny is sealed and they are forever removed from the pond.

The probability of your particular meal x of the day with xj fish of type j can be represented by a
multi-variate Wallenius’ non-central hypergeometric distribution with parameters: meal x, quantity
of fish m and easiness of fish w. But let us first take look at a toy example to capture the intuition
behind the distribution (Figure 1).

Consider catching fish {A,B,C,D} from a pond with one of each type of fish. For this example we
will assume some fish are slower than others; more precisely: wA = 4, wB = 3, wC = 2, wD = 1.
One particular three course meal order (C after B after A) admits to a probability of:

P (A→ B → C) = P (A) · P (B|A) · P (C|B,A) (4)

=
4

10
· 3

6
· 2

3

Let us assume that we do not actually observe the order, but just the fish that had been caught.
In order to calculate the probability of such an observation, we would then need to add up the
probabilities of all the possible course orderings. We can represent the set of all possible course
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D
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Figure 1: Jack is in the process of catching his meal of the day consisting of exactly three fish. The
pond contains four fish with different catch probabilities, what is the probability of Jack catching
combination {A,B,C}?

orderings by the permutation set σ(x). Each x′ ∈ σ(x) is one such possible ordered sequence of
pickings (e.g., A→ B → C or B → A→ C):

x′ ∼ xi1 → xi2 → . . .→ xi|x|

∼ x′1 → x′2 → . . .→ x′|x|

Note that in this notation, x simply represents a sequence of events as opposed to the previously
given vectorized binary format). Normalizing over the total number of possible permutations in the
population then reveals the total probability of having caught this particular set of fish:

P (x) = P ({A,B,C})

=
1

Z
(P (A→ B → C) + P (A→ C → B) + P (B → A→ C)+

P (B → C → A) + P (C → A→ B) + P (C → B → A))

=
1

Z

∑
x′∈σ(x)

P (x′) (5)

Generalizing, we get that:

P (x,w) =
1

Z

∑
x′∈σ(x)

|x|∏
j=1

P (x′j |x′1 . . . x′j−1) (6)

=
1

Z

∑
x′∈σ(x)

|x|∏
j=1

wij∑
k≥j wik

(7)

=
1

Z

∑
x′∈σ(x)

|x|∏
j=1

wj∑m
k=1 wk −

∑
k<j wk

(8)

Z =

(
m

|x|

)
In Eq. 6, we combine two elements from before: a) a multiplication over all elements in a sequence
of draws to get the probability of that particular sequence (Eq.4) and b) a sum over all possible
sequence permutations σ(x) (Eq. 5). The normalizing constant Z is equal to the total number of
possibilities in which one could have drawn a meal of size |x| from a pool containing m fish 2. In
Eq. 7 we then write the fractions explicitly by dividing the weight wij of fish x′j being caught at time

2Note that this particular normalizer assumes that all meals are of the same size, we can account for different
assumptions by including appropriate normalizers.
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j by the weights of the fish that are still left in the pool at that time in the sequence (i.e., any fish that
we did not encounter yet and thus for which the index k ≥ j. This is then expanded to arrive at the
final formulation in Eq. 8.

This form is directly applicable, but the computations can take a long time. Using an efficient depth-
first tree method with memory still requires about O(|x|!) time, because we need to compute each
of the permutations individually.

3.2 Wallenius’ non-central Hypergeometric

3.2.1 General form

A more elegant solution was found by Wallenius in 1963 (and later generalized by Chesson in
1976 [2]) by looking at the problem as a Markov process and computing the stable points using
backward Kolmogorov equations. This leads to the Wallenius distribution with probability mass
function:

wall(x,m,w) = Λ(x,m) I(x,m,w)

Λ(x,m) =

m∏
j=1

(
mj

xj

)

I(x,m,w) =

∫ 1

0

m∏
j=1

(
1− t

wj
s

)xj

dt

s =

m∑
i=1

wj

Like before, m is a vector representation of the initial number of fish in the lake, and w of the
weights of each of the fish. Here, we reintroduced the binary vector notation for x, which is a vector
of length c, containing a one (xj = 1) if a fish of type j was caught and a zero (xj = 0) if it
survived. This expansion does not consider ordering information; this is one of its main strengths
since it avoids the explicit summation over all of the permutations.

