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Abstract

We study a two-stage supply chain where the retailer observes two demand streams coming

from two consumer populations. We further assume that each demand sequence is a station-

ary Autoregressive Moving Average (ARMA) process with respect to a Gaussian white noise

sequence (shocks). The shock sequences for the two populations could be contemporaneously

correlated. We show that it is typically optimal for the retailer to construct its order to its

supplier based on forecasts for each demand stream (as opposed to the sum of the streams) and

that doing so is never sub-optimal. We demonstrate that the retailer’s order to its supplier is

ARMA and yet can be constructed as the sum of two ARMA order processes based upon the

two populations. When there is no information sharing, the supplier only observes the retailer’s

order which is the aggregate of the two aforementioned processes. In this paper, we determine

when there is value to sharing the retailer’s individual orders, and when there is additional

value to sharing the retailer’s individual shock sequences. We also determine the supplier’s

mean squared forecast error under no sharing, process sharing, and shock sharing.
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1 Introduction

In this paper we consider a two-stage supply chain where the retailer observes two demand streams

coming from two consumer populations. We further assume that each demand sequence is a sta-

tionary Autoregressive Moving Average (ARMA) process with respect to a Gaussian white noise

sequence (shocks). The shock sequences for the two populations can be contemporaneously cor-

related. We show that in the vast majority of cases it is optimal for the retailer to construct its

order to its supplier based on forecasts for each demand stream (as opposed to the sum of the

streams) and that doing so is never sub-optimal. When there is no information sharing between

the retailer and the supplier, the supplier observes the aggregated order placed by the retailer.

The contribution of our paper is that we determine when there is value to the retailer sharing the

two individual order processes (process sharing) and when there is additional value to the retailer

sharing its two individual shock sequences (shock sharing). We also determine the supplier’s mean

squared forecast error (MSFE) under no sharing, process sharing, and shock sharing.

There has been much research on the value of information sharing in a supply chain. Lee

et al [7] (hereafter referred to as LST), Raghunathan [8], Zhang [11], Gaur et al. [3] (hereafter

referred to as GGS), Giloni et al [4] (hereafter referred to as GHS), and Kovtun et al [6] (hereafter

referred to as KGH) studied the value of information sharing in supply chains under AR and

ARMA demand. Zhang and GGS extend the original work of LST and Raghunathan by studying

the value of information sharing in supply chains where the retailer serves an ARMA(p,q) demand

as opposed to AR(1) demand. In each of these papers, the retailer places orders with a supplier

using a periodic review order-up-to policy. Both the supplier and the retailer know the parameters
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of the demand process; however, the retailer may or may not choose to share information about the

actual realizations of demand with the supplier. Zhang studied how the order process propagates

upstream in a supply chain under the assumption that ARMA demand to the retailer and all

upstream players is invertible. In such a case, there would be no value of information sharing to

any of the players.

GGS were first to point out that the retailer’s order to the supplier may not be invertible

(i.e., the current shock cannot be obtained as a linear combination of present and past demand

observations only) even though the retailer’s demand is invertible. In other words, the supplier’s

demand may not be invertible with respect to the retailer’s shocks, even though the retailer’s

demand is invertible with respect to its own shocks. GHS characterized the supplier’s best linear

forecast with and without information sharing from the retailer. They showed that the retailer’s

order to the supplier is QUARMA (quasi-ARMA) and characterized the value of information sharing

when each supply chain player determines its best linear forecast of lead time demand using all of

its available information (depending upon sharing arrangements). KGH studied the propagation

of demand in a supply chain where a supply chain player may share its demand, its shocks, or

nothing at all with the immediate upstream player. They compared the three sharing scenarios

and characterized when demand sharing is superior to no sharing and when shock sharing is superior

to demand sharing.

Overall, there are two key elements to accurately determining the value of information in the

aforementioned research. First, it is essential to determine when the retailer’s order to its supplier

is invertible with respect to its shocks and when it is not. Second, when the retailer’s order is not

invertible with respect to its shocks, it is essential to determine the supplier’s best linear forecast

in this case. GHS appears to have been the first to do so and we utilize and extend the framework

considered by GHS and KGH in this paper.
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Our specific research problem is most closely related to a recent paper by Cui et al [2] (hereafter

referred to as Cui) who studied a supply chain where a supplier receives orders that are an aggregate

of two processes due to the retailer placing an order that is generated by a standard inventory policy

coupled with order smoothing and a decision deviation process. In other words, in their paper, the

existence of the two processes is due to the manner in which the planner operates. They concluded

that sharing the demand processes is almost always valuable. Our results match those of Cui when

the retailer’s order or actually retailer’s orders are invertible with respect to its shock sequence(s).

However, when the retailer’s orders are not invertible with respect to its shock sequences, there

exist additional cases where process sharing is not valuable. We further consider when the retailer

may share its shocks with the supplier. Finally, we demonstrate how to compute the one-step

ahead mean squared forecast error (MSFE). In other words, besides describing whether or not

there is value to information sharing, we also quantify this value as determined by the difference

in the MSFE under sharing compared to the no sharing arrangement. We further demonstrate

these differences among the three situations that we study: no sharing, process sharing, and shock

sharing.

The mathematical problem of determining whether there is value of process sharing (in terms

of reducing the MSFE) was considered and solved by Kohn [5] under the key assumptions that

the bivariate system is in its Wold representation and that the univariate aggregated process is

also in its Wold representation. A Wold representation expresses the series as a linear combination

of present and past shocks, where the shocks contain precisely all of the information retrievable

from the linear past of the (univariate or bivariate) series1. We note that a series represented as

a linear combination of present and past shocks is in its Wold representation if and only if it is

invertible with respect to its shocks. Following this methodology, we consider the two demand
1We are implicitly assuming that the series is purely nondeterministic as would be the case for any ARMA model
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sequences at the retailer and its order to the supplier as a sum of two ARMA sequences which

are bivariate ARMA. In a simpler context without any aggregation, GHS demonstrated that the

retailer’s order can naturally become non-invertible with respect to the retailer’s shocks even though

the retailer’s demand is invertible with respect to its shocks. Thus, one cannot assume that the

retailer’s aggregated order to the supplier nor the bivariate ARMA system representing the retailer’s

order processes is invertible with respect to its shocks and hence Kohn’s key assumptions may not

apply to our problem.

2 Problem Setup

In this section, we describe the mathematical problem at hand. To begin, we assume that the

retailer observes ARMA demand from two populations and hence its demand sequences {D1,t} and

{D2,t} are ARMA with respect to two (possibly contemporaneously correlated) shock sequences

{ε̃1,t} and {ε̃2,t}. Using the backshift operator B (where BDt = Dt−1), the retailer’s two demand

streams are

Φ1(B)D1,t = d1 + Θ?
1(B)ε̃1,t (1)

Φ2(B)D2,t = d2 + Θ?
2(B)ε̃2,t (2)

where Θ?
1(B) = 1 − θ?1,1B − . . . − θ?1,q1B

q1 , Θ?
2(B) = 1 − θ?2,1B − . . . − θ?2,q2B

q2 , and Φ1(B) =

1− φ1,1B − . . .− φ1,p1B
p1 , Φ2(B) = 1− φ2,1B − . . .− φ2,p2B

p2 . We assume that Φ1(z) and Φ2(z)

have all their roots outside the unit circle and that Θ?
1(z) and Θ?

1(z) have all their roots either

outside or on the unit circle. These conditions insure that {D1,t} and {D2,t} are stationary and

invertible with respect to {ε̃1,t} and {ε̃2,t} respectively. Invertibility insures that {ε̃1,t} and {ε̃2,t}

are observable to the retailer at time t, meaning that the retailer can obtain ε̃1,t and ε̃2,t using

elements only in {D1,n}tn=−∞ and {D2,t}tn=−∞ respectively. This model is reasonable under the
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assumption that {D1,t} does not Granger cause {D2,t} and {D2,t} does not Granger cause {D1,t}.

Furthermore this implies that {(ε̃1,t, ε̃2,t)′} are the shocks appearing in the Wold representation of

the bivariate series {(D1,t, D2,t)′} which could be expressed using the bivariate ARMA model

 Φ1(B) 0

0 Φ2(B)


 D1,t

D2,t

 =

 Θ?
1(B) 0

0 Θ?
2(B)


 ε̃1,t

ε̃2,t

 , (3)

or equivalently using the Wold representation D1,t

D2,t

 =

 Ψ?
1(B) 0

0 Ψ?
2(B)


 ε̃1,t

ε̃2,t

 (4)

where Ψ?
1(z) = Θ?

1(z)
Φ1(z) and Ψ?

2(z) = Θ?
2(z)

Φ2(z) .

We note that the retailer’s total demand at time t+ 1 is given by D1,t+1 +D2,t+1. The retailer

could forecast this demand using {D1,n +D2,n}tn=−∞ or it can add the two forecasts of D1,t+1 and

D2,t+1 based upon the two individual sequences {D1,n}tn=−∞ and {D2,n}tn=−∞ respectively. The

question of whether it is better to use the individual processes for forecasting has been answered

in Theorem 1 of Kohn [5].

Remark 1 The best linear forecast based on {D1,n}tn=−∞ and {D2,n}tn=−∞ is better than the best

linear forecast based on {D1,n+D2,n}tn=−∞ if and only if Θ?
1(z)

Φ1(z) 6=
Θ?

2(z)
Φ2(z) for some z ∈ C. Otherwise

the best linear forecasts based on {D1,n}tn=−∞ and {D2,n}tn=−∞ or on {D1,n + D2,n}tn=−∞ are

equivalent.

This remark follows directly from the aforementioned theorem, which states (in slightly more

generality) that given a Wold representation of a bivariate system {(xt, yt)′}, xt

yt

 =
∞∑
j=0

A(j)

 e1,t−j

e2,t−j

 , (5)
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where the A(j) are 2 × 2 matrices, A(0) = I, the 2 × 2 identity matrix, and {(e1,t, e2,t)′} are the

Wold shocks which generate the same linear past as {(xt, yt)′}, the two best linear forecasts of

xt+1 + yt+1 obtained using {xn + yn}tn=−∞ or using {xn} and {yn} will be equivalent if and only if

there exist scalar constants kj such that

A(j)′

 1

1

 = kj

 1

1

 for all j ≥ 1. (6)

Otherwise, the forecast based on {xn} and {yn} will be optimal. Applying this to representation

(2) we obtain Remark 1.

In order to study the value of information sharing to the supplier, we first need to obtain an

expression for the retailer’s order, which we assume is determined by a myopic order-up-to-policy.

The retailer’s demand at time t+ 1 is given by

Dt+1 = D1,t+1 +D2,t+1. (7)

In light of Remark 1, we consider m1,t and m2,t, which are the best linear forecasts of leadtime

demand for each demand stream, based on information for the given stream available at time t .

