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Abstract. This paper compares several feature detectors applied to imagery from an unmanned
aerial vehicle to find the best detection algorithm when applied to datasets that vary in translation
and have little or no image overlap. Metrics of inliers and reconstruction accuracy of feature
detectors are considered with respect to three-dimensional reconstruction results. The image
matching results are tested experimentally, and an approach to detecting false matches is out-
lined. Results showed that although the detectors varied in the number of keypoints generated,
a large number of inliers does not necessarily translate into more points in the final point cloud
reconstruction and that the process of comparing a large quantity of redundant keypoints may
outweigh the advantage of having the extra points. The results also showed that despite the
development of keypoint detectors and descriptors, none of them consistently demonstrated
a substantial improvement in the quality of structure from motion reconstruction when applied
to a wide range of disparate urban and rural images. © 2017 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.11.025015]
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1 Introduction

Aerial data are now nearly ubiquitous due to the popularity of low-cost, unmanned aerial
vehicles (UAVs).1,2 While there are similarities between aircraft and UAV surveys, they differ
in some important aspects that complicate the use of traditional photogrammetry-based solutions
for three-dimensional (3-D) reconstructions.

First, traditional aerial surveys are normally flown at heights of 500 to 1500 m with the exact
position recorded by an inertial navigation system. In contrast, UAV surveys are flown at heights
of 30 to 120 m and have, at best, a recorded global positioning system (GPS) coordinate with
an accuracy of 5 to 50 m.

Secondly, aerial survey images are normally collected within a tightly controlled flightpath
with the camera pointing nadir and with a 50% to 80% overlap of the target (Fig. 1). The images
only vary by translation, with no changes to the scale and rotation. In contrast, UAV cameras may
have a variety of orientations with respect to the surrounding environment. Although the amount
of overlap between images can be controlled by autopiloting software, when captured manually
by the pilot, the overlap can be haphazard and vary greatly.

A further challenge when reconstructing UAV surveys is the height at which the data are
captured. The UAVs’ lower altitudes cause much smaller areas to be covered, which reduces
the number of distinct features available for detection by a matching algorithm. In highly con-
vergent imagery, the same object can appear in most or all of the images. An object in nadir
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oriented images from a UAV may have significant overlap with neighboring images but could be
in only a small subset of the total image set.

Additionally, when an image is captured from 1000 m above, there is little parallax, as the
variation in height (0 to 100 m) is small. Instead, if an image is captured from only 100 m above
the ground, the relative distance of the camera has a major impact. As an example, the tall struc-
ture in Fig. 2 looms in the foreground and distorts significantly over successive images.

The perspective of the camera lens also further distorts the image. Standard orthorectification
approaches such as photostitching3 fail at low altitudes4 due to the reasons given above. These
distortions make mapping UAV imagery much more challenging than traditional aerial data sets.

Modern aerial mapping approaches have borrowed from computer vision and robotics to
combine images, generate orthomosaics, and reconstruct full 3-D models. One of the most
successful techniques is structure from motion (SFM).5 SFM creates 3-D models purely from
images, with no reliance on a priori information or locational data. Feature detection is a critical
step in the reconstruction of 3-D models from such imagery. Feature detection algorithms gen-
erally consist of two parts. The first is a detector that finds features in an image, such as corners
and edges. These can be used to find corresponding matches in other images. The second relates
to matching and involves a descriptor that condenses information about a point into a format
that enables accurate identification or, at a minimum, a measure of similarity between points.

One main difference between UAV datasets and computer vision datasets is the amount of
matching that is required. Normally, SFM is applied to small sets of images captured sequentially
and assumes that there is a local overlap. UAV datasets are much larger, and a feature may be

Fig. 1 Traditional aerial photography captures images with the camera pointing vertically down-
ward with the same scale and rotation in each image.

Fig. 2 The parallax of a church spire captured at a low altitude.
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present in a small subset of the images. Notably, global comparisons over the dataset can result in
false matches, which invalidate the reconstruction. The false positive rate of the feature descrip-
tor (the sequence of bytes defining the feature) is examined in this work, as it is a significant
problem with UAV datasets.

The intention of this work is to compare different feature detectors on UAV datasets to estab-
lish which generate the greatest quantity of features with the highest accuracy. Although the
speed of a feature detector is always important, this is less of a constraint with 3-D model
reconstruction, as it is usually conducted offline, after the flight. In contrast, a critical aspect
is the number of feature matches—the component that generates an accurate 3-D model.
Herein, the feature set generated for an image is not considered in isolation. Instead, it is com-
pared against a feature set from another image, and the number of matches is computed.

While matches may be an indication of overlap, this is entirely dependent on the content and
character of the area in the image. Accordingly, additional metrics are used to compute matching
quality. This paper analyzes the metrics of inliers and reconstruction accuracy of feature detec-
tors when applied to vertical image-based datasets captured at low altitudes to examine which
technique provides the best results for 3-D reconstruction from UAV datasets.

