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Although modern scholarship tends to emphasize the earlier stages 
of Greek astronomy, say from Eudoxus to Hipparchus, our most 
generous and detailed direct evidence pertains to the Roman 
period, or roughly the first five centuries of our era. By way of the 
medieval manuscript traditions we possess the writings of Ptolemy, 
several major commentaries on them by Pappus, Theon, and Pro- 
clus, and a handful of less technical elementary works. Since the 
middle of the nineteenth century, excavations and accidental finds 
in Egypt have yielded fragments of astronomical texts and tables, 
written in Greek or Egyptian on papyrus, ostraca, and wooden 
boards, the great part dating from the first five centuries of Roman 
rule. These contemporary documents illustrate the astronomical 
practices prevalent in Roman Egypt, and they are now sufficiently 
numerous to allow us to trace the parallel, indeed symbiotic, exist- 
ence of kinematic predictive astronomy (mostly represented by ver- 
sions of Ptolemy’s Handy Tables) and an arithmetical astronomy 
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that was in large part evolved from the predictive methods known 
to us from Babylonian tablets of the last four centuries B.C. The 
most copiously documented component of this arithmetical tra- 
dition is a method of calculating lunar longitudes and arguments 
of latitude that, while preserving a characteristically Babylonian 
arithmetical model for the day-to-day variation in the moon's pro- 
gress, otherwise appears to be an original invention of unknown 
Greek astronomers. 

In a previous article surveying various ancient and medieval pro- 
cedures for computing the moon's position that incorporated the 
approximate equation of nine anomalistic months with 248 days, 
I discussed three Greek papyrus fragments from Roman Egypt: P.  
RyI. 1.27, P. L i d  inv. 35a, and P.  S.  I .  XV. 1493. * Neugebauer and 
van der Waerden had already established the following:2 

(1) P. Liind inv. 35a is a tabular list of dates (regnal year of 
current emperor, Egyptian calendar month and day) approxi- 
mately coinciding with the moon's reaching its apogee or day of 
least progress in longitude, during at least the years 69%109.3 Be- 
side each date is given the moon's longitude on that day, ex- 
pressed as zodiacal sign and degrees (to the third fractional 
sexagesimal place). These 'epoch' dates are grouped in series of 
twelve, all separated by exactly 248 days, whereas the interval 
between the twelfth epoch date of a cycle and the first date of 
the next cycle is 303 days; hence the overall cycle is 3031 days; 
i.e. approximately 1 10 anomalistic months. The tabulated longi- 
tudes increase by constant steps of 27;43,24,56" every 248 days 
and of 337;3 1,19,7" every 303 1 days. Dividing these increments 
by the corresponding time intervals does not lead to a consistent 
mean daily progress in longitude; van der Waerden suggested 
that the discrepancy reflects an awareness that the 248-day and 
3031-day periods are only approximations of a more precise 
period of anomaly, and that the underlying mean motion was 
13; 10,34,52" per day, which is essentially correct for sidereal 
longitudes. 

(2) P. Ryl. 27, written about A.D. 250, is a 'procedure text', the 
main part of which contains instructions for calculating epoch 
dates and longitudes of the kind listed in P.  Lund inv. 35a. (For a 
translation of the entire text, see Appendix 2.) Two versions of the 
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instructions are given, the second set generating dates and longi- 
tudes exactly matching those of P. Lurid inv. 35a, whereas the first 
set seems to generate cycles such that the first eleven epochs match 
the second through twelfth epochs in the equivalent cycle of the 
second set of  instruction^.^ As well as the longitude, the rules gen- 
erate a second number associated with each epoch: the moon's 
argument of latitude, measured from the northern limit in units 
called 'steps' (&Opoi) such that 1 step equals 15". The epoch-to- 
epoch increments in argument of latitude can be derived from 
those in longitude exactly, using a nodal motion of - 0;3,10,49,15" 
per day. 

(3) P.S.Z. 1493 came to light more recently than the other two 
papyri, and still awaits formal publ icat i~n.~ Neugebauer recog- 
nized that it is a fragment of a 'template' or table of the moon's 
progress since epoch through a cycle of consecutive days starting 
with any day of least motion. The preserved or partially preserved 
lines extend from day 80 to day 135. In addition to an index col- 
umn giving the number of days since epoch (tabulated only every 
five lines), there is a column for the progress in longitude in degrees 
and minutes, and also for a second two-place sexagesimal quantity 
that cycles through the range 0 to 24. The line-to-line differences 
of either column behave as truncations of a linear zigzag function 
with the anomalistic month as period. 

In my 1983 article I identified the second column in P.S.I. 1493 
as progress in argument of anomaly since epoch, measured in 
steps; and I determined approximate parameters for the two zigzag 
functions from which it was possible to generate a reconstructed 
template that agreed with all preserved values in the papyrus to 
within 1 minute (except for isolated scribal errors). I showed that 
the reconstructed template could be used together with an epoch 
table such as P. Lund inv. 35a to find the moon's position on any 
date: one simply had to find the preceding epoch, and add together 
the tabulated epoch position and the progress in the template cor- 
responding to the number of days elapsed since epoch. Passages in 
the Anthologiue of the second-century Antiochene astrologer Vet- 
tius Valens prove that he possessed just such a set of tables and 
used them in this way.6 

In the course of editing the astronomical fragments among the 



vast collection of papyri excavated between 1896 and 1906 by 
Grenfell and Hunt at the site of Oxyrhynchus, several have come 
to light that are concerned with the same  table^.^ In fact, as a 
means of computing lunar positions they are only rivalled among 
the papyri by Ptolemy’s Handy Tables. A predictive scheme - 
that is, tables and the methods of generating and using them - 
of such prolonged and widespread popularity deserves to have 
a name, and so I will here refer to it as the ‘Standard Lunar 
Scheme’. 

Through the new texts we can recover details of the Standard 
Scheme that were obscure before; and we may take advantage of 
the opportunity to correct some long-standing mistakes in the 
interpretation of the documents already known. The outcome 
will be the restoration of the Standard Scheme to its full working 
order, so that we can recompute lunar positions for arbitrary 
dates using this scheme, just as we are already able to do with 
Ptolemy’s tables - providing us with a valuable resource for the 
analysis and dating of other astronomical papyri.’ As well, we 
obtain a glimpse of the methodology behind the arithmetically- 
based astronomy that, as the papyri reveal, was prevalent in Ro- 
man Egypt. The present article undertakes the following: (1) de- 
duction of the exact parameters of the two zigzag functions on 
which the Standard Scheme template is based; (2) explication of 
a new procedure text that demonstrates a profounder interest in 
and understanding of the mathematical workings of the zigzag 
functions than one would have expected in a Greek text; (3) 
explanation of the epoch increments; (4) investigation of the 
epoch alignments of the scheme; and (5) survey of the range of 
dates of the documents testifying to the use of the Standard 
Scheme. 

1. The Template. Before turning to the Standard Scheme tem- 
plate I will review, in all brevity, the general definition of a linear 
zigzag function and the notations used here for its parameters. A 
zigzag function is sequence of numbers zi generated according to 
simple iterative arithmetical rules involving three determining par- 
ameters: a ‘minimum’ m, a ‘maximum’ M ,  and an ‘increment/dec- 
rement’ d. Every number zi generated by the function is considered 
to belong to either an increasing or decreasing ‘branch’ of the func- 



The Stirndard Luntrr Sclirr~ie 5 

tion. Depending on which branch z ,  is in, the next value z , + ~  is 
obtained as follows: 

Increasing: (1 )  
If z , + d < M  then = ~ , + d ,  on increasing branch 
Otherwise z,+ I = (2M-d)-=,, on decreasing branch 

If z , - -cI~m then z,+ I = 2,-d, on decreasing branch 
Otherwise zr+ = (2m+n)-z,,  on increasing branch 

Decreasing: 

Consequently the sequence of z,  will be equally spaced values of a 
real periodic function composed of alternating linear stretches of 
equal but opposite slope, inflecting repeatedly at rn and M ,  with a 
period 

and a mean value 

M + m  
P = T  (3) 

Unless the double amplitude 2 ( M - m )  is exactly divisible by d, the 
sequence of values generated by (1) will not repeat in a single 
period. However, since in Babylonian and Greek astronomy rn, M ,  
and dare always chosen as terminating sexagesimal numbers, there 
will always be a ‘whole number period’ 17 comprising a whole 
number 2 of real periods P such that znt i=  zi. 

