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Abstract  

This paper describes a methodology that automatically extracts semantic information from 

urban ALS data for urban parameterization and road network definition. First, building 

façades are segmented from the ground surface by combining knowledge-based 

information with both voxel and raster data. Next, heuristic rules and unsupervised learning 

are applied to the ground surface data to distinguish sidewalk and pavement points as a 

means for curb detection. Then radiometric information was employed for road marking 

extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic 

workflow was able to generate a F-score close to 95% for pavement and sidewalk 

identification with a resolution of 20cm and better than 80% for road marking detection. 

 

Keywords: Airborne Laser Scanning, point cloud segmentation, urban modelling, 

pavements classification. 

1. Introduction 

According to Biljecki et al. (2015), a three-dimensional (3D) city model can be used in 

more than 100 applications, including emergency response planning, infrastructure 

inventory and maintenance, and virtual tourism. Therefore, building 3D city models that 

can be efficiently updated and semantically labeled are essential in the context of a smart 

city. While many effective strategies have been introduced for distinguishing buildings 

from vegetation and paved areas (e.g. Idrees et al., 2013; Vo et al., 2016), even in a Big 
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Data context (Aljumaily et al., 2016, 2017), relatively little has been robustly and scalably 

achieved for the semantic labeling of smaller road features such as curbs and road 

markings. Yet, these are needed for systematic cataloguing and management. Obtaining 

these smaller road features is the topic of this paper. 

2. Background 

Comprehensive documentation of the urban road network is essential for applications 

such as transportation management and auto-navigation. Broadly speaking, remote sensing 

based research concerning road network extraction and modelling can be divided in two 

broad categories based on input data:  (1) imagery and (2) Light Detection and Ranging 

(LiDAR). A wide range of approaches has been applied to extract road surfaces (Wang et 

al., 2016) such as classification-based methods (Kirthika and Mookambiga, 2011), 

knowledge-based methods (Shen et al., 2008), mathematical morphology (Barrile and 

Bilotta, 2016; Alshehhi and Marpu, 2017) and active contour models (Anil and Natarajan, 

2010). These methods may document either the complete road network (Poullis, 2014) or 

different topographical parameters of road axes, such as road centerlines (Miao et al., 2013) 

and horizontal alignment (Holgado-Barco et al., 2015). The rapid growing popularity of 

imagery obtained from unmanned aerial vehicles (Chen et al., 2016) is fueling such 

approaches. While imagery is inexpensive, deriving 3D models requires intermediary steps 

that may be problematic in urban areas because of parallax problems (e.g. Byrne et al. 

2017) or prove computationally expensive with reduced accuracy (O’Keeffe et al. 2017). 

As such, LiDAR (a laser-based technology) offers a cost-effective alternative data stream. 

When deployed on a mobile platform, laser scanners are able to gather 3D road network 

data with spatial resolution of thousands of points per square meter (Puente et al., 2013), for 

model reconstruction (Yang et al., 2013a; Chen and He, 2015), curb mapping (Kumar et al., 

2017; Rodríguez-Cuenca et al., 2015; Zhou and Vosselman, 2012) or network asset 

management via classification and subsequent inventorying of features such as traffic signs 

(Yu et al., 2016) or road markings (Yu et al., 2015). The procedure adopted for the traffic 

signage involved reflectivity based clustering for extraction and then bag-of-visual-phrases 

representation and a deep Boltzmann machine feature encoder (Yu et al., 2016). For road 

markings, heuristic decisions and deep learning model were used for road marking 

identification (Yu et al., 2015). Subsequently, Yang et al. (2017) classified road facilities 

such as street lamps, guardrails or power lines from mobile laser scanner data by combining 

features at different scales (point, segment and object scales) with contextual features. The 

high spatial density of the 3D data (averaging 2000 pts/m
2
 on the road surface) allowed for 

the detection and classification of small road objects but at a high cost with respect to data 

collection, processing, and storage.   

In contrast, ALS systems acquire less dense 3D information (up to only a few hundred 

points per square meter, Vo et al., 2015) and are limited by the nadir orientation of the 

equipment (Hinks et al. 2009). From such data Zhao et al. (2011) extracted road centerlines 



  

from road images generated from airborne LiDAR data by assuming that point intensity 

satisfied a multivariate Gaussian distribution and dividing terrain objects into 4 classes. 

Points that belonged to the road class were selected manually, road segments were found 

using a radius-rotating intersection detection method, and road centerlines were fitted using 

total least squares. Subsequently, Hu et al., (2014) successfully developed a road centerline 

detection methodology by first separating ground and non-ground points and then using 

spatial clustering using a mean shift to detect road center points, with  tensor voting to 

enhance linear features and a Hough transform to defines centerline primitives. To the same 

end, Hui et al. (2016) employed skewness balancing (for intensity-based filtering), a 

rotating neighborhood (to remove narrow roads), and hierarchical fusion and optimization 

(for elimination of parking lots and bare earth). Instead of extracting only the road 

centerline, Zhu and Mordohai (2009) extracted the whole road network by first detecting 

multiple, horizontally close, ground planes, and subsequently projecting ground points 

intensities onto to 2D images. They extracted road features on that image using boundary 

and interior features and then generated hypotheses from those features. The combination 

of the hypotheses generated a road likelihood map that was further used to find a set of road 

segments via a minimum cover algorithm.  

Although ALS technology is constantly improving, there exist some limitations such as 

the low density in comparison with TLS systems, thus small elements of the road network 

may be missing, hindering progress towards road asset inventory applications. With more 

efficient flight path planning and a lower flight altitude, this drawback can be partially 

alleviated (He et al., 2017). This paper explores the possibility of using dense ALS data for 

extracting different elements of the urban road layout that are typically assessed using 

terrestrial equipment. The fact that terrestrial surveys aiming to cover large urban areas take 

longer and need more data storage capacity than an aerial survey motivates this work, 

which explores the possibility of using dense ALS data for extracting different elements of 

the urban road layout that are typically assessed using terrestrial equipment. Specifically, 

the main parts of the road (curbs, sidewalk and pavement) and road markings. The main 

contributions of this paper are the usage of ALS data for (1) Extracting a curb map that 

allows the classification of sidewalk and pavement area, and (2) Detecting road markings 

on the ground relying on the reflective properties of the painting materials.  