If indeed, the retailer had observed demand from the first demand stream, then its order would be

Xt = D1,t +m1,t −m1,t−1 and similarly if the retailer had observed demand from only the second

demand stream, its order would be Yt = D2,t + m2,t − m2,t−1. Hence mt = m1,t + m2,t is the

best linear forecast of the retailer’s leadtime demand. It can be easily shown that V ar
(

(D1,t+1 +

D2,t+1)|Mt

)
= V ar(ε1,t) + V ar(ε2,t) + 2Cov(ε1,t, ε2,t) where Mt is all the information available

to the retailer at time t. It follows that the retailer’s myopic order-up-to-level determined using

information available at time t is given by

St = mt + c
√
V ar(ε1,t) + V ar(ε2,t) + 2Cov(ε1,t, ε2,t)

= m1,t +m2,t + c
√
V ar(ε1,t) + V ar(ε2,t) + 2Cov(ε1,t, ε2,t).
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where c is the retailer’s required service level given by c = Φ−1[ p
p+h ] where h and p are holding and

shortage costs and Φ is the standard Normal cdf. The resulting order is then

Zt = Dt + St − St−1 (8)

or simply,

Zt = Dt +mt −mt−1 = D1,t +m1,t −m1,t−1 +D2,t +m2,t −m2,t−1 = Xt + Yt. (9)

We refer to {Xt} and {Yt} as the retailer’s order processes. From Theorem 1 of GHS, it follows

that each of {Xt} and {Yt} are quasi-ARMA with respect to each of the retailer’s shock sequences

with the same AR polynomials Φ1(z) and Φ2(z) appearing in (1) and (2). For simplicity in this

paper, we assume that {Xt} and {Yt} are ARMA with respect to these shocks. Hence we are

considering the case that the retailer’s order to the supplier is given by Zt = Xt + Yt, where

Φ1(B)Xt = d1 + Θ1(B)ε1,t, (10)

Φ2(B)Yt = d2 + Θ2(B)ε2,t, (11)

and Θ1(B) = 1 − θ1,1B − . . . − θ1,q1B
q1 and Θ2(B) = 1 − θ2,1B − . . . − θ2,q2B

q2 are the resulting

MA polynomials based upon the propagation described above with ε1,t = λ1ε̃1,t and ε2,t = λ2ε̃2,t

for constants λ1 and λ2. A constructive algorithm for obtaining polynomials Θ1(z), Θ2(z) and

constants λ1, λ2 from polynomials Φ1(z), Φ2(z), Θ?
1(z) and Θ?

2(z) is provided in Theorem 3 of

KGH.

In matrix notation, we represent {(Xt, Yt)′} as a bivariate ARMA process Φ1(B) 0

0 Φ2(B)


 Xt

Yt

 =

 Θ1(B) 0

0 Θ2(B)


 ε1,t

ε2,t

 , (12)

with Σε = Cov[(ε1,t, ε2,t)′] =

 σ2
1 σ12

σ12 σ2
2

, and σ2
1σ

2
2 − σ2

12 > 0, where we have assumed that

d1 = d2 = 0 for notational simplicity.
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The bivariate process {(Xt, Yt)′} is causal with respect to {(ε1,t, ε2,t)′} if det

 Φ1(z) 0

0 Φ2(z)

 6=
0 for all z such that |z| ≤ 1. Similarly, {(Xt, Yt)′} is invertible with respect to {(ε1,t, ε2,t)′} if

det

 Θ1(z) 0

0 Θ2(z)

 6= 0 for all z such that |z| ≤ 1. Since each of the processes is assumed to

be causal with respect to each individual shock series, it follows that the bivariate process is also

causal with respect to {(ε1,t, ε2,t)′}.

GHS however note that it is possible for an MA polynomial (such as Θ1(z)) to have a root

inside the unit circle. Hence {Xt} will not be invertible with respect to {ε1,t}. In this case the

bivariate process will not be invertible with respect to {(ε1,t, ε2,t)′} as well. When this is the case,

it means that at time t it is not possible to obtain (ε1,t, ε2,t)′ from the linear past of {(Xt, Yt)′}.

Nonetheless, in all situations we will consider in this paper, it is possible to represent {(Xt, Yt)′}

with respect to an observable shock sequence {(e1,t, e2,t)′}, where (e1,t, e2,t)′ is the difference between

(Xt, Yt)′ and the best linear forecast of (Xt, Yt)′ at time t− 1 using the infinite past of {(Xt, Yt)′}.

This shock sequence appears in the unique Wold representation of {(Xt, Yt)′}, which exists for any

stationary time series. We thus refer to {(e1,t, e2,t)′} as the Wold shocks.

We note that {(ε1,t, ε2,t)′} in equation (12) will not in general be the Wold shocks, specifically

when {(Xt, Yt)′} is not invertible with respect to {(ε1,t, ε2,t)′}. GHS explained that the supplier

cannot forecast its demand using shocks that are not observable to the supplier even though they

are observable to the retailer unless the retailer shares its shocks with the supplier. The same

applies here except that like in KGH we contrast the cases of process sharing, shock sharing, and

no sharing.

When {(ε1,t, ε2,t)′} is not observable to the supplier we consider the Wold representation of the
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retailer’s bivariate order system given by Xt

Yt

 =

 Ψ11(B) Ψ12(B)

Ψ21(B) Ψ22(B)


 e1,t

e2,t

 , (13)

Wold shocks which generate the same linear past as {(Xt, Yt)′} and Ψ11(z) =
∞∑
j=0

ψ11jz
j , Ψ12(z) =

∞∑
j=0

ψ12jz
j , Ψ21(z) =

∞∑
j=0

ψ21jz
j , and Ψ22(z) =

∞∑
j=0

ψ22jz
j are (potentially) infinite degree polyno-

mials, with Ψ12(z) = Ψ21(z) = 0 when the system is diagonal. Unless specified otherwise, for

polynomials P (z) and Q(z) , the equivalence P (z) = Q(z) should be interpreted to be for all

complex-valued z in this paper.

where {(e1,t, e2,t)′} are the We note that although the bivariate ARMA in (12) has a diagonal

MA matrix2, the Wold representation of the bivariate system need not be diagonal (see Theorem

3). In other words, even though we assume the bivariate system that describes the retailer’s order

to the supplier has a diagonal MA matrix, a nondiagonal Wold representation of this system can

organicadeqully occur. An immediate consequence of this is that it would not be possible to apply

the methodology of GHS and KGH to evaluate information sharing, since univariate representations

cannot accurately describe a non-diagonal bivariate representation.

Similarly, consider the Wold representation of the retailer’s order to the supplier, which is actu-

ally the supplier’s demand (see GHS who discuss the Order-Demand Non-Equivalence Property):

Zt = γt +
∞∑
j=1

ajγt−j , (14)

where {γt} are the univariate Wold shocks, i.e., those shocks that span the linear past of {Zt} and

are thus observable by the supplier when there is no information sharing. If there is no additional

information shared by the retailer, the supplier uses (14) to forecast its leadtime demand.
2Throughout this paper, when expressing the process {(Xt, Yt)′} with respect to a set of shocks, we refer to the

matrix of MA coefficients on the right-hand side of the expression as the MA matrix.
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We study when there is value to the supplier for the retailer to share the values of its processes,

Xt and Yt. In other words, we study whether this sharing arrangement would lead to a superior

forecast of its demand than the one provided by (14). We also study when there is additional

value to the retailer sharing the values of its shocks, {ε1,t} and {ε2,t}. Finally, we describe how

to compute the one step ahead MSFE under the three arrangements, (i) no sharing, (ii) process

sharing, and (iii) shock sharing.

Kohn’s formulation discussed previously can be used to study when the MSFE of the best linear

forecast of Zt+1 given the history of {Zt} is equivalent to the MSFE of the best linear forecast of

Zt+1 given the history of {(Xt, Yt)′}. It is important to note that his results are based upon the

knowledge of the polynomials and coefficients therein with respect to the Wold shocks. Thus, in

order to apply Kohn’s results, one needs to first obtain the Wold representation of the bivariate

series {(Xt, Yt)′}. For example, from Theorem 1 of Kohn, it follows that there is no value to sharing

(Xt, Yt)′ if and only if there exist scalar constants kj such that ψ11j ψ12j

ψ21j ψ22j


′ 1

1

 = kj

 1

1

 for all j ≥ 1. (15)

It follows from the same theorem that the constants kj in (15) will be the constants aj in (14). We

note that according to Condition (15), if A(j) is diagonal for all j, then there is no value to sharing

{(Xt, Yt)′} if and only if ψ11j = ψ22j for all j. Using Kohn’s approach where possible, the roadmap

of the remainder of the paper is as follows.

• In Section 3.1, (Invertible Case) we consider the value of information sharing when the re-

tailer’s two processes, {Xt} and {Yt} are invertible ARMA processes with respect to the

retailer’s shocks. We provide a necessary and sufficient condition under which there is no

value to process sharing (or shock sharing).

• In Section 3.2, (Noninvertible Case with mutually independent shocks) we consider when at
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least one of {Xt} and/or {Yt}, each ARMA, is not invertible with respect to the retailer’s

shocks and these two shock sequences are mutually independent. We provide a necessary and

sufficient condition under which there is no value to process sharing.

• In Section 3.3, (Noninvertible Case with contemporaneously correlated shocks) we consider

when {(Xt, Yt)′} is a bivariate MA(q) such that the series is not invertible with respect to

the retailer’s shocks and these shock are contemporaneously correlated. We show the Wold

representation of a bivariate ARMA (and therefore MA) system is no longer diagonal. Using

the algorithm developed by Tunicliffe-Wilson [10] we find the Wold representation and obtain

several additional examples of no value to process sharing under these conditions.

• In Section 4 (MSFE) we obtain the one-step-ahead forecasts and their corresponding MSFEs

under the three sharing arrangements for the scenarios in Section 3.1 - Section 3.3.

3 The Value of Information Sharing

In this section we study the value of process sharing and shock sharing when {(Xt, Yt)′} can be

modeled as a bivariate ARMA(p, q) given by (12), which is a natural consequence of the two ARMA

demand streams observed by the retailer. Evaluating process sharing and comparing its value to

that of shock sharing is dependent on whether {(Xt, Yt)′} is invertible with respect to {(ε1,t, ε2,t)′}

as well as on whether Σε in (12) is diagonal. Therefore, we proceed by considering these different

cases in the subsections below. Details on how to compute the one-step ahead MSFE for the cases

discussed here can be found in Section 4.
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3.1 Invertible Case

Here we assume that {(Xt, Yt)′} is invertible with respect to {(ε1,t, ε2,t)′}, meaning that det

 Θ1(z) 0

0 Θ2(z)

 6=
0 for all z such that |z| ≤ 1 in (12). Since the MA matrix is assumed to be diagonal, this condition

is equivalent to stating that Θ1(z) and Θ2(z) have no roots inside the unit circle. This means

that we require the individual univariate processes {Xt} and {Yt} to be invertible with respect

to {ε1,t} and {ε2,t} respectively and do not need to directly consider the bivariate system. It fol-

lows that {(ε1,t, ε2,t)′} are the Wold shocks of {(Xt, Yt)′}. Furthermore, forecast errors, as well as

corresponding MSFEs are identical under shock sharing and process sharing (see Remark 2 below).

