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ABSTRACT: This paper introduces a three-dimensional reconstruction experiment based on a physical 
laboratory-based experiment on a brick wall. Using controlled shooting distances and angles, different 
images sets were captured and processed with a structure from motion based technique, which can recon-
struct 3D models based on multi-view, Two-Dimensional (2D) images. Those 2D geometries are shown 
to generate significant deformations within the resulting point cloud, especially where there were large 
angles (with respect the camera position and the wall’s normal direction) and at close distances to the 
wall’s surface. This paper demonstrates that by overlapping different flawed image sets, the deformation 
problem can be minimised.
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been used to find repeated patterns for measurement, 
the shape from contours method (Witkin 1981) used 
contour shape distortion for measurement estima-
tion, the shape from focus method (Pentland 1987) 
using focus changes to compare distances. Alterna-
tively the Structure From Motion method (SFM) 
(Ullman 1979) uses images taken from multiple 
viewpoints for triangulation. Among those methods, 
the SFM approach is the only method independent 
of specified conditions, such as shadows or surface 
patterns. Thus, it has been widely applied, especially 
as Unmanned Aerial Vehicles (UAVs) have become 
increasingly popular in photogrammetry applications 
such as bridges inspection (Hallermann 2014), land-
slide monitoring (Lucieer 2014), building damage 
detection (Sui 2014).

2 RELATED WORK

Building on the SFM approach, Longuet-Higgins 
(1981) introduced a means matrix to recover the 
camera position for better image match. Some 
researchers have used this with the RANdom 
SAmple Consensus (RANSAC) method as intro-
duced by Fischler & Bolles (1981) to discount erro-
neous feature matches and with the work by Lowe 
(2004) in the form of the Scale Invariant Feature 
Transform (SIFT) method for feature extraction.

All of the aforementioned techniques focus 
on refining the processing procedure, either by 
increasing the speed or the accuracy. What is over-
looked is the question of improved data acquisition 
strategies. As a passive reconstruction method, the 

1 INTRODUCTION

Three-Dimensional (3D) reconstruction is widely 
used in urban modelling and infrastructure inspec-
tion. In the history of computer vision development, 
this topic has been intensively researched, and a vari-
ety of methods have been proposed. Generally, these 
methods can be classified as either active or passive. 
Active methods, such as laser scanning (Jarvis 1983), 
use active interference to detect the target and collect 
depth information. However, most of the complex 
detectors required for these methods are expensive 
and complex and result in restricting its scope of appli-
cation. On the contrary, passive methods employ rela-
tively inexpensive digital cameras to record light that 
already exists in a scene. These devices are less restric-
tive, but a challenge remains in determining the shape 
of a scene from images and videos from their Two- 
Dimensional (2D) information. Thus, further 
research has focused on abstracting the depth infor-
mation from these 2D images. To achieve that, vari-
ous methods have been proposed. The simplest way 
is imitating a human binocular visual system by 
using stereo cameras, which have two or more lenses 
with separate image sensors (Izadi et al. 2011). Like 
the active methods, this method relies on complex 
equipment and independently known locational 
information, which limits the ease of use. The ideal 
approach uses only one simple camera for the task 
to which image post-processing is applied. Several 
approaches involve shape identification through a 
shading method (Horn 1975) or some other means. 
Specifically by using shadow changes for calculation, 
the shape from texture method (Ikeuchi 1981) has 
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quality of SFM results is closely related to the data 
collection procedure. These relate to the camera 
angles, the offset distances, the light conditions, and 
the camera model. Among those factors, the angles 
and distances are most intrinsic to the survey proc-
ess. To date, however, their impact on results and 
means to optimize their accuracy have yet to be 
comprehensively addressed. In UAV inspections, 
it is not clear whether a close distance or a better 
shooting angle will benefit the results. To begin to 
investigate this topic, a laboratory experiment was 
devised and conducted as described below.

3 EXPERIMENT SETTING

The laboratory experiment was conducted on a 
custom constructed of masonry wall (130 × 90 cm) 
(Figure 1). In an attempt to replicate field conditions, 
a lightweight digital camera or action camera com-
monly used with UAVs was selected: specifically, the 
Cannon IXUS 175 camera. The camera was tripod 
mounted to control the shooting angles (Figure 2). 
Image capture occurred at offsets from 1, 2, and 
3 meters from the wall’s front surface. Camera angles 

Figure 1. Camera setting.

Figure 2. Camera angle setting.

Figure 3. Five positions for data capture from different 
angles and distances.

Figure  4. The 3 images from each of the 5 positions 
shown in Figure 3.

Figure 5. Laser scanner setting.

Figure 6. Laser scan based point cloud.



2759

were set as 30, 45, and 60 degrees to the wall’s normal 
direction, as shown in Figure 3. In total, 5 groups of 
data were collected; each group of data includes 3 
images, as shown in Figure 4. As a reference dataset, 
the wall was scanned with a Leica ScanStation P20 
terrestrial laser scanner, as shown in Figure  5. The 
scan resolution was 12.5 mm at 10 meters, 4698 × 833 
points, yielding the results shown in Figure  6. For 
SFM reconstruction, the non-commercial platform 
VisualSfM developed by Wu (2013) was used. To ana-
lyse the results, CloudCompare and MATLAB soft-
ware packages were used for point cloud comparison.