3.2.2 Binary form

Derivation Computing this integral is still quite hard and we would do well to simplify it as much
as possible. In the case of binary variables (∀j : xj ∈ {0, 1}), we can rewrite the Wallenius
distribution as:

wall(x,m,w) = Λ(x,w) I(x,m,w)

Λ(x,m) = 1

I(x,m,w) =

∫ 1

0

∏
j|xj=1

(
1− t

wj
s

)
dt

s =

m∑
j=1

wj(mj − xj)

=
∑
j|xj=0

wj

The fractional exponent in the simplified form makes the integral very difficult to compute effi-
ciently using typical numerical integration methods. Fortunately, we can transform the integrand to
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a polynomial using the following variable substitution:
t = us

dt = s · us−1 du

wall(x,m,w) =

∫ 1

0

∏
j|xj=1

(
1− t

wj
s

)
dt

=

∫ 1

0

∏
j|xj=1

(
1− (us)

wj
s

)
· s · us−1 du

= s ·
∫ 1

0

us−1 ·
∏

j|xj=1

(1− uwj ) du (9)

Note that since u = s
√
t, the limits do not change. This accounts for all non-degenerate cases.

The degenerate case of s = 0 (capture all fish) should of course return 1. Similar to other event
models, there is a degeneration of the accuracy when features are unobserved since if wj = 0 for
any j|xj = 1, this will cause wall(x,m,w) = 0, which is not the desired behaviour. We can
remedy this by adding a count to the weight vectors (i.e., each fish starts out with weight one). This
corresponds to the prior belief that every feature is proportionally probable to its weight and results
in a smoothing of the probabilities.

Since all wj are integers and s− 1 is an integer, this is indeed a valid polynomial of order:

order =
∑
j|xj=1

wj + (s− 1)

As a last simplification, we remark that the order of this polynomial can further be reduced by
dividing the weights by their greatest common denominator.

Numerical evaluation A polynomial of integer degree order can be computed exactly by the
Gauss-Legendre polynomial quadrature method in (order−1)/2 steps, which in our case becomes:

steps =
1

2

m∑
j=1

wj − 1

A approximate measure is given in [11], which states that for an integrand which has 2n = order
continuous derivatives, the error can be bounded by:

erorr ≤ (b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
I(2n)(ξ), a < ξ < b.

with I the integrand from before. In the end, this polynomial is still not trivial to calculate because
of the huge possible order. It should be noted that other ways of calculating exist, but we will not
further elaborate on them since this is out of the scope for of this manuscript (and a comprehensive
overview is given in [8]). In our experiments we could deal with up to 1,000 prediction using 10,000
features in a reasonable amount of time on a low-end laptop.

3.2.3 Making predictions

As explained in the previous section, the final form given in Eq. 9 can be computed relatively easily.
To actually predict class membership, one would have to calculate the class conditional probabilities
for each class separately and compare them, resulting in a score that ranks input samples according
to likelihood of class membership (revealed by applying the Bayes rule):

P (C = Ci|x) =
P (C = Ci) · P (x|C = Ci)

P (x)

∝ P (C = Ci) · P (x|C = Ci) (10)

Score(x) =
P (C = C0|x)− P (C = C1|x)

P (C = C0|x) + P (C = C1|x)

∝ P (C = C0) · P (x|C = C0)− P (C = C1) · P (x|C = C1)

P (C = C0) · P (x|C = C0) + P (C = C1) · P (x|C = C1)
(11)
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Here, we made the common assumption that each input sample is as likely as any other (revealing
the likelihood in Eq. 10). The MLE for the prior class probability P (C = Ci) can be calculated by
looking at the fraction of samples belonging to classCi in the total training set. The class conditional
probabilities P (x|C = Ci) can be calculated using wall(x,m,wi), where wi is a weight vector
for class i. These are estimated from the training set and require a linear pass through the active
elements of the data. Making predictions requires two full computations of the Wallenius class-
condition probability estimate (one for each class).