Remark 2 If {(Xt, Yt)′} is invertible with respect to {(ε1,t, ε2,t)′} then forecasts of elements in

{Zn}∞n=t+1 are identical under process sharing and shock sharing since all elements in {(Xn, Yn)′}tn=−∞

can be recovered from {(ε1,n, ε2,n)′}tn=−∞ and vice-versa.

From the remark above we note that the main question posed in this subsection is whether

process sharing (and shock sharing) are valuable when compared with no sharing. This is addressed

in the following theorem which establishes when forecasts of Zt+1 under no sharing will be equivalent

to forecasts under either of the two sharing arrangements.

Theorem 1 Suppose the retailer observes processes which can be modeled using (12) with det

 Θ1(z) 0

0 Θ2(z)

 6=
0 for all z such that |z| ≤ 1. There is no value to sharing {Xt} and {Yt} (or {ε1,t} and {ε2,t}) if

and only if Θ1(z)
Φ1(z) = Θ2(z)

Φ2(z) .

The proof of Theorem 1, which can be found in the Appendix, is based upon Theorem 1 of

Kohn [5]. Note that Theorem 1 of this paper, which holds under the invertibility of {(Xt, Yt)′} with

respect to {(ε1,t, ε2,t)′}, matches the result described by Cui for this case when considering decision

deviations. In the following subsections we discuss why this equivalence does not hold in general
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and only follows from this invertibility assumption. If there are no common roots between Θ1(z)

and Φ1(z) and no common roots between Θ2(z) and Φ2(z) then the condition that Θ1(z)
Φ1(z) = Θ2(z)

Φ2(z)
amounts to checking whether Θ1(z) = Θ2(z) and Φ1(z) = Φ2(z).

Although it may appear that the likelihood of there being no value to information sharing is

small, this is not the case as highlighted by the following remark.

Remark 3 If the retailer’s two demand streams {D1,t} and {D2,t} are MA(1) in (1) and (2) and

the retailer’s leadtime is 0 (orders arrive in the next period), then there is no value to sharing the

individual order processes (or the individual shock sequences).

The assumptions of the remark guarantee that the processes {Xt} and {Yt} will be white noise

and therefore the conditions of Theorem 1 will hold. To see this, suppose {Dt} is MA(1) with

respect to a white noise sequence {ε̃t} such that

Dt = ε̃t − θ?1 ε̃t (16)

From Theorem 3 of KGH, this induces orders {Xt} such that

Xt = (1− θ?1)ε̃t (17)

which we could rewrite with respect to white noise sequence {εt} as

Xt = εt (18)

where εt = (1− θ?1)ε̃t.

We provide several examples in the Appendix which illustrate how demand propagates from the

retailer and supplier and how information sharing becomes valuable for the invertible case described

in Theorem 1. In the following subsections we study the non-invertible case.
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3.2 Non-Invertible Case with Mutually Independent Shocks

In this subsection, we study whether information sharing is valuable in the event that the retailer’s

process {(Xt, Yt)′} is noninvertible with respect to {(ε1,t, ε2,t)′}, meaning that in (12) there exists

|z0| < 1 such that det

 Θ1(z0) 0

0 Θ2(z0)

 = 0. Since the MA matrix is diagonal, this is equivalent

to requiring Θ1(z) or Θ2(z) to have at least one root inside the unit circle. As indicated by the

previous subsection, one of the determinants of the value of process and shock sharing arrangements

is the ARMA representation of {(Xt, Yt)′} with respect to the Wold shocks of {(Xt, Yt)′}. By the

assumptions considered here, {(Xt, Yt)′} is not invertible with respect to {(ε1,t, ε2,t)′} and therefore

{(ε1,t, ε2,t)′} in (12) are not the Wold shocks of {(Xt, Yt)′}. As we will show below, the form of

the Wold shocks depends on whether the shock series {ε1,t} and {ε2,t} are mutually independent

or contemporaneously correlated. The former assumption is the basis for this subsection.

Proposition 1 provides the ARMA representation of {(Xt, Yt)′} with respect to their Wold

shocks under the assumption that the shock series are independent, i.e., that σ12 = 0 in Σε. The

proposition is given below following a necessary definition.

Definition 1 Suppose that Θ(z) is a polynomial of order q in a complex variable z, with leading

coefficient 1 and roots {rk}. Suppose also that none of the roots rk are on the unit circle. Then

Θ(z) = Πq
k=1(1− z/rk).

Let IN denote the set of roots such that |rk| < 1. Let OUT denote the set of roots such that

|rk| > 1. Define

Θ†(z) =
∏

rk∈IN
(1− zrk)

∏
rk∈OUT

(1− z/rk).

where IN is the list of all roots, rk, of Θ(z) with repeated entries to allow for multiplicities, such

that |rk| < 1.
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We note that Θ†(z) has all of its roots outside the unit circle. If Θ(z) has no roots inside the unit

circle, then Θ(z) = Θ†(z).

Proposition 1 Suppose the retailer’s processes can be modeled by (12), where there exists |z0| < 1

such that det

 Θ1(z0) 0

0 Θ2(z0)

 = 0 and σ12 = 0. An ARMA representation of the retailer’s

processes with respect to its Wold shocks {(e1,t, e2,t)′} is given by Φ1(B) 0

0 Φ2(B)


 Xt

Yt

 =

 Θ†1(B) 0

0 Θ†2(B)


 e1,t

e2,t

 . (19)

where Σe = cov[(e1,t, e2,t)′] =


σ2

1
∏

rj∈IN1
|rj |−2 0

0 σ2
2
∏

rj∈IN2
|rj |−2

 where IN1 (and IN2) is the

list of all roots, rj, of Θ1(z) (and Θ2(z)) with repeated entries to allow for multiplicities, such that

|rj | < 1.

The proof of Proposition 1, along with an instructive lemma can be found in the Appendix.

We note that the mutual independence of the shocks in (12) guarantees that the bivariate ARMA

representation of {(Xt, Yt)′} with respect to the Wold shocks {(e1,t, e2,t)′} has a diagonal MA and

AR matrix. Furthermore, determining {(e1,t, e2,t)′} and the Wold representation of {(Xt, Yt)′} is

equivalent to determining the Wold shocks {e1,t} and {e2,t} for each univariate series {Xt} and

{Yt}.

Due to the noninvertibility of {(Xt, Yt)′} with respect to {(ε1,t, ε2,t)′}, shock sharing and process

sharing result in different forecasts and different MSFEs. Extending the results by GHS and KGH

for univariate processes, if either Θ1(z) or Θ2(z) have at least one root inside the unit circle in (12)

then the MSFE when forecasting Zt+1 at time t is always smaller under shock sharing than under

process sharing. The difference in forecasts stems from the fact that it is possible to recover elements
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in {(Xn, Yn)′}tn=−∞ using {(ε1,n, ε2,n)′}tn=−∞ but not vice-versa. Hence {(ε1,t, ε2,t)′} contains more

information than {(Xt, Yt)′}.

Since (19) has the same form as (12) and {(Xt, Yt)′} is invertible with respect to {(ε1,t, ε2,t)′}

we can apply Theorem 1 to this representation to assess the value of process sharing. When the

AR and MA matrices in the ARMA representation of {(Xt, Yt)′} with respect to the Wold shocks

are diagonal, as in Proposition 1, the value of process sharing (over no sharing) rests on whether
Θ†1(z)
Φ1(z) and Θ†2(z)

Φ2(z) are equivalent as discussed in Theorem 2 below.

Theorem 2 Suppose the retailer observes processes modeled by (12), where the covariance matrix

of (ε1,t, ε2,t)′ is given by

 σ2
1 0

0 σ2
2

. There is no value to process sharing if and only if Θ†1(z)
Φ1(z) =

Θ†2(z)
Φ2(z) .

The proof follows immediately by applying Theorem 1 to model (19) given by Proposition 1.

According to Theorem 2, there is no value to process sharing if Θ1(z) = Θ2(z) and Φ1(z) = Φ2(z).

This can be seen by noting that if Θ1(z) = Θ2(z) then Θ†1(z) = Θ†2(z). However this is not the only

possibility of there being no value to process sharing as the condition of Theorem 2 can still be

met while Θ1(z) 6= Θ2(z) but Φ1(z) = Φ2(z).3 The phenomenon observed here can be explained as

follows. Even though the original ARMA representations ofXt and Yt are such that Θ1(z)
Φ1(z) 6=

Θ2(z)
Φ2(z) ,

the ratios of the AR and MA polynomials in the ARMA representations corresponding to the Wold

shocks could be equal.

For example suppose Φ1(z) = Φ2(z) = 1 and {Yt} is invertible with respect to {ε2,t} and hence

Θ†2(B) = Θ2(B). On the other hand, if at least one root of Θ1(z) lies inside the unit circle and yet

Θ†1(z) = Θ2(z) = Θ†2(z), it follows that there is no value to process sharing. This is demonstrated
3In other words, this demonstrates that Theorem 2 of Cui is incomplete in the sense that there are additional

cases under which there is no value to process sharing.

17



in the example below when {(Xt, Yt)′} is bivariate MA(1).

Example 1 Suppose {D1,t} and {D2,t} are each MA(2) with respect to {ε̃1,t} and {ε̃2,t} respectively,

given by

D1,t = (1− .2B − .4B2)ε̃1,t (20)

D2,t = (1− 1.2B + .4B2)ε̃2,t. (21)

We note that D1,t and {D2,t} are invertible with respect to {ε̃1,t} and {ε̃2,t} respectively. From

Theorem 3 of KGH, {(Xt, Yt)′} can be represented as the bivariate ARMA process Xt

Yt

 =

 1− .5B 0

0 1− 2B


 ε1,t

ε2,t

 (22)

where ε1,t = (1 − .2)ε̃1,t and ε2,t = (1 − 1.2)ε̃2,t. Without loss of generality we assume that
∑
ε = 1 0

0 1

.

We note that {(Xt, Yt)′} is causal but not invertible with respect to {ε1,t, ε2,t} since det

 1− .5z 0

0 1− 2z

 =

0 for z = .5. By Definition 1, since Θ2(z) = 1−2z, it follows that Θ†2(z) = 1−.5z. From Proposition

1, the bivariate ARMA representation of {(Xt, Yt)′}, which is invertible with respect to {e1,t, e2,t},

is given by  Xt

Yt

 =

 1− .5B 0

0 1− .5B


 e1,t

e2,t

 . (23)

By applying Theorem 2, there is no value to process sharing in this case since Φ1 = Φ2 = 1 and

Θ†1 = Θ†2 = 1, even though it may have seemed like there would be value based on the model in

(22).

It is also possible to find many examples of no value to information sharing when Φ1 6= Φ2. For

instance, let Φ1(z) = Φ2(z)(1− .5z) and Θ1(z) = Θ2(z)(1−2z) where Θ2(z) has all its roots outside
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the unit circle. We can note that Θ†1(z) = Θ2(z)(1 − .5z), Θ†2 = Θ2 and indeed Θ†1
Φ1

= Θ†2
Φ2

. These

examples are structured such that Θ†1(z) cancels root(s) of Φ1(z). As a demonstration, consider

the following.

