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Abstract

It is common for firms to forecast stationary demand using simple exponential smoothing due

to the ease of computation and understanding of the methodology. In this paper we show that

the use of this methodology can be extremely costly in the context of inventory in a two-stage

supply chain when the retailer faces AR(1) demand. We show that under the myopic order-up-to

level policy, a retailer using exponential smoothing may have expected inventory-related costs

more than ten times higher than when compared to using the optimal forecast. We demonstrate

that when the AR(1) coefficient is less than the exponential smoothing parameter, the supplier’s

expected inventory-related cost is less when the retailer uses optimal forecasting as opposed to

exponential smoothing. We show there exists an additional set of cases where the sum of the

expected inventory-related costs of the retailer and the supplier is less when the retailer uses

optimal forecasting as opposed to exponential smoothing even though the supplier’s expected
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cost is higher. In this paper, we study the impact on the naive retailer, the sophisticated

supplier, and the two-stage chain as a whole of the supplier sharing its forecasting expertise

with the retailer. We provide explicit formulas for the supplier’s demand and the mean squared

forecast errors for both players under various scenarios.

1 Introduction

It is common for firms to forecast stationary demand using simple exponential smoothing for

inventory control (see for example Nahmias 2015, p. 853) due to the ease of computation and

understanding of the methodology. In this paper, we examine the impact of using this convenient

forecasting procedure on inventory in supply chains. To do so, we consider a two-stage supply chain

with a naive retailer that faces AR(1) demand but uses exponential smoothing for forecasting even

though this yields suboptimal forecasts. We study the impact on the retailer, the supplier (assumed

to be more sophisticated), and the chain as a whole of the supplier sharing its forecasting expertise

with the retailer.

There has been much research on the value of information sharing in supply chains when the

retailer faces AR (autoregressive) or ARMA (autoregressive moving average) demand. In their

seminal paper, Lee, So, and Tang (2000) studied the value of information sharing in a two-stage

supply chain where both players use the myopic order-up-to level policy and the retailer faces an

AR(1) demand with positive AR coefficient. They concluded that there is always value to the

supplier of the retailer sharing its demand. Raghunathan (2001) showed that in this case, the

supplier is always able to infer the retailer’s demand and hence there is no value to information

sharing. Zhang (2004), Gaur, Giloni, and Seshadri (2005) hereafter referred to as GGS, and Giloni,

Hurvich, and Seshadri (2014) (GHS hereafter) studied the more general ARMA demand case which

included AR(1) demand with a negative AR(1) coefficient. Zhang assumed that the shock sequence
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in the retailer’s order to the supplier would be observable to the supplier and hence concluded that

there is no value to information sharing. GGS showed that when the AR(1) coefficient is less than

−.5, the supplier is unable to recover the retailer’s demand. GHS determined when there is value to

information sharing (for example, the case discussed above), assuming that all players use optimal

forecasts. In this framework, they also studied the propagation of demand (ARMA-in ARMA-

out) up the supply chain with and without sharing of shocks. In this stream of research, the only

information sharing considered is the retailer sharing demand information with the supplier. Others

have studied environments where the retailer and/or the supplier can share demand information

with each other. For example, Shnaiderman and El Ouardighi (2014) assumed that the retailer

observes AR(1) demand where the random component of the retailer’s demand is a function of both

the retailer’s and the supplier’s information. They studied when it is beneficial for either player to

share information with the other and when information sharing might be detrimental to a player.

In this paper, we consider the value to the retailer and the supplier of the supplier sharing

its forecasting expertise in a two-stage supply chain. We assume that the retailer, for the sake of

convenience, uses the widely available simple exponential smoothing method to forecast its demand.

This creates a potential disconnect between the true mechanism generating demand (which we

assume to be AR(1)) and the forecasting methodology. Indeed, unless the retailer’s demand was

generated by an ARIMA(0,1,1) model, the exponential smoothing forecast will be suboptimal. On

the other hand, we assume that the supplier is sufficiently sophisticated in modeling and data

analysis that the supplier, given a sufficiently long history of the retailer’s orders, is able to infer

the true ARMA model generating the retailer’s order process. We prove (see Remark 1) that the

supplier is then able to infer the retailer’s demand as well as its AR(1) generating mechanism,

and also the exponential smoothing parameter used by the retailer. Therefore, the supplier is in

possession of expertise that would benefit the retailer.
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Indeed, the retailer is always benefited by the use of the optimal forecast. However, as a result

of the supplier sharing its forecasting expertise, we show that the demand the supplier will face

can have a smaller or larger mean squared forecast error (MSFE) than when the retailer uses the

suboptimal exponential smoothing forecast. We assume that the supplier will share its forecasting

expertise when it benefits the supplier or when it benefits the chain as a whole (where the benefits

will be shared equally between both players).

If the supplier provides its forecasting expertise to the retailer, there may be value in the

retailer sharing its demand with the supplier. Specifically, we show that once the supplier shares

its expertise with the retailer, who therefore now uses optimal forecasts, the supplier may no longer

be able to recover the retailer’s demand. In such a case, the supplier will benefit from the retailer

sharing its demand with the supplier.

The remainder of this paper is organized as follows. In Section 2, we describe the setting

of our two-stage supply chain in detail. In Section 3, we carry out a simulation study to gauge

the inventory costs of the retailer, the supplier, and the whole supply chain. We consider different

parameter configurations in the simulation and show cases where the supplier is better off by sharing

its expertise with the retailer in terms of a lower inventory cost for itself or the whole chain and that

the retailer always benefits if it uses the optimal forecast. In Section 4, we derive the retailer’s order

process based on its suboptimal (exponential smoothing) and optimal (AR(1)) forecast as well as

the MSFE of these forecasts. We assume that the supplier has sufficient expertise to identify the

form, model degree and coefficients of the retailer’s order process correctly. We derive the MSFE

of the supplier’s best linear forecast under the two different retailer order processes. We present

concluding remarks in Section 5.
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2 Problem Setup

We consider a two-stage supply chain where there is one retailer and one supplier. Both players

use the myopic order-up-to level policy to determine their inventory positions and hence their order

quantities. We assume that the retailer’s leadtime is `1 periods and that the supplier’s leadtime

is `2 periods. We assume that both players have a holding cost per unit per unit time of h and

shortage cost per unit per unit time of s. At time t, the retailer observes its demand and then

places an order with its supplier according to the myopic order-up-to level policy. In other words,

the retailer’s order-up-to-level at time t is

S1,t = m1,t + c
√
ν1 (1)

where ν1 is the MSFE of m1,t, the retailer’s forecast of demand over the leadtime t+ 1 to t+ 1 + `1

based on its past and present demand at time t

m1,t =

l1+1∑
i=1

D̂1,t+i, (2)

D̂1,t+i is the retailer’s forecast of demand at time t+ i based on D1,t, D1,t−1, . . . and c = Φ−1( s
s+h)

(where Φ(·) is the standard normal cumulative distribution function) is the fractile based upon

service level s
s+h and the distribution of the retailer’s demand shocks.

The retailer’s order to the supplier, D2,t, is therefore equal to the current observed demand plus

the order-up-to level at time t minus the order up-to level at time t − 1 (see Lee, So, and Tang

2000, Equation (3.1)),

D2,t = D1,t + S1,t − S1,t−1 = D1,t +m1,t −m1,t−1 (3)

where the right hand side holds since the mean squared forecast error is time invariant. We refer

the supplier’s forecast of its demand over the leadtime t+ 1 to t+ 1 + `2 as m2,t.
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In this paper, we assume that the retailer’s demand {D1,t} follows a stationary AR(1) process

with the representation

D1,t = d+ φD1,t−1 + εtrue1,t (4)

where d is a constant, |φ| < 1, and {εtrue1,t } are the retailer’s true shocks, which are Gaussian white

noise with mean zero and variance σ2
ε1 . We are interested in studying how the value of φ in the

retailer’s demand model impacts its forecast of demand under exponential smoothing and hence

how demand propagates upstream. To do so, we consider two forecasting methods used by the

retailer. In the first case, the retailer uses exponential smoothing (D̂ES
t+i given by Equations (16)

and (35)). In the second case, upon the supplier providing forecasting expertise, the retailer uses

the optimal forecast for its AR(1) demand (D̂AR
t+i given by Equation (45)). We use Equation (3) to

obtain the retailer’s order to the supplier when the retailer uses exponential smoothing. We then

determine the expected cost for the retailer when using exponential smoothing and the expected

cost for the supplier whose demand is based upon the retailer’s use of exponential smoothing.

Finally, we compare the above to the case when the retailer uses the optimal forecast.

When the retailer uses exponential smoothing, we refer to its forecast over the leadtime as mES
1,t ,

its mean squared forecast error as νES1 , and forecast for demand at time t + i as D̂ES
1,t+i. When

optimal forecasting is used, we replace the superscript ES by AR. Even though we provide the

theoretical mean squared forecast error for a retailer using exponential smoothing (see Proposition

7), such a naive retailer would presumably not be able to derive this quantity. Instead, we assume

that such a retailer would estimate this value by using the sample variance of its forecast errors

over the leadtime, which converges to the true MSFE.