 



 

 

Figure 1. Workflow.  

 

3. Methodology 

The proposed method aims to extract urban ground-level, semantic information in the 

form of road edges, sidewalks, and road markings from ALS data through five steps (Fig. 

1): (1) point cloud preprocessing, (2) elevation-based segmentation, (3) ground extraction, 

(4) road curb extraction, and (5) Road features detection.  

3.1. Step 1. Point cloud preprocessing 

Let 𝑷௥௔௪ = ሺ࢞, ,࢟ ,ࢠ 𝑰, ,࢞ሻ be a raw three-dimensional (3D) point cloud, where ሺ࢚ ,࢟  ሻ areࢠ

the 3D coordinates acquired by the positioning system representing a set of points in space, 

and ሺ𝑰,  ,ሻ are, respectively, the intensity value and the time stamp for each 3D point. First࢚

intensity values are normalized to be proportional to the surface reflectance. This enables 

fusing multiple ALS datasets (Kaasalainen et al., 2005; Vain et al., 2010), when necessary. 

According to Höfle and Pfeifer (2007) (Eq. 1), the reflectance depends on a reference range ሺ𝑅௦ሻ, the distance between the laser scanner and the object (R), the angle of incidence ( - 

angle between surface normal and laser beam -), the instrument, and atmospheric 

conditions with respect to attenuation ηatm:  

 𝑰݊݉ݎ݋ =  𝑰 𝑅ʹ𝑅ݏ  ͳ
ηatmcos 𝛼 

(1) 

 



  

 

A factor not explicitly addressed in this equation is the equipment. Herein, the trajectory 

data were used to compute the range and incidence angle for each point in the point cloud. 

The normalized range was set to 300 m, and the atmospheric attenuation was neglected 

since there was only a single flight conducted over only 4 hours (see Section 4.1 for dataset 

information). As each scanned area is measured from multiple angles, this normalization 

homogenizes the intensity values of the raw point cloud (Fig. 2a).  

Next, a saliency analysis was conducted on the point cloud 𝑷௡ = ሺ࢞, ,࢟ ,ࢠ 𝑰௡௢௥௠,  ሻ to࢚

segment points whose normal vectors are close to the z-axis (i.e. belonging to a horizontal 

surface) from those who are not. For this, an algorithm by Wang et al. (2015) was modified. 

Instead of using the distance between the normal vector of each point and a dominant 

normal vector to compute a saliency map, the following modifications were made: 

 Normal vectors were obtained within a voxel space using a cubic cell grid (Soilán et al., 

2017). For each voxel, a single point was defined as the centroid of the points in the cell, 

thereby creating a de facto downsampling of the data. This accelerates calculation of 

normal vectors and reduces noise.   

The k-means algorithm (Lloyd, 1982) was modified by changing the cluster selection 

constraint to select the dominant normal vector. Instead of taking the largest cluster of 

five to define the dominant normal vector, the centroid of the cluster closest to the z-axis 

is used for the ground plane.  

 

 

Figure 2. Point cloud preprocessing. (a) Intensity normalization. Point cloud colour based intensity values. Intensity values of the raw 

point cloud are homogeinized after the normalization process. (b) Saliency analysis. The point cloud is divided using the saliency of each 

point. 𝑷௦, point cloud of salient points, is colored in red while 𝑷௡௦, point cloud of non-salient points, is colored in different tones of blue 

according to the height of the point. 



 

The saliency map is computed by projecting the distance between each normal vector 

and the dominant normal vector onto a hyperbolic tangent function space. This allows 

separation of salient and non-salient points (Wang et al., 2015), Fig. 2b. Façades, poles, and 

lateral sides of vehicles contain salient points, while roofs, balconies, and ground segments 

do not. The saliency analysis returns the point indices 𝒊௦ and 𝒊௡௦, for point positions within 𝑷௡௢௥௠. Let 𝒮ሺ𝑷, 𝒊ሻ be a function that selects a subset of points with indices 𝒊 in a 3D point 

cloud  𝑷 . The salient and non-salient point clouds can be computed as 𝑷௦ =  𝒮ሺ𝑷௡, 𝒊௦ሻ 

and 𝑷௡௦ =  𝒮ሺ𝑷௡, 𝒊௡௦ሻ, respectively. To save computational resources, only the indices are 

stored, applying 𝒮ሺ𝑷, 𝒊ሻ when it is needed.  

3.2. Step 2. Elevation-based segmentation 

Saliency analysis facilitates façade extraction using a height filter within a 2D raster 

image, where 𝑷௦ =  𝒮ሺ𝑷௡, 𝒊௦ሻ  the salient point cloud and ℛሺ𝑷, ݃௥ሻ  a function that 

computes a 2D raster structure, which is created defining a square cell grid with size ݃௥ in 

the XY plane and projecting the point cloud 𝑷 onto it. The raster structure contains the 

following information: 

 Index of every cell in the raster grid that contains at least 1 point; given an ܰܯݔ grid, the 

cell in a position ሺݔ, ,ݔ | ሻݕ ݕ > Ͳ, ݔ ≤ ܰ, ݕ ≤ ݕ is defined as ܯ + ݔሺܯ − ͳሻ.  

 Indices of the points in 𝑷 within each cell, herein referred to as the cell index. 

 Intensity based image stored in a 2D array, defined as the average point intensity of each 

cell; visualizable as a grayscale image.  