2 Background

SFM is used extensively in aerial surveying to generate 3-D models. The technique consists of
four components: feature detection, feature matching, bundle adjustment, and multiview stereo.
A feature is essentially an “interesting” or easily identifiable part of an image. As mentioned
above, a feature could be an edge, corner, or region of interest. Feature detectors abstract infor-
mation from within an image into a subset of objects that can then be identified in multiple,
overlapping images. Detectors are used to alleviate the complexity of processing an entire
image while exploiting local appearance properties. In contrast, the ideal feature descriptor
captures the most important and distinctive information content enclosed in the detected salient
regions, such that the same structure can be recognized if re-encountered.

Originally developed for simultaneous localization and mapping for robotics, SFM is nor-
mally used with highly localized data sets. Images are typically only compared with others taken
in close proximity to each other. As such, arguably some level of overlap has traditionally been
assumed. In contrast, aerial datasets require global matching comparisons over the entirety of the
image set. This presents a challenge, as many of the images have no overlap whatsoever.
Consequently, a robust feature descriptor is required so that images with no overlap are not
matched accidentally.

2.1 Feature Detectors

This section gives an overview of the feature detectors that are used in this work. The imple-
mentations used are taken from the OpenCV library,6 and the matching and 3-D reconstructions
employ the OpenMVG framework.7 The five detectors presented herein are a combination of
some of the most popular and some of the most recent additions in computer vision. Both
proprietary and open source feature detectors are compared including scale invariant feature
transforms (SIFT), speeded up robust features (SURF), oriented features from accelerated
segment test (FAST), rotated binary robust-independent elementary features (BRIEF), and accel-
erated KAZE (AKAZE).

2.1.1 Scale invariant feature transforms

SIFT builds a feature description from the image that is invariant to orientation and uniform
scaling and is robust to partial occlusion and lighting changes.8 SIFT itself uses several different
algorithms to build a set of feature vectors (Fig. 3). First, SIFT creates a scale space of images
using a difference of Gaussians algorithm.9 The algorithm compares blurred pixels at different
image scales. These features are then evaluated using a contrast threshold and discards points
below a prespecified threshold. A histogram of gradients (HoG) is generated for each feature,
which is then used as a feature vector descriptor. A database of unique features is built for each
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image, which can then be used to find matching points between images. While this is one of
the oldest methods, it is still one of the most effective.

However, there are disadvantages with SIFT. The first relates to Gaussian blurring to find
features (i.e., the use of an averaging kernel function to blur an image). This approach at coarser
scales removes features with noise and finds more prominent structures but does not respect the
boundary between actual objects and noise. The second is use of a HoG descriptor that is 128
bytes long, which makes it computationally less efficient than other descriptors. If time is not a
consideration, then this approach can be very attractive due to its generally high level of output
accuracy. The third drawback is that the algorithm is patent protected and requires licensing for
commercial usage.

2.1.2 Speeded up robust features

SURF was the first algorithm to have a comparable matching performance to SIFT with the
advantage of improved speed.10 The acceleration was achieved by using the image integral,
instead of a Gaussian pyramid, to find points of interest. The Gaussian pyramid requires different
scale levels to be calculated for the image. This is approximated in SURF by using a box filter on
the image integral to generate the scales (Fig. 4). The descriptor is similar to SIFT in that it uses a
HoG that is calculated using Haar wavelet responses. While faster than SIFT, SURF still suffers
from many of SIFT’s problems in that the scale space loses boundary information and that the
descriptors are long (normally 64 or 128 bytes). SURF is also patent protected.

2.1.3 Oriented FAST and rotated BRIEF

The oriented FAST and rotated BRIEF (ORB) method was developed as a simple and fast alter-
native to SIFT and SURF.11 Instead of costly, scale-space calculations and HoG descriptors,
ORB uses a binary-based, feature detector, and descriptor. The detector is a generalization

Fig. 4 Gaussian second-order partial derivatives in (a) the y -direction and the xy -direction, and
(b) the corresponding box filter approximation.10

Fig. 3 Image gradients are divided into 162, and the orientations are then summed. Each square is
represented by an 8-byte descriptor.
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on the features FASTalgorithm12 combined with a descriptor based on BRIEF.13 The idea behind
ORB was to develop a fast and open source alternative to existing feature detectors.

The FAST algorithm was developed for real-time odometry from video footage; a task that
was not possible with more computationally expensive detectors like the Harris corner detector14

or SIFT. Instead, ORB finds corners and edges through performing a simple test by considering a
circle of sixteen pixels around a corner candidate. If a set of n contiguous pixels in a circle exist
that are all brighter than the intensity of the candidate pixel or all darker, then n is chosen to be
12, because it demonstrates that a high-speed test can be used to exclude a very large number of
noncorners. The test examines only the four pixels at locations 1, 5, 9, and 13 (the four compass
directions) (Fig. 5).

If p is a corner and Ip is the pixel intensity, then at least three of these must be brighter than
Ipþ t or darker than Ip − t. If neither is the case, then p cannot be a corner. The corner detector
was improved in ORB by computing it at different image scales for scale invariance, and a Harris
edge detector was also applied to remove noisy edges. One component that is missing from
FAST is that it does not compute the orientation of the point of interest. SIFT does this by
using the HoG, which is expensive. SURF approximates it using block patterns, which yields
poor approximations. Instead, ORB adds an orientation by using a centroid approximation as
detailed by Rosin.15 Some improvements were made to the descriptor as well. For example, the
original BRIEF algorithm was not designed to be rotation invariant, and so Rublee et al.11 incor-
porated orientation information derived from the keypoints generated by FAST and integrated it
as a rotational element into the descriptor, now known as rBRIEF.