We define the following terms used in this paper:

• mES
2,t : supplier’s best linear forecast of demand over the leadtime when it faces demand

{
DES

2,t

}
,

i.e. the retailer uses exponential smoothing to forecast its demand.
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• mAR,S
2,t : supplier’s best linear forecast of demand over the leadtime when it faces demand

{
DAR

2,t

}
,

i.e. the retailer uses the optimal forecast to predict its demand, and the supplier is able to infer the

retailer’s demand shocks from
{
DAR

2,t

}
or the retailer shares its demand shocks with the supplier.

•mAR,NS
2,t : supplier’s best linear forecast of demand over the leadtime when it faces demand

{
DAR

2,t

}
and is not able to infer the retailer’s demand shocks from

{
DAR

2,t

}
, and the retailer does not share

its demand with the supplier.

• νES2 : MSFE of the supplier’s best linear forecast when the retailer uses exponential smoothing

to forecast its demand.

• νAR,S2 : MSFE of the supplier’s best linear forecast when the retailer uses the optimal forecast to

predict its demand and the supplier is able to infer the retailer’s demand shocks from
{
DAR

2,t

}
, or

the retailer shares its demand shocks with the supplier.

• νAR,NS2 : MSFE of the supplier’s best linear forecast when the retailer uses the optimal forecast

to predict its demand and the supplier is unable to infer the retailer’s demand shocks from
{
DAR

2,t

}
.

3 Inventory and Cost Implications of Exponential Smoothing

Both the retailer and the supplier want to minimize their own inventory-related costs. Let SES1,t

denote the retailer’s order-up-to level at time t if it adopts the suboptimal forecast and SAR1,t the

retailer’s order-up-to at time t if it adopts the optimal forecast At time t, the retailer’s actual

inventory cost in period t+ `1 + 1 is given by

ICES
1,t =

(
`1+1∑
i=1

D1,t+i − SES1,t

)+

s+

(
`1+1∑
i=1

D1,t+i − SES1,t

)−
h (5)

if the retailer uses exponential smoothing for its forecast and

ICAR
1,t =

(
`1+1∑
i=1

D1,t+i − SAR1,t

)+

s+

(
`1+1∑
i=1

D1,t+i − SAR1,t

)−
h (6)
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if the retailer uses the optimal forecast. Following Lee, So, and Tang (2000) (see their Equation

(4.7) and the surrounding discussion), we assume that the retailer, at time t, wishes to determine

the value of S1,t to minimize its conditional expected inventory cost

E


(`1+1∑

i=1

D1,t+i − S1,t

)+

s+

(
`1+1∑
i=1

D1,t+i − S1,t

)−
h

 ∣∣∣∣∣M1
t

 (7)

where M1
t is retailer’s available information at time t. Lee, So and Tang (2000) justified the

order-up-to level (minimizing Equation (7))

S∗1,t = m∗1,t + Φ−1(
s

s+ h
)
√
ν∗1 (8)

where m∗1,t is the best linear forecast of leadtime demand and ν∗1 is the MSFE of m∗1,t. Since we

assume that the retailer faces AR(1) demand, m∗1,t = mAR
1,t , and ν∗1 = νAR1 .

As in Lee, So, and Tang (2000) (LST hereafter; see their Equation (4.8) and the discussion

that precedes it), we assume that when the retailer uses a suboptimal forecast m1,t with MSFE

ν1, it will replace m∗1,t with m1,t and ν∗1 with ν1 in Equation (8). In the context of this paper, the

suboptimal forecast is mES
1,t with corresponding MSFE νES1 . In this section, we study the effect of

the retailer’s use of exponential smoothing on its inventory cost. We also consider the impact on

the supplier of the retailer using exponential smoothing.

Consider the loss function

L(x) =

∫ ∞
x

(z − x)dΦ(z) (9)

where Φ(z) is the standard normal CDF. The retailer’s optimal conditional expected cost in Propo-

sition 1 below can be found in Equation (4.7) of LST. We include the proposition and its proof (in

the Appendix) in our paper since they both are important for the other results in this section.

Proposition 1 The retailer’s optimal conditional expected cost is

√
ν∗1

[
(s+ h)L

(
Φ−1

(
s

s+ h

))
+ hΦ−1

(
s

s+ h

)]
. (10)
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In the case where the retailer uses exponential smoothing, before we consider the conditional

expected cost, we first discuss the conditional service level defined as P
(∑`1+1

i=1 Dt+i < SES1,t |M1
t

)
.

Proposition 2 If the retailer uses the myopic order-up-to policy based on the exponential smooth-

ing forecast, the retailer’s conditional service level is given by Φ(r) where

r =
mES

1,t −m∗1,t + Φ−1( s
s+h)

√
νES1√

ν∗1
. (11)

Proof : The retailer’s conditional service level under exponential smoothing is given by (where Z

is standard normal conditionally on M1
t )

P

(
`1+1∑
i=1

Dt+i < SES1,t |M1
t

)
= P

(∑`1+1
i=1 Dt+i −m∗1,t√

ν∗1
<
SES1,t −m∗1,t√

ν∗1

∣∣∣∣∣M1
t

)

= P

Z <
mES

1,t + Φ−1
(

s
s+h

)√
νES1 −m∗1,t√

ν∗1

∣∣∣∣∣M1
t


= P

(
Z < r|M1

t

)
= Φ(r). (12)

Note that when the retailer uses the optimal forecast, the service level is equal to s
s+h . Therefore,

the conditional service level is always equal to s
s+h . However, Proposition 2 implies that when the

retailer uses the exponential smoothing forecast, the retailer’s conditional service level is the random

quantity Φ(r), which in general will not be equal to the desired s
s+h .

The retailer’s conditional expected cost under a suboptimal forecast is also discussed by LST

in their Equation (4.9). We provide the retailer’s conditional expected cost under exponential

smoothing in the next proposition.

Proposition 3 If the retailer uses the myopic order-up-to policy with the exponential smoothing

forecast, the retailer’s conditional expected cost is

√
ν∗1 [(s+ h)L(r) + hr]. (13)

9



To demonstrate the effect of exponential smoothing on the retailer’s conditional service level and its

conditional expected cost, we simulated 1000 different paths of AR(1) processes up to time t = 100.

For each of the 1000 paths, we simulated 10000 possible values of D1,101. We then computed the

proportion of the 10000 realizations where the retailer would satisfy its leadtime demand using a

myopic order-up-to-policy with h = 1 and s = 9 based upon an exponential smoothing forecast.

We show the distribution of the retailer’s conditional service level, Φ(r), in Figure 1. It can be

seen that the retailer’s conditional service level is random and there are a non-negligible number of

observations where Φ(r) is less than the desired service level 0.9. In addition, for each of the 1000

paths, we computed the retailer’s average inventory cost across the 10000 realizations and graphed

it against the retailer’s conditional service level. The bottom plot of Figure 1 shows a U-shaped

curve of the retailer’s conditional expected inventory cost versus its conditional service level. The

minimum inventory cost occurs at service level 0.9. These graphs demonstrate that the exponential

smoothing forecast when used within a myopic order-up-to policy will often cause the retailer to

either overshoot or undershoot its optimal service level and thus drive up its conditional expected

inventory cost.

Although the myopic-order-up-to policy is focused on minimizing the conditional expected cost,

a manager is likely to measure the effectiveness of his inventory policy by considering the long-run

average inventory cost per period. We analyze this (unconditional) expected cost for the retailer

under optimal forecasting as well as under exponential smoothing. We define EICES
1 = E

[
ICES1,t

]
and EICAR

1 = E
[
ICAR1,t

]
. Since by Proposition 1 the conditional expected cost under the optimal

policy is not random, EICAR
1 =

√
ν∗1 [(s + h)L(Φ−1( s

s+h)) + hΦ−1( s
s+h)]. We next present the

retailer’s expected cost under exponential smoothing. As far as we are aware this result has not

been explicitly presented in previous literature.

Proposition 4 If the retailer uses the myopic order-up-to policy based on the exponential smooth-
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ing forecast, the retailer’s expected cost is

EICES
1 =

√
νES1

[
(s+ h)L

(
Φ−1

(
s

s+ h

))
+ hΦ−1

(
s

s+ h

)]
. (14)

We next consider the supplier’s problem. A proof very similar to that of Proposition 1 shows

that the supplier’s optimal conditional expected cost is given by

√
ν∗2

[
(s+ h)L

(
Φ−1

(
s

s+ h

))
+ hΦ−1

(
s

s+ h

)]
, (15)

where ν∗2 is defined below. As discussed previously, we assume that the supplier always uses optimal

forecasting. Nevertheless, the demand it observes depends upon the forecasting method used by the

retailer as well as the demand sharing arrangement between the retailer and supplier. The quantity

ν∗2 in Equation (15) is given by νES2 (when the retailer uses exponential smoothing to forecast its

demand), or by νAR,S2 (when the retailer uses the optimal forecast to predict its demand and the

supplier is able to infer the retailer’s demand shocks from
{
DAR

2,t

}
, or the retailer shares its demand

shocks with the supplier), or by νAR,NS2 (when the retailer uses the optimal forecast to predict its

demand, the supplier is unable to infer the retailer’s demand shocks from
{
DAR

2,t

}
and the retailer

does not share its demand shocks with the supplier).