 Height based image stored in a 2D array, defined as the maximum height difference of 

points within each cell. 

 Density based image stored in a 2D array, defined as the number of points in each cell.  

 

A 2D raster structure 𝑹௡௦ =  ℛሺ𝑷௡௦, ݃௥ଵሻ is computed, using the height based image 

(Fig. 3a) for façade extraction by binarizing it using Otsu method (Otsu, 1979), that is, 

assuming that the image has two classes of pixels and calculating a binarization threshold 

that maximizes the inter-class variance. Then, the indices of pixels, 𝒊௙௣, which are set to 

“true” in the binary image, are used to select the points in 𝑷௡௦  belonging to vertical 

structures (e.g. façades and poles). Subsequently, a Euclidean distance clustering is 

performed to organize the points by grouping nearby points together. Next, a contextual 

merging process connects points of the same façade that belong to different clusters due to 

occlusions and openings. If the points of a cluster share all their raster indices with another 

cluster, then both clusters are assumed to belong to the same vertical structure and are, thus, 

merged to finally become a set of clusters 𝒞௙௣ = {𝒊௙௣ଵ , 𝒊௙௣૛ … 𝒊௙௣௡ } | 𝒊௙௣௜  ⊂ 𝒊௙௣ . The 

segmented points of the entire point cloud can be computed as 𝑷௙௣ =  𝒮(𝑷௦, 𝒊௙௣), while 

those of each individual cluster as 𝑷௙௣𝒊 =  𝒮ሺ𝑷௙௣, 𝒊௙௣𝒊 ሻ (Fig. 3b).  



  

3.3. Step 3. Ground extraction 

Ground extraction was conducted based on a voxel grid-based segmentation in which the 

ground segment is obtained via region growing (as per Douillard et al., 2011), where 

adjacent voxels whose vertical mean and variance differences are less than certain 

thresholds (empirically defined as ݀𝜇 = 7.5ܿ݉  and  ݀𝜎 = Ͳ.Ͳ5ሻ , and seed points are 

selected from within 𝑷௡௦ relying on contextual knowledge, as lower points in 𝑷௙௣ represent 

the bottoms of façades and pole-like structures, which are assumed to connect with the 

ground.  

Thus, the point with the minimum z-coordinate for each cell computed within the raster 

structure 𝑹௙௣ =  ℛሺ𝑷௙௣, ݃௥ଵሻ  is stored. The z coordinates of these selected points are then 

gathered in a 50-bin histogram. The largest bin ܾ௜ and its two adjacent bins (ܾ௜−ଵ , ܾ௜+ଵ ) are 

selected, and points with indices 𝒊௦௘௘ௗ with z coordinates between the limits of the selected 

histogram bins are extracted. This ensures selection of points in 𝑷௙௣ that connect with the 

ground (some points may be poor candidates due to ground-level occlusions). Finally, a 

KNN algorithm is applied to find the five nearest neighbors (as established empirically) in 𝑷௡௦ for each point of 𝑷௟௢௪ =  𝒮ሺ𝑷௙௣, 𝒊௦௘௘ௗሻ, thereby obtaining a group of seed points (Fig. 

4a).  

Let 𝒱ሺ𝑷, ݃௩ሻ be a function that computes a cubic voxel grid structure with grid size ݃௩ for a point cloud 𝑷. The voxel structure 𝑽௡௦ = 𝒱ሺ𝑷𝒏࢙, ݃௩ଵሻ is computed, and voxels 

containing seed points are selected as per the aforementioned ground segmentation method.  

 

Figure 3. Elevation-based segmentation. (a) height based image computed within the raster structure 𝑹௡௦ of non-salient point cloud 𝑷௡௦, 

which highlights building outlines; (b) elevation-based segmentation outputs building façades and vertical, pole-like objects (red). 



 

 

Figure 4. Ground extraction. (a) Lower points of vertical elements, colored in red, are used for selecting seed points. (b) Extractable 

ground segment (red) after region growing.  

 

The resulting voxel indices relating to the ground surface can be transformed into a set of 

point indices 𝒊௚௥௢௨௡ௗ . The ground point cloud (Fig. 4b) can be extracted as 𝑷௚௥௢௨௡ௗ = 𝒮ሺ𝑷௡௦, 𝒊௚௥௢௨௡ௗሻ.  

3.4. Step 4. Road curb extraction 

Urban ground typically consists of pavement (road surface) and sidewalks separated by 

curbs, which form the road edge. However, the separation is not necessarily continuous 

because of ramps and driveways, which preclude simply using a change in elevation to 

establish the road edge. Instead, the proposed curb extraction algorithm has four main steps: 

(1) finding ground limits through a raster structure, (2) approximating the road axis, (3) 

partitioning the ground segment, and (4) fusing heuristic and supervised learning methods 

for a segment-wise analysis based on geometrical features.   

3.4.1. Step 4a. Ground limits detection 

The first step is to detect the ground segment limits. Usage of global thresholds to detect 

elements such as curbs may incur in large error rates because of local geometric 

differences. For that reason, a local analysis is preferred. This is done by approximating the 

road axis (assumed to be parallel to the primary road direction) by using the ground limits.  