2.1.4 Accelerated KAZE

AKAZE improves the idea of using a scale space for identifying features at distinct scales16 by
using a nonlinear diffusion filter. The difference of the Gaussian pyramid used by SIFT to create
a scale space of images is one of the simplest approaches but performs poorly in localization
accuracy. This is because while the coarser (more blurred) scales remove noise and emphasize
more prominent features, it complicates identifying the actual location (Fig. 6). AKAZE, instead,

Fig. 5 The fast corner detector (image courtesy of OpenCV6).

Fig. 6 Comparison between (a) Gaussian and (b) nonlinear diffusion filtering. Note the increased
blurring in the Gaussian filtering (image courtesy of Ref. 16).
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uses a nonlinear diffusion filter called adaptive operator splitting that creates locally adaptive
blurring. This nonlinear filter removes the noise while maintaining details and edges. Nonlinear
filtering requires solutions to the partial differential equations (PDE) that define them. As no
analytical solution to PDEs exists, a numerical method such as the Thomas algorithm17 is
used to iteratively generate a solution. Once the scale pyramid has been created, the first-
and second-order derivatives are approximated using a 3 × 3 Scharr filter,18 which approximates
rotation invariance. The descriptor first finds the orientation in a similar fashion to SURF by
finding the dominant orientation in a circular area or radius of the sample step size. The descrip-
tor format is the modified SURF descriptor modified for a nonlinear scale space.

2.1.5 Binary robust invariant scalable keypoints

Binary robust invariant scalable keypoints (BRISK) claims to be a feature detector that produces
high-quality performance at a much lower computational cost.19 The method uses a variation on
the FAST detector that is adapted to use a scale space after finding a suitable key point. The
descriptor consists of a bit-string that records intensity comparisons for the feature neighborhood
and is rotation and scale invariant (Fig. 7). The detection methodology applies the adaptive and
generic accelerated segment test,20 an accelerated version of FAST, to both the image plane and
the scale space. The fast score s is used as a measure of saliency (i.e., how well it stands out
relative to its neighboring pixels). The scale space pyramid consists of n octaves and n intra-
octaves. The octaves are formed by half sampling the original image, and the intraoctaves are
obtained by down-sampling the original image by 1.5. A FAST 9 × 16 detector is used on each
layer, which requires 9 consecutive pixels in the 16-pixel circle to be sufficiently brighter or
darker than the central pixel for the FAST criterion to be evaluated. The correct octave on
the scale space pyramid for the key point is determined by comparing the saliency scores in
the immediate neighboring layers.

Fig. 7 BRISK sampling pattern with N ¼ 60 points. Blue circles are the sampling locations, and
red circles correspond to the standard deviation of the Gaussian kernel used to smooth the inten-
sity of the sampling points (image courtesy of Ref. 19). The feature descriptor is modeled on the
BRIEF binary descriptor21 that concatenates the results of brightness comparison tests. To main-
tain rotation invariance, the characteristic direction of each key point is calculated. This allows for
an orientation normalized descriptor.
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3 Datasets

The intention of this work was to examine how well each detector matches images that vary
through translation. To achieve this objective, three controlled datasets from Dublin Ireland
were considered. The areas included the Richview portion of the University College Dublin
campus, a glasshouse on the Kilmoon Cross Farm on the outskirts of Dublin, and Boland’s
Mills, a 19th century industrial building in Dublin’s city center. The Richview buildings pro-
vided a standard site survey with a series of low-level buildings. The Kilmoon Cross farm site
consisted of a set of glasshouses; although there was little parallax, the reflections added noise to
the feature detection task. Finally, Boland’s Mills was a site survey of a set of tall buildings that
introduced significant levels of parallax. The datasets are discussed in more detail below.

3.1 Richview Buildings

The Richview building complex is home to the University College Dublin’s School of
Architecture, Planning, and Environmental Policy (Fig. 8). This portion of the campus has
been extensively surveyed by total station and by terrestrial laser scanning, which allows veri-
fication of the accuracy of the resulting orthomosaic. The Richview site was chosen, because it
has buildings with numerous, varied features, such as corners and edges of complicated building
profiles. The building heights range between 6 and 30 m. The images were taken from 30, 40,
and 50 m above ground level. There were few reflective surfaces to introduce noise into the
algorithm.

3.2 Kilmoon Cross Farm

The Kilmoon Cross Farm glasshouses provided a particularly difficult challenge for orthorecti-
fication, as the structures were uniform, and the glass was highly reflective (Fig. 9). The reflec-
tions generated transient keypoints that changed from image to image. Uniformity in a structure
resulted in improper matching, as different homography matrices produced seemingly good
results through incorrect alignment. The data were captured at a height of 70 m above the ground.

3.3 Boland’s Mills

Boland’s Mills is a site of historic significance in Dublin’s city center. The first structure was
built in 1830, with further concrete silos built between the 1940s and the 1960s. The mill ceased
operation in 2001 and is now undergoing a 150-million-euro conversion into office spaces and
residential housing. As several of the buildings in the complex are listed in various historic regis-
tries, an aerial survey was conducted to create a permanent digital record of the site.