Similarly, the expected total cost of the supply chain when the retailer uses exponential smooth-

ing is given by TCES = EICES
1 + EICES

2 . The expected total cost of the supply chain when the

retailer uses optimal forecasting and the retailer shares its demand shocks or the supplier is able to

infer them is given TCCS = EICAR
1 +EICAR,S

2 . Finally, the expected total cost of the supply chain

when the retailer uses optimal forecasting and the retailer does not share its demand shocks and the

supplier is not able to infer the retailer’s demand shocks is given TCCNS = EICAR
1 + EICAR,NS

2 .

It is clear that the retailer will have a lower expected inventory cost when using optimal fore-

casting as opposed to exponential smoothing. It can be seen that this is due to the retailer having

a larger MSFE in Equation (14) than in Equation (10) since the equations are identical otherwise.
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It is not clear whether or not the supplier would benefit from the retailer using optimal forecasting.

Furthermore, if the supplier shares its forecasting expertise with the retailer, the supplier may not

be able to recover the retailer’s demand shocks (see Remark 2 in Section 4). Finally, even if the

supplier does not directly benefit from the retailer’s use of optimal forecasting, the chain as a whole

may be better off (the retailer and supplier can split the reduction in cost).

To better understand how the forecasting approach used by the retailer can affect the cost

structure of the supply chain, we consider a supply chain where the retailer and supplier both

have unit holding and shortage costs of 1 and 9 respectively. Below, we provide graphs that help

demonstrate the benefits and/or consequences of the supplier sharing its forecasting expertise so

the retailer can use optimal forecasting.

In Figure 2, we graph the ratio of the retailer’s expected cost under exponential smoothing to

optimal forecasting where α = .45 and `1 = 6. This graph demonstrates that the retailer’s expected

cost can be more than 10 times higher when it uses exponential smoothing as opposed to optimal

forecasting. In Figure 3, we show the regions where the supplier’s expected cost is higher if the

retailer uses exponential smoothing as opposed to optimal forecasting. It can be seen that whenever

φ < α, the supplier is benefited by the retailer using optimal forecasting. For larger values of `2, the

region where the supplier has a higher expected cost under the retailer using optimal forecasting

(as opposed to exponential smoothing) becomes smaller.

In Figure 4, we show the regions where the chain as a whole is better off under the retailer using

optimal forecasting as opposed to exponential smoothing. In Figure 4, we assume that the retailer

has shared its demand shocks when beneficial to the supplier. It can be seen that whenever φ < α,

the chain is benefited by the retailer using optimal forecasting. For larger values of `2, the region

when the chain has a higher expected cost under the retailer using optimal forecasting (as opposed

to exponential smoothing) becomes smaller. When φ is close to 1 and α is close to 0, the chain is
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also better off when the retailer uses optimal forecasting.

In Figure 5, the green shaded region is where the supplier is better off under the retailer using

optimal forecasting and hence the chain as a whole is better off. The red shaded region is where the

chain as a whole is better off under the retailer using optimal forecasting although the supplier is

better off when the retailer uses exponential smoothing. The blue shaded region is where the chain

is worse off when the retailer uses optimal forecasting as opposed to exponential smoothing. In

Figure 5, we assume that the retailer has shared its demand shocks where beneficial to the supplier.

In Figure 6, we graph the ratio of the supplier’s cost when the retailer uses exponential smooth-

ing to when the retailer uses optimal forecasting and shares its demand shocks when α = .3 and

`2 = 0. This demonstrates that when the retailer uses exponential smoothing as opposed to the

retailer using optimal forecasting and sharing its demand shocks with the supplier, the supplier’s

expected cost can be more than 100 times higher. Figure 7 includes a similar graph compared to

Figure 6 except that in Figure 7, the retailer does not share its demand shocks. When φ ≤ −.5,

the supplier is unable to recover the retailer’s demand shocks (see Proposition 11) and hence, there

is less benefit to the supplier providing forecasting expertise to the retailer when the retailer will

not share its demand shocks.

In Figure 8, we provide a surface plot of the ratio of the supplier’s cost when the retailer uses

exponential smoothing to when the retailer uses optimal forecasting and shares its demand shocks

(when beneficial to the supplier) versus α and φ where the leadtime is 0. Figure 9 includes a

similar surface plot, except here, the leadtime is 6. These plots demonstrate that the supplier is

most benefited by sharing its forecasting expertise with the retailer when the retailer in return

shares its demand shocks with the supplier. It can be seen from Figures 8 and 9, that the ratio of

the supplier’s cost where the retailer uses exponential smoothing to where the retailer uses optimal

forecasting and shares its demand shocks (when beneficial to the supplier) is largest when the
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retailer’s sharing of its demand shocks is indeed beneficial to the supplier. In Proposition 11, we

show where the supplier is unable to recover the retailer’s demand shocks (i.e., the retailer’s order

to the supplier is not invertible with respect to the retailer’s demand shocks).

4 Forecasting and Propagation Results

In this section, we provide theoretical results on the retailer’s order process based on its optimal

and suboptimal forecast of demand. We then derive the MSFE of the leadtime demand for both

the retailer and the supplier under the retailer’s optimal and suboptimal forecast. We also provide

sufficient conditions under which the supplier is able to infer the retailer’s demand shocks when the

retailer adopts the optimal forecasting method.

4.1 The Retailer

If the retailer uses exponential smoothing, its forecast of its AR(1) demand at time t+ 1 based on

information available at t denoted by D̂ES
1,t+1 is

D̂ES
1,t+1 = α

∞∑
k=1

(1− α)k−1D1,t+1−k (16)

where 0 < α < 1 is the smoothing parameter. The exponential smoothing method uses the present

and all past observations and assigns a weight for each observation, where the current observation

receives the highest weight. If the retailer’s true demand process is ARIMA(0, 1, 1), the exponential

smoothing forecast (with α = 1− θ, where θ is the moving average coefficient in the ARIMA(0,1,1)

model) is its best liner forecast at time t + 1. Since the retailer’s true demand process is AR(1),

the forecast generated by the exponential smoothing is not the best linear forecast.

Proposition 5 The retailer’s forecast over its leadtime based on the exponential smoothing method
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is given by

mES
1,t =

`1+1∑
i=1

D̂ES
1,t+i = (`1 + 1)

[
α

1− (1− α)B

]
D1,t. (17)

Proofs of Proposition 5 as well as subsequent propositions are provided in the Appendix.

Below we show that the retailer’s order process is an ARMA(2,1) process.

Proposition 6 The retailer’s order based on the exponential smoothing method is ARMA(2,1) and

is given by

[1− (1− α)B] (1− φB)DES
2,t = αd+ εES1,t −

(
1 + α`1

1 + α+ α`1

)
εES1,t−1 (18)

where εES1,t = (1 + α+ α`1)εtrue1,t .

Remark 1 Since 0 < α < 1, the root of the polynomial θ(z) = 1 −
(

1+α`1
1+α+α`1

)
z is outside the

unit circle. Therefore, the retailer’s order to the supplier
{
DES

2,t

}
is invertible with respect to the

retailer’s true demand shocks {εtrue1,t }. In other words, the retailer’s current demand shock can be

obtained as a linear combination of the retailer’s present and past order observations. Therefore,

the supplier can recover the retailer’s true demand shocks and utilize them to forecast its leadtime

demand. Note that the roots of the polynomial φ(z) = [1− (1− α)z] (1 − φz) are both outside the

unit circle. Hence the retailer’s order process is causal.

Proposition 7 The retailer’s MSFE based on the exponential smoothing method is equal to

νES1 = E

(
l1+1∑
i=1

D1,t+i −mES
1,t

)2

=
∞∑
k=0

λ2
1,kσ

2
ε1 =

 `1∑
k=0

λ2
1,k +

∞∑
k=`1+1

λ2
1,k

σ2
ε1 (19)

where the λ1,k are defined in Equations (39), (40), and (41) in the Appendix, and
∑∞

k=`1+1 λ
2
1,kσ

2
ε1

has an analytical expression.

On the other hand, if the supplier provides the retailer with forecasting expertise, the retailer

can forecast its AR(1) demand optimally. Under such circumstances, the retailer uses its best
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linear forecast of demand over the leadtime. We summarize the retailer’s forecast, order process,

and MSFE in the following propositions. These results follow from GHS (2014), and are included

to show the difference between optimal and suboptimal forecasting performance.

Proposition 8 The retailer’s best linear forecast of its demand over the leadtime is

mAR
1,t = d

`1∑
k=0

k∑
j=0

φj +

`1+1∑
k=1

φkD1,t.