The fragment of a lunar template in P.S.I. 1493 preserves a full 
column of 25 consecutive values of the progress in longitude, and 
two columns of the argument of latitude. However, all values in 
this copy are given only to one fractional sexagesimal place, so 
that it was not possible to get exact values for the differences and 
hence also for the parameters of the zigzag functions. In order to 
reconstruct the longitude function in my former paper I assumed 
that its whole number period was 248 days and that the mean 
value was the one implied by the epoch increment associated with 
3031-day intervals in P. Ryl. 27; I then varied the increment/dec- 



rement of the zigzag function in search of a value that would repro- 
duce the attested values in the papyrus. In this way I arrived at the 
following parameters: 

d = 0;12,50" 
M = 14;38,59, I8,37" 
/ i t  = 1 1;42,10,25,17" 
p = 13;10,34,51,57" 
P = 27;33,20 days 
I7 = 248 days 
z=9 

(4) 

The initial value, giving the progress between days 0 and I of the 
template, was the minimum, m. From these parameters I derived 
a second zigzag function for daily motion in argument of latitude 
in steps by subtracting the nodal daily motion of -0;3,10,49,15" 
from the mean, minimum, and maximum and dividing by 15. The 
accumulated sums of both functions, truncated to minutes, were 
in agreement with the values in P.S.I.  1493 except for some discre- 
pancies of 1 minute. Some small tolerances in the parameters were 
admissible without appreciable effect in the minutes place; in par- 
ticular )TI and M of the longitudinal function could be raised by 
0;0,0,0,3" in order to  make the mean exactly 13;10,34,52" per day. 
However, I was unable to find satisfactory parameters that would 
keep the longitudinal function to just three fractional places and 
the latitudinal function to just four, to accord with the numbers 
of places used in the epoch positions. 

Now among the new papyri from Oxyrhynchus is a fragment 
with tables on both sides (hence probably coming from a codex), 
the 'front' (P. Osy. LXI.4151) being part of a Standard Scheme 
epoch table covering dates between 210 and 252, so that the pa- 
pyrus must date from the early second half of the third century. 
On the 'back', P. Oxy. LX1.4164, are parts of two sets of col- 
umns of a template, with values given to three fractional places. 
The following numerals can be read or  immediately restored in 
the second set of columns (the line numbers are those of the text 
edition): 
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[13] 26 
[I13 13 

12 47 
12 34 
12 22 
12 9 

(15) [ I l l  56 

(10) 13 0 

(16) 1111 43 
(18) [Ill 53 

(20) 12 19 
[I12 6 

12 32 
12 44 

[ 
[ 
3[x 
4[x 
54 [ 
4 [  
14 [ 
24 [ 
34 37 
36 37 
26 37 
16 37 
6 37 
56 37 

This is obviously a stretch of the zigzag function for daily progress 
in longitude. The line-to-line difference, subtractive in lines 8-1 6, 
additive in 18-22, is 0;12,50,0", i.e. just the value of t i  of my recon- 
structed function. But alas! this proves to be the only parameter 
that I got exactly right. Where the function passes a minimum, we 
can recover the exact value of IN by adding the adjacent tabulated 
values, subtracting 0;12.50", and dividing by 2. We thus find that 
/ i i  = 11;42,10,37". There is not a well-preserved passage of a maxi- 
mum in the papyrus from which we can extract A4 so directly. But 
if we assume that the mean value is 13;10,34,52", then the rest of 
the parameters of the function follow 

cl  = 0;12,50" 
M = 14;38,59,7" 
/?I = 11;42.10,37" 
,H = 13;10,34,52" 
P = =days = 27;33,16,21,49 ,... days 
I7 = 3031 days 
z = 110 
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Again we take rn as the initial value of the function. If we now 
generate the first nineteen values of the zigzag function and its 
summation, we obtain values for the accumulated progress in 
longitude since epoch that agree perfectly in every place to the 
legible numerals from the first set of columns in P. Oxy. 4164: 

[ l l  42 10 37 

[12 7 50 37 
[12 20 40 37 
[12 33 30 37 
[12 46 20 37 

[13 12 0 37 
[13 24 50 37 
[13 37 40 37 
[13 50 30 37 

(15) [14 3 20 37 
[14 16 10 37 

(1 7) [I4 29 0 37 
(19) [14 36 7 37 
(20) [14 23 17 37 

[14 10 27 37 
[13 57 37 37 

( 5 )  [11 55 0 37 

(10) [12 59 10 37 

11 421 10 37 
23 371 11 14 
35 451 1 51 
48 5 421 28 

73 25 331 42 
86 24 414 19 
99 361 44 56 

10 1261 39 16 10 
1401 29 46 47 
154 313 7 24 
168 419 18 1 
183 118 18 38 

5 60 39 131 5 

1131 1 35 33 

15 1197 54 26 1[5] 
1 212 17 43 5[2] 

2126 28 11 [29] 
1 240 25 4[9 61 

This confirms that the parameters given above are exact. Although 
this version of the template does not incorporate columns for the 
argument of latitude, we can use the constant nodal motion from 
the epochs to derive the parameters of a zigzag function: 

d = 0;0,51,20 steps 
A4 = 0;58,48,39,45 steps 
nt = 0;47,1,25,45 steps 
p = 0*52,55,2,45 steps 
P = $$ days = 27;33,16,21,49 ,... days 
I7 = 3031 days 
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If we now return with these functions to P.S.Z. 1493, we find that 
the values they generate, truncated to minutes, exactly reproduce 
all legible values in that copy of the template except for the few 
scribal errors. 

A zigzag function is completely determined by an initial value 
and three independent parameters, for example the mean value, 
the increment/decrement, and the period. The difficulty I had in 
finding zigzag functions fitting the truncated values in P.S.I. 1493 
and yet not requiring more than three and four fractional places 
arose merely from the assumption that a template meant to bridge 
intervals between epochs of 248 days should be based on zigzag 
functions with 248 as their whole number periods. Moreover the 
obvious historical precedent for using a zigzag function to repre- 
sent lunar daily motion was the Babylonian function called F* by 
Neugebauer, which has a period of 248 days. Instead, the period 
of the Standard Scheme template has turned out to be 3031 days, 
that is, not the short interval between successive epochs but the 
interval between epoch cycles, which implies a much more accurate 
estimate of the anomalistic month. Did the complete template give 
all 3031 values of the zigzag functions? On the face of it this ap- 
pears unlikely, firstly because the resulting table would have been 
of cumbersome length, and secondly because the spacing of the 
epochs is such that one would never need to use the template be- 
yond the 248th line, or the 303rd line for the longer gaps between 
epoch cycles. We may hypothesize, therefore, that the template 
ended at the 303rd day, and that the inventors of the scheme were 
not bothered by the small discontinuities implicit in repeating the 
sequence of values of the functions prematurely, before they 
‘closed’. 

Although the idea of using a zigzag function to represent vari- 
able lunar daily motion clearly harks back to the Babylonian F* 
function (the parameters of which were known to Geminus), none 
of the specific parameters of the Standard Scheme template have 
turned up so far in pre-Roman sources, whether Babylonian or 
Greek. The 303 1 -day anomalistic period is a good approximation, 
and can be derived by continued fractions from two Babylonian 
System B parameters known to Greek astronomers from Hippar- 
chus’s time: 



10 it lc..wndcr Jones 

25 1 
269 

1 anom. mo. = - syn. mo. X29;3 1,50,8,20 dayslsyn. mo. (7) 

= 27;33,16,26,57,28 ,... days 

1 = 27+ 
I I +  

1 

4+- 
1+  

I 
1 2 + 7  1 

303 1 
-days 
110 

The mean daily motion in sidereal longitude is in excellent 
agreement with the value implied by the Greek 54-year eclipse 
period relation called the eselignzos: 

(8) 
( 9 )  

(whereas the more accurate parameters of the System B lunar 
theory lead to a value closer to 13;10,34,51" per day). I have not 
succeeded in deriving the daily motion of the node, -0;3,10,49,15", 
from attested parameters; from the System B parameters one finds: 

19756 days = 723 X 360"+ 32" 
,u = 13;10,34,51,55,.." per day 

5458 
5923 

1 drac. mo. = - syn. mo. X29;31,50,8,20 dayslsyn. mo. 

(10) 

which, combined with a mean motion in longitude of 13;10,34.52" 
per day, leads to a nodal motion of -0;3,10,47,40,..." per day. 