Fig. 8 Richview buildings.
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Boland’s Mills has several relatively tall structures (55 m) that introduced a large amount of
parallax between images (Fig. 10). The survey was conducted at a height of 85 m, which was
30 m above the rooftop of the highest building. Data could only be captured from a single height
due to the congestion of the built environment and the proximity to the Dublin airport. These
factors controlled both the minimum and maximum possible flight altitudes.

4 Experimental Setup

The images were obtained using a Phantom 3 Professional quadcopter, a commercial off-the-
shelf UAV. A Sony Exmor, fixed aperture, 12-megapixel camera was used in this work. The
resulting images were 4000 × 3000 pixels. At a height of 50 m, this translated into a ground
sampling distance of 2 cm∕pixel. The camera had a 94-deg field of view and a focal length
of 3.61 mm. It had a self-stabilizing 3-axis gimbal that ensured the nadir images were correctly
oriented.22 The Sony Exmor camera used in these experiments provided 12-megapixel images
with only a small amount of rectilinear distortion.22 The Phantom 3 recorded metadata onto the
images including GPS coordinates. SFM uses the camera settings saved in the metadata, such as
the focal length and camera model as input in the reconstruction process. SFM does not use the
GPS coordinates in the reconstruction process, although they may be used afterward to geo-
locate the model. The same camera was used for gathering all of the datasets.23

Fig. 10 Boland’s Mills.

Fig. 9 Kilmoon Cross glasshouses.
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In order to provide consistency between datasets, each was acquired at a specific height with
an 80% vertical and 60% horizontal overlap. This was accomplished using the Pix4D capture
mapper software24 that automatically generated the flightpath and images for a given survey area.
The images were acquired vertically downward, with the gimbal facing toward earth to ensure
there was no variance due to turbulence. A serpentine (back and forth) path was flown
[Fig. 11(a)] for the missions, rather than a zig-zag flight path [Fig. 11(b)]. All flights per
site were conducted on the same day and within minutes of each other so as to control for lighting
and cloud-based occlusion, which are known to generate problems in image processing.24

The SFM pipeline consists of feature detection, matching, bundle adjustment, and dense
reconstruction (Fig. 12). Once the keypoints were detected, a process such as random sampling
and consensus (RANSAC)25 was used to compute the best match between images. In this work,
every image in the dataset was compared with each other to ensure the best possible match.
Once this was complete, a 3-D scene was constructed by computing the bundle adjustment26

for all the cameras and matched points. Finally, once the 3-D scene was created, a final step of
dense reconstruction through multiview stereo27 was used to generate a dense point cloud.
The accuracy was measured in two ways: (1) inlier matching and (2) final reconstruction.

5 Evaluation

5.1 Inlier Matching

The set of features defined by SIFT can contain outliers or points not common to both images
(depending on the overlap). However, the computational expense of comparing every feature in
an image increases exponentially, as the number of points increases. Additionally, noise from
outliers cannot be handled with simplistic data fitting models such as the method of least squares,
which minimizes the sum of squared distances between an observed point and the fitted value
provided by the model.

Instead, RANSAC, a robust iterative technique that constructs an alignment model in linear
time, is used. RANSAC assumes that the data contain “inliers” that fit within a given model and
“outliers” (noise) that do not fit within that model. The algorithm samples enough points to
minimally fit the model and measures the number of inliers and outliers within a given threshold,
as shown in Fig. 13. The process is repeated a set number of times to build a model. The
approach is probabilistic. Thus, perfect alignment is not ensured, but it is robust against
noise, although the computation time increases linearly when aligning images.

Fig. 11 Flight paths: (a) serpentine and (b) zig-zag.

Fig. 12 SFM pipeline for generating a point cloud.
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RANSAC generates an inlier count for each image comparison. The example given in Fig. 13
is fitting a line to a set of points, whereas the model required for SFM matching requires
RANSAC to construct an eight-point alignment model in linear time. The greater number of
inliers is indicative of a more accurate match. This measure is normally used when comparing
how well a feature detector performs.28

5.2 Bundle Adjustment and Dense Reconstruction

The next step is bundle adjustment. Bundle adjustment refines a visual reconstruction to jointly
produce the optimal 3-D structure and the viewing parameters. The “bundle” refers to the bundle
of light rays leaving each 3-D feature and converging on each camera center, as shown in
Fig. 14. The bundles are optimally adjusted with respect to both feature and camera positions.
Bundle adjustment must occur after outlier removal, as the process is sensitive to noise.

Bundle adjustment treats the reconstruction as an optimization problem that aims to minimize
the reprojection error between noisy images. The viewing parameters and 3-D reconstruction
parameters are considered equivalent and solved simultaneously. The adjustment assumes
that the data are distributed normally and only contain small errors. The distribution of many
small random deviations almost always converges to a normal distribution, as stated in the
central limit theorem. The problem is then treated as a least squares problem, and the squared
error for the bundles is reduced iteratively. An example of the result after bundle adjustment is
shown in Fig. 15. The bundle adjustment output is a sparse point cloud, and the flight path is
visible as the image frustums have been aligned by the process.

Fig. 14 A bundle of light rays is projected from the frustum to the points in the scene and the error
is minimized.