The retailer’s order process based upon the best linear forecast {DAR
2,t } is an ARMA(1, 1) process

(1− φB)DAR
2,t = d+ εAR,S1,t −

[
φ(1− φ`1+1)

1− φ`1+2

]
εAR,S1,t−1 (20)

where εAR,S1,t =
(

1−φ`1+2

1−φ

)
εtrue1,t .

Remark 2 The retailer’s order process {DAR
2,t } may not be invertible with respect to the retailer’s

true shocks, since the root of the polynomial θ̃(z) = 1−
[
φ(1−φ`1+1)

1−φ`1+2

]
z may be inside or outside the

unit circle, depending on the sign of the AR(1) coefficient φ and whether `1 is odd or even (see

Proposition 11).

Proposition 9 The MSFE based upon the retailer’s best linear forecast is given by

νAR1 = E

(
`1+1∑
i=1

D1,t+i −mAR
1,t

)2

=

`1∑
k=0

ω2
1,kσ

2
ε1 , (21)

where the ω1,k are defined in Equation (50) in the Appendix.

Remark 3 We note that the retailer’s MSFE under the correct AR(1) model only includes the

variance of demand shocks occurring during the forecasting period, while the MSFE under the

exponential smoothing forecast includes the variance of shocks occurring during the leadtime as well

as the infinite past.
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4.2 The Supplier

Unlike the retailer, the supplier always uses the best linear forecast of its leadtime demand. How-

ever, as shown above, the retailer’s order and hence the demand that the supplier must serve

depends upon the forecasting methodology used by the retailer.

If the retailer uses the exponential smoothing forecasting methodology, then the supplier faces

ARMA(2,1) demand, {DES
2,t }. Next we provide a proposition describing the supplier’s best linear

forecast and its associated MSFE.

Proposition 10 If the retailer uses the exponential smoothing forecasting methodology, the sup-

plier’s best linear forecast of demand over the leadtime is

mES
2,t =

∞∑
k=`2+1

ξESk εES1,t+`2+1−k

and its associated MSFE is

νES2 = E

(
`2+1∑
i=1

DES
2,t+i −mES

2,t

)2

= [1 + α(1 + `1)]2
`2∑
k=0

(ξESk )2σ2
ε1 ,

where the ξESk are defined in Equation (60), (52), (53), and (54) in the Appendix.

If the retailer uses optimal forecasting, then if the root of the polynomial θ̃(z) = 1−
(
φ−φ`1+2

1−φ`1+2

)
z

is outside the unit circle, i.e.
∣∣∣ 1−φ`1+2

φ−φ`1+2

∣∣∣ > 1, the supplier’s demand is invertible with respect to

the retailer’s demand shocks {εtrue1,t }. In other words, in such a case, the supplier can recover the

retailer’s demand shocks from the supplier’s own demand. On the other hand, if the root of the

polynomial θ̃(z) = 1−
(
φ−φ`1+2

1−φ`1+2

)
z is inside the unit circle, i.e.

∣∣∣ 1−φ`1+2

φ−φ`1+2

∣∣∣ < 1, the supplier’s demand

is not invertible with respect to the retailer’s demand shocks {εtrue1,t }. In such a case, the supplier

cannot recover the retailer’s demand shocks from the supplier’s own demand. However, the retailer

may or may not share its demand shocks with the supplier in such an instance. The propositions

below summarize the sufficient conditions under which the supplier’s demand is invertible with
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respect to the retailer’s demand shocks, and the supplier’s best linear forecast and its associated

MSFE under the retailer’s sharing and non-sharing of its demand shocks.

Proposition 11 Suppose the retailer’s demand is an AR(1) process with AR coefficient φ ∈

(−1, 1). If φ ∈ (0, 1), the supplier’s demand is always invertible with respect to the retailer’s

demand shocks {εtrue1,t }. If φ ∈ (−1, 0), then

i) if `1 is odd, the supplier’s demand is invertible with respect to the retailer’s demand shocks {εtrue1,t }.

ii) if `1 is even, then there exists a constant κ(`1) ∈ (−1, 0) such that if φ ∈ (−1, κ(`1)), the sup-

plier’s demand is not invertible with respect to the retailer’s demand shocks {εtrue1,t }. If φ ∈ [κ(`1), 0),

the supplier’s demand is invertible with respect to the retailer’s demand shocks {εtrue1,t }.

Proposition 12 If the retailer uses optimal forecasting and the root of the polynomial θ̃(z) =

1 −
(
φ−φ`1+2

1−φ`1+2

)
z is outside the unit circle, or the root of the polynomial θ̃(z) = 1 −

(
φ−φ`1+2

1−φ`1+2

)
z is

inside the unit circle but the retailer shares its demand shocks with the supplier, the supplier’s best

linear forecast of its demand over the leadtime is given by

mAR,S
2,t = (1 + `2)µd +

∞∑
k=`2+1

ξARk εAR,S1,t+`2+1−k

and its associated MSFE is

νAR,S2 = E

(
`2+1∑
i=1

DAR
2,t+i −m

AR,S
2,t

)2

=

(
1− φ`1+2

1− φ

)2 `2∑
k=0

(ξARk )2σ2
ε1

where the ξARk are defined in Equations (63) and (64) in the Appendix.

Proposition 13 If the retailer uses optimal forecasting and the root of the polynomial θ̃(z) =

1−
(
φ−φ`1+2

1−φ`1+2

)
z is inside the unit circle and the retailer does not share its demand shocks with the

supplier, the supplier’s best linear forecast of its demand over the leadtime is given by

mAR,NS
2,t = (1 + `2)µd +

∞∑
k=`2+1

ξ2,k ε̃2,t+`2+1−k

18



where

ε̃2,t =

 1

1−
(

1−φ`1+2

φ−φ`1+2

)
B

 [(1− φB)DAR
2,t − d

]
and the MSFE of the supplier’s best linear forecast is equal to

νAR,NS2 = E

(
`2+1∑
i=1

DAR
2,t+i −m

AR,NS
2,t

)2

=

(
φ− φ`1+2

1− φ

)2 `2∑
k=0

(ξ2,k)
2σ2
ε1

where the ξ2,k are defined in Equations (69) and (70) in the Appendix.

5 Conclusion

Although it is common for firms to forecast stationary demand using simple exponential smoothing

due to the ease of computation and understanding of the methodology, we have shown that the costs

of doing so can be significant. Indeed, we have shown that a retailer using exponential smoothing

may have expected inventory related costs more than ten times higher than when compared to using

the optimal forecast. We demonstrated that when φ < α, the suppliers expected inventory related

cost is less when the retailer uses optimal forecasting as opposed to exponential smoothing. We

have also shown that there exists an additional set of cases where the sum of the expected inventory

related costs of the retailer and the supplier is less when the retailer uses optimal forecasting as

opposed to exponential smoothing even though the supplier’s expected costs are higher.

This research dovetails nicely with other information sharing papers as well. We demonstrated

that the supplier has most to gain by sharing its forecasting expertise with the retailer when the

retailer’s order to the supplier is not invertible with respect to the retailer’s demand shocks. Indeed,

we have shown that the the supplier’s expected cost where the retailer uses exponential smoothing

can be more than 100 times the supplier’s expected cost where the retailer uses optimal forecasting

and shares its demand shocks.
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Figure 1: Top: histogram of the retailer’s conditional service level Φ(r). Bottom: retailer’s condi-

tional expected inventory cost vs. conditional service level. The optimal service level, s
s+h = .9 as

s = 9 and h = 1.

Figure 2: The ratio of the retailer’s expected cost when it uses exponential smoothing as opposed

to optimal forecasting versus φ. Here α = .45 and `1 = 6.
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Figure 3: Graph of α versus φ where `2 varies from 0 to 6. The red shaded region is where

EICES2 ≥ EICAR2 . The blue shaded region is where EICES2 < EICAR2 . It is clear that for most

values of α and φ, the supplier has a lower expected cost when the retailer uses optimal forecasting.
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Figure 4: Graph of α versus φ where `2 varies from 0 to 6. The red shaded region is where

TCES ≥ TCAR. The blue shaded region is where TCES < TCAR. It is clear that for most values

of α and φ, the chain has a lower expected cost when the retailer uses optimal forecasting.
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Figure 5: The green shaded region is where the supplier is better off under the retailer using optimal

forecasting and hence the chain as a whole is better off. The red shaded region is where the chain

as a whole is better off under the retailer using optimal forecasting although the supplier is better

off when the retailer uses exponential smoothing. The blue shaded region is where the chain is

worse off when the retailer uses optimal forecasting as opposed to exponential smoothing.
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Figure 6: The ratio of the supplier’s cost when the retailer uses exponential smoothing to when the

retailer uses optimal forecasting and shares its demand shocks when α = .3 and `2 = 0.
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Figure 7: The ratio of the supplier’s cost when the retailer uses exponential smoothing to when the

retailer uses optimal forecasting and does not share its demand shocks when α = .3 and `2 = 0.
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Figure 8: The ratio of the supplier’s cost when the retailer uses exponential smoothing to when the

retailer uses optimal forecasting and shares its demand shocks where `1 = `2 = 0.
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Figure 9: The ratio of the supplier’s cost when the retailer uses exponential smoothing to when the

retailer uses optimal forecasting and shares its demand shocks where `1 = `2 = 6.
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Appendix