The amplitude of the Standard Scheme longitudinal function, 
2;56,48,30", is only about 517 of its counterparts in the Babylonian 
lunar schemes, and this surely reflects a new estimate of the size of 
the lunar anomaly obtained by analysis of eclipse observations.' 
We can recover only a rough approximation of the anomaly as- 
sumed by the inventors of the Standard Scheme, because the choice 
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of amplitude of a zigzag function is subject to arithmetical con- 
straints that limit usable numbers to a few fairly widely spaced 
values, none of which might have been very close to the theoretic- 
ally preferable amplitude. Since in one whole number period the 
zigzag function must traverse the amplitude 2 2  times by steps of 
d, we have 

2ZX(M--rtz) = n x n  (1 1)  
with the consequence that 2 ( M - m )  times a small power of 60 must 
be exactly divisible by L7, and d times the same small power of 60 
must be divisible by Z. The choice of n is also influenced by the 
fact that the more sexagesimal places it has, the more laborious 
the computation of the table becomes; hence in Babylonian astron- 
omy d usually has only one place. If, in constructing a zigzag func- 
tion for the Standard Scheme, one had wanted to keep d to just 
IIVO places and all other parameters to just four, then d would have 
had to be selected from multiples of 0;1,50", including consecu- 
tively 0 ; l l  ,O", 0;12,50", and 0;14,40". In other words, one would 
have ended up with exactly the same function whether one started 
with the assumption that the maximum equation of the moon was 
5", or the assumption that the moon's eccentricity was 111 2 the size 
of its orbit, or the assumption that the variation in the moon's 
daily motion in longitude is 3". 

2. The procediire text P. Oxy. LXI.4136. That the astronomers 
who invented the Babylonian planetary and lunar schemes pos- 
sessed mastery in handling periodic arithmetical functions is not 
in dispute. As yet we have less detailed evidence for Greek adap- 
tations of the Babylonian schemes, and it might reasonably have 
been expected that such changes as were made were superficial; for 
the basic computational methods would surely have been much 
more susceptible of transmission than the mathematical method- 
ology by which the schemes were originally crafted. We have seen 
now that the inventors of the Standard Scheme were able to con- 
struct a new zigzag function with a desired periodicity and with 
an economy of sexagesimal arithmetic that would not look out of 
place in a cuneiform tablet. How much deeper did their under- 
standing of the mathematical properties of their creation go? 

A new fragment of a procedure text, P. Oxy. LX1.4136, casts 
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unexpected light on this question. The front of this papyrus sub- 
stantially preserves the top 22 lines of a column of text with traces 
of the 23rd line and of the left edge of a subsequent column. On 
the back are horoscopes (published as P. Oxy. LXI.4241) cast for 
dates in 162, 191, and 201, so that the date of writing of the front 
is probably the late second or early third century. Several scribal 
errors prove that this is a copy. 

The text bears no title, and nowhere mentions the moon. Only 
the numerical details of the argument reveal to us that it is con- 
cerned with a Standard Scheme template giving the progress in 
longitude since epoch (i.e. the running totals of the longitudinal 
zigzag function) and perhaps also the zigzag function for daily 
motion itself. (There is no allusion in the preserved lines to argu- 
ments of latitude.) The template is supposed to be so laid out that 
a new column is begun after each passage of a minimum in the 
zigzag function; hence each column will have had either 28 or 27 
lines. A complete period of 3031 days, supposing one had the pa- 
tience to compute it, would require 110 columns, and the 248th 
and 303rd days would have ended the ninth and eleventh columns 
respectively. 

The problem that the text addresses is strictly mathematical: 
how to find the total progress in longitude over each column of 
the template without having to add each value separately. This is 
a special case of the general problem, to find the sum of n success- 
ive values of a zigzag function, which has been treated in modern 
times by Neugebauer because of its pertinence to the editor's task 
of establishing continuity between Babylonian astronomical tab- 
lets.'' For the ancient computer of the tables it might have been 
useful to have an independent check of the totals at the end of 
each column. Let us proceed through the instructions of the text 
step by step, while attempting to explain what the instructions 
mean. 

(lines 1-7) How one should determine the total for 27-line and 28-line columns. 
Multiply the mean [course(?)] by the 28 lines; there results 36k56.16 [I6 degrees(!)]. 
And multiply the amount added for 28-line columns, 0;5.4[3, by] 7, which is of 
the 28 lines; there results 0;40.1. (Subtracting) this from the foregoing, there remains 
368: I6,I5.16, [which] is the total for all 28-line columns. 
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We may begin by justifying the last point made, that one total 
applies to all 28-line columns of the template. In any zigzag func- 
tion, if an even number of values happen to fall between two con- 
secutive minima, an equal number of them must be on the increas- 
ing and on the decreasing branch. Consider any pair of such ‘even- 
numbered’ intervals between minima. If the first value in the in- 
creasing branch of one of these intervals is greater than the first 
value in the increasing branch of the other interval by some 
amount 6, then obviously all the remaining values in the increasing 
branch of the first interval must be greater than their counterparts 
in the other interval by 6. But it follows that the first value in the 
decreasing branch of the first interval must be less than its counter- 
part in the other interval by 6, since each is derived from the last 
value in the increasing branch by the formula 

Zj+l = (2M-4-zj; (12) 
and so the same difference will subsist between all corresponding 
values in the descending branches. Thus the differences all cancel 
out, and the sums of values of the zigzag function over the two 
even-numbered intervals are equal. 

In determining what this constant sum is, the text uses a quan- 
tity 0;5,43, which is called ‘the amount added for 28-line columns’. 
This is in fact the constant difference between any pair of values 
of the zigzag function separated by 28 lines, so long as both are 
on the same kind of branch, either increasing or decreasing. In 
general, we can determine the difference between two values on 
increasing branches separated by n lines and by k complete 
branches as: 

&, = n x d - k X ( M - m )  (13) 

(14) 
If zi lies on an increasing branch, then Z i + 2 8 = Z i + E 2 8  unless this 
exceeds M ;  whereas if zi lies on a decreasing branch, zi+28 = =j-&28 

unless this is less than rn. 
Consider now a sequence of 28 values generated by the zigzag 

function’s rules in such a way that the middle pair, numbers 14 

so that in the present instance 
~ 2 8  = 28X0;12,5Oo-2X2;56,48,3O0 = 0;5,43” 



and 15, are on an increasing branch and exactly centred on the 
mean value, i.e. ~ 1 4  =,u-"/~, and ~ 1 5  = ~ i + ~ / ~ .  From symmetry it is 
obvious that the 28 values must be distributed with the first seven 
in a decreasing branch, the middle fourteen in an increasing 
branch, and the last seven in a decreasing branch; and their total 
will be exactly 28Xp. (This symmetrical arrangement is possible 
only because 28 is divisible by 4.) Now if we subtract E28 from each 
of the first seven values z l  through z7 and move them from the 
beginning to the end of the sequence, we will obtain a sequence of 
28 numbers that either forms a complete 28-line pair of branches 
of the zigzag function or, if the new last number turns out to be 
less than rn, at least has the same total as a 28-line cycle. Thus the 
text finds for 28-line cycles: 

s = 28X 13;10,34,52"-7X0;5,43" = 368;16,15,16" (15) 

(lines 8-14) For the 27-line columns, subtract from the [368];16.15.16 the minimum 
course. 11;42,10.37 degrees. [and there results] 356;34,4.39 degrees. And add to thcse 
the excess of thc amount subtracted for [27-linc columns] over the amount added 
for 28-line columns, 0;1,24; there results 35[6;35,28],39. This is the size of the total 
lor the third column. And since this falls short of 360 degrees by 3;24.31,21 .... 

The rule that any interval of a zigzag function between two con- 
secutive minima containing an even number of values has a con- 
stant total is a special case of a general theorem that the sum 
of any even number of values centred on a minimum or  maxi- 
mum is constant. It follows that the total of values in an interval 
between minima containing an odd number of values is not con- 
stant; for it will be composed of an even number of values 
centred on the maximum plus one extra value at the beginning 
or end, and a particular number can appear at most twice in 
the whole number period of the zigzag function. Our text there- 
fore first deduces the total for the first 27-line column as a cor- 
rection to the total for 28-line columns, and then goes on to find 
the total for each subsequent 27-line column as a correction to 
its predecessor. 

The number of values in the k'th branch of a zigzag function is 

ik = [kXV'/,]-[(k- 1)XP/2] 
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where [x] denotes the integer part of s. With P=% we obtain the 
following pattern of lengths of branches and columns: 

colurtin incrrusing decreasing total 
branch brunch 

1 13 
2 14 
3 13 
4 14 
5 13 
6 14 
7 14 
8 14 
9 14 

10 14 
11 14 
12 13 
(etc.) 