Fig. 13 An example of line fitting to a noisy dataset using RANSAC. Two points are chosen to
create the line, and then the number of inliers within a given threshold are counted.
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The sparse point cloud model generated from SFM can be thickened by interpolation. The
technique called multiview stereopsis (MVS) uses points that have already been matched and
interpolates points using image data. Once additional points have been generated, visibility
filters are applied to remove invalid points. MVS first decomposes the input images into a
set of image clusters of manageable size so that dense reconstruction can occur. The algorithm
then matches them across multiple images to form an initial set of patches and uses an expansion
procedure to obtain a denser set of patches, before assigning visibility constraints (e.g., visibility
consistency, depth map test) to filter any false matches. The process generates a much denser
cloud but is dependent on the quality and density of the initial keypoint set. Using MVS gen-
erates a much richer point set than the sparse reconstruction created by the bundle adjustment,
as demonstrated in Fig. 15.

5.3 False Positive Detection

Normally, feature comparisons are done on small datasets (5 to 20 images) where there is sig-
nificant overlap between all the images, and the homography matrices are known. This is not
the case with low-altitude UAV datasets that cover a large area, as the features may only be in a
small subset of the total set of images. As such, a feature detector that finds a large amount of
“inliers” where there should be none is detrimental to the image matching process. As such, this
paper introduces a measure for comparing feature detectors where there is little or no image
overlap. This is achieved by finding the quantity of false matches and false inliers. To accomplish
this, the GPS information recorded in the exchangeable image file metadata was used to calculate
overlap between two images.

The coordinates for each image are recorded in World Geodetic System WGS84. This is an
unprojected coordinate system, which means the coordinates are not projected onto a flat surface
but instead, reference positions on the surface of a spheroid. The distance is effected by the both
the curvature of the earth and the longitude of the location (1 deg of longitude is 111 km at
the equator and shrinks to zero at the poles), which makes it difficult to measure distance.
The Haversine equation29 was used to approximate the distance between the images, and the
FOV and height of the UAV were used to calculate the distance to the edge of the image.
The maximum distance covered by the images and the distance between the image centers
were used to calculate the overlap between images. These were then matched separately to evalu-
ate whether the feature detector generates a significant number of false positives.

5.4 OpenCV and OpenMVG

All implementations for the feature detectors were taken from the OpenCV library6 and used
with the default settings except ORB, which in OpenCV has an arbitrary limit of 500 keypoints
per image. ORB uses FAST, which uses a threshold for evaluating keypoints. A low threshold
generates a large amount of keypoints that would normally slow down keypoint matching too
much for real-time applications. So as to ensure a fair comparison, this limitation was removed.
The feature detectors were applied to each image in each dataset to generate a set of keypoints.
The keypoints were then globally matched against every other set of keypoints in the dataset to
ensure that the best match correspondence was found. The keypoints were then compared against

Fig. 15 Sparse reconstruction after bundle adjustment versus the dense reconstruction after
MVS.
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the set of images where there was no overlap, in order to analyze how many false positive
matches were generated.

The second test used the matched points to generate a 3-D reconstruction. Although most
feature descriptor comparisons focus on keypoints generated and number of inliers, the example
shown here demonstrates that these do not necessarily translate into an accurate model. The final
output from the bundle adjustment step was a sparse point cloud. The resulting number of points
provided a metric for evaluating howmany keypoints comprised the final model. The OpenMVG
framework30 was used to generate the 3-D models. It is a powerful open source framework
that allows for easy modification. The framework was adapted to use the OpenCV feature
detectors to ensure an equitable comparison. The default matching settings were used to compute
the matches, and the global scene reconstruction approach7 was used to generate the sparse
point cloud.

5.4.1 Feature matching results

The number of keypoints and matches were recorded for each image in the dataset. The results
are shown in the boxplots in Figs. 16–22. The boxplots display the average times, the standard
deviations, and outliers for the images. The number of matches and the inliers were generated by

Fig. 16 Key points for nadir dataset: (a) Richview, (b) Kilmoon Cross, and (c) Boland’s Mills.

Fig. 17 Inlier results for nadir dataset: (a) Richview, (b) Kilmoon Cross, and (c) Boland’s Mills.

Fig. 18 Ratio matching results for nadir dataset: (a) Richview, (b) Kilmoon Cross, and (c) Boland’s
Mills.
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Fig. 19 False positive matching results for nadir dataset: (a) Richview, (b) Kilmoon Cross, and
(c) Boland’s Mills.

Fig. 20 False inlier results for nadir dataset: (a) Richview, (b) Kilmoon Cross, and (c) Boland’s
Mills.

Fig. 21 Ratio of inliers results for nadir dataset: (a) Richview, (b) Kilmoon Cross, and (c) Boland’s
Mills.

Fig. 22 Ratio of false inliers to false matches for nadir dataset: (a) Richview, (b) Kilmoon Cross,
and (c) Boland’s Mills.
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comparing the keypoints of every image with every other image in the dataset. The same was
then done for the false positive subsets for each image to analyze the global matching ability.