Proof of Proposition 1:

Let X =
∑l1+1

i=1 D1,t+i. Then the conditional distribution of X givenM1
t is normal with mean m∗1,t

and variance ν∗1 . Let F be the CDF of this conditional distribution. The retailer’s conditional

expected cost under the optimal policy can be expressed as

s

∫ ∞
S∗1,t

(x− S∗1,t)dF (x)− h
∫ S∗1,t

−∞
(x− S∗1,t)dF (x). (22)

Let Z =
X−m∗1,t√

ν∗1
so that X − S∗1,t = X − m∗1,t − Φ−1

(
s

s+h

)√
ν∗1 =

√
ν∗1

(
Z − Φ−1

(
s

s+h

))
and

dF (X) = dΦ(Z). Thus, we can express (22) as

√
ν∗1 [s

∫ ∞
Φ−1( s

s+h)

(
z − Φ−1

(
s

s+ h

))
dΦ(z)− h

∫ Φ−1( s
s+h)

−∞

(
z − Φ−1

(
s

s+ h

))
dΦ(z)]. (23)

From Equation (9), note that
∫ x
−∞(z−x)dΦ(z) =

∫∞
−∞(z−x)dΦ(z)−L(x) = −x−L(x). Therefore,

Equation (23) becomes

√
ν∗1

[
(s+ h)L

(
Φ−1

(
s

s+ h

))
+ hΦ−1

(
s

s+ h

)]
(24)

which is the conditional expected cost of the retailer’s cost under the optimal policy (see Equation

4.7 in LST).

Proof of Proposition 3:

The retailer’s conditional expected cost under exponential smoothing can be expressed as

s

∫ ∞
SES
1,t

(x− SES1,t )dF (x)|M1
t )− h

∫ SES
1,t

−∞
(x− SES1,t )dF (x)|M1

t ). (25)

Since Z =
X−m∗1,t√

ν∗1
, it follows that

X − SES1,t = X −mES
1,t − Φ−1

(
s

s+ h

)√
νES1 =

√
ν∗1Z +m∗1,t −mES

1,t − Φ−1

(
s

s+ h

)√
νES1 . (26)

Therefore the retailer’s conditional expected cost is

√
ν∗1

[
s

∫ ∞
r

(z − r)dΦ(z)− h
∫ r

−∞
(z − r)dΦ(z)

]
. (27)
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It follows that Equation (27) representing the retailer’s conditional expectation of cost under ex-

ponential smoothing is random and a function of r, where Φ(r) is the conditional expected service

level, which is also a random variable.

Proof of Proposition 4:

The retailer’s forecast error under the exponential smoothing is

l1+1∑
i=1

D1,t+i −mES
1,t =

∞∑
k=0

λ1,kε
true
1,t+`1+1−k (28)

Let Y =
∑`1+1

i=1 Dt+i −mES
1,t . Then the unconditional distribution of Y is normal with mean zero

and variance νES1 . The retailer’s unconditional expected cost under exponential smoothing can be

written as

E


(`1+1∑

i=1

Dt+i − SES1,t

)+

s+

(
`1+1∑
i=1

Dt+i − SES1,t

)−
h

 (29)

= E


(`1+1∑

i=1

Dt+i −mES
1,t − Φ−1

(
s

s+ h

)√
νES1

)+

s

+

(
`1+1∑
i=1

Dt+i −mES
1,t − Φ−1

(
s

s+ h

)√
νES1

)−
h


= E

[(
Y − Φ−1

(
s

s+ h

)√
νES1

)+

s+

(
Y − Φ−1

(
s

s+ h

)√
νES1

)−
h

]
(30)

which can also be expressed as

s

∫ ∞
Φ−1( s

s+h)
√
νES
1

(
y − Φ−1

(
s

s+ h

)√
νES1

)
dG(y)

− h

∫ Φ−1( s
s+h)
√
νES
1

−∞

(
y − Φ−1

(
s

s+ h

)√
νES1

)
dG(y) (31)

where G(·) is the CDF of Y.

Let Z = Y√
νES
1

=
∑`1+1

i=1 D1,t+i−mES
1,t√

νES
1

so that Y = Z
√
νES1 and dG(Y ) = dΦ(Z). After the transfor-

mation of Y , Equation (31) becomes√
νES1

[
s

∫ ∞
Φ−1( s

s+h)

(
z − Φ−1

(
s

s+ h

))
dΦ(z)− h

∫ Φ−1( s
s+h)

−∞

(
z − Φ−1

(
s

s+ h

))
dΦ(z)

]
(32)
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note that
∫ x
−∞(z − x)dφ(z) =

∫∞
−∞(z − x)dφ(z) − L(x) = −x − L(x). Therefore, Equation (32) is

equal to √
νES1

[
(s+ h)L

(
Φ−1

(
s

s+ h

))
+ hΦ−1(

s

s+ h
)

]
. (33)

Proof of Proposition 5.

Define Λ(B) = 1 + (1−α)B + (1−α)2B2 + (1−α)3B3 + . . . = α
1−(1−α)B , where B is the backshift

operator such that BD1,t = D1,t−1. Then equation (16) can be represented as

D̂ES
1,t+1 = αΛ(B)D1,t =

[
α

1− (1− α)B

]
D1,t (34)

The h-steps ahead forecast of the retailer’s demand based on retailer’s available information set at

time tM1
t , D̂

ES
t+h, is the same as D̂ES

t+1. Therefore, the linear forecast of the future demand during

the replenishment period `1 can be expressed as

mES
1,t =

`1+1∑
i=1

D̂ES
1,t+i = (`1 + 1)D̂ES

1,t+1 = (`1 + 1)

[
α

1− (1− α)B

]
D1,t. (35)

2

Proof of Proposition 6:

Let D̃1,t = D1,t − µd be the demeaned demand process, where µd = E [D1,t] = d
1−φ . Then

D̃1,t = (1− φB)−1εtrue1,t (36)

and

mES
1,t = (`1 + 1)αΛ(B)D̃1,t + (1 + `1)µd. (37)

Using the results from Equations (36) and (37), one can represent the retailer’s order with respect
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to the retailer’s true demand shocks as

DES
2,t = D1,t + (1−B)mES

1,t

= µd + [1 + (1−B)αΛ(B)(1 + `1)] D̃1,t

= µd +
(1−B)(1 + α`1) + α

[1− (1− α)B] (1− φB)
εtrue1,t . (38)

Applying the operator [1− (1− α)B] (1− φB) to both sides of (38), it follows that

[1− (1− α)B] (1− φB)DES
2,t = αd+ [α+ (1−B)(1 + α`1)] εtrue1,t .

Let εES1,t = (1 + α+ α`1)εtrue1,t . Then Equation (38) can be expressed as

[1− (1− α)B] (1− φB)DES
2,t = αd+ εES1,t −

(
1 + α`1

1 + α+ α`1

)
εES1,t−1.

2

Lemma 1 The retailer’s forecast errors over the leadtime under the suboptimal forecast are equal

to
l1+1∑
i=1

D1,t+i −mES
1,t =

∞∑
k=0

λ1,kε
true
1,t+`1+1−k

where

λ1,k =


1 : k = 0

λ1,k−1 + φk : 0 < k ≤ `1∑`1+1
s=1 ψs,s+k−`1−1 : k > `1

(39)

with

ψi,j =


φj : 0 ≤ j ≤ i− 1(
φi − αφ

α+φ−1

)
φj−i − α(α−1)

α+φ−1 (1− α)j−i : i ≤ j
(40)

if α+ φ 6= 1

and

ψi,j =


φj : 0 ≤ j ≤ i− 1[
φi − α(j − i+ 1)

]
φj−i : i ≤ j

(41)
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if α+ φ = 1.

Proof of Lemma 1:

The retailer’s forecast errors over the leadtime are

`1+1∑
i=1

D1,t+i −mES
1,t =

`1+1∑
i=1

[
D1,t+i −

mES
1,t

1 + `1

]

=

`1+1∑
i=1

[
D̃1,t+i + µd −

mES
1,t

1 + `1

]
(42)

Using the expression for mES
1,t from Equation (37), the retailer’s forecast error at t + i can be

expressed as

D1,t+i −
mES

1,t

1 + `1
= D̃1,t+i + µd −

mES
1,t

1 + `1
=

[
D̃1,t+i − αΛ(B)D̃1,t

]
=

φiD̃1,t +
i−1∑
j=0

φjεtrue1,t+i−j

− αΛ(B)D̃1,t

=
[
φi − αΛ(B)

]
D̃1,t +

i−1∑
j=0

φjεtrue1,t+i−j

=

[
φi − α

1− (1− α)B

]
(1− φB)−1εtrue1,t +

i−1∑
j=0

φjεtrue1,t+i−j .

