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ABSTRACT

Two frequency domain bootstrap methods for weakly stationary time
scries will be proposed. The motivations for the proposed methods will be
discussed, and the performance of the first method will be compared with that
of a recently proposed method of Swanepocl and van Wyk, in 2 Monte Carlo
study. It is found that, when applied to the problem of estimating the
variance of a log spectrum estimate, all methods under consideration can
sometimes perform poorly. Overall, the frequency domain method used in
conjunction with an automatic spectrum estimate choice criterion developed

by Hurvich, is found to perform best.

1: INTRODUCTION

In a recent paper, Swanepoel and Van Wyk (1986) proposed a bootstrap method
designed for finite-order autoregressive (AR) stochastic processes. The method consists of
resampling from the residuals of a fitted autoregression to construct AR bootstrap
replications of the process. In a Monte Carlo study in which the simulated processes were all

low order autoregressions, they examined the performance of the simultaneous spectral
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confidence bands generated by the bootstrap distribution of an AR spectrum estimate.
Swanepoel and van Wyk’s method is time domain in character and seems to depend on the
assumption that the process is cither a finite order AR, or that it can be well modeled by a
fitted finite order AR. (Analogous comments would apply to a new ARMA version of the

method, which is under development.)

In this paper, we will propose two frequency domain bootstrap methods for weakly
stationary stochastic processes. Our methods are free of any finite order time domain
parametric assumptions (e.g., ARMA), and rely instead on the distributional properties of
the discrete Fourier transform of the data (for Method 1) and the infinite order moving
average representation of the process (for Mecthod 2). Both methods require a basic spectrum
estimate, and their success depends strongly on the quality of this estimate. We will use the
cross-validatory WHOOSH method of Hurvich (1985) to automatically and objectively sélcct
both the estimate type (either AR or Blackman-Tukey), and the corresponding smoothness
parameter (i.e, the model order or bandwidth). In a Monte Carlo study, we will treat the
problem of estimating the variance of an AR spectrum estimate with the model order either
fixed at 5, or variable and determined by Parzen’s CAT criterion (Parzen, 1977). The case of
CAT-selected order is particularly interesting, since the model order selection stage
contributes to the variability of the resulting spectrum estimate. We will also treat the
problem of estimating the variance of a Blackman-Tukey spectrum estimate having a fixed
bandwidth. We will compare the performance of Method 1 with Swanepocel and van Wyk’s
method for three different simulated Gaussian processes: a superposition of complex
exponentials with random phases and amplitudes, a third order moving average, and a third
order autoregression. For Method 1, we will usc a variety of basic estimates (of varying
quality), including the automatically-selected WHOOSH estimate mentioned above.

Method 1 was independently proposed by Ramos (1984). The method relies on the

approximate independence and normality of the Fourier coefficients: a sequence of bootstrap

Fourier coefficients is gencrated by multiplying independent standard Gaussians by (a



constant multiple of) the square root of the spectrum estimate. These bootstrap Fourier
coefficients are then inverse Fourier transformed to yield a bootstrap replication of the
process. Since the resulting bootstrap replications are Gaussian, Method 1 cannot be expected
to give accurate bootstrap distributions for time domain statistics (such as fitted AR
coefficients) if the process is non Gaussian. (For frequency domain statistics such as spectrum
estimates the problem may not be as severe, but some deterioration for non Gaussian
processes is still to be expected.) Ramos (1984) and Stine (1985) propose bootstrap methods
involving empirical resampling in the Frequency domain. (Ramos resamples from the
normalized Fourier coefficients, while Stine resamples from the normalized periodogram. In
both cases, normalization by a suitable function of the spectrum estimate is essential.) We,
however, feel that these methods will be (slightly) outperformed by Method 1 for Gaussian
processes, while for non-Gaussian processes they will still fail to capture any pertinent non-

Gaussian aspects of the data.

Our Method 2, which we believe to be new, involves estimating the moving average
transfer function of the process through the frequency domain FLES (Factorized Log of
Estimated Specirum) method of Bhansali to obtain estimates of the underlying innovations
.Pfocess (assumed to be strict white noise), resampling from the estimated innovations, and
then reversing the whitening procedure to obtain a bootstrap replication. Method 2 is similar
in spirit to Swanepoe! and van Wyk’s method in that both involve resampling from estimated
innovations. The key difference is that Method 2 employs a frequency domain method to
estimate the innovations while Swanepoel and van Wyk's method employs a time domain

method. Both methods can be expected to work even if the process is non Gaussian.