Example 2 Let {(Xt, Yt)′} be bivariate ARMA(2,1): 1− .7B + .01B2 0

0 1− .2B


 Xt

Yt

 =

 1− 2B 0

0 1


 ε1,t

ε2,t

 . (24)

where
∑
ε is given by

 σ2
1 0

0 σ2
2

.

Although at first glance it may appear that there would be value to information sharing in

this case since Φ1 6= Φ2 and Θ1 6= Θ2, we note that {(Xt, Yt)′} is not invertible with respect to

{(ε1,t, ε2,t)′} and thus proceed to determine the ARMA representation of {(Xt, Yt)′} with respect

to the Wold shocks. From Prop 1, the bivariate ARMA representation of {(Xt, Yt)′}, which is

invertible with respect to {e1,t, e2,t}, is given by

 1− .7B + .01B2 0

0 1− .2B


 Xt

Yt

 =

 1− .5B 0

0 1


 e1,t

e2,t

 . (25)

Noting that Θ†1(z)
Φ1(z) = 1− .5z

1− .7z + .01z2 = 1− .5z
(1− .2z)(1− .5z) = 1

1− .2z = Θ†2(z)
Φ2(z) we use Theorem 2

to determine that there is no value to process sharing.

We now explore the impact of information sharing on the supplier’s MSFE when {(Xt, Yt)′} is

not invertible with respect to {(ε1,t, ε2,t)′}. In the discussion below, we make use of Theorem 4,

Corollary 2 and Theorem 5 of Section 4 to compute MSFEs under shock sharing, process sharing

and no sharing respectively.
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Example 3 Suppose {D1,t} and {D2,t} are each MA(2) with respect to {ε̃1,t} and {ε̃2,t} respectively,

given by

D1,t = (1− .2B − .4B2)ε̃1,t (26)

D2,t = (1− 1.2B − θ?2,2B2)ε̃2,t. (27)

where −1 < θ?2,2 < −.2. We note that this restriction guarantees that {D2,t} is invertible with

respect to {ε̃2,t}. It follows from Theorem 3 of KGH, that {(Xt, Yt)′} can be represented as the

bivariate ARMA process Xt

Yt

 =

 1− .5B 0

0 1−
θ?2,2

1− 1.2B


 ε1,t

ε2,t

 (28)

where ε1,t = (1 − .2)ε̃1,t and ε2,t = (1 − 1.2)ε̃2,t. Without loss of generality we assume that
∑
ε = 1 0

0 1

. The determinant of

 1− .5z 0

0 1−
θ?2,2

1− 1.2z

 has a root inside the unit circle when

|θ?2,2| > .2.

In Figure 1, the ratio of MSFE under no sharing to the MSFE under process sharing is shown

when −1 < θ?2,2 < −.2. Note that the MSFE under no sharing is equal to the MSFE under process

sharing if and only if θ?2,2 = −.4, such that θ2,2 = 2 and Θ†2(z) = 1 − .5z as is expected due to

Theorem 2.
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Figure 1: The one-step ahead MSFE ratio of no sharing to process sharing is shown for the pa-

rameters in (28). We note in this case θ1,1 = .5 and that there is no value to process sharing when

θ?2,1 = −.4, such that θ2,2 = 2.

Comparing this with Figure 2, where the ratio of MSFE under no sharing and MSFE under

shock sharing is shown, one observes that shock sharing is always valuable. In general, the scales

of Figure 1 and 2 indicate that process sharing has much less value than shock sharing. We note

that the larger the modulus of θ?2, the farther the root of Θ2(z) inside the unit circle, making shock

sharing increasingly more valuable.
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Figure 2: The one-step ahead MSFE ratio of no sharing to shock sharing is shown for the parameters

in (28). A horizontal line is drawn at 1, corresponding to no value to shock sharing.

3.3 Bivariate Non-Invertible Diagonal MA(q) Process with Contemporaneously

Correlated Shocks

In this subsection we consider the case where {(Xt, Yt)′} is a noninvertible bivariate MA(q) with

respect to shock sequences, {(ε1,t, ε2,t)′}, that are contemporaneously correlated. That is, we now

consider the retailer’s processes where

 Xt

Yt

 =

 Θ1(B) 0

0 Θ2(B)


 ε1,t

ε2,t

 , (29)

with Θ1(B) = 1−θ1,1B− . . .−θ1,q1B
q1 , Θ2(B) = 1−θ2,1B− . . .−θ2,q2B

q2 such that max(q1, q2) = q

and there exists |z0| < 1 such that det

 Θ1(z0) 0

0 Θ2(z0)

 = 0. Here we assume that the shock
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covariance matrix Σε (defined under (12)) is non-diagonal and thus σ12 6= 0. The last assumption

implies that it is no longer sufficient to simply invert each univariate process in order to obtain the

Wold representation.

In Theorem 3 below we show that a bivariate ARMA(p, q) process (see (12)) with (i) diagonal

AR and MA matrices, (ii) a non-diagonal covariance matrix of (ε1,t, ε2,t)′, (iii) where {(Xt, Yt)′} is

non-invertible with respect to {(ε1,t, ε2,t)′}, has a bivariate ARMA(p, q) representation with respect

to the shocks appearing in its Wold representation where the MA matrix is strictly non-diagonal.

We note that in this section we are interested in the value of information sharing only for bivariate

MA(q) processes. Nonetheless Theorem 3 below applies to bivariate MA(q) processes as well as the

more general bivariate ARMA(p, q) case.

Theorem 3 Suppose the retailer’s processes are given by (12) and let IN1 and IN2 be the list

of roots of Θ1(z) and Θ2(z) inside the unit circle respectively such that |IN1| + |IN2| ≥ 1. If

IN1 6= IN2 and the covariance matrix of the shocks is nondiagonal (σ12 6= 0), then the MA matrix

in the Wold representation of {(Xt, Yt)′} is nondiagonal.

Proof. Consider the covariance matrix Γ(h) = E((Xt+h, Yt+h)′(Xt, Yt)) for h ∈ Z. The covari-

ance matrix generating function, defined as G(z) =
∞∑

h=−∞
Γ(h)zh, of system (12) is given by (see

Brockwell and Davis [1] pp 420, Equation (11.3.17)) Φ−1
1 (z) 0

0 Φ−1
2 (z)


 Θ1(z) 0

0 Θ2(z)


 σ2

1 σ12

σ12 σ2
2


 Θ1(1

z ) 0

0 Θ2(1
z )


 Φ−1

1 (1
z ) 0

0 Φ−1
2 (1

z )


(30)

=

 Φ−1
1 (z)Θ1(z)σ2

1Θ1(1
z )Φ−1

1 (1
z ) Φ−1

1 (z)Θ1(z)σ12Θ2(1
z )Φ−1

2 (1
z )

Φ−1
2 (z)Θ2(z)σ12Θ1(1

z )Φ−1
1 (1

z ) Φ−1
2 (z)Θ2(z)σ2

2Θ2(1
z )Φ−1

2 (1
z )

 . (31)

We will now use the fact that the covariance matrix generating function corresponding to the Wold

representation must be equivalent to (31) to present a proof by contradiction. Suppose the Wold
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representation of {(Xt, Yt)′} is given by Xt

Yt

 =

 A1(B) 0

0 A2(B)


 e1,t

e2,t

 , (32)

where A1(z) =
∞∑
k=0

a1,kz
k and A2(z) =

∞∑
k=0

a2,kz
k and the covariance of the Wold shocks

 e1,t

e2,t



is given by

 α β

β γ

. The covariance matrix generating function of this system is given by

 A1(z) 0

0 A2(z)


 α β

β γ


 A1(1

z ) 0

0 A2(1
z )

 (33)

=

 A1(z)αA1(1
z ) A1(z)βA2(1

z )

A2(z)βA1(1
z ) A2(z)γA2(1

z )

 =

 Φ−1
1 (z)Θ1(z)σ2

1Θ1(1
z )Φ−1

1 (1
z ) Φ−1

1 (z)Θ1(z)σ12Θ2(1
z )Φ−1

2 (1
z )

Φ−1
2 (z)Θ2(z)σ12Θ1(1

z )Φ−1
1 (1

z ) Φ−1
2 (z)Θ2(z)σ2

2Θ2(1
z )Φ−1

2 (1
z )

 .
(34)

The polynomials Θ1(z) and Θ2(z) can be expressed as

Θ1(z) =
∏

ri∈OUT1
(1− r−1

i z)
∏

rj∈IN1
(1− r−1

j z), (35)

Θ2(z) =
∏

ri∈OUT2
(1− r−1

i z)
∏

rj∈IN2
(1− r−1

j z). (36)

Since the MA system is assumed to be non-invertible, |IN1|+ |IN2| ≥ 1. From Lemma 1 we have

that Θ1(z)σ2
1Θ1(1

z ) = Θ†1(z)σ2
1Θ†1(1

z )
∏

rk∈IN1
|rk|−2 and Θ2(z)σ2

1Θ2(1
z ) = Θ†2(z)σ2

2Θ†2(1
z )

∏
rk∈IN2

|rk|−2.

Considering the diagonal entries of (34) we note that this implies that

A1(z)αA1(1
z

) = Φ−1
1 (z)Θ†1(z)Φ−1

1 (1
z

)Θ†1(1
z

)σ2
1
∏

rk∈IN1
|rk|−2

and

A2(z)γA2(1
z

) = Φ−1
2 (z)Θ†2(z)Φ−1

2 (1
z

)Θ†2(1
z

)σ2
2
∏

rk∈IN2
|rk|−2.
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Since A1(z) and A2(z) must have a leading coefficient of 1, it must be that A1(z) = Φ−1
1 (z)Θ†1(z)

and A2(z) = Φ−1
2 (z)Θ†2(z).

Now considering the non-diagonal entries of (34) and cross multiplying we obtain

Φ−1
1 (z)Θ1(z)Θ2(1

z )Φ−1
2 (1

z )
A1(z)A2(1

z )
= β

σ12
=

Φ−1
2 (z)Θ2(z)Θ1(1

z )Φ−1
1 (1

z )
A2(z)A1(1

z )
. (37)

It follows that
Θ1(z)Θ2(1

z )
Θ†1(z)Θ†2(1

z )
=

Θ2(z)Θ1(1
z )

Θ†2(z)Θ†1(1
z )
. (38)

Let {r1,k} and {r2,k be roots of Θ1(z) and Θ2(z) and OUT1 and OUT2 be the list of roots of Θ1(z)
and Θ2(z) which are outside the unit circle. We can rewrite (38) as∏
r1,k∈IN1

(1 −
z

r1,k

)
∏

r1,k∈OUT 1

(1 −
z

r1,k

)
∏

r2,k∈IN2

(1 −
1

r2,kz
)
∏

r2,k∈OUT 2

(1 −
1

r2,kz
)

∏
r1,k∈IN1

(1 − zr1,k)
∏

r1,k∈OUT 1

(1 −
z

r1,k

)
∏

r2,k∈IN2

(1 −
r2,k

z
)
∏

r2,k∈OUT 2

(1 −
1

r2,kz
)

=

∏
r2,k∈IN2

(1 −
z

r2,k

)
∏

r2,k∈OUT 2

(1 −
z

r2,k

)
∏

r1,k∈IN1

(1 −
1

r1,kz
)
∏

r1,k∈OUT 1

(1 −
1

r1,kz
)

∏
r2,k∈IN2

(1 − zr2,k)
∏

r2,k∈OUT 2

(1 −
z

r2,k

)
∏

r1,k∈IN1

(1 −
r1,k

z
)
∏

r1,k∈OUT 1

(1 −
1

r1,kz
)

or equivalently,
∏

r1,k∈IN1
(1− z

r1,k
)

∏
r2,k∈IN2

(1− 1
r2,kz

)

∏
r1,k∈IN1

(1− zr1,k)
∏

r2,k∈IN2
(1− r2,k

z
)

=

∏
r2,k∈IN2

(1− z

r2,k
)

∏
r1,k∈IN1

(1− 1
r1,kz

)

∏
r2,k∈IN2

(1− zr2,k)
∏

r1,k∈IN1
(1− r1,k

z
)

(39)

where equality holds if and only if the roots in IN1 including their multiplicities are identical to

those in IN2. Thus, if IN1 6= IN2, then equation (38) does not hold and we have a contradiction.