Case I: α+ φ 6= 1.

If α+ φ 6= 1, one can apply partial fractions to represent

[
φi − α

1− (1− α)B

]
(1− φB)−1εtrue1,t =

{
φi

1− φB
− α

[
Γ1

1− (1− α)B
+

Γ2

1− φB

]}
εtrue1,t
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where Γ1 = α−1
α+φ−1 and Γ2 = φ

α+φ−1 . Hence

D1,t+i −
mES

1,t

1 + `1
=

φi ∞∑
j=0

φjBj − αΓ1

∞∑
j=0

(1− α)jBj − αΓ2

∞∑
j=0

φjBj

 εtrue1,t

+
i−1∑
j=0

φjεtrue1,t+i−j

=
∞∑
j=0

[(
φi − αΓ2

)
φj − αΓ1(1− α)j

]
εtrue1,t−j +

i−1∑
j=0

φjεtrue1,t+i−j

≡
∞∑
j=0

ψi,jε
true
1,t+i−j

where

ψi,j =


φj : 0 ≤ j ≤ i− 1(
φi − αφ

α+φ−1

)
φj−i − α(1−α)

α+φ−1 (1− α)j−i : i ≤ j

Case II: α+ φ = 1.

If α+ φ = 1, then 1− α = φ. The retailer’s forecast error at t+ i can be expressed as

D1,t+i −
mES

1,t

1 + `1
=

[
φi − α

1− φB

]
(1− φB)−1εtrue1,t +

i−1∑
j=0

φjεtruet+i−j

=

[
φi

1− φB
− α

(1− φB)2

]
εtrue1,t +

i−1∑
j=0

φjεtruet+i−j

=

φi ∞∑
j=0

φjBj − α
∞∑
j=0

(j + 1)φjBj

 εtrue1,t +
i−1∑
j=0

φjεtrue1,t+i−j

=

∞∑
j=0

[
φi − α(j + 1)

]
φjεtrue1,t−j +

i−1∑
j=0

φjεtrue1,t+i−j

≡
∞∑
j=0

ψi,jε
true
1,t+i−j

where

ψi,j =


φj : 0 ≤ j ≤ i− 1[
φi − α(j − i+ 1)

]
φj−i : i ≤ j
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The retailer’s forecast errors over the leadtime are then equal to

`1+1∑
i=1

D1,t+i −mES
1,t =

`1+1∑
i=1

∞∑
j=0

ψi,jε
true
1,t+i−j (43)

=
∞∑
k=0

λ1,kε
true
1,t+`1+1−k (44)

where

λ1,k =


1 : k = 0

λ1,k−1 + φk : 0 < k ≤ `1∑`1+1
s=1 ψs,s+k−`1−1 : k > `1

with ψs,s+k−`1−1 defined based on the sum of α and φ. 2

Proof of Proposition 7:

From Equation (44) in Lemma 5, it follows directly that the retailer’s MSFE is equal to

νES1 = E

(
`1+1∑
i=1

D1,t+i −mES
1,t

)2

=

∞∑
k=0

λ2
1,kσ

2
ε1

=

 `1∑
k=0

λ2
1,k +

∞∑
k=`1+1

λ2
1,k

σ2
ε1 .

The analytical expression for
∑∞

k=`1+1 λ
2
1,k is dependent on the sum of α and φ. First we consider

the case when α + φ 6= 1. We define Θ(i) = φi − αΓ2. Together with the definition for ψi,j from

equation (40) when i ≤ j, we can express

λ1,`1+1 =

`1+1∑
s=1

ψs,s =

`1+1∑
s=1

Θ(s)−
`1+1∑
s=1

αΓ1 =
φ− φ`1+2

1− φ
− (`1 + 1)αΓ2 − (`1 + 1)αΓ1.

For any q ≥ 1,

λ1,`1+q =

`1+1∑
s=1

ψs,s+q−1 = φq−1

[
φ− φ`1+2

1− φ
− (`1 + 1)αΓ2

]
− (1− α)q−1 (`1 + 1)αΓ1.
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Define Γ3 =
[
φ−φ`1+2

1−φ − (`1 + 1)αΓ2

]
and Γ4 = (`1 + 1)αΓ1. Then

∞∑
k=`1+1

λ2
1,k =

∞∑
q=1

[
φq−1Γ3 − (1− α)q−1Γ4

]2
=

∞∑
q=0

[φqΓ3 − (1− α)qΓ4]2

= Γ2
3

∞∑
q=0

φ2q − 2Γ3Γ4

∞∑
q=0

[φ(1− α)]q + Γ2
4

∞∑
q=0

(1− α)2q

=
Γ2

3

1− φ2
− 2Γ3Γ4

[
1

1− φ(1− α)

]
+

Γ2
4

1− (1− α)2
.

One can apply a similar approach to find an analytical expression for
∑∞

k=`1+1 λ
2
1,k when α+φ = 1.

For any q ≥ 1,

λ1,`1+q =

`1+q∑
s=1

ψs,s+q−1 = φq−1
`1+1∑
s=1

(φs − αq) = φq−1

[
φ− φ`1+2

1− φ
− α(1 + `1)q

]
.

Define Γ5 = φ−φ`1+2

1−φ . Then

∞∑
k=`1+1

λ2
1,k =

∞∑
q=1

φ2(q−1)

[
φ− φ`1+2

1− φ
− α(1 + `1)q

]2

=
Γ2

5

1− φ2
− 2α(1 + `1)Γ5

(1− φ2)2
+
α2(`1 + 1)2(1 + φ2)

(1− φ2)3
,

2

Proof of Proposition 8:

The retailer’s k-step ahead forecast of demand given the available information at t is given by

D̂AR
1,t+k = d

k−1∑
j=0

φj + φkD1,t. (45)

Therefore, the retailer’s best linear forecast of demand over the leadtime is

mAR
1,t =

`1+1∑
k=1

D̂AR
1,t+k = d

`1+1∑
k=1

k−1∑
j=0

φj +

`1+1∑
k=1

φkD1,t = d

`1∑
k=0

k∑
j=0

φj +

`1+1∑
k=1

φkD1,t.
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One can further show that

mAR
1,t −mAR

1,t−1 = φ

[
1− φ`1+1

1− φ

]
(1−B)D1,t

Hence the retailer’s order process under the optimal forecast is

DAR
2,t = D1,t +mAR

1,t −mAR
1,t−1

= µd +

1 + φ
(

1−φ`1+1

1−φ

)
(1−B)

1− φB

 εtrue1,t . (46)

Applying 1− φB to both sides of the above equation, it follows that

(1− φB)DAR
2,t = d+

[
1 + φ

(
1− φ`1+1

1− φ

)
(1−B)

]
εtrue1,t

= d+

1 + (1−B)

`1+1∑
j=1

φj

 εtrue1,t . (47)

Rescaling the RHS of Equation (47) so that the leading MA coefficient is one, one obtains the

retailer’s order process

(1− φB)DAR
2,t = d+ εAR,S1,t −

[
φ(1− φ`1+1)

1− φ`1+2

]
εAR,S1,t−1 (48)

where εAR,S1,t =
(

1−φ`1+2

1−φ

)
εtrue1,t . 2

Proof of Proposition 9:

The retailer’s demand has an MA(∞) representation with respect to its demand shocks

D1,t = µd +
∞∑
j=0

φjεtrue1,t−j .

Its demand over the leadtime can be expressed as

`1+1∑
i=1

D1,t+i = (`1 + 1)µd +

`1+1∑
i=1

∞∑
j=0

φjεtrue1,t+i−j = (`1 + 1)µd +

∞∑
k=0

ω1,kε
true
t+`1+1−k (49)
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where

ω1,k =


1 : k = 0

ω1,k−1 + φk : 0 < k ≤ `1

φω1,k−1 : k > `1

(50)

Hence the retailer’s best linear forecast of demand over the leadtime given information available at

t is equal to

mAR
1,t = E

[
`1+1∑
i=1

D1,t+i|M1
t

]
= (`1 + 1)µd +

∞∑
k=`1+1

ω1,kε
true
1,t+`1+1−k

and its forecast error is
`1+1∑
i=1

D1,t+i −mAR
1,t =

`1∑
k=0

ω1,kε
true
t+`1+1−k.

The MSFE of the retailer’s best linear forecast is then given by

νAR1 = E

(
`1+1∑
i=1

D1,t+i −mAR
1,t

)2

=

`1∑
k=0

ω2
1,kσ

2
ε1 .