For this, let  𝑷௚௥௢௨௡ௗ =  𝒮ሺ𝑷௡௦, 𝒊௚௥௢௨௡ௗሻ  be the ground point cloud and 𝑹௚௥௢௨௡ௗ = ℛሺ𝑷௚௥௢௨௡ௗ, ݃௥ଶሻ  a raster structure of 𝑷௚௥௢௨௡ௗ . Using the density-based image, an 

occupancy binary image 𝑰𝒈 can be created where cells with at least one point are set to 

“true” (Fig. 5a). Then, a spherical structuring element with 5 pixels (equivalent to 1 m for ݃௥ଶ = Ͳ.ʹ݉ሻ of radius, ܪ, is defined. Finally, a set of morphological operations are applied 

to 𝑰𝒈 . A closing operation, 𝑰௚ଶ = (𝑰𝒈 ⊕ (ܪ ⊝ ,ܪ  closes holes in the image caused by 



  

occlusions in the ground. A morphological erosion, 𝑰௚ଷ = (𝑰𝒈૛ ⊝  trims the ground ,(ܪ

boundaries, and an XOR operation 𝑰௟௜௠௜௧௦ = 𝑰𝒈૛⨁𝑰𝒈૜ retrieves the edges of the ground. As 

the correspondence between pixels in 𝑰௟௜௠௜௧௦ and points in 𝑷௚௥௢௨௡ௗ is known via 𝑹௚௥௢௨௡ௗ 

properties, which stores point indices for each pixel (𝒊௟௜௠௜௧௦ሻ, a point cloud with its ground 

limits can retrieved as  𝑷௟௜௠௜௧௦ =  𝒮ሺ𝑷௚௥௢௨௡ௗ, 𝒊௟௜௠௜௧௦ሻ (Fig. 5b). 

 

Figure 5. Ground segment processing. (a) Occupancy binary image computed within the raster structure 𝑹௚௥௢௨௡ௗ, (b) Ground limits 

(coloured in red) used to approximate road axis, (c) 𝑷௚௥௢௨௡ௗ transformed by rotating points so road axis ݒ௚௜  is aligned with local y axis 

(unit vector [0 1 0], which points to the North). (d) Ground partition with each section randomly coloured for visualization.  

3.4.2. Step 4b. Road axis approximation 

The point cloud 𝑷௟௜௠௜௧௦  is inherently unorganized. To define a set of vectors that 

approximate locally the road axis, let 𝓛 = ,ଵܮ} ,ଶܮ …  ௡}, be a set of polylines where eachܮ

polyline ܮ௜  is defined as a group of 3D vertices, ܮ௜ = ,ଵܩ} ,ଶܩ … ௜ܩ | {௡ܩ = ሺݔ, ,ݕ  ሻ௜, and 𝒗𝐺𝑖 the director vector of the corresponding segment. 𝓛 and 𝒗𝐺𝑖 are computed following theݖ

pseudocode in Algorithm 1. An iterative process select the point in 𝑷௟௜௠௜௧௦  with less 

neighbors, ܩ௜, to start a polyline, and defines the next vertex ܩ௜+ଵ as the further neighbor in 

a sphere with 5 meters of radius. The vector 𝒗𝐺𝑖  is then defined as the eigenvector 

corresponding to the largest eigenvalue after applying Principal Component Analysis 

(PCA) to the points within the defined neighborhood. The point ܩ௜+ଵ is then used to find 

the next vertex, and the process continues iteratively until there are no more neighbors. 

Then, if there exist points in 𝑷௟௜௠௜௧௦ that have not been used for the previous polylines, the 

whole process is repeated for a new polyline.  



 

Algorithm 1. Ground limits definition. 

Data: Road limit point cloud 𝑷௟௜௠௜௧௦. 

Outputs: lines: A set of polylines (cell array). 

                vectors: A set of vectors corresponding to each segment (cell array). 

Functions: - rangesearch(points1, points2, dist) outputs the index of the points in points1 

within a sphere of radio dist for each point in points2. 

                       -   Sort(array, condition) sorts an array given a condition. 

                  - pca(points) computes Principal Component Analysis of input points. 

Outputs eigenvectors and eigenvalues. 

id = rangesearch(𝑷௟௜௠௜௧௦ሺݔ, ,ݕ ,ሻݖ 𝑷௟௜௠௜௧௦ሺݔ, ,ݕ ,ሻݖ 5ሻ; 

id_sort ← sort(id, numel(id));     %% Indices ordered by number of neighbors 

line_index ← zeros(column vector with as many rows as points in 𝑷௟௜௠௜௧௦). 

line_number ← Ͳ; 
while NOT every ሺݔ, ,ݕ ሻݖ ∈  𝑷௟௜௠௜௧௦  is assigned to a line 

   line_starts ← first element in id_sort such that line_index = 0 

   line_propagation ← true; 

   cnt ← 1; 

   line_number++; 

   first ← true; 

   while (line_propagation == true) 

      If (first) 

         points_in_line ← id_sort(line_starts);   %%Indices of the points within a line. 

         first ← false; 

      end  

      If (points_in_line have been already assigned to a line) 

          line_propagation ← false; 

      end 

      lines{line_number}(cnt,:) ← [points_in_line(first), points_in_line(last)]; 

      [eigvec, eigval] = pca(𝑷௟௜௠௜௧௦(points_in_line)); 

      vectors{line_number}(cnt,:) ← eigvec(1,:); %%Eigenvector of largest eigenvalue. 

      cnt++; 

      line_index(points_in_line) ← line_number; 

      points_in_line ←  id(points_in_line(last)) %%Last point of a line, first point of                        

the next one. 

      points_in_line(line_index != 0) ← []; %%Delete already assigned points. 

   end 

end 

return lines, vectors 

 



  

 

3.4.3. Step 4c. Ground segment partition 

After approximating the road axis, 𝑷௚௥௢௨௡ௗ can be subdivided with the principal axes of 

each section corresponding to the road’s longitudinal and transversal axes. For that purpose, 

a coordinate transformation is done to 𝑷௚௥௢௨௡ௗ for each segment ܩ௜ obtained in Step 4b. A 

transformation matrix 𝑻 is defined such that  𝑷݃݀݊ݑ݋ݎ = [𝑻] · 𝑷݃ݐ݀݊ݑ݋ݎ  

 

(2) 

 

where [𝑻] =  𝑹ଷ௫ଷ ଷ௫ଵ𝟎ଵ௫ଷ࢚ ͳ  is composed of a rotation matrix 𝑹ଷ௫ଷ and a translation matrix ࢚ଷ௫ଵ. The rotation matrix is defined as a rotation about the z-axis with the angle ܽ that 

forms the vector 𝒗𝐺𝑖 and the y-axis: 

[𝑹͵ݔ͵] = ܽݏ݋ܿ]  ܽ݊݅ݏ− Ͳܽ݊݅ݏ ܽݏ݋ܿ ͲͲ Ͳ ͳ] 
 

(3) 

 

 

 and ࢚ଷ௫ଵare the ሺݔ, ,ݕ  ,௜. Note that y-axis is the unit vector [0 1 0] thatܩ ሻ coordinates ofݖ

according to the global coordinate system of the point cloud 𝑷௥௔௪, points to the North.  