Thus the theorem is proven. 2

The Wold representation of {(Xt, Yt)′} is crucial in obtaining best linear forecasts under process

sharing, obtaining their MSFEs and in determining whether process sharing is valuable (see (15)).

Theorem 3 indicates many instances where the Wold representation of {(Xt, Yt)′} is a bivariate

model which cannot be obtained from considering the univariate models separately. Therefore it is

not sufficient to consider the retailer’s order process as two univariate systems as in (10) and (11).

Tunicliffe-Wilson [10] provides an iterative algorithm for determining the Wold representation

for the bivariate MA(q) model (29) where {(Xt, Yt)′} is not invertible with respect to (ε1,t, ε2,t)′.
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The algorithm also provides the covariance matrix of the Wold shocks. The following remark is

obtained from the discussion surrounding Equation (3.4) of the aforementioned paper.

Remark 4 The Wold representation of {(Xt, Yt)′} is given by Xt

Yt

 = Θ‡(B)

 e1,t

e2,t

 , (40)

with Θ‡(z) = M0 +M1z + ..+Mqz
q where Mk = AkA

−1
0 such that Ak are the converged quantities

of Aτ,k as obtained from the following iterative system:

q−k∑
j=0

(Aτ+1,j+kA
′
τ,j +Aτ,j+kA

′
τ+1,j) = Γk +

q−k∑
j=0

Aτ,j+kA
′
τ,j . (41)

with Aτ,0 constrained to be upper-triangular and Γk = E[(Xt, Yt)′(Xt+k, Yt+k)]. Furthermore cov(e1,t, e2,t)′ =

A0A
′
0. Convergence of (41) is guaranteed as long as

q∑
k=0

A0,kz
k is nonsingular for |z| ≤ 1. We note

from the definition of Θ‡(z) that the Wold representation is MA(q).

In the examples below we utilize the above remark to obtain the Wold representation and

determine the MSFE of the best linear forecast one-step ahead. We also use Equation (8) of

Kohn [5] to determine whether process sharing is valuable. Theorem 4, Corollary 2 and Theorem

5 of Section 4 are used to compute MSFEs under shock sharing, process sharing and no sharing

respectively.

Example 4 Suppose the retailer processes can be modeled as MA(1) given by Xt

Yt

 =

 1− .5B 0

0 1− 2B


 ε1,t

ε2,t

 (42)

where cov[(ε1,t, ε2,t)′] =

 1 .5

.5 1

.
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We note that {(Xt, Yt)′} is not invertible with respect to {(ε1,t, ε2,t)′} and the MA matrix in the

Wold representation is non-diagonal. Computing the MSFE of the one-step ahead forecast under

no sharing yields 7.5322. Furthermore we observe that the MSFE under shock sharing is given by

1+1+2 · .5 = 3. In order to compute the MSFE under process sharing we use the Tunicliffe-Wilson

algorithm to determine the Wold representation, which is given by Xt

Yt

 =

 1− .5B 0

−.75B 1− 2B


 e1,t

e2,t

 , (43)

where cov[(e1,t, e2,t)′] =

 1 .5

.5 3.25

. Thus the corresponding MSFE of the one-step ahead fore-

cast under process sharing is 1 + 3.25 + 2 · .5 = 5.25 as per Theorem 4 since {e1,n}tn=−∞ and

{e2,n}tn=−∞ are observable. We observe that this is significantly lower than the MSFE under no

sharing and significantly higher than the MSFE under shock sharing.

In the following example, we compare the MSFEs under the three sharing arrangements for

different values of the θ2,1 coefficient. This is performed in the following example by determining

the Wold representation and using Theorem 4 to find the MSFE under process sharing.

Example 5 Consider the family of models given by

 Xt

Yt

 =

 1− .5B 0

0 1− θ2,1B


 ε1,t

ε2,t

 . (44)

where cov[(ε1,t, ε2,t)′] =

 1 .5

.5 1

 and −5 < θ2,1 < 5.

Varying θ2,1 between -5 and 5 and computing the ratios of the MSFE under no sharing to the

MSFE under process sharing as well as the ratios of the MSFE under no sharing to the MSFE

under shock sharing we obtain Figure 3. We note that there are three locations where process
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sharing has no value. As should be expected, process sharing and shock sharing are equivalent in

the invertibility region.

We note that two of the locations (θ2,1 = −2.30277 and θ2,1 = 1.30279) are outside the invert-

ibility region, and will result in a non-diagonal MA matrix in the Wold representation as discussed.

We can show that these two locations correspond to condition (8) in Theorem 1 of Kohn [5] . For

instance, if θ2,1 = −2.30277 the Wold representation is given by Xt

Yt

 =

 1− .5B 0

.9342552B 1 + .43425961B


 e1,t

e2,t

 . (45)

with A(1) =

 −.5 0

.93426 .43426

 in (15) and it is easy to verify that A(1)′(1, 1)′ = .432426(1, 1)′.

The same could be observed if θ2,1 = 1.30279.
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Figure 3: The one-step ahead MSFE ratio of no sharing to process sharing and MSFE ratio of no

sharing to shock sharing is shown for the parameters in (44). Vertical lines are drawn at -1 and 1

to indicate the region of invertibility which lies between them. We include an additional vertical

line at the location where no sharing, process sharing, and shock sharing result in the same MSFE.

A horizontal line is drawn at 1 to indicate instances of no value to process sharing.

As indicated in Figure 3, for any value θ1,1 there are three values of θ2,1 where there is no value

to process sharing. This is shown succinctly in Figure 4, where for each θ1,1, a grid search is carried

out for values of θ2,1 such that there is no value to process sharing. Each dot represents a pair of

values for θ1,1 and θ2,1 such that there is no value to process sharing.
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Figure 4: Region of no value to process sharing. Each dot represents a pair of coefficients θ1,1 and

θ2,1 where the forecasts under process sharing and no sharing are the same.

4 Computing Mean Squared Forecast Errors

In this section we discuss how to compute MSFEs for the best linear forecasts of Zt+1 at time t

under shock sharing, process sharing, and no sharing for the various cases as discussed in Section

3.

The next theorem provides the MSFE under the assumptions that the shock sequences are

observable to the supplier.

Theorem 4 Suppose the retailer’s processes can be modeled as in (12). If {ε1,n}tn=−∞ and {ε2,n}tn=−∞
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are observable then the best linear forecast of Zt+1 is given by

(1, 1)(Ψ(B)− I)

 ε1,t

ε2,t

 (46)

where I is a 2×2 identity matrix and Ψ(B) =


Θ1(B)
Φ1(B) 0

0 Θ2(B)
Φ2(B)

 . Its MSFE is σ2
1 +σ2

2 +2 ·σ12,

which is the sum of the elements of the covariance matrix of (ε1,t, ε2,t)′.

The Proof of Theorem 4 can be found in the Appendix. Under shock sharing, the retailer has

provided the supplier with sequences {ε1,n}tn=−∞ and {ε2,n}tn=−∞. Hence the best linear forecast

and the MSFE under shock sharing is provided by Theorem 4. There is another situation under

which the shock sequences are observable to the supplier. This occurs if the retailer shares the

processes {Xt} and {Yt}, and the bivariate process is invertible with respect to {(ε1,t, ε2,t)′} in (12).

This leads to the following corollary.

Corollary 1 Under process sharing, if det

 Θ1(z) 0

0 Θ2(z)

 has no roots on or inside the unit

circle then the best linear forecast of Zt+1 and its MSFE are given by Theorem 4.

If det

 Θ1(z) 0

0 Θ2(z)

 does have a root inside the unit circle however, {(ε1,n, ε2,n)′}tn=−∞

are not observable to the supplier, even when the retailer shares {Xn}tn=−∞ and {Yn}tn=−∞. In

order to obtain one-step ahead forecasts and MSFEs in this case, we must first obtain the Wold

representation of {(Xt, Yt)′} with respect to the Wold shocks {(e1,t, e2,t)′}, or equivalently the

ARMA representation of {(Xt, Yt)′} with respect to {(e1,t, e2,t)′} (refer to Sections 3.2 and 3.3). As

highlighted by Proposition 1 and Theorem 3, the Wold shocks and resulting ARMA representation

will be different depending on whether or not the shocks {ε1,t} and {ε2,t} are contemporaneously

correlated. The following corollary describes the uncorrelated case.
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Corollary 2 Under process sharing, if det

 Θ1(z) 0

0 Θ2(z)

 does have a root inside the unit

circle and σ12 = 0, then the best linear forecast of Zt+1 is

(1, 1)(Ψ(B)− I)

 e1,t

e2,t

 (47)

where I is a 2×2 identity matrix and Ψ(B) =


Θ†1(B)
Φ1(B) 0

0 Θ†2(B)
Φ2(B)

 . Its MSFE is σ2
1
∏

rj∈IN1
|rj |−2+

σ2
2
∏

rj∈IN2
|rj |−2 where IN1 (and IN2) is the list of all roots, rk, of Θ1(z) (and Θ2(z)) with repeated

entries to allow for multiplicities, such that |rk| < 1.

The proof of Corollary 2 can be found in the Appendix. As discussed in Section 3.3, if σ12 6= 0,

the polynomials in the MA matrix appearing in the Wold representation are different from the

polynomials we would observe when inverting the individual univariate processes. The following

corollary discusses how to compute the forecast and MSFE when σ12 6= 0 when the retailer’s

processes can be modeled as a bivariate MA(q), as in (29).

Corollary 3 Under process sharing, if the retailer’s processes generated by model (29) where

det

 Θ1(z) 0

0 Θ2(z)

 does have a root inside the unit circle and σ12 6= 0, then the best linear

forecast of Zt+1 is

(1, 1)(Θ‡(B)− I)

 e1,t

e2,t

 (48)

where I is a 2× 2 identity matrix. Its MSFE is given by the sum of the elements of cov(e1,t, e2,t)′.