14 
14 
14 
14 
14 
14 
13 
14 
13 
14 
14 
14 

27 
28 
27 
28 
27 
28 
27 
28 
27 
28 
28 
27 

The status of the first column of the function is actually ambigu- 
ous, because the first tabulated value, for the daily motion between 
days 0 and 1, is right on the minimum. Counting this value as part 
of the first column, we obtain a 28-line column, the total of which 
is already known to be 368;16,15,16". But if we start with the first 
value that is within the increasing branch, we have a 27-line col- 
umn, and its total is obviously 

X I  = 368;16,15,16"-n1 = 356;34,4,39" (16) 
Now the 'odd' value in the first column is the last one, which is on 
the decreasing branch; and the same is true of the 'odd' value in 
the next 27-line column, the third. Since the total of the other 26 
values in both columns must be the same, we need only find the 
difference between these odd values, which are separated by 28 
days plus 27 days. We already have found that 

(17) 

(18) 

~ 2 8  = 28X0~12,5O"-2X2~56,48,3O0 = 0;5,43" 

~ 2 7  = 27X0;12,5O"-2X2;56,48,3O0 = -0;7,7" 
By the same reasoning, 
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The text calls this quantity 'the amount subtracted for 27-line col- 
umns'. So the difference between values on the same kind of 
branch separated by 55 days is 

~ 5 5  = 0;5,43"-0;7,7" = -0; 1,24" (19) 
Since the 'odd' values in the first and third columns are on the 
decreasing branch, we must add 0;1,24" to the total for column 1 
to obtain the total for column 3: 

~3 = SI +0;1,24" = 356;35,28,39" = 360-3;24,31,21" (20) 

(lines 15-23) ... subtract from (3;24,31,21") the 1,24,0; thcrc remains for the fifth 
column 3i23.7.21. Again. from the 0;1,24 subtract 1/110 of the increment, namely 
0;0,7; there remains 0;1.17. Add this to the amount by which the fifth column falls 
short of a circle, namely 3;23.7,21, and there will be for the seventh column 
3;24,24,21. Add to this the entire excess, 0;1,24; there results for the ninth column 
3;25,48,21. In the same way let there be added [the Oi1.24; there results for the elev- 
enth column 3;27.12,21.] 

The relationship between the fifth and third columns is the same 
as that between the third and first; hence 

35 = ~,+0;1,24" = 360-3;23,7,21" (21) 
With the seventh column, however, the 'odd' value is now the 
first one of the increasing branch instead of the last of the de- 
creasing branch, so that the constant difference does not apply 
between these columns. How does one find the difference in this 
situation? Neugebauer has shown that the 'odd' values of all 
'odd number' intervals in a zigzag function themselves form a 
derivative zigzag function, which in the present instance has 
these parameters:" 

d = 0; 1,24" 
M = 11;52,9,7" 
rn = 11;49,17,37" 
p = - = 4.5 
n = 49 

49 
I2 ' 

Since the total for each 27-line column is simply the constant sum 
of 26 values centred on the maximum plus the 'odd' value, it is 



generated by a synchronous zigzag function with the same ampli- 
tude and d. but these bounds: 

If we consider only those stages of a zigzag function where either 
a maximum or  a minimum is passed, so that the difference be- 
tween consecutive values is not +(/, and reverse the signs of the 
differences at the minima, we will obtain a 'saw function', i.e. a 
sequence of values increasing (or decreasing) cyclically by a 
constant increment d between two limiting values M and rn. For 
the zigzag functions defined in (22) and (23), the parameters of 
the saw function representing differences at maxima and minima 
are: 

d = -0;0,7" 
M = +0;1,24" 
in = -0; 1,24" 

and hence the actual differences form the sequence +0;1,24", 
-0;1,17", +0;1,10",... -0;1,10", +0;1,17". These will be the differ- 
ences between consecutive 27-line columns of the Standard 
Scheme template whenever the 'odd' value changes from being 
on the increasing to being on the decreasing branch and vice 
versa 

Our text only gets as far as the deduction of the second differ- 
ence in the sequence, which is the difference between the totals for 
the fifth and seventh columns of the template. It is clear, however, 
that the author knows the pattern of successive subtractions of 
0;0,7". He is also aware that 0;0,7" here is, in terms of the par- 
ameters of the longitudinal zigzag function (9, "/z, a quantity that 
we have seen must have been a determining factor in choosing the 
amplitude and increment/decrement of the zigzag function (cf. ( 1  1 )  
above). 

Thus we have 



and, by the same means as before, 

. ~ g  = ~,-0;1,24" = 360-3;25.48,2 0 (26 

In the complete 3031-line period of the longitudinal function, the 
next 27-line column is the twelfth, in which the 'odd' value has 
moved back into the increasing branch. To find the total for this 
branch, therefore, the author would have subtracted 0;0,7" from 
the difference 0;1,17 found between the totals for columns 5 and 
7, and subtracted this from the shortfall 3;25,48,21" associated with 
column 9. Only slight traces of line 23 of the papyrus survive, but 
from these and the legible end of line 22 it is clear that, on the 
contrary, the text prescribed simply nddiizg some amount to 
3;25,48,21" to get the total for column y, such that y>10. 

This proves that the template IIS uctuully Ir*ritten out ended with 
the 303rd day. Thus curtailed, column 11,  which should properly 
have 28 lines, becomes artificially a 27-line column, obviously still 
with its 'odd' value in the increasing branch, and so 

S I  1 = . ~ g - O ; l  ,24°=360-3;27,1?,210 (27) 

At this point the text has accomplished what it set out to do. What 
was contained in subsequent lines, and in the next column of text 
vestigially preserved along the right edge of the papyrus fragment, 
can only be guessed. 

The manner of exposition of P. Osy. 41 36 is curious. The author 
is not content simply to give a list of totals for each column of the 
template, which would have sufficed for checking the sums if one 
wanted to recompute the template from its parameters. On the 
other hand, while he gives arithmetical derivations for each total 
that have a manifest origin in a mathematical analysis of the longi- 
tudinal zigzag function, he does not discuss this analysis or 
attempt to explain why the derivations work. He obviously pos- 
sessed a level of theoretical understanding that he did not see fit 
to impart to the user of the text. 

3. T h  cyoc.11 incwrnertts. The mean p of the Standard Scheme's 
longitudinal zigzag function ( 5 )  is exactly 13; 10,34,52", and the 
latitudinal function (6) is presumed to have had ,LL = 0;52,55,2,45 
steps. Yet if we divide the increments in longitude and argument 



of latitude for the epoch dates prescribed by P. &I. 27 (and con- 
firmed in P. Lurid inv. 35a) by the corresponding numbers of days, 
we find:" 
cluys told cluilr totcil trrg. qf' cluily 

longitiitlt~ lutitucie it1 stcps 

248 9x36O0+ I 3; 10.34.4 I ,..." 9 X 7 4 t  0;52,55,2.4 .... 

3031 1 lOx360"+ 13;10,34,51,57 ...." I I I X24+ 0; 52.5 5 2  -44,. . . 

Writing before the existence of the Standard Scheme template was 
known, van der Waerden hypothesized that the increments were 
supposed to represent the true progress of the moon over intervals 
of whole numbers of days that only approximately equalled a 
whole number of anomalistic months. l 3  Assuming a reasonably 
accurate value for the length of the anomalistic month, one would 
find that 248 days is approximately 0;0,33 days longer than 9 
anomalistic months, so that in the 248 days between epoch dates 
there would be a brief interval of motion at close to minimum 
speed in addition to the whole anomalistic months, during which 
true progress should equal mean progress. Analogously one might 
explain the smaller discrepancy in the 3031-day increments as due 
to the assumption of an anomalistic month very slightly shorter 
than days. 

Now that we know that the template was based on zigzag func- 
tions with the longer period of 3031 days, we can ask what ac- 
cumulated progress in longitude and argument of latitude it as- 
signed to day 248. To obtain the total progress in  longitude we 
need merely add together the totals for the first nine 'columns' of 
the template found in P.  Osy. 4136: 

and this is just the prescribed increment in longitude. Adding the 
uniform nodal motion for 248 days and converting to 'steps', we 
also obtain exactly the increment in argument of latitude. This 
confirms, in more concrete terms, van der Waerden's explanation 
of the 248-day increments: they are a consequence of the fact that 
the anomalistic month implied h-v the 3031-day cycle falls slightly 
short of days. 