 

Solving Eq. 2 gives a point cloud centered on ܩ௜ , with a y-axis corresponding to the 

approximate road axis 𝒗𝐺𝑖 . A single section is extracted from 𝑷௚௥௢௨௡ௗ௧  by selecting only 

those point indices 𝒊௚௜ with y-coordinate values of 0 to 5 m (the upper bound distance is the 

radius used to compute ܩ௜) and x-coordinate values between −ͳͲ m and ͳͲ m, assuming 

that the sidewalk with will be less than 10m wide. Hence, for each vector 𝒗𝐺𝑖, its indices 𝒊௚௜ 
define each road section in its original coordinates, 𝑷௚௜ = 𝒮(𝑷௚௥௢௨௡ௗ, 𝒊௚௜) ; in its 

transformed coordinates 𝑷௚௜௧ = 𝒮ሺ𝑷௚௥௢௨௡ௗ௧ , 𝒊௚௜ሻ . The complete partition of a ground 

segment can be seen in Fig. 5c. 

3.4.4. Step 4d. Curb definition 

Each section 𝑷௚௜௧  is heuristically processed to extract curb points. First, 𝑷௚௜௧  is divided 

into 1m long subsections along the y-axis. Then each subsection is projected onto the XZ 

plane (a vertical plane whose normal vector is the y-axis) and further divided into cells 



 

along the x-axis (Fig. 6a). The following curb features are then computed for each cell 𝒞௜ = ,࢞} ,࢟ ࢟ | {ࢠ = Ͳ, ௠௜௡ݔ < ࢞ < ,௠௔௫ݔ ݅ = ͳ … ݊.  

 𝜇ሺ݅ሻ: Mean of the z-coordinates of the points in 𝒞௜. 
 𝜎ሺ݅ሻ: Variance of the z-coordinates of the points in 𝒞௜. 
 ݀𝜇ሺ݅ሻ: Difference between vertical means of 𝒞௜ neighboring cells. ݀𝜇ሺ݅ሻ = { |𝜇ሺ𝐶௜ሻ − 𝜇ሺ𝐶௜+ଵሻ| ݂݅ ݅ = ͳ|𝜇ሺ𝐶௜−ଵሻ − 𝜇ሺ𝐶௜ሻ|݂݅ ݅ = ݊|𝜇ሺ𝐶௜−ଵሻ − 𝜇ሺ𝐶௜+ଵሻ| ݐ݋ℎ݁݁ݏ݅ݓݎ  

 

 ݀𝜎ሺ݅ሻ: Difference between vertical variances of 𝒞௜ neighboring cells. ݀𝜎ሺ݅ሻ = { |𝜎ሺ𝐶௜ሻ − 𝜎ሺ𝐶௜+ଵሻ| ݂݅ ݅ = ͳ|𝜎ሺ𝐶௜−ଵሻ − 𝜎ሺ𝐶௜ሻ|݂݅ ݅ = ݊|𝜎ሺ𝐶௜−ଵሻ − 𝜎ሺ𝐶௜+ଵሻ| ݐ݋ℎ݁݁ݏ݅ݓݎ  

Here, a set of conditions is defined for deciding whether a cell of points contains a curb. 

Any cell that contains a curb should have high vertical variance  𝜎ሺ݅ሻ, small difference 

between neighboring cell variances ݀𝜎ሺ݅ሻ and high difference between neighboring cell 

heights ݀𝜇ሺ݅ሻ. Parameters were selected based on empirical analysis:   

cell 𝒞௜ contain a curb if 𝜎ሺ݅ሻ > Ͳ.Ͳʹ5 ܽ݊݀ ݀𝜇ሺ݅ሻ > Ͳ.Ͳ75݉ & ݀𝜎ሺ݅ሻ < Ͳ.Ͳͳ5. 

Cells that fulfill those conditions are selected from which potential curb points can be 

extracted. While extracted points can be retrieved in the ground point cloud 𝑷௚௥௢௨௡ௗ and in 

the complete point cloud 𝑷௡based exclusively on stored indices, this heuristic procedure is 

insufficient for consistent detection, especially where they are curves. Similar errors may 

appear whenever the road axis and the y-axis of 𝑷௚௜௧  are not fully parallel. To overcome this 

drawback, an unsupervised classification approach is added as a subsequent step.  

For each road section 𝑷௚௜௧ , two local features are computed for each point 𝒑 ∈ 𝑷௚௜௧ :  (1) 

vertical range ݎሺ𝒑ሻ  and (2) vertical variance 𝜎ሺ𝒑ሻ  of the points within a spherical 

neighborhood of 𝒑. The neighborhood has a radius of 0.2 m, which, for each curb point, 

will contain points on both sides of the road edge. A two-class classification for both 

features is applied using a k-means algorithm, in which every subsection of 

,ሺ𝒑ሻݎ] 𝜎ሺ𝒑ሻ] points is assumed to contain two classes. Points whose features belong the 

class with the larger range and variance mean are selected as potential curbs.  