We note that both Θ‡ and cov(e1,t, e2,t)′ can be obtained using Remark 4. The proof of Corollary

3 can be found in the Appendix.

32



We next consider the no sharing case and forecast Zt+1 based on {Zn}tn=−∞. Theorem 5

describes how to obtain the variance of the shocks appearing in the Wold representation of Zt in

this case, which is equivalent to the one-step ahead MSFE. We note that this material is stated

without proof in Lemma 1 of Sayed and Kailath [9] . For the sake of completeness and to keep the

material in this paper self contained we provide the proof, along with some additional lemmas in

the Appendix.

Theorem 5 The variance of the shocks appearing in the Wold representation of {Zt} is given by

σ2
εz =

pm
∏m
j=1(−aj)

qn
∏n
j=1(−bj)

(49)

where {aj} and {bj} are the roots of P (z) and Q(z) which are outside the unit circle and pm is the

coefficient of zm in P (z) and qn is the coefficient of zn in Q(z) such that the covariance matrix

generating function SZ(z) of {Zt} can be expressed as the ratio O(z)P (z)
Q(z) where O(z), P (z) and

Q(z) are Laurent polynomials4, with O(z) having all its roots on the unit circle and P (z) and Q(z)

having no roots on the unit circle .

We provide technical details on how to obtain the polynomials O(z), P (z) and Q(z) in the

Appendix. The variance σ2
εz of the shocks appearing in the Wold representation of {Zt} is equivalent

to the one-step ahead MSFE under no sharing. This exhausts the various MSFE computations

surrounding the different sharing arrangements discussed in this paper.

5 Conclusion

In this paper, we consider the case that the retailer observes demand for an item from two different

demand streams. We show how this demand propagates to two separate order processes and study
4See Definition 2 in the Appendix
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whether there is value to sharing these individual processes with a supplier in a two-stage supply

chain. We also study whether there is additional value to sharing the retailer’s shocks. In order

to do so, we study the retailer’s order components as part of a bivariate ARMA process. The

contribution of our research is determining how to assess whether or not information sharing is

valuable when the retailer’s order is composed of aggregate processes.

Indeed, we have uncovered situations where there is no value to information sharing even though

the existing literature suggested otherwise. Our framework and results are important for future

supply chain research when there are multiple processes incorporated into the retailer’s order to

the supplier.
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Appendix

Proof of Theorem 1: Since we are assuming that {(Xt, Yt)′} is invertible with respect to

{(ε1,t, ε2,t)′}, we note that {(ε1,t, ε2,t)′} are the Wold shocks and the Wold representation is given

by  Xt

Yt

 =

 Ψ1(B) 0

0 Ψ2(B)


 ε1,t

ε2,t

 , (50)

where Ψ1(z) = Θ1(z)
Φ1(z) = 1 + Ψ1,1z + Ψ1,2z

2 + . . . and Ψ2(z) = Θ2(z)
Φ2(z) = 1 + Ψ2,1z + Ψ2,2z

2 + . . ..

Theorem 1 of Kohn states that there is no value to observation sharing (and hence also shock
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sharing in this case) if and only if the condition in (15) holds. We have A(j) =

 Ψ1,j 0

0 Ψ2,j

.

Hence, Condition (15) becomes equivalent to

 Ψ1,j

Ψ2,j

 =

 kj

kj

 , j = 1, 2, . . . (51)

or equivalently, Ψ1,j = Ψ2,j for all j. This occurs if and only if Θ1(z)
Φ1(z) = Θ2(z)

Φ2(z) . 2

The following lemma provides a useful factorization of the product of Θ(z)Θ(1/z) using the

polynomial Θ†(z). As will be discussed in the proof of Proposition 1, this factorization is helpful

in determining the ARMA representation of {(Xt, Yt)′} with respect to their Wold shocks.

Lemma 1 For any polynomial Θ(z) with leading coefficient 1 and no roots on the unit circle,

Θ(z)Θ(1/z) = Θ†(z)Θ†(1/z)
∏

rk∈IN
|rk|−2

where IN is the list of all roots, rk, of Θ(z) with repeated entries to allow for multiplicities, such

that |rk| < 1.

Proof of Lemma 1: Let Θ(z) be of degree q. For any z0 6= 0,

(
1− z

z0

)(
1− 1

zz̄0

)
= (1− z̄0z)(1− z0/z)|z0|−2.

where z̄0 is the conjugate of z0. Let IN be the list of roots of Θ inside the unit circle and OUT be

the list of roots of Θ outside the unit circle and using this fact in the third line below, we obtain

Θ(z)Θ(1/z) = Πq
k=1(1− z/rk)

(
1− 1

zrk

)

=
∏

rk∈IN
(1− z/rk)

(
1− 1

zr̄k

) ∏
rk∈OUT

(1− z/rk)
(

1− 1
zr̄k

)
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=
∏

rk∈IN
(1− r̄kz)(1− rk/z)|rk|−2 ∏

rk∈OUT
(1− z/rk)

(
1− 1

zr̄k

)

=
∏

rk∈IN
(1− rkz)(1− rk/z)|rk|−2 ∏

rk∈OUT
(1− z/rk)

(
1− 1

zrk

)

= Θ†(z)Θ†(1/z)
∏

rk∈IN
|rk|−2.2

The proof of Proposition 1 also requires the use of a covariance matrix generating function

which we describe below. Consider the lag-h covariance matrix Γ(h) = E[(Xt+h, Yt+h)′(Xt, Yt)].

The covariance matrix generating function of (Xt, Yt)′ is G(z) =
∑∞
−∞ Γ(h)zh. The covariance

matrix generating function of the bivariate ARMA {(Xt, Yt)′} with shocks {(ε1,t, ε2,t)′} is given by

(see Brockwell and Davis p 420 [1] Equation (11.3.17))

G(z) =

 Φ1(z) 0

0 Φ2(z)


−1 Θ1(z) 0

0 Θ2(z)

Σε

 Θ1(1
z ) 0

0 Θ2(1
z )


 Φ1(1

z ) 0

0 Φ2(1
z )


−1

(52)

Proof of Proposition 1: Since it is assumed that the bivariate process in (12) is not invertible

with respect to the given shocks, at least one of {Xt} or {Yt} is not invertible with respect to {ε1,t}

or {ε2,t} respectively.

Define {e1,t, e2,t} as

 e1,t

e2,t

 =


Φ1(B)
Θ†1(B)

0

0 Φ2(B)
Θ†2(B)


 Xt

Yt

 . (53)

We first note that (e1,t, e2,t)′ is a linear combination of elements in {(Xn, Yn)′}tn=−∞ since Θ†1(z)

and Θ†2(z) have no roots inside the unit circle by definition. Furthermore (Xt, Yt)′ is a linear

combination of elements in {(e1,n, e2,n)′}tn=−∞, which can be seen rewriting (53) as
Θ†1(B)
Φ1(B) 0

0 Θ†2(B)
Φ2(B)


 e1,t

e2,t

 =

 Xt

Yt

 (54)
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and recalling that Φ1(z) and Φ2(z) have all their roots outside the unit circle. Also from (53) we

observe that  Θ†1(B) 0

0 Θ†2(B)


 e1,t

e2,t

 =

 Φ1(B) 0

0 Φ2(B)


 Xt

Yt

 . (55)

It remains to show that {(e1,t, e2,t)′} is a bivariate white noise sequence. Comparing (55) with (12)

we observe that  e1,t

e2,t

 =


Θ1(B)
Θ†1(B)

0

0 Θ2(B)
Θ†2(B)


 ε1,t

ε2,t

 . (56)

Based on this and Σε, the covariance matrix generating function (see (52) of {(e1,t, e2,t)′} is given

by 
Θ1(z)
Θ†1(z)

0

0 Θ2(z)
Θ†2(z)


 σ2

1 0

0 σ2
2




Θ1(1/z)
Θ†1(1/z)

0

0 Θ2(1/z)
Θ†2(1/z)

 (57)

which can be rewritten as 
σ2

1Θ1(z)Θ1(1/z)
Θ†1(z)Θ†1(1/z)

0

0 σ2
2Θ2(z)Θ2(1/z)
Θ†2(z)Θ†2(1/z)

 . (58)

From the factorization in Lemma 1 we can rewrite this covariance matrix generating function as
σ2

1
∏

rj∈IN1
|rj |−2 0

0 σ2
2
∏

rj∈IN2
|rj |−2

 . (59)

This shows that {(e1,t, e2,t)′} is a bivariate white noise sequence with covariance matrix

Σe =


σ2

1
∏

rj∈IN1
|rj |−2 0

0 σ2
2
∏

rj∈IN2
|rj |−2

 .

2
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Proof of Theorem 4: Let Φ(z) and Θ(z) be such that Φ(B) =

 Φ1(B) 0

0 Φ2(B)

 and Θ(B) =

 Θ1(B) 0

0 Θ2(B)

 in (12). We can then rewrite (12) as

 Xt

Yt

 = Φ−1(B)Θ(B)

 ε1,t

ε2,t

 (60)

which is an MA(∞) representation of {(Xt, Yt)′} with respect to {(ε1,t, ε2,t)′}. (Xt, Yt)′. Further-

more this implies that  Xt+1

Yt+1

 = Φ−1(B)Θ(B)

 ε1,t+1

ε2,t+1

 (61)

or equivalently  Xt+1

Yt+1

 =

 ε1,t+1

ε2,t+1

+ (Φ−1(B)Θ(B)− I)

 ε1,t+1

ε2,t+1

 . (62)

where I is a 2× 2 identity matrix. Since we are interested in the forecast of Zt+1 = Xt+1 + Yt+1 =

(1, 1)(Xt+1, Yt+1)′, we rewrite (62) as

(1, 1)

 Xt+1

Yt+1

 = (1, 1)

 ε1,t+1

ε2,t+1

+ (1, 1)(Φ−1(B)Θ(B)− I)

 ε1,t+1

ε2,t+1

 (63)

We note that (1, 1)(Φ−1(B)Θ(B)−I)

 ε1,t+1

ε2,t+1

 includes only elements in the series {(ε1,n, ε2,n)′}tn=−∞,

which are all observable by assumption, and therefore the best linear forecast of Xt+1 + Yt+1 is

given by

(1, 1)(Ψ(B)− I)

 ε1,t+1

ε2,t+1

 . (64)
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To get the MSFE of this best linear forecast note that

MSFE = E[(Xt+1 + Yt+1 − (1, 1)(Ψ(B)− I)(ε1,t, ε2,t)′)2] (65)

= E[(ε1,t+1 + ε2,t+1)2] (66)

= E[ε21,t+1 + ε22,t+1 + 2 · ε1,t+1ε2,t+1] (67)

= σ2
1 + σ2

2 + 2 · σ12 (68)

2

Proof of Theorem 2: From Proposition 1, if σ12 = 0 then the ARMA representation of

{(Xt, Yt)′} with respect to {(e1,t, e2,t)′} is given by

Φ(B)

 Xt

Yt

 = Θ†(B)

 e1,t

e2,t

 (69)

where Φ(B) =

 Φ1(B) 0

0 Φ2(B)

 and Θ†(B) =

 Θ†1(B) 0

0 Θ†2(B)

, with cov[(e1,t, e2,t)′] =

 σ2
1
∏
rj∈IN1 |rj |−2 0

0 σ2
2
∏
rj∈IN2 |rj |−2

.