27;43,24,56" 2;43.28.34.0 

337;31,19.7" 9;17,43,48,15 

L 2 4 x  = 5 X 8 ; 1 6 , 1 5 , 1 6 O + ~ 3 + ~ g + ~ 7 + ~ ' )  = 27;43,24,56" (28) 



One might expect that the overall sum of 17 consecutive values 
of a zigzag function must equal /in; but this is only true on one 
of two conditions: either 17 must be an even number, or, if 17 is 
odd, one of the values generated by the function must be ,d4 In 
the case of the Standard Scheme longitudinal function, the period, 
3031 days, is odd; and we know, because the initial value chosen is 
01, that all values generated by the function can be expressed as 

z = n z  +0;0,7"Xj (29) 
for some whole numberj. Thus the closest value to ,u generated by 
the function is 13;10,36,37", which is 0;0,1,45" too large; and like 
every other generated value other than 111 itself, 13;10,36,37" ap- 
pears twice in each whole number period: once in an increasing 
and once in a decreasing branch. If we were to locate this number 
where it occurs in an increasing branch and reduce its value by 
O;O, 1,45", adjusting the other 3030 values accordingly, we would 
of course obtain a sequence totalling /in, i.e. 1l0X36Oo+ 
337;3 1,2032". In so doing, we would have raised each of the 15 15 
values on increasing branches of the function by 0;0,1,45", and 
lowered each of the 1515 values on decreasing branches by the 
same amount, with no overall effect on the total. But the unique 
occurrence of 111 in the sequence, which is on neither an increasing 
nor a decreasing branch, would also be raised by O;O, 1,45" with no 
other value to compensate. And so the total over an entire 3031- 
day period of the template function turns out to be 

L'3031 = 337;3 1,20,52"-0~0,1,45" = 337;3 1,19,7", (30) 
and this is precisely what is prescribed for the epoch advance in 
longitude in 3031 days; again the advance in argument of latitude 
is derived from this value and the constant nodal motion. 

Hence the discrepancy between the mean value of the zigzag 
function and the average over a 3031-day interval in the epoch 
table is not on account of an assumed anomalistic month different 
from days, but rather a consequence of choosing m as the first 
value of the zigzag functions. The inventors of the Standard 
Scheme obviously knew that the initial value influenced the per- 
iodic total, because the correct total was actually used as the in- 
crement between epochs. If they did not take care to use an initial 



value that would bring p into the sequence, it  may have been be- 
cause they believed p to be only a rounding to three fractional 
places of a slightly smaller mean motion in longitude, for example 
the 13;10,34,51,55, ...” per day implicit in the ‘exeligmos’ period 
relation (9). Incidentally, I think it is unlikely that the total was 
found by actually computing and adding all 3031 values of the 
zigzag function; the kind of analysis that underlay P. Oxy. 4136 
was probably used here too. 

To summarize: the parameters of the longitudinal zigzag func- 
tion and the constant nodal motion are the foundations upon 
which the entire Standard Scheme was constructed. The only 
further thing needful was an empirical determination of a single 
epoch date and corresponding lunar position in longitude and ar- 
gumen t of la ti tude. 

4. The digiimcnt of the scheme’s epochs. In  addition to the two 
sets of rules for finding epoch dates and positions in P. Ryl. 27, 
which we may call Rule A (lines 2-31 of the papyrus) and Rule B 
(lines 32-50), we now have four fragments of Standard Scheme 
epoch tables on papyrus: 

Range uj’ years Calendar 
P. Lund inv. 35a 59- 108 Egyptian 
P. O.YJ LX1.4149 96-166 Alexandrian 
P. 0 . y ~ .  LXI.4150 187-198 Egyptian 
P.  OX^. LXI.4151 210-252 Egyptian 

Our first concern in investigating the alignment of the dates and 
corresponding positions of the scheme’s epochs must be to check 
how closely these sources agree in the dates and positions. 

Neugebauer found two discrepancies between the series of 
epochs generated by the Rule A and Rule B.I5 The first is in the 
alignment of the 303 I-day epoch cycles: apparently the first eleven 
epochs in each cycle according to Rule A have exactly the same 
assigned positions in longitude and argument of latitude as the 
last eleven epochs in the corresponding cycle according to Rule B. 
But also Neugebauer found a shift of 1 day in the epoch dates 
generated by the two rules, so that for any an epoch with the same 
assigned positions generated by both rules, the date according to 
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Rule A is one day later than the date according to Rule B. This 
alleged second discrepancy, which has been repeated in all sub- 
sequent discussions of the Standard Scheme papyri, is entirely il- 
lusory; and it is also probable, as we shall see, that the rules, cor- 
rectly understood, generated the very same series of epochs with- 
out exception. 

In either rule, we begin by choosing an Egyptian calendar year 
within which we want to find an epoch. Rule B assumes that we 
know the year as counted from the first regnal year of Commodus, 
which is equivalent to Augustus 190 or A.D. 160/161. If we call 
this year number x, then we take v = x+92 - which is (though the 
text does not say so) the year reckoned from the first regnal year 
of Vespasian - and then find u and h such that 

y = 25u+b (31) 

c = 32a+365h, (32) 
which is further broken down into intervals of 3031 and 248 days: 

(33) 

d = 293-g, (34) 

We then calculate an interval of days 

303 1 e+ 248f+g = c 

Lastly, taking 

we 'count off" (&nohe) g days from the first day of the year, Thoth 
1 ,  to obtain the epoch date. In analysing this procedure Neugebau- 
er tacitly assumes that the 'counting off' is inclusive, i.e. that d =  
1 signifies Thoth 1 and so on; and this is certainly correct. For 

example, if we apply Rule B to the year Nero 14, which is effec- 
tively Vespasian 0 or Commodus -92, we obtain y = 0, and hence 
c = 0 and d = 293, which signifies the 23rd day of the tenth month, 
i.e. Payni 23. This very date is given as the first of an epoch cycle 
in P. Lund inv. 35a. In fact except when two epoch dates fall within 
a single Egyptian year (in which case Rule B only generates a single 
date), absolutely every epoch date in each of the five known Stan- 
dard Scheme epoch tables is generated by Rule B.I6 

The meaning of Rule B is this: firstly, to break down the interval 
from a base epoch on Nero 14, Payni 23 to Payni 23 of the given 



year x (which we can call the ‘anniversary’ of the base epoch) into 
(3cr+e) complete cycles of 3031 days, f 248-day intervals, and g 
excess days; secondly, to count back g days from Payni 23 (the 
293rd day of the year) to obtain an epoch date. The computation 
is abbreviated in steps (31 j and (32) by taking account of the fact 
that 25 Egyptian years equal three epoch cycles plus 32 days. In 
step (33) the text fails to warn that f should not be allowed to 
exceed 1 1 ,  that is, that the epoch cycle comprises eleven 248-day 
intervals plus one 303-day interval, not twelve 248-day intervals 
plus one 55-day interval. Because of this limitation, g can in some 
instances be greater than 293, in which case the epoch date is 
pushed back into the end of the preceding year. 

The interpretation of Rule A involves complications not present 
in Rule B. Here the year is to be specified by two more than the 
number of c*or?ipletc~d years ( r a  nh&q E T v j  counting from the first 
regnal year of Augustus (-29/28); i.e. for year x of Augustus we 
take y = .u+ 1 .  Again we find N and b to satisfy (3 l), and then calcu- 
late 

c = 32ci+365/1+61 (35) 

We determine g from c according to (33), again with the unstated 
proviso thatfshould not exceed 1 I .  Then we are given two alterna- 
tive formulas for d: 

r 
303 -g in the case of ‘nodes’ 
248-g in the case of no ‘nodes’ 

We are told to ‘count off’ (drh-P,;le) c l  from the first day (veopqvia:) 
of Thoth.I7 In this instance Neugebauer understood the counting 
of days as exclusive, i.e. d =  1 would signify Thoth 2, but there is 
really no reason to interpret the operation differently here from in 
Rule B. The alleged one-day discrepancy between equivalent epoch 
dates found by the two rules is merely the consequence of Neuge- 
bauer’s inconsistency in ‘counting off ’. 

‘Nodes’ (abvdcopor) in this context certainly refers, as Neuge- 
bauer recognized, to the 303-day gaps between epoch cycles. There 
is some uncertainty about how the user of Rule A was supposed 



to recognize when a ‘node’ occurs, that is, whether to use the first 
or second alternative in (36) to determine the epoch date. In lines 
13-14 of P. Ryl. 27 is a statement beginning, ‘nodes occur...’; but 
the remainder of the sentence is either peculiarly or sloppily writ- 
ten in the papyrus, and neither the original editors nor Neugebau- 
er were able to interpret it.18 My reading of the line is essentially 
the same as Neugebauer’s, and can be translated: ‘nodes occur at 
6 and 14 (and) 23.’ What this means becomes clearer if we compare 
the computation of epoch dates according to Rules A and B. 