Now there is a combination of  two different curb maps obtained by:  (i) the heuristic 

process (with indices 𝒊௖ℎ  within 𝑷௚௜௧ , Fig. 6b) and (ii) an unsupervised classification 

algorithm (with indices 𝒊௖௞ within 𝑷௚௜௧ , Fig. 6c). The combination is shown in Fig. 6d. The 

process is conducted in a section-wise fashion. First, the intersection between both curb 

maps 𝒊௖௜ = 𝒊௖ℎ ת 𝒊௖௞ is obtained. If there are no points in the intersection (as will occur in 

curved sections),  𝒊௖௜  is defined as  𝒊௖௜ = 𝒊௖௞ . Subsequently, a region growing process is 

applied using the points with indices 𝒊௖௜ as seeds points and 𝒊௖௞ as a growing region via 



  

iterative neighbor searching. The process stops when no more points can be reached. A new 

set of indices, 𝒊௖௖ (related with 𝑷௚௜ and therefore with 𝑷௚௥௢௨௡ௗ), is finally generated. The 

output 𝒊௖௖ is a set of curb point indices.  

3.5. Step 5. Road features detection 

3.5.1. Step 5a. Pavement and sidewalk extraction 

For pavement and sidewalk extraction, let 𝑷௖௨௥௕௦ = {𝑷௖ଵ ׫ … 𝑷௖௝ … ׫  𝑷௖௡}  =𝒮(𝑷௚௥௢௨௡ௗ, {𝒊௖ଵ ׫ … 𝒊௖௝ … ׫ 𝒊௖௡}), ݆ = ͳ … ݊  be the curb map and 𝑹௚௥௢௨௡ௗ = ℛሺ𝑷௚௥௢௨௡ௗ, ݃௥ଶሻ the raster structure of the ground points. First, a coarse description of the 

sidewalk is obtained using the curb map and the following binary images: 

 ܫ௚ = occupancy image of 𝑷௚௥௢௨௡ௗ (Fig. 5b), where every cell of  𝑹௚௥௢௨௡ௗ that contains at 

least one point of 𝑷௚௥௢௨௡ௗ equals “true”. 

 ܫ௟௜௠ = occupancy image of 𝑷௟௜௠௜௧௦, where every cell of 𝑹௚௥௢௨௡ௗ that contains at least one 

point of 𝑷௟௜௠௜௧௦ equals “true”. 

 ܫ௖௨௥௕ = occupancy image of 𝑷௖௨௥௕௦.  

 

 

Figure 6. Curb detection. (a) Cross-section of ingle subsection of 𝑷௚௜௧ . Each colour represents one cell group, (b) Curb map obtained using 

the heuristic method. (c) Curb map obtained using k-means algorithm. (d) Combined results with curbs shown in red.  

 

A region growing process is applied based on the following rule: ground limits are 

allowed to grow until they find a curb (see Algorithm 2). This is conduced section-wise and 

results in a coarse description of the pavement (Fig. 7a); sections without curb points are 

excluded from analysis. Next pixel indices of the binary image ܫ௔௦ (i.e. an approximation of 

the sidewalks) are retrieved.  



 

 When the sidewalk and pavement are comprised of different materials (e.g. concrete vs 

asphalt), then radiometric properties of the point cloud can be used to increase geometrical 

accuracy. Material reflectance difference in the form of intensity readings can be seen on 

the intensity based image of 𝑹௚௥௢௨௡ௗ. To obtain two pixel classes based on intensity values, 

a k-means algorithm is applied, and two binary images ܫ௟௢௪ and ܫℎ௜௚ℎ based on intensity 

cluster values with respect to the image’s mean intensity. However, reflectance is itself not 

a robust separator. To achieve that a binary operation ܫ௣ = ௟௢௪ܫ ∧ ሺ¬ܫ௔௦ሻ is used to remove 

pixels that belong to the sidewalk, as obtained using the curb map. Hence, ܫ௣  contains 

mainly the pavement. As all the images are directly related with the raster structure 𝑹௚௥௢௨௡ௗ, the surface of each pixel can be measured as ݃௥ଶଶ , and an area filter can be applied 

to remove connected components for surface smaller than 10m
2
 (assuming pavement to be 

a large, fully connected surface), thereby obtaining a filtered binary image ܫ௟௢௪′ . To fill 

holes (mainly caused by small reflective elements on the road surface) in the binary image, 

a spherical structuring element ܪ  with a radius of 5 pixels is defined, and a closing 

operation is done so that the binary image ܫ௣௔௩௘௠௘௡௧ = ′௟௢௪ܫ ⊕ ௦௜ௗ௘௪௔௟௞ܫ defines the pavement, and ܪ = ௚ܫ  ∧ ሺ¬ܫ௣௔௩௘௠௘௡௧ሻ defines the sidewalk. Point indices 𝒊௣௔௩௘௠௘௡௧ and 𝒊௦௜ௗ௘௪௔௟௞ 

can be extracted from both images, and the correspondent segmented point clouds are 

defined as 𝑷௣௔௩௘௠௘௡௧ = 𝓢ሺ𝑷௚௥௢௨௡ௗ, 𝒊௣௔௩௘௠௘௡௧ሻ  and 𝑷௦௜ௗ௘௪௔௟௞ = 𝓢ሺ𝑷௚௥௢௨௡ௗ, 𝒊௦௜ௗ௘௪௔௟௞ሻ 

respectively (Fig. 7b). 

 

 

Figure 7. Sidewalk and pavement extraction. (a) Approximated sidewalk obtained using only geometric features and curb map. (b) After 

application of radiometric features:  pavement (blue) and sidewalk (red).  

 



  

Algorithm 2. Coarse definition of the sidewalk. 