Each detector was compared with several metrics: (1) detected keypoints, (2) matches,
(3) inliers, and (4) ratio of inliers to matches. The number of keypoints is self-explanatory.
The number of matches was calculated by brute force matching of the keypoints in one set
with all the keypoints in the second set. In the case of the integer descriptors of SIFT and
SURF, this was calculated using a Euclidean distance equation. The distance for binary descrip-
tors was computed using a Hamming distance. The closest match for each key point was found.
The matches were filtered using the ratio test described as by Lowe;8 if the second closest match
was closer than the given ratio, then the match was considered valid. In these tests, the ratio was
set to 0.75; the same as used by Lowe.8

The ratio test is only heuristic for calculating a match that contains many outliers and points
that are not common to both images. A more robust technique is required to find an accurate
match and calculate the overlap. The computational expense to compare every feature in an
image increases exponentially, as the number of points increases. Instead, herein, points
were matched by using the iterative technique RANSAC,25 which constructs an alignment
mode in linear time. RANSAC assumes that the data contain “inliers” that fit within a given
threshold and “outliers” (noise) that do not fit within that model. The algorithm samples a
sufficient number of points to fit the model minimally and measures the number of inliers and
outliers. The approach is probabilistic; thus, perfect alignment is not ensured. RANSAC is
used as it is robust against noise, and the computation time increases linearly when aligning
images. OpenMVG uses a Contrario RANSAC,31 which adaptively adjusts the threshold based
on the amount of noise in the dataset.

5.4.2 Inlier results

The results shown in this section used RANSAC to match the images and count the number of
inliers between them. The vertical axis is the number of inliers that were found when matching
the keypoints. The number of false inliers was also checked by (1) comparing images where
there was no overlap and (2) recording the number of detected matches.

ORB found the greatest number of keypoints in all the nadir datasets by a wide margin,
followed by SURF or BRISK and then SIFT. AKAZE produced the least amount of keypoints.
The Boland’s Mills dataset proved an interesting dataset, generating up to 100,000 keypoints per
image. This was due both to the numerous buildings and vehicles on site, as well as having
images captured from the greatest height, with respect to the ground level. AKAZE generated
a comparable number of keypoints to SIFT and BRISK on the Boland’s Mills dataset but
underperformed on the other datasets.

The results in Fig. 17 show the total number of inliers found by each of the detectors. These
results are the most important with regards to generating a high-quality model, as the inliers are
used as input for the bundle adjustment and dense reconstruction. Although the total number of
inliers does not necessarily translate into an accuracy prediction for the reconstruction, it gives a
measure of how many points will be included in the final reconstruction. For Richview, ORB
generated the most inliers and AKAZE generated the least. Typically, the methods SIFT, SURF,
and BRISK performed equally well. For Kilmoon Cross, the number of matches decreased
significantly with each detector on average producing only 15 to 20 matches as compared to
as many as 50 for the other data sets. For Boland’s Mills, ORB generated the most inliers and
SIFT the least.

Although the ratio test for rough matching is essentially heuristic, it removes many of the
spurious results and gives a more accurate matching figure. The results (as shown in Fig. 18)
imply that the majority of keypoints generated by ORB were not used. The inlier results in
Fig. 17 fall into a similar pattern as the ratio matching results. Namely, the likelihood that
a match will be found increases with more keypoints. In this, SURF performed best on the
Boland’s Mills dataset.

The false positive results shown in Fig. 19 demonstrate that ORB was more susceptible to
noise such as reflections, whereas SURF had more false matches for the Boland’s Mills dataset.
AKAZE performed better on the noisy glasshouse data (Kilmoon Cross) but worse on the
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Boland’s Mills data. BRISK performed similarly on all datasets with a small number of false
inliers. SIFT had very few false matches on the noisy glasshouse data but a large amount on the
Boland’s Mills dataset. This high level of inconsistency shows the large impact of the datasets
themselves.

Figure 20 shows the number of false inliers, where there was no overlap between matched
images. For the Richview case, SURF performed the worst, despite not initially generating
a large number of inliers. In contrast, AKAZE generated almost no false inliers. For the
Kilmoon Cross case, SIFT generated the largest group of false inliers, whereas AKAZE
generated very few. With Boland’s Mills SURF generated the worst results, whereas AKAZE
generated the best, with the least number of false inliers. In all three cases, AKAZE performed
extremely well.

The ratio of inliers to matches, as shown in Fig. 21, is an indication of detector efficiency,
as generation of unusable keypoints is computationally expensive. AKAZE performed the best
on all datasets in part by generating the fewest keypoints. SURF performed the worst on the
Richview and Boland’s Mills dataset, whereas ORB performed the worst on the Kilmoon
Cross dataset.

The results in Fig. 22 compared the ratio of false matches to false inliers. An inlier is a match
that has been validated by RANSAC. In this dataset, there should be no inliers, as there is no
overlap between the images. Any matches that are found are false positives; the higher the
percentage of inliers to matches, the higher the false positive rate.

5.4.3 Timing results

Although the reconstruction is done offline and real-time image processing is not required, the
time taken to process a dataset does have an impact. In an exhaustive global comparison between
images, the processing duration increases substantially with the number of images. Accordingly,
an examination of keypoint generation and reconstruction times was conducted.