3.3 Comparison with other event models

We mentioned before that using the multinomial event model or the multi-variate Bernouilli event
model can result into heavily skewed posterior probabilities. In this section we design an educational
example to show where both of these might fail to yield well-calibrated probabilities.

Let us consider a scenario in which we try to predict gender based on movie-viewing history in a
movie theatre where they only screen three movies: a blockbuster (M1) and two niche movies (M2

and M3). We are given the movie viewing history for 100 male and 100 female visitors (as shown
in Table 1).

Meet Sophie. Sophie has already seen the blockbuster (M1) and is now faced with the choice
between the predominantly male movie (M2) and the mixed-gender movie (M3), and thus decides
to see M3. Can we predict Sophie’s gender given this choice?

Bernouilli’s answer The conditional probability of Sophie seeing any of the movies is indepen-
dent of her previous choices and comes down to a coin flip for each of the choices:

P (M1,M3|M) =
90

100
· 10

100
·
(

1− 10

100

)
= 8.10%

P (M1,M3|F ) =
90

100
· 10

100
·
(

1− 1

100

)
= 8.91%

Due to the independence assumption, both genders are almost equally likely.

Multinomial answer The conditional probability of the events is independent of the context, but
the probabilities should be normalized on a per class count:

P (M1,M3|M) =
90

110
· 10

110
= 7.44%

P (M1,M3|F ) =
90

101
· 10

101
= 8.82%

The multinomial takes into account the fact that, faced with the choice between all three movies,
a female would likely choose M3 over M2, but only in a very subtle way because the multinomial
assumes that Sophie is given the choice of seeing all three of the movies every time. While this is
true, the reality is that on average, the likelihood of Sophie repeatedly choosingM1 is very low. This
bias is reflected in the relatively marginal increase in probability for an otherwise very telling event.

Wallenius’ answer Based on the sequence of events, the probabilities must be adapted to the
context of each choice. We do not know the exact sequence, but we can average over all possible
sequences:

P (M1,M3|M) =

(
3

2

)−1
·
(

90

110
· 10

110− 90
+

10

110
· 90

110− 10

)
= 16.36%

P (M1,M3|F ) =

(
3

2

)−1
·
(

90

101
· 10

101− 90
+

10

101
· 90

101− 10

)
= 30.27%

Although there is still some bias due to the fact that we do not know the true sequence order, the
answer is given with more certainty in this case (and this would be reflected in Eq. 11).
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Movie 1 Movie 2 Movie 3

F 90 1 10
M 90 10 10

Table 1: Artificial dataset of movie-watching behaviour of 100 male (M) and 100 female (F) sub-
jects.

Dataset n d order Predicted variable

[3] Facebook Satisfaction 6,658 142,108 ≥ 1,437,932 satisfaction with life
[13] Facebook IQ 6,377 134,420 ≥ 919,684 subject has high IQ
[13] Facebook Gay 1,781 35,503 ≥ 232,130 exclusive same-sex interest

for men
[4] Facebook Smoking 3,746 95,186 ≥ 821,457 daily smoking behaviour
[4] Facebook Alcohol 3,720 95,173 ≥ 816,909 daily alcohol drinking
[4] Facebook Drugs 2,735 91,378 ≥ 609,070 daily drug using

Table 2: Overview of real life behavioural datasets.

4 Empirical evaluation

The example discussed in the previous section was constructed artificially and it stands to reason
that real life datasets might behave differently. In this section, we compare the performance of all of
the previously mentioned methods, based on human behavioural datasets.

4.1 Behavioural datasets

In order to test the method, we analysed the performance of Wallenius naive Bayes over real life
datasets from Facebook (shown in Table 2) [13]. For each of these datasets, we have an input set
of ’likes’. Within Facebook, a user can indicate whether or not she likes an item, we then use these
likes as the input matrix to predict different personality traits. To assess the robustness and quality
of prediction, we incrementally increase the number of features (likeable items) of the dataset. The
predictive power is evaluated in terms of Area Under the ROC-curve [5] which, similar to the Gini
coefficient, is an indicator for how well we rank randomly chosen samples form the dataset.