Let us take the epoch dates computed according to Rule B for 
a sequence of years close to the time when P.  Ryl. 27 was written, 
and set beside them the dates generated by Rule A, assuming either 
‘nodes’ or ‘no nodes’, and the values of b and f obtained in carry- 
ing out Rule A: 

Dute (Rule B)  Rule A,  Rule A ,  b (Rule A )  f (Rule A )  
Era Augustus ‘nodes ’ ‘no nodes ’ 

274 111 23 
275 VIII 4 
276 IV 7 
277 VlII 18 
278 IV 21 
279 IX 2 
280 VI 30 
281 111 3 
282 VII 14 
283 111 17 
284 VI1 28 

I1 123 
VIII 4 
IV 7 
Vl l l  18 
IV 21 
IX 2 
v 5  
1 8  
VII 14 
I11 7 
VII 28 

v 18 
IX 29 
VI 2 
X 13 
VI 16 
X 27 
VI 30 
111 3 
IX 9 
v 12 
1X 23 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
3 
4 
6 
7 
9 

10 
I 1  

1 
2 
4 

The epoch positions according to Rule A are obtained by adding 
appropriate increments to a base epoch on the date Cleopatra 20 
(= Augustus-2 = -32/31) Epeiph 4.19 Neugebauer quite reason- 
ably assumed that an epoch cycle was supposed to begin with this 
epoch, and consequently that ‘nodes’ corresponded to years for 
whichJ’= 11 only.20 Hence he concluded that Rule A generates the 
same epoch dates as Rule B only for the last eleven epochs of Rule 
A cycle, so that in Augustus 280 for example the two rules would 
yield epochs 55 days apart. 



It is here, however, that the rubric that ‘nodes occur at 6 and 14 
(and) 33’ comes into play. The number b found in the process of 
carrying out Rule A marks the place of the year in question in a 
cycle of 25 Egyptian years, which is only a little longer than three 
epoch cycles (25 X 365 = 9 125, whereas 3 X 303 1 = 9093). Because of 
this, the three years in a 25-year period when the ‘nodes’ or ends 
of epoch cycles occur will usually be the same as in the preceding 
25-year period, though occasionally they slip one year back in the 
cycle. Now supposing that Rule A was really supposed to generate 
epochs compatible with Rule B. Then for the long span of years 
Augustus 222-338 (A.D. 192/193-308/309) the first epoch dates 
following ‘nodes’ would always fall in years for which b is 6, 14, 
or 23.” The rule of thumb for finding the epoch date is that one 
must subtract g from 303 for epochs falling between a ‘node’ and 
the end of an epoch cycle, that is, in years such that b has reached 
or surpassed 6, 14, or 23, andfhas not yet dropped back to 1. 

Thus we have an interpretation of the obscure sentence in the 
papyrus that not only supplies the information needed by the 
user of Rule A, but makes Rule A’s epochs consistent with those 
of Rule B.” This is what we might have expected in view of the 
unanimity of the extant epoch tables in the alignment of the 
cycles, and the fact that the text only distinguishes Rule B from 
Rule A as being ‘more concise’ (auvrophrepv)  - as indeed it is. 

However, I believe that Neugebauer was nevertheless fundamen- 
tally right about the original form of Rule A. It has escaped notice 
that if the base epoch on Epeiph 4 of Augustus -2, from which 
Rule A builds up its epoch positions, was the first of an epoch 
cycle as Neugebauer presumed, then the last epoch date of the 
preceding cycle fell precisely on the first day of the same year, 
Thoth 1.  It was probably just this pleasing coincidence that led to 
the choice of Augustus -2  as the base year. 

We have seen that Rule B was designed to find the epoch date 
preceding the anniversary of the base epoch in a given year. If an 
analogous rule existed using the base epoch of Epeiph 4, Augustus 
-2, it would have worked exactly like Rule B’s steps (31) through 
(34) except that we would begin with y = s + 2 ,  and in step (34) we 
would subtract g from 304 to obtain d. Here the fact that the 
preceding epoch cycle ended on the first day of the year becomes 



not only pretty but useful: it guarantees that in counting back g 
days from Epeiph 4 of the given year we will never have to cross 
over into the preceding year, as occasionally happens with Rule B. 
Rule A in P.  Ryl. 27 has been modified in three ways from this 
simpler original form. First, in the form we have it the rule finds 
as g the number of days by which the lust duy of the year b~fbre 
the given year comes after an epoch; this is why we start with the 
completed years of Augustus instead of the regnal year, and why 
we add the 61 days that separate the base epoch from the end of 
the year. Secondly, instead of using g to count back to  the preced- 
ing epoch, we count forward to  the next epoch. It is this change 
that forces the introduction of cases of ‘nodes’ and ‘no nodes’, 
because the 303-day gap between epochs sometimes comes before 
the next epoch; but as a compensation we are assured of finding 
the first epoch date of every given year. Thirdly, the b values associ- 
ated with ‘nodes’ in the papyrus were subsequently made to agree 
with the base epoch of Rule B instead of the original base epoch 
of Rule A. 

Whether or not Rules A and B generate the same epoch dates 
for every given year, it is true that whenever they do  so they also 
generate identical epoch positions in longitude and argument of 
latitude, except that Rule A’s latitudinal epochs are exactly 0;2 
steps smaller than Rule B’s on account of a scribal or arithmetical 
error in the text of one of the rules.23 The longitudes also exactly 
match those given (to the full three fractional places) in P. Lund 
inv. 35a for the years Nero 9 through Domitian 3 (A.D. 62-84). 
Similarly the longitudes in P. Oxy. 4149 for the years Nerva 1 
through Trajan 6 (96-103) and Trajan 15 through 17 ( 1  11-1 14), 
which are preserved to the degree and in some instances to the 
minute, agree exactly so far as they go with the rules. In P. Oxy. 
4150, where the longitudes (for 187-198) apparently have been 
truncated to minutes, they are less than the longitudes generated 
by the rules by a quantity that, if consistent, was between 0;3,27” 
and 0;3,37”. On the other hand, P. Oxy. 4151 (on the other side of 
the same fragment as  P.  Oxy. 4164) gives epoch longitudes, trunc- 
ated to minutes, for the years Elegabalus 1 through Severus Alex- 
ander 8 (21 7-229) that systematically exceed those generated by 
the rules by between 0; 1,35” and 0; 1,37°.24 In relation to the moon’s 
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swift daily progress these deviations are quite small. In Vettius Va- 
lens there are two lunar longitudes expressed in whole degrees, 
computed for dates in the years Hadrian 3 and 4 (1 18/119 and 119/ 
120) by the Standard Scheme, and these confirm that his epoch 
longitudes were within half a degree of those generated by the 
rules. 25 

Aside from two dubious traces at the left edge of P. Oxy. 
4150, the only preserved arguments of latitude in a lunar epoch 
table are those given, truncated to minutes, for seven of the 
epochs in P. Oxy. 4151. These are all less than the values gener- 
ated by Rule A by an amount increasing progressively from 0;30 
steps to 0;33 steps. (The cause of the increase in the deviation 
is that the computer of the table used a truncated value, 2;43 
steps, for the increment over 248 days.) The discrepancy is so 
large, amounting to about half a day's motion of the moon in 
argument of latitude, that one suspects a systematic error on the 
part of the computer of this table. A single citation by Vettius 
Valens of the epoch position in argument of latitude for Hadrian 
3, Mesore 30, gives 12;18 steps, whereas Rule A gives 
12; 19,57,43,15 steps, and Rule B 12;21,57,43,15 stepsz6 Until an  
epoch table comes to light with arguments of latitude exactly 
matching either Rule A or  B, I see no way to decide which one 
has the correct base epoch value. 

The epochs are always expressed as a calendar date without men- 
tion of hours, but must be meant to apply to a specific time of day 
serving as the beginning of the day's lunar motion. Since there is no  
direct textual evidence in the papyri indicating what time of day is 
intended, we have to determine which of the likely choices brings the 
epochs into best agreement with the moon's actual situation on 
those dates. The historically plausible conventions are to treat the 
day as beginning at noon, sunset (effectively 6 hours past noon), 
midnight, or sunrise (effectively 18 hours past noon). 