Since det(Θ†(z)) has no roots inside the unit circle, from Corollary 1 we obtain the desired

result. 2

Proof of Corollary 3: If the retailer observes the bivariate MA(q) model in (29) such that

{(Xt, Yt)′} is noninvertible with respect to {(ε1,t, ε2,t)′} and σ12 6= 0 then from Remark 4 we obtain

the Wold representation given by:  Xt

Yt

 = Θ‡(B)

 e1,t

e2,t

 (70)
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where det(Θ‡(z)) has no roots inside the unit circle. From this we observe that Xt+1

Yt+1

 = Θ‡(B)

 e1,t+1

e2,t+1

 (71)

or equivalently  Xt+1

Yt+1

 =

 e1,t+1

e2,t+1

+ (Θ‡(B)− I)

 e1,t+1

e2,t+1

 . (72)

where I is a 2× 2 identity matrix. Since we are interested in the forecast of Zt+1 = Xt+1 + Yt+1 =

(1, 1)(Xt+1, Yt+1)′, we rewrite (72) as

(1, 1)

 Xt+1

Yt+1

 = (1, 1)

 e1,t+1

e2,t+1

+ (1, 1)(Θ‡(B)− I)

 e1,t+1

e2,t+1

 (73)

We note that (1, 1)(Θ‡(B)−I)

 e1,t+1

e2,t+1

 includes only elements in the series {(e1,n, e2,n)′}tn=−∞,

which are all observable by assumption, and therefore the best linear forecast of Xt+1 + Yt+1 is

given by

(1, 1)(Θ‡(B)− I)

 e1,t+1

e2,t+1

 . (74)

To get the MSFE of this best linear forecast note that

MSFE = E[(Xt+1 + Yt+1 − (1, 1)(Θ‡(B)− I)(e1,t, e2,t)′)2] (75)

= E[(e1,t+1 + e2,t+1)2] (76)

= E[e2
1,t+1 + e2

2,t+1 + 2 · e1,t+1e2,t+1] (77)

= sum of the elements of cov(e1,t, e2,t)′. (78)

2
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5.1 Examples Illustrating the Value of Information Sharing

We begin with several examples which illustrate Theorem 1, as well as the propagation discussed

in Section 2. Methods used to compute the MSFEs under shock sharing and no sharing can be

found in Theorem 4 and Theorem 5 of Section 4.

Example 6 Suppose {D1,t} and {D2,t} are each MA(2) with respect to {ε̃1,t} and {ε̃2,t} respectively,

given by

D1,t = (1− .2B − .4B2)ε̃1,t (79)

D2,t = (1− .4B − θ?2,2B2)ε̃2,t. (80)

where
∣∣∣∣ θ?2,21− .4

∣∣∣∣ < 1. We note that this restriction guarantees that {D2,t} is invertible with respect

to {ε̃2,t}. Furthermore this requirement will guarantee the invertibility of {(Xt, Yt)′} as well. Using

Theorem 3 of KGH, it follows that in this case {(Xt, Yt)′} can be represented as the bivariate ARMA

process  Xt

Yt

 =

 1− .5B 0

0 1−
θ?2,2

1− .4B


 ε1,t

ε2,t

 (81)

where
∣∣∣∣ θ?2,21− .4

∣∣∣∣ < 1. Furthermore ε1,t = (1− .2)ε̃1,t and ε2,t = (1− .4)ε̃2,t. We note that here θ2,1 = .5

and θ2,2 =
θ?2,2

1− .4 . Without loss of generality we assume that
∑
ε =

 1 .5

.5 1

.

The ratio of MSFEs under no sharing and under information (process or shock) sharing is

plotted in Figure 5 for different value of θ2,2 between -.6 and .6.

As Theorem 1 implies (noting that Φ1(z) = Φ2(z) = 1), the MSFEs are equal only when

θ?2,2 = .3 such that
θ?2,2

1− .4 = θ2,1 = .5 = θ1,1. We observe that the ratio of MSFEs is a convex

function in θ?2,2 reaching its minimum when θ2,1 = θ1,1.
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Figure 5: The one-step ahead MSFE ratio of no sharing to information sharing is shown for the

parameters in (81).

In order to keep the focus strictly on the value of information sharing, we will forgo discussing

propagation in the next example. Instead, we consider the representation of {(Xt, Yt)′} directly5.

Example 7 Suppose {(Xt, Yt)′} is bivariate ARMA(1,1) with respect to {(ε1,t, ε2,t)′} given by 1− .1B 0

0 1− .7B


 Xt

Yt

 =

 1− .5B 0

0 1− θ2,1B


 ε1,t

ε2,t

 , (82)

with
∑
ε =

 1 .5

.5 1

 where |θ2,1| < 1.

We note that {(Xt, Yt)′} is causal and invertible with respect to {(ε1,t, ε2,t)′} for any such θ2,1.

The ratio of MSFEs under no sharing and under information (process or shock) sharing is plotted
5In general, for any desired model of {(Xt, Yt)′} with respect to {(ε1,t, ε2,t)′}, there exist corresponding model(s)

of {(D1,t, D2,t)′} with respect to {(ε̃1,t, ε̃2,t)′}.
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in Figure 6 as θ2,1 varies between -1 and 1. A horizontal line is drawn at 1, corresponding to the

case that the MSFE under no sharing is equivalent to the MSFE under information sharing. As the

theorem implies the MSFEs can never be equal since the entries of the AR matrix are not equal.

−1.0 −0.5 0.0 0.5 1.0

1
.0

1
.1

1
.2

1
.3

θ2,1

M
S

F
E

n
o

s
h

a
re

M
S

F
E

s
h

a
re

Ratio of MSFE of No Sharing to Process Sharing (Invertible Case)

σ
1

2
= 1,   σ

2

2
= 1,   σ12 = 0.5,   θ1,1 = 0.5,   φ1,1 = 0.1,   φ2,1 = 0.7

Figure 6: The one-step ahead MSFE ratio of no sharing to information sharing is shown for the

parameters in (81)

Obtaining the Variance of the Wold Shocks of Zt

Here we provide the necessary materials for proving Theorem 5, as well as a construction of the

Laurent polynomials P (z), Q(z) and O(z) at the center of the Theorem. We begin with a defi-

nition of Laurent polynomials6 and a development of several lemmas which describe how Laurent

polynomials can be factorized. This will be key in obtaining the variance of the shocks appearing

in the Wold representation of {Zt}.

6Although more general definitions of Laurent polynomials exist in the literature, we consider the more restrictive

one provided here.
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Definition 2 A function P (z) in a complex variable z is a Laurent polynomial if we can write

P (z) as

P (z) =
m∑

k=−m
pkz

k

where p−m, . . . , pm are real-valued coefficients and ph = p−h for all h. If pm 6= 0 then P (z) is said

to be of order m.

Laurent polynomials can be factorized according to the following two Lemmas, which are sep-

arated by whether the Laurent polynomial has roots on the unit circle.

Lemma 2 Let P (z) be a Laurent polynomial of order m with no roots on the unit circle. Then

P (z) can be factorized as

P (z) = G(z)G(1/z)pm
m∏
j=1

(−rj) (83)

where G(z) is a polynomial with order m, leading coefficient 1, and all roots outside the unit circle

with {rj} being the roots of P (z) that are outside the unit circle.

Proof. Suppose z0 is such that P (z0) = 0. Note that

P (1/z0) =
m∑

k=−m
pkz
−k
0 =

m∑
k=−m

pkz
k
0 = 0

and hence 1
z0

is also a root of P (z).

Now consider zmP (z) which is a polynomial of degree 2m with a nonzero leading coefficient. Let

r1, . . . , r2m be its nonzero roots, of which m are outside and m are inside the unit circle. Without

loss of generality let r1, . . . , rm be outside the unit circle. It is possible to factorize zmP (z) as

zmP (z) = pm

2m∏
j=1

(1− z/rj)

where gm 6= 0 and real. Therefore

P (z) = pm
1
zm

m∏
j=1

(1− z/rj)(1− zrj)
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Proceeding further we observe that

P (z) = pm

m∏
j=1

(1− z/rj)(
1− zrj
z

) (84)

= pm

m∏
j=1

(1− z/rj)(−rj)(1−
1
zrj

) (85)

= pm

m∏
j=1

(−rj)
m∏
j=1

(1− z/rj)
m∏
j=1

(1− 1
zrj

) (86)

(87)

Now let G(z) =
m∏
j=1

(1− z/rj) and the desired result is achieved. 2

Lemma 3 Let O(z) be a Laurent polynomial of order ON with all its roots on the unit circle such

that the coefficient of the highest degree term is 1. Then O(z) can be factorized as

O(z) = R(z)R(1/z)C(z)C(1/z) (88)

where any root of R(z) is either 1 or −1 and any root of C(z) is complex and on the unit circle.

Furthermore, if zONO(z) has c complex roots and re real roots, we can list the roots of C(z) as

r1, . . . , rc/2 where each root is above the real axis and list roots of R(z) as rc+1, . . . , rc+re such that

rc+1 = rc+re/2+1, . . . , rc+re/2 = rc+re.

Proof:

Consider zONO(z) which is a polynomial of degree 2 ·ON having all its roots nonzero roots on

the unit circle. It is possible to factorize zONO(z) as

zONO(z) =
2·ON∏
j=1

(1− z/rj)

Without loss of generality let r1, . . . rc be the complex roots of zONO(z), and rc+1, . . . , r2·ON

be the re real roots. For each complex root of zONO(z), we note that the conjugate is also a root

and therefore we can consider r1, . . . , rc/2 to be those complex roots which are above the real axis.
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Hence it is possible to factorize zONO(z) as

zONO(z) =
c/2∏
j=1

(1− z/rj)(1− zrj)
c+re∏
j=c+1

(1− zrj).

Furthermore we note that any real root (-1 or 1) of zONO(z) must have even multiplicity. This

can be seen by noting that the degree of zONO(z) is even and therefore it must have an even

number of real roots. Furthermore since zONO(z) and
∏c/2
j=1(1 − z/rj)(1 − zrj) are Palendromic

polynomials, so is
c+re∏
j=c+1

(1− zrj). Since the coefficient of z0 is 1, this implies that the coefficient of

zre must be 1 and therefore the number of roots at -1 must be even. Hence it is possible to relist

the real roots such that rc+1 = rc+re/2+1, . . . , rc+re/2 = rc+re. Thus the previous factorization can

be restated as

zONO(z) =
c/2∏
j=1

(1− z/rj)(1− zrj)
c+re/2∏
j=c+1

(1− z/rj)(1− zrj).

Dividing by zON on both sides we obtain

O(z) =
c/2∏
j=1

(1− z/rj)
(1− zrj)

z

c+re/2∏
j=c+1

(1− z/rj)
(1− zrj)

z

or equivalently

O(z) =
c/2∏
j=1

(1− z/rj)(−rj)(1−
1
zrj

)
c+re/2∏
j=c+1

(1− z/rj)(−rj)(1−
1
zrj

).