The resulting learning curves (Figure 2) show superior performance of Wallenius naive Bayes over
five out of six datasets. To ensure the robustness of the results, each point in the curve is the result of
a ten-fold randomized cross-testing procedure on hold-out test sets. Due to the previously mentioned
computational complexity of Wallenius naive Bayes we were not able to run it on the full datasets
yet (this is part of future research). Note however that Wallenius naive Bayes is sometimes able
to outperform other event models when trained on the full dataset, even with limited information
available.

The delta-plots (Figure 3) show the gap between Wallenius and the multi-variate and Bernouilli event
model respectively. The plots show that further improvements are expected in most cases by further
increasing the number of features, but most of the gain is attained in the initial data. Afterwards, the
returns from using one model over teh other diminish due to the slowly decaying improvement rate.

4.2 Non-behavioural datasets

Given the promising results from the previous section, we also studied how Wallenius naive Bayes
responds to non-behavioural datasets. It is well established that multinomial methods work very
well for text-mining datasets and they clearly do not follow the premises of our event model (since
Wallenius assumes that a document may only contain a term once). As such we included a subset of
the famous RCV-1 dataset (called Dexter), where the predicted variable is whether the text is related
to corporate acquisition or not. For the sake of completeness, we include both a binary version of
the dataset, as well as one containing the actual term-frequencies.
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Figure 2: Experimental results for MV Bernoulli, the multinomial and the Wallenius event models
for increasing number of features. Wallenius almost always performs Pareto-superior with respect
to the other methods in terms of AUC. Also shown (under the title between brackets) are the AUC
values using the full dataset for MV Bernouilli and Multinomial and the maximal AUC value of
Wallenius in the learning curve.
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Figure 3: Delta-plot of the divergence between Wallenius and the multi-variate and Bernouilli event
model respectively. The plots show that further improvements are expected in most cases by further
increasing the number of features, although these do suffer from diminishing returns due to the
slowly decaying improvement rate.
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As can be seen in Figure 4, the Wallenius naive Bayes methods is quickly overtaken by both the
binary and the regular multinomial naive Bayes. Interestingly, Wallenius naive Bayes does converge
to its final performance with inclusion of a very limited number of features in a similar way as with
the behavioural datasets.
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Figure 4: Comparison of multinomial naive Bayes and Wallenius naive Bayes for a text corpus
prediction task. The multinomial event model clearly fares better in this case.

5 Conclusion

We developed a new variant of naive Bayes, based on the Wallenius distribution and have shown that
it achieves better results with less data when working with human behavioural data. We emphasise
the domain-specific scope of our results, as shown by the text-mining example in the experimental
section. Indeed, for other domains, alternative event models might certainly still be a better choice.
The work presented in this manuscript does show potential for the development of new event models
to fit different scenarios (as opposed to blindly applying a traditional event model), one example
being Fishers’ non-central hypergeometrical distribution in non-competitive contexts. We hope that
by showing the advantages of context-specific modelling, we can encourage other researchers to
look into novel event models for different domains.

Given the promising results of Wallenius naive Bayes, we believe further research as to speeding
up Wallenius naive Bayes might be worthwhile. Additionally, a natural extension of the currently
presented model is to include a length prior to the distribution as well.
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[10] E. Junqué de Fortuny, D. Martens, and F. Provost. Predictive Modeling with Big Data: Is

Bigger Really Better? Big Data, (ahead of print), October 2013.
[11] D. Kahaner, C.B. Moler, and S. Nash. Numerical methods and software. Prentice Hall, 1989.
[12] I. Kant. The Critique of Judgement (Part One, The Critique of Aesthetic Judgement). Biblio-

Life, 1790.
[13] M. Kosinski, D. Stillwell, and T. Graepel. Private traits and attributes are predictable from

digital records of human behavior. Proceedings of the National Academy of Sciences of the
United States of America, 110(15):5802–5, April 2013.
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