4 RECONSTRUCTED RESULT

Table  1  shows the SFM reconstructed result. 
Datasets ‘a’ to ‘e’ are based on single groups of 
images (3 for each time). Datasets ‘f ’ and ‘g’ are 
based on processing two groups images (6 images 
for each time) in a single reconstruction. These 
observations, show that the datasets taken within 
2 meters (‘a’ to ‘d’) have varying degrees of miss-
ing features, which intensify as the camera angle 

increases. As the camera distance increases, the 
situation improves. This defies common percep-
tions that closer data capture should be superior. 
A possible reason is that the longer shooting dis-
tance increased the scope of images with a fixed 
field of view, thus increasing the overlapping and 
matching between images, which is a significant 
part of the SFM process. Furthermore, by process-
ing two sets of images together (f  and g), reliability 
losses can be overcome.

5 DATA ANALYSIS

Evaluation goal was to assess both the geometric 
accuracy and point distribution of the reconstruc-
tions. To measure geometric accuracy, each data-
set was aligned with the reference data (i.e. the 
scanned laser point cloud data), and five bricks 
were chosen as specific features (as shown in Fig-
ure 7). Then, the displacement of each feature was 
calculated by comparing it the SFM reconstruc-
tion to the corresponding feature in the reference 
data. As each feature was a group of points, the 
displacement was represented as mean distance 
and standard deviation, as shown in Table  2, 

Table 1. Point cloud result.

*The number of points only includes points in the wall 
area.

Figure 7. Selected features.

Table 2. Feature displacement.

‘—’ indicates that no corresponding feature can be found.



2760

which was calculated from the distance of each 
point in the SFM-feature to the nearest neighbor 
in the reference-features. Since datasets ‘a’ and ‘b’ 
were highly incomplete which resulted in indistin-
guishable features, the displacements could not 
be compared. For datasets ‘c’ to ‘g’, the results 
are plotted in Figure 8 showing that point clouds 
reconstructed from a single group of images have 
bigger errors while those that included a secondary 
image taken from a different angle had improved 
geometric accuracy. The datasets ‘f ’ and ‘g’, which 
contain two groups of images, had nearly indis-
tinguishably levels of high geometric accuracy for 
feature displacement. 

All distances are shown in meters.
In addition to geometric accuracy, surface point 

distribution can be another important characteristics 
for SFM-based point cloud evaluation. Unlike laser 
scanning where a laser beam moves over the surface 
with a constant speed, SFM seeks common points 
that appear in overlapping images. The image overlap 
rate in different regions are different and result in a 
non-uniform point cloud. In this experiment, in order 
to compare the point distribution, a searching radius 
of 0.1 m was set to calculate the density variance on 
the surface. The results are shown in Figure 9.

In this comparison a greater distinction in the 
data quality in sets (f) and (g) can be seen. Over all, 
in the horizontal direction, the density in the center is 
much denser than the boundary. This mainly due to 
the overlapping is higher in the middle. In the vertical 

direction, in case, the points are much denser on the 
upper side. In case (f) the data captured from 1 meter 
away at 60° and 45° shooting angles have a much 
greater variation. In the upper portion of both sam-
ples, there is a wide, high-density area, while the bot-
tom portions of the wall have more empty spots. This 
is much worse in case (f). A possible reason is that 
the bigger shooting angle will increase the perspective 
effect. The upper part, which is closer to the camera, 
occupied most of the pixels in the images. Thus, the 
bottom part lacks sufficient data for uniform presen-
tation. Furthermore, the shorter distance decreased 
the image scope, which results in poor overlapping. 
Thus, some features at the bottom cannot be matched 
from multi-viewpoints for triangulation. In contrast, 
dataset ‘g’ gives a better presentation of the bottom 
features and has a more uniform surface distribution.

To better interpret the situation, the statistical 
distribution of the points is shown in Figure  10. 
Although the average density of data taken from 
1  m is higher than the data taken from 2  m, the 
standard deviation of the former is almost dou-
bled. This means that even though the point cloud 
taken from 1 m contains more points, they are not 
well distributed. For example, some surface has 
extremely high density, even exceed what is needed, 
while some surface was not dense enough to 
describe the feature. Meanwhile, the smaller stand-
ard deviation number in the small angle dataset 
proved that the surface density is more uniform.

6 DISCUSSION

The experiment and analysis demonstrated that 
images obtained from closer locations or with 
larger shooting angles were less reliable, result-
ing in an incomplete point cloud. A good strategy 
to solve this problem is adding another group of 
non-colinear images to the current dataset. On the 
other hand, even when combining multiple groups 
of data, big shooting angles (i.e. 90 degrees) and 
short distances will lead to poorly distributed 
results in which most points are concentrated in 
only small areas and other details remain only par-
tially documented.

Figure 8. Displacement of each feature.

Figure 9. Density variance in the surface.

Figure 10. Points statistical distribution.
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The results provide meaningful insights for real-
life UAV inspection strategies. When inspecting a 
slender object, such as road or coastline, scanning 
it twice with different shooting angles will improve 
the SFM results. Moreover, with a fixed lens  
camera, instead of getting too close to the target, 
keeping a relatively longer distance and a smaller 
shooting angle will be more appropriate when gen-
erating the flight path.

7 CONCLUSIONS

In this paper, camera position was tested in a lab 
experiment to consider the effects of  varying cam-
era angles and distances on SFM reconstruction 
accuracy when compared to a single terrestrial 
laser scan. Larger shooting angles were found to 
significantly degrade the data completeness level, 
geometric accuracy, and point uniformity. Over-
all, a relatively greater distance combined with a 
smaller shooting angle in UAV inspections is rec-
ommended. In addition to that, by adding one 
more group of  offsetting images, the data reliabil-
ity can be significant improved.
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