The time taken to process an image was consistent across all datasets, with SIFT requiring the
longest time to generate the keypoints at 1.5 s per image. SURF and AKAZE were the second
longest at 0.8 to 1 s to process an image. ORB and BRISK took the least amount of time,
normally between 0.2 and 0.5 s per image, with very little variance as compared to the other
operators. The only exception was in the Boland’s Mills dataset, where AKAZE took longer
(15 to 25 s) to generate the keypoints and had increased variance. This result is explained
by the high number of keypoints generated by AKAZE on the Boland’s Mills dataset
(23,000 as opposed to an average of 4000).

The times were also recorded for each reconstruction using OpenMVG and are shown in the
tables below. A number of interesting results were highlighted from this analysis. Most impor-
tantly, the matching time had a huge impact on the total time required for the reconstruction.
Notably, different descriptors are used by each detector. SIFT uses a 128-byte vector, SURF uses
a 64-byte vector, and AKAZE in this work uses a 64-byte vector, although it can also use a binary
detector for matching. ORB and BRISK use binary descriptors with a length of 256 and 512 bits,
respectively. Although matching binary descriptors should be faster as they only involve an
exclusive or XOR comparison between bit strings, the binary descriptors required significantly
more time (up to 240 times longer for ORB) due to the matching libraries being used. OpenMVG
uses the fast library for approximate nearest neighbors32 when comparing byte descriptors,
whereas brute force matching is used for comparing binary strings. Approximate binary
Hamming techniques, such as locality sensitive hashing33 and hierarchical clustering34 can
be used to improve speed but were outside the scope of this work.

SIFT, SURF, and AKAZE processing times corresponded to the times required for inlier
comparisons for detection, but the keypoint matching times differed (Tables 1–3). Those
times correlated with the number of keypoints generated. SURF took the most time, followed
by SIFTand AKAZE. ORB found the keypoints in the least amount of time, but the large number
of keypoints found meant that the subsequent matching times were also increased. ORB took
240 times longer than SIFT to finish matching the Boland’s Mills dataset where it found the most
keypoints. This was exacerbated by the larger datasets and by the brute force matcher. Despite
BRISK finding a similar number of keypoints to SIFT, SURF, and AKAZE, the matching time
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was substantially longer, up to 15 times longer on the Boland’s Mills dataset where it found
the most keypoints. One other interesting point to note is that the time required for keypoint
detection by BRISK should have been similar to ORB in OpenMVG, as the two methods
had similar performance in the earlier inlier test. Both OpenMVG and the inlier tests used
the same OpenCV implementation. So the reduced performance of BRISK may be a result
of how BRISK is initialized in OpenMVG. As the required processing duration does not increase
for a greater number of keypoints in the Boland’s Mills dataset and, in fact, matches the process-
ing speed of ORB for that dataset, the delay is believed to come from an initialization step in
the BRISK detector.

5.4.4 Reconstruction results

Valid models were produced for all the detectors for the Richview and Boland’s Mills datasets,
but the reconstructions failed for the Kilmoon dataset. To give a measure of accuracy of the
reconstructions, the models were overlayed with each other and aligned using iterative closest
point (Fig. 23). This allowed for large artifacts generated by an individual detector to be easily
observed. There were no large-scale artifact errors generated by the detectors. An additional step

Table 1 Richview results.

Keypoint detection Keypoint matching Reconstruction Total time

SIFT 1:32 2:54 1:25 5:53

SURF 0:51 3:44 2:15 6:51

ORB 0:17 51:03 3:12 54:34

AKAZE 0:56 1:20 0:56 3:13

BRISK 1:26 8:16 1:10 10:54

Table 2 Kilmoon Cross glasshouse results.

Keypoint detection Keypoint matching Reconstruction Total time

SIFT 2:13 5:11 0:41 8:07

SURF 1:18 8:08 1:01 10:29

ORB 0:17 32:30 0:46 33:34

AKAZE 1:18 1:31 0:22 3:11

BRISK 1:57 4:03 0:16 6:17

Table 3 Boland’s Mills results.

Keypoint detection Keypoint matching Reconstruction Total time

SIFT 20:57 34:46 17:51 1:13:42

SURF 11:21 1:20:19 1:22:08 2:53:50

ORB 3:01 138:05:14 1:05:00 139:13:17

AKAZE 19:01 33:01 18:42 1:10:46

BRISK 3:25 9:01:41 8:15 9:13:23
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of calculating the wall ratios of two main buildings from each dataset was conducted to measure
if the resulting model contained distortions not found in the original scene. The wall ratios were
found to be consistent across all reconstructions.

Although metrics, such as the number of keypoints generated and the number of inliers, are
traditionally used to evaluate the efficacy of a feature detector, arguably a more accurate measure
is how many of these keypoints are ultimately part of the sparsely reconstructed cloud. Herein,
these were evaluated with respect to the number of poses, tracks, and keypoints. The pose count
is the number of camera positions (rotation and location in 3-D space) that are successfully
calculated from the 2-D images; the track is the position of a characteristic point that is corre-
sponding across multiple images; and the number of points is the sparse point cloud result.
The root-mean-square error (RMSE) of the pixels is used to indicate the residual error when
aligning the camera poses. The results for the three datasets are shown in Tables 4–6.