Because of the accuracy of the underlying parameters (the 303 1 - 
day period, the mean motion of 13;10,34,52" per day in longitude, 
and the node's motion of -0;3,10,49,15" per day), any single epoch 
generated by the rules will suffice for investigating the epoch time. 
Thus we may choose the epoch Nero 14, Payni 23, for which we 
have: 



Nero 14 Payni 23 
epoch position in longitude 132;34,40,38" (37) 
epoch position in arg. of latitude (Rule A) 23;36,37,45,45 steps 
longitudinal progress between Payni 23 and 24 is minimum 

For comparison we can use Ptolemy's lunar theory as expressed in 
the Hctndy Tables, with two provisos: first, that the moon's true 
longitude must be computed without taking its second anomaly 
into account, since the Standard Scheme assumes the existence of 
only a single anomaly of nearly the same magnitude as Ptolemy's 
first anomaly; and secondly, that Ptolemy's tropical longitudes (A,) 
must be converted to an appropriate sidereal frame of reference 
( A S ) .  To accomplish this last, we will use the 'trepidation' formula 
prescribed by Theon of Alexandria, according to which for a year 
y counted from the first regnal year of Augustus, 

On these terms we compute the moon's sidereal longitude at 6 
hour intervals for several days before and after Payni 23: 

0 hours diff. 6 hours diff. 12 hours diff. 18 hours  diff. 
noon sunset midnight sunrise 

X 20 93;14" 12;28" 96;22" 12;26" 99;29" 1223" 102;36" 12;21" 
X 21 105;42" 12;lY 108;48" 12;17" Ill;52" 12;16" II4;57" 12;14" 
X 22 118;l" 12;12" 121;s" 12;ll" 124;8" 12;IO" l27;l I "  12;9" 
X 23 130;13" 12;8" 133;16" 12;8" 136;18" 12;7" 139;20" 12;7" 
X 24 142;21" 12;8" 145;24" 12;8" 148;25" 12;8" 151;27" 1 2 9  
X 25 154;29" 12;13" 157;32" 12;14" 160;33" 12;16" 163;36" 12;18" 
X 26 178;51" 18l;SS" 184;59" 188;s" 

Assumption of evening epoch for the Standard Scheme clearly 
brings about the closest agreement in the longitudes. The daily 
progresses in longitude are a little more symmetrically disposed 
around the progress from Payni 23 to 24 for midnight or morning 
epoch, but the actual longitudes for these times are uncomfortably 
far from the 132;34,40,38" of the epoch table. I would agree with 
van der Waerden that a precise alignment in anomaly is less to be 
expected than accurate  longitude^.^' 
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If we use the Handv Tables to compute the moon’s argument of 

0 hours 6 hours 12 hours 18 hours 

X 23 23;23,44 steps 23;35,56 steps 23;49,20 steps 0;3,20 steps 

Here again evening epoch produces very close agreement. 
We have also seen that Vettius Valens used a version of the 

Standard Scheme according to which the epochs in longitude 
and argument of latitude were within a small fraction of a day’s 
motion of the values generated by the rules. But one of the pass- 
ages involving computations of lunar longitude by the Standard 
Scheme expressly assumes that the scheme yields the moon’s 
longitude at sunset, so that longitudes at other times must be 
found by interpolation.’* The conclusion seems inescapable that 
the epochs of the Standard Scheme were always to be under- 
stood as pertaining to sunset, i.e. effectively 6 equinoctial hours 
after noon on the specified day. 

5. Dates ojuse of the Standard Scherne. With the exception of the 
template P.S.I. 1493, all the known documents exemplifying the use 
of the Standard Scheme are in some sense dated. The four epoch 
tables listed at the beginning of the preceding section all use regnal 
years of emperors, from which it of course follows that each was 
written later than the last date covered. This is as we might expect, 
since the chief use of the scheme was probably to obtain lunar posi- 
tions for past dates for astrological purposes. Another series of pa- 
pyri in which we can sometimes find lunar longitudes computed by 
the Standard Scheme are the ‘ephemerides’, that is, tables organized 
according to calendar months with day-to-day calendrical equival- 
ences. lunar longitudes, and often the positions of the other heavenly 
bodies and other data tabulated line by line. Ephemerides were in all 
probability compiled either immediately before or very soon after 
the dates that they cover. 

The table below lists the pertinent documents known at present 
according to the earliest possible year of writing. As it shows, the 
Standard Scheme was already in existence by the beginning of the 
second century, and continued to be used as late as the middle of 
the fourth, almost two centuries later than the publication of the 

latitude, we find: 



Handy Tables. One might guess from the attested dates that the 
scheme was put together about the end of the first century; but it 
must be kept in mind that we still have comparatively few astro- 
nomical papyri from the first century and earlier." 

Yew Text 

108 P. Lurid inv. 

11  1 P. Oxy. 4176 
127 P. Oxy. 4177 
166 P. Osy. 4 149 
173 Vettius W e n s  
198 P. Oxy. 41 50 

35a 

201 P. O.uy 
4 1 36/424 1 

251 P. Ryl. 27 

252 P. Osy. 
41 5 1/4 164 

26 I P. 0.uy. 41 78 
348 P. Oxy. 4 I79 

Epochs, A.D. 59-108 

Ephemeris, A.D. 1 11 
Ephemeris, A.D. 121-127 

Anthologicre, completed after A.D. 173 

Procedure text, with horoscopes A.D. 162, 
191, 201 
Procedure text, with regnal canon, A.D. 
140-25 I 
Epochs, A.D. 210-252, with template 

Epochs, A.D. 96-166 

Epochs, A.D. 187-198 

Ephemeris, A.D. 261 
Ephemeris, A.D. 348 

Appcwcli.i.u 1:  Sinimicirj~ qf pcrrmrcters of thc Stnnclnrd Schcwie 
Base epochs of epoch cycles according to Rule B.: 

Augustus -2 Phaophi 26 (Egyptian) = -32 October 25, 6 PM. 
longitude argument of' latitude 
42; 18,51,14" 9;3,52,6,45 steps 

Nero 14 (=Augustus 97) Payni 23 (Egyptian) 
= Pachon 30 (Alexandrian) = 68 May 25, 6 P M .  

132;34,40,38" 23;36.37,45.45 steps 

Base epoch according to Rule A: 
Augustus -2 Epeiph 4 =  -32 June 30, 6 PM. 

70;2,16, lo" I1;47,20,40,45 steps 
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Epoch increments: 
t h e  longitude crrgument of latitude 
248 days 27;43,24,56" 2;43,28,34,0 steps 
303 1 days 337;3 I ,  19,7" 9; 12.43,48,15 steps 

Zigzag funct 

(I 
M 
111 

.ions for daily progress: 
longitude crrgunien t of' Itrtituck 
0; I2,50" 
14;38,59,7" 0;58,48,39,45 steps 
1 1;42,10,37" 0;47,1,25,45 steps 

P 13; 10,34,52" 0;52,55.2,45 steps 
P days % days 
n 3031 days 3031 days 
Z I10 110 

0;0,5 I ,20 steps 

Initial value (progress from day 0 to day 1) = 111 

Total progress on day 0: 0" and 0 steps. 

Appeni1i.i.u 2: P. Ryl. 1.27 

A .  Corrections to  the transcril>tion of' H m  crnd Sniyly (Hunt [ 19 I 1 1  

Corrections by Neugebauer [I9491 are identified as (N), those by 
van der Waerden [1958] as (vdW). I have checked all readings 
against a colour photograph kindly put at  my disposal by the John 
Rylands Library. 

48-56). 

_ _  
14 ?cot K(ai) rh h-7 (N). The symbol transcribed as  '5' (i.e. the 

numeral 6) looks rather as here printed, and resembles no 
letter elsewhere in the papyrus. Elsewhere the symbol for 
6 is written like 'c' with an elongated top but no tail. 
Hunt took it for a cursive form of 5. 

18 y A q  r a r  (vdW). 
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28-29a 
nhv7a rbv dreiOpuv, dgov drn’] (numerals N. vdW) 
ah(bv) puij~-ooc p[O] yc p y  v (N) 
{KC} In the scribe’s exemplar this was probably a marginal 
correction of the erroneous K of line 34. 

Between lines 45 and 46 the scribe skipped over the fol- 
lowing text: 
Ay v c  KCL, nAcirovc Eni y Aq (N. vdW) 
re IS (not 3 K ( c L ~ > ) .  

30 
32 

34 49 (N)  
- 

45a 

-- _ -_  
_ _  

53 
55 &QlCl~tb v nAvj@]uco v 
56-56a 
75 Y (not ![sl (N)  

[.(a;) tohc] KGKAOI)[C totk drva noiqc.o(v) I [.hi 3 ...I - 

B. Trnnslcltiotz of the pcipyrits. 
Restorations of missing text are enclosed in square brackets, ex- 
planatory glosses in parentheses. I have corrected scribal errors, 
indicating the affected words or numerals by italics. The trans- 
lation follows the lines of the text. Lines 29a and 56a are restora- 
tions of lines lost at the bottom of the columns (one or two lines 
of the table in column iii  may also have disappeared). Line 45a 
was accidentally skipped by the scribe. 
Col. i Moon. 