Rearranging yields

O(z) =
c/2∏
j=1

(−rj)
c+re/2∏
j=c+1

(−rj)
c/2∏
j=1

(1− z/rj)
c/2∏
j=1

(1− 1
zrj

)
c+re/2∏
j=c+1

(1− z/rj)
c+re/2∏
j=c+1

(1− 1
zrj

).

Finally we note that
c/2∏
j=1

(−rj)
c+re/2∏
j=c+1

(−rj) must be equal to 1 since the coefficient of the highest

degree term of O(z) is 1 and conclude by letting C(z) =
c/2∏
j=1

(1− z/rj) and R(z) =
c+re/2∏
j=c+1

(1− z/rj).

2
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The next lemma shows that we can decompose the covariance matrix generating function of

{Zt} into a ratio of Laurent polynomials. This combined with the previous two lemmas will be

used to obtain the variance of the shocks appearing in the Wold representation of {Zt}.

Lemma 4 The covariance matrix generating function SZ(z) of {Zt} can be expressed as the ratio
O(z)P (z)
Q(z) where O(z), P (z) and Q(z) are Laurent polynomials, with O(z) having all its roots on

the unit circle and P (z) and Q(z) having no roots on the unit circle.

Proof: Consider the spectral density fZ(λ) of {Zt} which can be shown to be

fZ(λ) = fX(λ) + fY (λ) + fXY (λ) + f̄XY (λ) (89)

where fX(λ) is the spectral density of {Xt}, fY (λ) is the spectral density of {Yt}, and fXY (λ) is

the cross-spectrum defined by fXY (λ) = 1
2π
∑∞
r=−∞ e

−iλrcXY (r) where cXY (r) = E[Xt+rYt] is the

cross-covariance sequence. For the bivariate ARMA process in (12),

fX(λ) = σ2
1

2π
|Θ1(e−iλ)|2

|Φ1(e−iλ)|2 (90)

fY (λ) = σ2
2

2π
|Θ2(e−iλ)|2

|Φ2(e−iλ)|2 (91)

fXY (λ) = σ12
2π

Θ1(e−iλ)
Φ1(e−iλ)

Θ2(eiλ)
Φ2(eiλ) (92)

f̄XY (λ) = σ12
2π

Θ1(eiλ)
Φ1(eiλ)

Θ2(e−iλ)
Φ2(e−iλ) (93)

We note that SZ(z) =
∞∑

j=−∞
Rz(j)zj where Rz(j) = E(ZtZt−j) and therefore we observe the

equivalence SZ(e−iλ) = 2πfZ(λ). As such, SZ(z) can be obtained as

SZ(z) = σ2
1

Θ1(z)Θ1(z−1)
Φ1(z)Φ1(z−1) +σ2

2
Θ2(z)Θ2(z−1)
Φ2(z)Φ2(z−1) +σ12

Θ1(z)Θ2(z−1)Φ1(z−1)Φ2(z) + Θ1(z−1)Θ2(z)Φ1(z)Φ2(z−1)
Φ1(z)Φ2(z−1)Φ1(z−1)Φ2(z) .

(94)
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Each of the additive terms is a ratio of two Laurent polynomials 7 (defined in Definition 2) and

as such SZ(z) is the ratio of two Laurent polynomials. Without loss of generality, this ratio can be

expressed as

SZ(z) = O(z)P (z)
Q(z) (95)

where O(z) has all roots on the unit circle with the coefficient of the highest-degree term equal to 1

and P (z), Q(z) have orders m and n respectively and no roots on the unit circle. The fact that the

denominator of S(z), which is equal to Φ1(z)Φ2(z−1)Φ1(z−1)Φ2(z) has no roots on the unit circle

comes from the fact that Φ1(z) and Φ2(z) have no roots on the unit circle by assumption 2.

We note that (94) and (95) provide the construction of the Laurent polynomials O(z), P (z)

and Q(z) in Theorem 5. This, along with their factorizations, allows us to establish the variance

of the shocks appearing in the Wold representation of {Zt} in the proof of Theorem 5 below.

Proof of Theorem 5: By Lemma 4 we observe that the covariance matrix generating function

SZ(z) of {Zt} can be expressed as the ratio O(z)P (z)
Q(z) where P (z) and Q(z) have order m and n

and roots {aj} and {bj} which are outside the unit circle. Using Lemma 2, we can factorize P (z)

and Q(z) as

P (z) = pm

m∏
j=1

(−aj)Lp(z)Lp(
1
z

) (96)

Q(z) = qn

n∏
j=1

(−bj)Lq(z)Lq(
1
z

) (97)

such that Lp(z) and Lq(z) have leading coefficient 1 and roots {aj} and {bj} respectively. From

the proof of Lemma 2 we observe that

Lp(z) =
m∏
j=1

(1− z/aj)

7This comes from the fact that for any Laurent polynomial P (z), both P (z)P (z−1) and P (z) + P (z−1) will be

Laurent polynomials. Furthermore if P1(z) and P2(z) are Laurent polynomials then P1(z)P2(z) and P1(z) + P2(z)

will be Laurent polynomials as well.

49



Lq(z) =
n∏
j=1

(1− z/bj).

Using Lemma 3 and its proof, we can factorize O(z) as

O(z) = R(z)R(1/z)C(z)C(1/z) (98)

such that

C(z) =
c/2∏
j=1

(1− z/rj) (99)

R(z) =
c+re/2∏
j=c+1

(1− z/rj) (100)

Letting vp = pn
∏m
j=1(−aj) and vq = qn

∏n
j=1(−bj), the spectral density of {Zt} can be expressed

as

fZ(λ) = SZ(e−iλ) = vp
2πvq

∣∣∣∣Lp(e−iλ)
Lq(e−iλ)

∣∣∣∣2∣∣∣∣R(e−iλ)
∣∣∣∣2∣∣∣∣C(e−iλ)

∣∣∣∣2 (101)

By Kolmogorov’s Formula, the variance of the shocks in the Wold representation (σ2
εz) is given

by

σ2
εz = 2πexp

{ 1
2π

∫ π

−π
lnfZ(λ)dλ

}
(102)

Since

∫ π

−π
lnfZ(λ) =

∫ π

−π
ln
(

vp
2πvq

)
dλ+

∫ π

−π
ln
∣∣∣∣Lp(e−iλ)
Lq(e−iλ)

∣∣∣∣2dλ+
∫ π

−π
ln
∣∣∣∣R(e−iλ)

∣∣∣∣2∣∣∣∣C(e−iλ)
∣∣∣∣2dλ (103)

we will handle each of the three additive terms on the right-hand side separately. First note that

∫ π

−π
ln
(

vp
2πvq

)
dλ = 2π ln vp

2πvq
(104)
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Next we note that

∫ π

−π
ln
∣∣∣∣Lp(e−iλ)
Lq(e−iλ)

∣∣∣∣2dλ =
∫ π

−π

[ m∑
j=1

ln[(1− e−iλ/aj)(1− eiλ/āj)]−
n∑
j=1

ln[(1− e−iλ/bj)(1− eiλ/b̄j)]
]
dλ

=
m∑
j=1

∫ π

−π
ln[(1− e−iλ/aj)(1− eiλ/āj)]dλ−

n∑
j=1

∫ π

−π
ln[(1− e−iλ/bj)(1− eiλ/b̄j)]dλ

= −
m∑
j=1

∫ π

−π

( ∞∑
k=1

1
akj
e−ikλ

k
+
∞∑
k=1

1
ākj
eikλ

k

)
dλ+

n∑
j=1

∫ π

−π

( ∞∑
k=1

1
bkj
e−ikλ

k
+
∞∑
k=1

1
b̄kj
eikλ

k

)
dλ

= 0 (105)

where we note that the Taylor-series expansions hold since
∣∣∣∣ 1
aj

∣∣∣∣ < 1 and
∣∣∣∣ 1
bj

∣∣∣∣ < 1 for all j.

Since any root rj on the unit circle can be expressed as eiλj , such that λj ∈ [−π, π] and

C(e−iλ) =
c/2∏
j=1

(1− e−i(λ+λj ) we observe that

∣∣∣∣C(e−iλ)
∣∣∣∣2 =

∣∣∣∣ c/2∏
j=1

[
1− (cos(λ+ λj)− isin(λ+ λj)

]∣∣∣∣2

=
c/2∏
j=1

[
[1− (cos(λ+ λj)]2 + sin2(λ+ λj)

]

=
c/2∏
j=1

[
1− 2cos(λ+ λj) + cos2(λ+ λj) + sin2(λ+ λj)

]

=
c/2∏
j=1

[
2− 2cos(λ+ λj)

]

=
c/2∏
j=1

4sin2
(
λ+ λj

2

)
(106)

Therefore ∫ π

−π
ln
∣∣∣∣R(e−iλ)

∣∣∣∣2∣∣∣∣C(e−iλ)
∣∣∣∣2dλ =

=
∫ π

−π

[ c/2∑
j=1

ln
[
4sin2

(
λ+ λj

2

)]
+
c+re/2∑
j=c+1

ln[(1− e−iλ/aj)(1− e−iλaj)]
]
dλ

=
c/2∑
j=1

∫ π

−π
ln
[
4sin2

(
λ+ λj

2

)]
dλ+

c+re/2∑
j=c+1

∫ π

−π
ln[(1− e−iλ/aj)(1− e−iλaj)]dλ

= 0 + 0 = 0 (107)
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where we use the fact that
∫ π
−π ln(1−e−iλ)dλ = 0 and that for any λj ,

∫ π

−π
ln
[
4sin2

(
λj + λ

2

)]
dλ =

0. The latter equality is obtained from:

∫ π

−π
ln
[
4sin2

(
λj + λ

2

)]
dλ = 2π ln[4] +

∫ π

−π
ln
[
sin2

(
λj + λ

2

)]
dλ

= 2π ln[4] +
∫ π−λj

−π−λj
ln
[
sin2

(
λj + λ

2

)]
dλ

= 2π ln[4] +
∫ π

−π
ln
[
sin2

(
y

2

)]
dy

= 2π ln[4] +
∫ 0

−π
ln
[
sin2

(
y

2

)]
dy +

∫ π

0
ln
[
sin2

(
y

2

)]
dy

= 2π ln[4] + 2
∫ π

0
ln
[
sin2

(
y

2

)]
dy

= 2π ln[4] + 4
∫ π

0
ln
[
sin

(
y

2

)]
dy

= 2π ln[4] + 8
∫ π

2

0
ln[sin(x)]dx

= 2π ln[4]− 8(π/2) ln[2])

= 0 (108)

Thus using (103) we have ∫ π

−π
lnfZ(λ) = 2π ln vp

2πvq
(109)

and from (102) we obtain

σ2
εz = 2πexp{ 1

2π · 2π ln vp
2πvq

} (110)

= 2πexp{ln vp
2πvq

} (111)

= 2π vp
2πvq

(112)

= vp
vq

(113)

=
pm
∏m
j=1(−aj)

qn
∏n
j=1(−bj)

. (114)

2
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