2

Lemma 2 The supplier’s demand under the suboptimal forecast has an MA(∞) representation

with respect to the retailer’s demand shocks of

DES
2,t = µd +

∞∑
j=0

ψESj εES1,t−j (51)

where εES1,t−j = [1 + α(1 + `1)]εtrue1,t−j and

ψESj =
(1− α)j(α2 + α2`1)

(α+ φ− 1)(1 + α+ α`1)
+
φj [φ(1 + α+ αφ)− (1 + α`1)]

(α+ φ− 1)(1 + α+ α`1)
, ∀j = 0, 1, 2, · · · (52)

if α+ φ 6= 1 and φ 6= 0

ψESj =


(1− α)j − (1+α`1)(1−α)j−1

1+α+α`1
+ 1+α`1

(1−α)(1+α+α`1) : j = 0

(1− α)j − (1+α`1)(1−α)j−1

1+α+α`1
: j > 0

(53)
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if α+ φ 6= 1 and φ = 0

and

ψESj = φj(1 + j)− j(1 + α`1)φj−1

1 + α+ α`1
, ∀j = 0, 1, · · · (54)

if α+ φ = 1.

Proof of Lemma 2:

Equation (38) can be expressed as

DES
2,t = µd +

(1 + α(1 + `1)− (1 + α`1)B

[1− (1− α)B](1− φB)
εtrue1,t .

Define G(B) = 1+α(1+`1)−(1+α`1)B
[1−(1−α)B](1−φB) , a rational polynomial with the degree of the numerator less than

the degree of the denominator. G(B) has different forms of partial fractional expression depending

on the sum of α and φ and whether value of φ is zero. We consider three cases: (i) α+ φ 6= 1 and

φ 6= 0, (ii) α+ φ = 1 and φ = 0, and (iii) α+ φ = 1.

Case I: α+ φ 6= 1 and φ 6= 0.

One can express G(B) as

G(B) = [1 + α(1 + `1)− (1 + α`1)B]

[
Γ1

1− (1− α)B
+

Γ2

1− φB

]
(55)

where

Γ1

1− 1(1− α)B
+

Γ2

1− φB
=

1

[1− (1− α)B] (1− φB)
.

Solving the equation, we obtain Γ1 = α−1
α+φ−1 and Γ2 = φ

α+φ−1 . Equation (55) then can be expressed
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as

G(B) = [1 + α(1 + `1)− (1 + α`1)B]

[
Γ1

1− (1− α)B
+

Γ2

1− φB

]
=

∞∑
j=0

{
[1 + α(1 + `1)]Γ1(1− α)j + [1 + α(1 + `1)]Γ2φ

j
}
Bj

−
∞∑
j=0

[(1 + α`1)Γ1(1− α)j + (1 + α`1)Γ2φ
j ]Bj+1

=
∞∑
j=0

{
[1 + α(1 + `1)]Γ1(1− α)j + [1 + α(1 + `1)]Γ2φ

j
}
Bj

−
∞∑
j=1

[(1 + α`1)Γ1(1− α)j−1 + (1 + α`1)Γ2φ
j−1]Bj

=
∞∑
j=0

{
[1 + α(1 + `1)]Γ1(1− α)j + [1 + α(1 + `1)]Γ2φ

j
}
Bj

−
∞∑
j=0

[(1 + α`1)Γ1(1− α)j−1 + (1 + α`1)Γ2φ
j−1]Bj

+
(1 + α`1)Γ1

1− α
+

(1 + α`1)Γ2

φ

=
∞∑
j=0

{
[1 + α(1 + `1)]Γ1(1− α)j + [1 + α(1 + `1)]Γ2φ

j

− (1 + α`1)Γ1(1− α)j−1 − (1 + α`1)Γ2φ
j−1
}
Bj .

Note that φ ∈ (−1, 1), φ may be equal to zero. If φ 6= 0, then (1+α`1)Γ1

1−α + (1+α`1)Γ2

φ = 0 since its

numerator (1 + α`1)Γ1φ + (1 + α`1)Γ2(1 − α) = 0. Therefore, DES
2,t has a MA(∞) representation

with respect to {εtrue1,t }

DES
2,t = µd +G(B)εtrue1,t = µd +

∞∑
j=0

ψ̃ESj εtrue1,t−j . (56)
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where

ψ̃ESj = [1 + α(1 + `1)]Γ1(1− α)j + [1 + α(1 + `1)]Γ2φ
j − (1 + α`1)Γ1(1− α)j−1 − (1 + α`1)Γ2φ

j−1

=
(1− α)j(α2 + α2`1)

α+ φ− 1
+
φj [φ(1 + α+ αφ)− (1 + α`1)]

α+ φ− 1

∀j = 0, 1, 2, · · ·

Case II: α+ φ 6= 1 and φ = 0.

Since φ = 0, one can express G(B) as

G(B) =
∞∑
j=0

[1 + α(1 + `1)] (1− α)jBj −
∞∑
j=0

(1 + α`1)(1− α)j−1Bj +
1 + α`1
1− α

=
∞∑
j=1

{
[1 + α(1 + `1)] (1− α)j − (1 + α`1)(1− α)j−1

}
Bj +

1 + α`1
1− α

and the coefficients in the MA(∞) representation of DES
2,t are given by

ψ̃ESj =


[1 + α(1 + `1)] (1− α)j − (1 + α`1)(1− α)j−1 + 1+α`1

1−α : j = 0

[1 + α(1 + `1)] (1− α)j − (1 + α`1)(1− α)j−1 : j > 0

(57)

Case III: α+ φ = 1.

If α+ φ = 1, then (55) can be expressed as

G(B) = [1 + α(1 + `1)− (1 + α`1)B]
1

(1− φB)2

= [1 + α(1 + `1)− (1 + α`1)B]
∞∑
j=0

(j + 1)φjBj

= [1 + α(1 + `1)]
∞∑
j=0

(1 + j)φjBj −
∞∑
j=0

(1 + α`1)(j + 1)φjBj+1

=

∞∑
j=0

{
[1 + α(1 + `1)](1 + j)φj − (1 + α`1)jφj−1

}
Bj

The coefficients in the MA(∞) representation of DES
2,t are given by

ψ̃ESj = φj−1 {[1 + α(1 + `1)]φ(1 + j)− j(1 + α`1)} , ∀j = 0, 1, · · · (58)
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When j = 0, the three representations of G(B) all have ψ̃ES0 = 1+α+α`1. Let εES1,t−j = ψ̃ES0 εtrue1,t−j =

[1 + α(1 + `1)]εtrue1,t−j and ψESj =
ψ̃ES
j

ψ̃ES
0

.

Then (56) can be represented as

DES
2,t = µd +

∞∑
j=0

(
ψ̃ESj

ψ̃ES0

)
ψ̃ES0 εtrue1,t−j = µd +

∞∑
j=0

ψESj εES1,t−j . (59)

Proof of Proposition 10:

Following Equation (51) in Lemma 2, the supplier’s demand over the leadtime `2 + 1 is

`2+1∑
i=1

DES
2,t+i = (1 + `2)µd +

`2+1∑
i=1

∞∑
j=0

ψESj εES1,t+i−j

= (1 + `2)µd +
∞∑
k=0

ξESk εESt+`2+1−k

where

ξESk =


1 : k = 0

ξESk−1 + ψESk : 0 < k ≤ `2

ξESk−1 + ψESk − ψESk−`2−1 : k > `2

(60)

Since the shocks
{
εES1,t+l2+1, ε

ES
1,t+l2

, · · · , εES1,t+1

}
are not predictable at time t, their conditional expec-

tations are zero. Therefore, the supplier’s best linear forecast of future demand over the leadtime

is equal to

mES
2,t = E

[
`2+1∑
i=1

DES
2,t+i|M2

t

]
= (1 + `2)µd +

∞∑
k=`2+1

ξESk εES1,t+`2+1−k.

The supplier’s MSFE is

νES2 = Var

(
`2+1∑
i=1

DES
2,t+i −mES

2,t

)
= [1 + α(1 + `1)]2

`2∑
k=0

(ξESk )2σ2
ε1 .

Proof of Proposition 11:

41



If the root of the polynomial θ̃(z) = 1−
[
φ(1−φ`1+1)

1−φ`1+2

]
z is inside the unit circle, i.e.

∣∣∣ 1−φ`1+2

φ(1−φ`1+1)

∣∣∣ < 1,

then the supplier’s demand {DAR
2,t } is not invertible with respect to the retailer’s shocks {εtrue1,t }.

The inequality implies

−1 <
1− φ`1+2

φ(1− φ`1+1)
< 1. (61)

When 0 < φ < 1, the righthand side of (61) is not satisfied. When −1 < φ < 0, to satisfy both

sides of (61), φ must be less than one and satisfy

2φ`1+2 − φ > 1. (62)

If `1 is odd, we have

2φ`1+2 − φ = |φ| − 2|φ`1+2| < |φ| < 1

which conflicts with (62) and thus the supplier’s demand is invertible with respect to the retailer’s

demand shocks {εtrue1,t }. This establishes the proof of (i).