The reconstruction results for Richview (Table 4) show that all of the keypoint detectors
managed to calculate the camera position for all of the images. Although the feature detector
ranking is the same as the keypoint results and the inlier results, the amount that was included in
the final point cloud reduced the scale of the difference. For example, ORB generated an average
of 15,000 keypoints and 300 inliers per image, but it only resulted in 7809 points in the final
model. In comparison, SIFT generated only 5000 keypoints and 80 inliers per image, but there
were 4828 points in the final point cloud. Additionally, the RMSE was much lower for the SIFT
cloud, which would indicate a higher accuracy. The results imply that while more keypoints
result in a denser point cloud, the cost in terms of generating and matching the keypoints
may outweigh the benefit.

The results for the Kilmoon Cross glasshouse are shown in Table 5. This dataset proved
problematic for all the detectors, with over half the images not ultimately positioned in the
final model. SIFT managed to pose the most cameras at 32 locations. The detector ranking
matched with the inlier results in Fig. 17, but again, the differences were massively reduced,
and the residual error was much lower.

Fig. 23 The reconstructions for (a) Boland’s Mill and (b) Richview aligned on top of each other.
The wall ratios were found to be consistent across all reconstructions. The green dots are the
estimated camera poses generated during the reconstruction.

Table 4 Reconstruction results for Richview.

Pose count Tracks RMSE Number of points

SIFT 163/163 26,240 0.2857 4828

SURF 163/163 31,775 0.4606 5950

ORB 163/163 38,750 0.4767 7809

AKAZE 163/163 16,739 0.5021 4386

BRISK 163/163 20,917 0.4455 4921
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For Boland’s Mills (Table 6), all of the detectors managed to calculate the camera positions.
The results differed from the keypoint and inlier metrics and more closely correlated with the
ratio test metric results. The ratio test is simply a heuristic for filtering outliers from a dataset and,
as seen in the previous results, may not indicate the quality of the final reconstruction. All
approaches generated a large number of points, but SURF performed the best overall, closely
followed by ORB and AKAZE. SIFT and BRISK performed the worst. The residual errors were
also similar with SIFT producing the smallest RMSE.

6 Discussion

The focus of feature detectors in recent years has been to increase the speed of the computation
and increase the number of inliers for rapid matching in robotic and real-time vision applications.
Importantly, the requirements of SFM are different in that usable keypoints that can be tracked
across multiple images are more useful in reconstruction. Additionally, quickly generating more
keypoints of lower quality actually hinders reconstruction when the descriptors for the dataset
must be globally matched. Furthermore, the metrics normally used for evaluating detectors such
as inliers had little effect on the final reconstruction, with most of the generated keypoints dis-
carded during bundle adjustment. The final output only used a small percentage of the generated
keypoints in the final model.

Two interesting results emerged from the above experiments: (1) having a large number of
inliers does not necessarily translate into more points in the final point cloud reconstruction
(despite a traditional reliance on this as a metric for detectors), thereby demonstrating that
the cost of comparing a large quantity of redundant keypoints may outweigh the advantage
of having the extra points and (2) despite the explosion of keypoint detectors and descriptors,
none of them led to a substantial improvement in the quality of SFM reconstruction. In fact,
SIFT, the oldest detector tested in this paper was consistently (at least marginally) better at esti-
mating camera poses during the final reconstruction stage.

An overview of the performance of the operators is given in Fig. 24. The comparison of
accuracy versus time taken is used to give an idea of the relative performance of the operators
across the three cases. The descriptors are indicated by the shape (triangles equal SIFT, square

Table 6 Reconstruction results for Boland’s Mills.

Pose count Tracks RMSE Number of points

SIFT 52/52 48,037 0.6282 48,089

SURF 52/52 75,220 0.7007 75,272

ORB 52/52 65,634 0.7019 65,686

AKAZE 52/52 63,106 0.7609 63,158

BRISK 52/52 38,979 0.7296 39,031

Table 5 Reconstruction results for Kilmoon glasshouse.

Pose count Tracks RMSE Number of points

SIFT 32/82 2684 0.265 2716

SURF 27/82 3001 0.4919 3028

ORB 27/82 3178 0.4044 3205

AKAZE 28/82 1320 0.4699 1348

BRISK 20/82 1346 0.3686 1366
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equals AKAZE, etc.) and the datasets are indicated by text, border, and fill (gray equals
Richview, white equals Boland’s, and Kilmoon equals black fill). The accuracy is deduced
from the reconstruction results, whereas the time is the total time taken for the reconstruction
and normalized by the longest duration.

7 Conclusions

This work compared five feature descriptors (SIFT, SURF, ORB, AKAZE, and BRISK) on three
different aerial datasets captured by UAV with the intention of examining if there was a per-
formance improvement in reconstruction quality. The datasets were gathered at low altitude
by UAVs with no rotational or scale change and with an 80% overlap. The results showed
that, although some feature descriptors generated more keypoints and more inliers, they did
not necessarily lead to a better quality 3-D reconstruction. The number of points that passed
inlier evaluation was dramatically reduced by the bundle adjustment step from a factor of
10 to a factor of 2 in the output cloud. The additional time spent evaluating the matches also
massively increased the processing time, which negated the benefit of having more inliers.
Examining the final output clouds showed that despite the huge variance in keypoint generation
and inlier matching of the five detectors, there was only marginal difference in the final
reconstruction with SIFT having the smallest residual error across all datasets.
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