Data: ܾݎݑܿܫ ,݈݉݅ܫ ,݃ܫ 

Output: ݏܽܫ 
Functions: neighbors(I): Find the 8-neighbourhood of each true pixel in I. 

           bwconncomp(I): Find the connected components of binary image I. 

                 intersect(a, b): Find the common elements between arrays a and b. 

conn = bwconncomp(݈݉݅ܫ) 

for each connected component i 

growing_image ← ݈݉݅ܫ(connected component i); 

growing ← true; 

   while growing == true 

    neigh = neighbors(growing_image); 

    valid_neighbors = intersect(growing_image, ݃ܫ) %%Neighbors within the road section 

    growing_image(valid_neighbors) ← true %%Growing step 

    if (intersect(growing_image, ܾݎݑܿܫ) is not an empty array) OR (growing_image is equal to 

growing_image_prev) 

        growing = false; 

    end 

    growing_image_ant = growing_image;  

   end 

end 

return ݏܽܫ ← growing_image 

3.5.2. Step 5b. Road markings detection 

Once the road surface is extracted, its intensity-based image can be obtained using 𝑹௚௥௢௨௡ௗ . Since road markings are painted with reflective materials to ensure visibility  

under low lighting conditions, their reflectance can be assumed to be much higher than the 

pavement’s. Reflectance difference can be highlighted by applying a standard deviation 

filter on the pavement intensity image in a 3-by-3 pixel neighborhood. The resulting image ܫ𝜎 , highlights pixels where the reflectance difference is large. These pixels are selected via a 

k-means algorithm (separating high (ܫ𝜎ℎሻ from low (ܫ𝜎௟ሻ using the standard deviations in a 

process analogous to Section 2.5.1). The binary operation ܫ௣ℎ = ℎ௜௚ℎܫ ∧  𝜎ℎ selects pointsܫ

on the pavement with high reflectance and a high standard deviation. Finally, an area filter, 

similar to that described in Section 2.5.2 deletes connected components with less than two 

pixels, thereby obtaining a binary image ܫ௠௔௥௞௜௡௚௦. Point indices 𝒊௠௔௥௞௜௡௚௦ are extracted so 

a point cloud containing the detected road markings can be computed as 𝑷௠௔௥௞௜௡௚௦ =𝒮ሺ𝑷௚௥௢௨௡ௗ, 𝒊௠௔௥௞௜௡௚௦ሻ (Fig. 8). 



 

 

Figure 8. Road marking detection. Points detected as road markings are highlighted on the ground point cloud.  

 

4. Validation 

4.1. Study data 

 

The aforementioned described technique was applied to a high density urban LiDAR 

data set for a portion of Dublin, Ireland (Laefer et al. 2017) (Fig. 9a). The flight campaign 

was planned using approaches described in Hinks et al. (2009) to adapt ALS to the 

complexity of urban areas by improving the visualization of small details of the 

environment and maximizing data coverage of building façades, which involved a 67% 

overlap in straight tracks oriented with a 45º offset with respect to the predominant street 

axes, to minimize self-shadowing effects. Captured from a rotary platform at approximately 

300 with a 30º scanning angle, most location are captured six times from unique sky 

locations (Hinks et al. 2015). All flightlines are shown in Fig. 9a. For this study, a pair of ͳͲͲ݉ଶ sections were selected, with typical horizontal point densities 230 points/݉ଶ. These 

are referenced as 𝑷ଵ and 𝑷ଶ (Figs. 9b-c) and reflect a complicated urban area with a bridge 

over the Liffey River, a variety of buildings of different height, a mixture of street types 

including a cobbled street. The data and metadata are fully available at (Laefer et al. 2017). 



  

 

Figure 9. Case study. (a) Complete flight path trajectory over Dublin city centre. (b) Areas of study. (c) Section of point cloud for the 

study areas. 

 

4.2. Parameter selection and ground truth generation 

To generate the 2D raster and 3D voxel structures, three parameters were selected.  The 

first two ( ݃௥ଵ , ݃௥ଶሻ  define the cell size of the 2D raster grids used throughout the 

methodology scheme. Both parameters were selected attending to two criteria: Execution 

time and point density. Fig. 10a shows the processing time required for the creation of a 

raster structure 𝑹௡ = ℛሺ𝑷𝒏, ݃௥ሻ  together with the average number of points per cell, using 

cell grids ranging from ݃௥ = Ͳ.ͳ݉ to ݃௥ = ͳ݉ . While the execution time decreases 

exponentially with the grid size, the number of points per cell increases quadratically. In 

general terms, grid sizes smaller than 0.1m are not efficient in terms of execution time and 

causes the raster images to lose quality, as the number of empty cells increases (Fig. 10b). 

Grid size ݃௥ଵ defines 𝑹௡௦ and 𝑹௙௣ grid sizes for building façade segmentation (Step 2) and 

ground segmentation (Step 3), respectively. Selecting  ݃௥ଵ = Ͳ.͵݉  represents a balance 

between computational efficiency and qualitative results. Similarly, ݃௥ଶ, which defines the 𝑹௚௥௢௨௡ௗ  grid size used for the definition of curb map, sidewalk, pavement and road 

markings (Steps 4-5) where the raster structure is repeatedly utilized was wet to 0.2m. The 



 

term is also used in the standard deviation filter in Step 5a, which requires the raster 

structure to capture local information with higher resolution. 

The third term, ݃௩ଵdefines the voxel size of 𝑽௡௦, the 3D cubic grid used for ground 

extraction (Step 3) and employs the same raster grid size parameter criteria.  A similar 

analysis was, therefore performed, defining a voxel structure 𝑽௡ = 𝒱ሺ𝑷𝒏, ݃௩ሻ  with ݃௩ 

ranging from ݃௩ = Ͳ.ͳ݉ to ݃௩ = ͳ݉ (Fig. 10c). For Step 3, the optimal voxel size was ݃௩ଵ = Ͳ.͵݉.  