Next we show the root of the polynomial

f(φ) = 2φ`1+2 − φ− 1

is a function of `1 when `1 is even. Lemma 3 shows f(φ) is a square-free polynomial. Hence we can

apply Sturm’s theorem to identify the intervals where the roots of f(φ) are located. From Sturm’s

theorem, the number of sign changes in the Sturm chain at φ = −1 and φ = 0 are two and one

respectively. Hence there is exactly one root between −1 and 0. Let φ = κ(`1) be the root of f(φ),

where κ(`1) ∈ (−1, 0) and `1 is even. Since f(0) < 0 and f(−1) > 0 when `1 is even, we infer that

for φ ∈ (−1, κ(`1)), f(φ) > 0, and φ ∈ (κ(`1), 0), f(φ) < 0. This establishes the proof of (ii). 2

Lemma 3 The polynomial f(x) = 2x`1+2 − x− 1 is a square-free polynomial.

Proof of Lemma 3:

Assume x = a is a root of f(x). We can write f(x) = (x− a)q(x). If we take the first derivative of
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f(x), then f ′(x) = q(x) + (x − a)q′(x). If f(x) has a repeating root such as x = a, then q(x) can

be factorized as q(x) = (x− a)γ(x). This implies that f ′(x) shares the common factor (x− a) with

f(x). Therefore, a sufficient condition for f(x) to be a square free polynomial is that the greatest

common divisor (GCD) of f(x) and f ′(x) is a constant. One can apply the Euclidean Algorithm

to find the GCD of f(x) and f ′(x). Using the polynomial long division, we can express

f(x) = f ′(x)
x

`1 + 2
−
(
`1 + 1

`1 + 2

)
x− 1.

Repeating the polynomial long division for f ′(x) with respect to −
(
`1+1
`1+2

)
x− 1, we can express

f ′(x) =

[
−
(
`1 + 1

`1 + 2

)
x− 1

]
p(x) + C(`1)

where p(x) is a polynomial whose degree is less than the degree of f ′(x) and C(`1) is a constant

with value depending on `1. Applying the polynomial long division again for
[
−
(
`1+1
`1+2

)
x− 1

]
with

respect to C(`1), we have the remainder equal to zero. Thus we conclude that the GCD of f(x)

and f ′(x) is the constant C(`1). 2

Lemma 4 The supplier’s demand process under the optimal forecast has the MA(∞) representation

with respect to {εtrue1,t−j}

DAR
2,t = µd +

∞∑
j=0

ψARj εAR,S1,t−j ,

where

ψARj =


1 : j = 0

(1−φ)φ`1+j+1

1−φ`1+2 : j ≥ 1

(63)

Proof of Lemma 4:
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Using Equation (46), one can express the supplier’s demand under the optimal forecast as

DAR
2,t = µd +

(
1 + φ

1− φ`1+1

1− φ

)
εtrue1,t +

∞∑
j=0

φ`1+2+jεtrue1,t−1−j

= µd +

(
1− φ`1+2

1− φ

)
εtrue1,t +

∞∑
j=0

φ`1+2+jεtrue1,t−1−j

= µd +

∞∑
j=0

ψ̃ARj εtrue1,t−j

where

ψ̃ARj =


(

1 +
∑`1+1

k=1 φk
)

: j = 0

φ`1+1+j : j ≥ 1

Let ψARj =
ψ̃AR
j

ψ̃AR
0

and εAR,S1,t−j = ψ̃AR0 εtrue1,t−j . Then

DAR
2,t = µd +

∞∑
j=0

ψARj εAR,S1,t−j

where

ψARj =


1 : j = 0

(1−φ)φ`1+j+1

1−φ`1+2 : j ≥ 1

2

Proof of Proposition 12:

Following Lemma 4, the supplier’s demand over the leadtime periods `2 + 1 can be expressed as

`2+1∑
i=1

DAR
2,t+i = (`2 + 1)µd +

`2+1∑
i=1

∞∑
j=0

ψARj εtrue1,t+i−j = (`2 + 1)µd +
∞∑
k=0

ξARk εtrue1,t+`2+1−k

where

ξARk =


1 :

ξARk−1 + ψARk : 0 < k ≤ `2

ξARk−1 + ψARk − ψARk−`2−1 : k > `2

(64)
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Hence the supplier’s best linear forecast of future demand over leadtime is equal to

mAR,S
2,t = E

[
`2+1∑
i=1

DAR
2,t+i|M2

t

]
= (1 + `2)µd +

∞∑
k=`2+1

ξARk εtrue1,t+`2+1−k

and the supplier’s MSFE is

νAR,S2 = E

(
`2+1∑
i=1

DAR
2,t+i −m

AR,S
2,t

)2

=

`2∑
k=0

(ξARk )2σ2
ε1

2

Lemma 5 If the retailer uses optimal forecasting and the root of the polynomial θ̃(z) = 1 −(
φ−φ`1+2

1−φ`1+2

)
z is inside the unit circle and the retailer does not share its demand shocks with the

supplier, the supplier’s demand is equal to

DAR
2,t = µd +

∞∑
j=0

ψ2,j ε̃2,t−j (65)

where

ψ2,j =


1 : j = 0

φj−2(1−φ)(φ`1+2−φ−1)
1−φ`1+1 : j ≥ 1

(66)

and

ε̃2,t−j =

 1

1−
(

1−φ`1+2

φ−φ`1+2

)
B

 [(1− φB)DAR
2,t − d

]
.

Proof of Lemma 5:

When the retailer adopts the optimal forecast, the supplier faces ARMA(1,1) demand specified by

Equation (47)

(1− φB)DAR
2,t = d+

1 +

`1+1∑
j=1

φj(1−B)

 εtrue1,t

= d+

1 +

`1+1∑
j=1

φj

[1−

( ∑`1+1
j=1 φj

1 +
∑`1+1

j=1 φj

)
B

]
εtrue1,t . (67)
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Since the retailer’s shocks are not invertible with respect to {εtrue1,t } and the retailer does not

share {εtrue1,t } with the supplier, the supplier will construct a new ARMA(1,1) representation for

its demand with respect to a set of shocks which generates the same linear past as its observed

demand (see Brockwell and Davis 1991, pp.125 - 126). Thus Equation (67) becomes

(1− φB)DAR
2,t = d+

1 +

`1+1∑
j=1

φj

[1−

(
1 +

∑`1+1
j=1 φj∑`1+1

j=1 φj

)
B

]
ε2,t

= d+

(
1− φ`1+2

1− φ

)[
1−

(
1− φ`1+2

φ− φ`1+2

)
B

]
ε2,t (68)

where

ε2,t =

(
1− φ

1− φ`1+2

) 1

1−
(

1−φ`1+2

φ−φ`1+2

)
B

 [(1− φB)DAR
2,t − d

]
.

Hence the supplier’s demand from Equation (68) can be expressed as

DAR
2,t = µd +

(
1− φ`1+2

1− φ

)
ε2,t +

∞∑
j=1

[(
1− φ`1+2

1− φ

)
φj −

[
(1− φ`1+2)2

(1− φ)(φ− φ`1+2)

]
φj−1

]
ε2,t−j

= µd +
∞∑
j=0

ψ2,j ε̃2,t−j

where

ψ2,j =


1 : j = 0

φj−2(1−φ)(φ`1+2−φ−1)
1−φ`1+1 : j ≥ 1

(69)

and ε̃2,t−j =
(

1−φ`1+2

1−φ

)
ε2,t. 2

Proof of Proposition 13:

Using Equation (65) from Lemma 5, the Supplier’s demand over the leadtime can be expressed as

`2+1∑
i=1

DAR
2,t+i = (`2 + 1)µd +

`2+1∑
i=1

∞∑
j=0

ψ2,j ε̃2,t+i−j = (`2 + 1)µd +
∞∑
k=0

ξ2,k ε̃2,t+`2+1−k
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where

ξ2,k =


1 : k = 0

ξ2,k−1 + ψ2,k : 0 < k ≤ `2

ξk−1 + ψ2,k − ψ2,k−`2−1 : k > `2

(70)

The supplier’s best linear forecast of its demand over the leadtime `2 + 1 is

mAR,NS
2,t = (1 + `2)µd +

∞∑
k=`2+1

ξ2,k ε̃2,t+`2+1−k.

It is straightforward to show that the supplier’s MSFE is equal to

νAR,NS2 = E

(
`2+1∑
i=1

DAR
2,t+i −m

AR,NS
2,t

)2

=

(
1− φ`1+2

1− φ

)2 `2∑
k=0

(ξ2,k)
2σ2
ε2 =

(
φ− φ`1+2

1− φ

)2 `2∑
k=0

(ξ2,k)
2σ2
ε1

(71)

where σ2
ε2 is the variance of the supplier’s demand shocks {ε2,t} and σ2

ε2 =
(
φ−φ`1+2

1−φ`1+2

)2
σ2
ε1 . 2

Remark 4 The condition under which the root is inside the unit circle,
∣∣∣ 1−φ`1+2

φ−φ`1+2

∣∣∣ < 1, implies

σ2
ε2 =

(
φ−φ`1+2

1−φ`1+2

)2
σ2
ε1 > σ2

ε1.
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