(Take) the completed years (of Augustus). Add 2. Divide by 25. 
(Multiply) the remainder by 365, and the cycles 
of 25 by 32. Then add 61. 
Aftcr adding to make one number, divide 
if you can by 303 1, and (divide) the remainder 
by 248, and subtract the remainder 
in the case of nodes 
from 303, in the case of no nodes 
from 248. And count off the remainder 
from the first day of Thoth 
and the result is the day of the epoch 
according to the Egyptian calendar. The nodes 

5 

10 
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are in the 6th and 14th and 23rd (year). The 
degree is found as follows. Multiply the cycles 
of 25 in the case of longitude 
by 292;33,57,21 degrees, in the case 
of latitude by 3;38,1 I ,  
24,45 'degrees' (i.e. steps). (Multiply) the (cycles) of 3031 in 
the case of longitude by 337;31,19, 
7 degrees, in the case of latitude by 9;12,43, 
48,15. And (multiply) the (cycles) of 248 in the case 
of longitude by 27;43,24,56 degrees, 
in the case of latitude by 2;43,28,34,0. And 
if you subtracted from 248, add on 
in the case of longitude another 27;43, 
24,56 degrees, in the case of latitude 2;43,28,34,0. 
If (you subtracted) from 303, in the case of longitude (add on) 32;[33,] 
[4]4,5[1], in the case [of latitude] 3;14,[29,34.] 
[IS. After adding to make one number, subtract from] 

15 

20 

25 

29a 
Col. ii, 30 them in longitude 4[9];57,43,50, in latitude 

35 

40 

45 
45a 

50 

12;12,39,19,15. Then count off (the longitude) from Leo ( O O ) .  

(Take) all the years from Commodus (year 1). Add 92. Divide 
by 25. Then (multiply) the remainder by 365, and the cycles 
of 25 by 32. After adding 
to make one number, divide if you can by 
303 1, and the remainder by 248, and in this way 
the remainder will be the number (of days) falling short 
of 298 (days). Count these (i.e. 298 minus the remainder) 
from Thoth 1. And there results the day of the epoch 
according to  the Egyptian calendar. The degrees are 
obtained as follows. Multiply the cycles of 3031 
in the case of longitude by 337; 
31,19,7 degrees, in the case of latitude by 9;12,43, 
48,15. (Multiply) the (cycles) of 25 in the case of longitude by 292; 
[33,57,21 degrees, in the case of latitude by 3;38,] 
11,24.45. (Multiply) the (cycles) of 248 in the case of longitude 
by 27;43,24,56, in the case of latitude by 2;43, 
28,34. Then add on in longitude 12;34, 
40,38 degrees, in latitude subtract 0;21,22,14,15. 
Then count off from Leo (0"). 

On the node. Divide the completed years by 

Another shorter way, from the beginning. 

On the node. 
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55 

56a 
Col. iii 

60 

65 

70 

75 

80 

18. (Multiply) the remainder by 19;16, the Egyptian 
months by 1;35, the days by 0;3,10. 
After adding to make one number, take its complement 
into 360, [and] multiply [the] cycles [of] 18 
[by 19. (Remainder of instructions lost.)] 
Solstices [and equinoxes that] Ptolemy observed. 
Year 46[3 from the] death of Alexander. 
Summer solstice Mesore 11/12. hour 7 
of night. Add 92;30 days. This is the era (?) 
of the observations. Autumnal 
equinox Hathyr [9], approximately 1 hour after 
sunrise. Add 88;7,30 days. 
Winter solstice Mecheir 7, hour 4 of day. 
Add 90;7.30 days. Spring equinox Pachon 7, 
approximately 1 hour after noon. Add 
94;30 days. 
The year is Aelius Antoninus 3. Hence 
take the years from year 4 (of Antoninus) to the current year, 
and form 1/4 of this, and 
subtract from the total of days 
0;0.12 for each year. And 
add the remainder to (the date of) each of the 
observations. 

Remaining years of Aelius Antoninus: 20. 
221 Commodus 32 Year 1 is (?) 
246 Severus 25 Year 1 
250 Impious (i.e. Elegabalus) 4 Year 1 
263 Alexander 13 Year 1 
266 Maximinus 3 Year 1 
272 Gordianus 6 Year 1 
278 Philips 6 Year 1 
2[80] Decius 2 Year I 
[282] Gallus [ Year 11 

190 294 
222 
247 
25 1 
264 
267 
273 
279 
28[11 

BIBLIOGRAPHY A N D  ABBREVIATIONS 

Hunt, A. S. 
191 1: Catalogue of the Greek (and Lotin) Papyri in the John Rylands Library, Manches- 

ter. Vol. I. Manchester. 



The Standard Lunar Sclierne 35 

Jones, A. 
1983: “The Development and Transmission of 248-Day Schemes for Lunar Motion in 

Ancient Astronomy”, Archive,fi)r History of Exact Sciences 29 (1983) 1-36. 
A PO: Astronomical Papyri from Oxyrhynchus. Forthcoming. 

Knudtzon. E. J. and Neugebauer, 0. 
1947: “Zwei astronomische Texte”, Bulletin de la SocietP Royale des Lettres de Lund 

1946-1947, 11, 77-88. 
Neugebauer, 0. 

1948: “Arithmetical Methods for the Dating of Babylonian Astronomical Texts”, Studies 

1949: “The Astronomical Treatise €? Ryl. 27”. Kgl. Danske Vidensk. Selskab.. Hist.-jil. 

1975: A Historia of’ Ancient Mathematical Astronomy. Berlin etc. 

1958: “The Astronomical Papyrus Ryland 27”, Centaurus 5 (1958) 177-189. 

und Essuj~s Presented to R. Courant. New York, 165-275. 

Medd. 32.2. 

van der Waerden. B. L. 

NOTES 

I .  Jones (1983) 14-23. 
2. Knudtzon & Neugebauer (1947); Neugebauer (1949); van der Waerden (1958). 
3. When complete, P. Lund inv. 35a covered the years Nero 6 through Trajan 12. Traces 

of numerals in columns i and x are the remains of a column, found also in some of the 
new epoch tables from Oxyrhynchus. giving the deviation in days between equivalent 
Egyptian and Alexandrian calendar dates. Hence there is no evidence that the table 
extended back as far as Tiberius 21 (as suggested by Neugebauer (1975) 813). 

4. On the supposed discrepancies between dates computed according to  the two sets of 
rules, see section 4 below. 

5. Partial transliteration and discussion in Neugebauer (1975) 822-823. 
6. Jones (1983) 27-30. 
7. To appear in Jones, APO. as P. Oxy. LX1.41334300. 
8. Complete tables for the Standard Scheme, covering the first five centuries of the Roman 

period, will appear in Jones, APO. Appendix H. 
9. Roughly speaking, the amplitudes of the Babylonian daily motion functions approxi- 

mate the ma.rimum variation in the moon’s actual progress, whereas the Standard 
Scheme’s amplitude approximates the variation predicted by a single-anomaly model. 
deduced from observations at syzygies. 

10. Neugebauer (1948). 
1 1. Neugebauer (1948) 270-275. 
12. Increments are also prescribed for the 303 days ending each 3031-day cycle, but these 

are simply the differences between eleven times the 248-day increments and the 3031- 
day increments, and thus of no independent significance. 

13. Van der Waerden ( 1  958) 182. 
14. Neugebauer (1948) 268-269. 
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15. Neugebauer (1949) 17-18. 
16. In P. Oxy. 4149 the dates have been converted to the Alexandrian calendar. 
17. Neugebauer mistakes this for an allusion to a new moon on this date. 
18. My former effort to explain this line (Jones (1983) 15) is incorrect. 
19. Neugebauer has Epeiph 5 because of his different convention for counting the days off. 
20. Neugebauer (1949) 7.  
21. After the cycle beginning with Augustus 338 the first epochs recede from year 22 into 

the latter part of year 22, but this does not affect Rule A until Augustus 396 because 
it is designed to give only thefrrsf epoch date in years containing two epochs. 

22. A minor difference is that in years with two epoch dates, Rule A will always give the 
first date, while Rule B sometimes gives the second. 

23. Neugebauer (1949) 19 
24. For the last five preserved epochs in this papyrus, it seems that the copyist meant to 

give the longitudes to at least one further fractional place; but the numbers are arith- 
metically inconsistent and must be garbled in some way. 

25. Jones (1983) 28-29. 
26. Jones (1983) 30. (The epoch position of 12;43 steps cited there is incorrect.) 
27. Van der Waerden (1958) 187. 
28. Jones (1983) 29. 
29. There is only one known ephemeris (J? Oxy. 4175) containing legible lunar longitudes 

and antedating P. Oxy. 4176; the lunar longitudes - given to degrees only - in this 
fragment from an ephemeris covering parts of Augustus 6 and 7 (=-23) were not 
computed by the Standard Scheme. 