To quantify the performance of the proposed method, ground truth was generated for the 

pavement area, sidewalk area, and road markings from the raster structure 𝑹௚௥௢௨௡ௗ using 

manual pixel-by-pixel manual labelling. This was possible given their clear visual 

distinction in the intensity based image of 𝑹௚௥௢௨௡ௗ . The evaluation metrics used were 

Precision (Eq. 4), Recall (Eq. 5), and F-score (Eq. 6):  𝑃݊݋݅ݏ݅ܿ݁ݎ = 𝑇𝑃𝑇𝑃 +  𝑃ܨ
(4) 

  𝑅݈݈݁ܿܽ = 𝑇𝑃𝑇𝑃 +  (5)  ܰܨ

݁ݎ݋ܿݏܨ  = ʹ · 𝑃݊݋݅ݏ݅ܿ݁ݎ · 𝑅݈݈݁ܿܽ𝑃݊݋݅ݏ݅ܿ݁ݎ + 𝑅݈݈݁ܿܽ (6) 

 

 

For this, let ܫ௥ be the binary image corresponding to the manually generated reference and ܫ௠  the corresponding binary image of the road surface generated from the proposed 

method. True positives (TP), false positives (FP) and false negatives (FN) are defined as 

Eqs. 7-9, respectively:  

 𝑇𝑃 =  ∑ሺܫ௥ ⋀ ܫ௠ሻ (7) ܨ𝑃 =  ∑ሺሺ¬ܫ௥ሻ ⋀ ܫ௠ሻ (8) 

ܰܨ =  ∑ሺܫ௥ ⋀ ሺ¬ܫ௠ሻሻ  (9) 

 
 

 



  

 

Figure 10. Parameter selection. (a) Execution times and points per cell for raster generation of different grid sizes. (b) 

Intensity based raster image for 0.2 m (left) and 0.1 m (right). (c) Execution times and points per voxel for voxel creation 

of different grid size.  

 

4.3. Sidewalk and pavement detection 

Fig. 11 shows the outcome for the sidewalk detection performance metrics quantified in 

Table 1. Fig. 12 and Table 2 show the equivalent for the pavement detection performance. 

Table 1. Results for sidewalk area detection. 

 Precision Recall Fscore 𝑃ଵ 0.939 0.990 0.964 𝑃ଶ 0.895 0.896 0.920 

Average 0.917 0.943 0.942 



 

 

Table 2. Results for pavement area detection. 

 Precision Recall Fscore 𝑃ଵ 0.991 0.943 0.967 𝑃ଶ 0.956 0.917 0.936 

Average 0.973 0.93 0.950 

 

In both cases average results were high quality, with F-scores around 95%. Notably the 

relatively high false positives and false negatives in 𝑷ଶ  appear on one street (Fig. 11) 

composed of cobbled stones (Essex Street). Elsewhere performance was consistently 

robust. 

4.4. Road marking detection 

Road markings detection is shown in Fig. 13 and quantified in Table 3 demonstrated 

success exceeding 80%.  

Table 3. Results for road marking detection 

 Precision Recall Fscore 𝑃ଵ 0.786 0.763 0.773 𝑃ଶ 0.858 0.871 0.864 

Average 0.822 0.817 0.818 

 



  

 

Figure 11. Pavement detection results for both case study point clouds, together with the manually generated ground truth which is used 

for comparison.  

 

Figure 12. Sidewalk detection results for both case study point clouds, together with the manually generated ground truth which is used 

for comparison. 



 

 

Figure 13. Road marking detection results for both case study point clouds, together with the manually generated ground truth which is 

used for comparison. 

5. Discussion 

The robustness of the proposed method is influenced by different error sources, which 

may be cumulative. Sidewalk and pavement segmentation depends on geometric and 

radiometric features, both of which may contain errors. Furthermore, the technique relies 

upon the reflectance of the pavement being distinguishable from that of the sidewalk. If the 

materials of both pavement and sidewalk were similar, the algorithm would have to rely 

only on the curb map. As aerial data densities continue to improve the ability to capture 

such small features from the air will also improve. The success of this technique presented 

herein demonstrates the capability to do this with data densities in the range of hundreds of 

points per square meter, as opposed the current approaches that typically use thousands of 

points per square meter.  
 
In fact, prior to the research herein, road marking detection has been done exclusive with 

much denser terrestrial (RIEGL VMX-450) or mobile (LYNX Mobile Mapper) based laser 

scans, with data densities one to two orders of magnitude higher. Notably only a 12-13% 

better score has been reported with such work (e.g. Table 4) despite the much higher costs 

related to the collection, storage and processing of these substantially denser datasets, thus 

showing the strong capabilities of the work proposed herein (Table 4).   



  

Table 4. Comparison with state of the art methods. 

Method Precision Recall Fscore Point 

Density 

 (pts/m
2
) 

Yu et al. (2015) 0.91 0.93 0.925 Unknown 

Soilán et al. (2017) 0.961 0.917 0.939 2185.5 

Proposed 0.822 0.817 0.818 204.4 

 

6. Conclusions  

This paper introduces a method for detection of road networks and their markings using 

aerial laser scanning. The procedure starts by segmenting building facades to provide 

contextual information for robust ground segment via region growing within a voxel space. 

Then, the ground segment is hierarchically divided into different segments with unique 

semantic meanings. Next, a section-wise approach is used to obtain a curb map, which is 

computed combining a heuristic approach and an unsupervised learning algorithm. Finally, 

curb information, together with the radiometric properties of the ground materials, are used 

for sidewalk and pavement segmentation, while road markings are detected based on 

reflectance levels.  

When applied to a pair of 100݉ଶ sections Dublin, Ireland, F-scores around 95% were 

obtained for pavement and sidewalks and 80% for road markings. These were within 13% 

of results reported for competing techniques using datasets an order of magnitude denser, 

thus showing the long term scalability potential of this technique as aerial laser scanning 

data sets continue to improve in quality. This fact, together with the algorithms that detect 

curbs and segment pavement and sidewalk, is the main contribution of this work. 
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