2: MATHEMATICAL BACKGROUND

Suppose that we have data x,, . . . ,x,_, generated by a weakly stationary zero mean
real valued stochastic process {X,} with covariance function {c,} , ¢,=E[XX,_,] , and

spectrum
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The Discrete Fourier Transform (DFT) of the data is {J,};’_‘l{ . where

_ 1 9 " _ 2nj
4 mz}x,exp( iw;i) , =

( @, is called the j'th Fourier Frequency.) We can write J = A, —iB, where the Fourier
coefficients {A_,} and {B;} are given by

1 "
A = 7— 1Cosw
.I 217” ra()

"

§ S
8 = 7—— X, Sinw 1
21’7” E;I
Note that Ayl Bl Sl G=1L.00 + 5 a-1) . and also that B,=0 , B,.=0 (if a is

even). The original data can be recovered from the DFT by the inversion formula

Ve . Vg "< -
x, = W;gojfc"p(m’j) = —W—.Ign(ft_,cosw_,: + B sinw 1)

The normalized Fourier coefficients {A;/‘\/f_,}f’., ; {BJI\/f:};‘,, (with f,=f(w;) and
Ai=[(n—1)2] } are often treated as iid N(O,%) random variables. This distributional result

.indccd holds asymptotically as a - if the process is Gaussian and if the coefficients g, of its

moving average representation satisfy 3 |g.|[k[c <= for some a>0 . (See Priestley, 1981.)
k

Without assuming a Gaussian process, Brillinger (1975) shows that under fairly weak

conditions, any finite number of these normalized Fourier coefficients arc asymptotically

1
N(O,E—} ;

Since f is unknown, we cannot actually compute the normalized Fourier coefficients.
We can, however, use a consistent estimate f in place of f . We will consider two basic
methods of spectrum estimation, the classical Blackman-Tukey (BT) method and the
autoregressive (AR) method. The BT method is based on the periodogram

(U174 = b Prad

and takes the form
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where the {g, ,}, are fixed weights, and b is a bandwidth parameter to be chosen by the user.
The m’th order AR estimate takes the form

P

B 1
flw) = - - el
IS ayexp(io DF
k=)
where a;=1,and a,, . . . ,a,.P, are determined from the sample covariances {¢,}]., ,
. 1 n=1
C, = = g ok o
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through the Yule-Walker Equations,
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The model order m is to be chosen by the user.

2]
o }
s

La!
o

A key guestion is how to choose the estimate type and corresponding smoothness
parameter solely on the basis of the data. The WHOOSH method of Hurvich (1985), which
will be used here, allows for the objective choice of an estimate from an arbitrary finite
collection C of candidate estimates. In this paper, we will take C to be the union of the

Yule-Walker AR estimates of orders 1, ... ,20 , and the modified discrete Daniell BT

estimates (1) with
[ 12nb  |k[<nb
&v 7 | 1anb fk|=mb

n=100,forb=1,...,24 . For an cstimate { in C , define

3
-

WHOOSH (f) = l_f‘,{[logf‘-"(wj) ~ (logt, # B =~ 2=} .

LT
where C = .577216 is Euler’s constant, and f_j(m;) , the leave-out-j version of the estimate,

is defined below. The chosen estimate f is the minimizer of WHOOSH(f) over the class C .

The motivation for the WHOOSH criterion is that WHOOSH(f) gives an approximately



unbiased estimate of the mean integrated squared error of f ,

MISE(f) = %Ea(logf(m) - logf,)"
n,=|
provided that f”-’(wj) and /, are approximately indépcndcnl. and that f"’(u_r) and f'(uf-) are

similar. Since all spectrum estimates considercd here can be written as functions of the

sequence {¢,} of estimated covariances,

flwdé,h

the leave-out-j version of f can be defined (for a given fixed j ) as
fie) = flwste )
where

n =1
&7 = %‘12 i (w’ Jexplirw’y)

r
=0

n"=2n ,w = suk and I /(w) is the periodic extension of the function defined on [— 7, %]
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Note that I™/(w) is identical to /(w) except on the intervals (v, _,,@,_,) and (o0 _;4)

but that the computation of f/(w,) does not involve /{w) for w in these intervals. Thus,

/™ (w,) and f(w,} will be similar and /~/(w,) and /, will be approximately independent.
Finally, we describe the bootstrap method of Swanepoel and van Wyk.

, fit an m’th order autoregression, with parameters

n-|

1)  Given data x,, ....x
é,, ....,d, . Swanepoel and van Wyk select m by a procedure of Hannan and Quinn
(1979) and fit the parameters by least squares. We will select m by BIC (sec Priestley

1981, p. 375) and fit the parameters by the Yule-Walker method.

"
2) Compute the residuals €, - S d.x . t-m, .. .a-1.
w={



.

3) Resample from the {¢,}.,! to obtain {¢};7' where N>>n .

4)  Use the {€ } 10 generatc a bootstrap replication {x,}'; : Define

y—m:"':)'..'-_-ﬂ v
m
Y, = "zém-;*e, y FED ey N-1 ,
k=]
and
x.' = ."t—,\'—n S 0 . H-I

3: TWO TIME SERIES BOOTSTRAP METHODS

Suppose that we have time series data x,, . . . .X,.; and that we are interested in the

distribution of a statistic T(x,, - . ., X,.,). Suppose also that a spectrum estimate f has

already been calculated. (The choice of estimate is important, and was discussed in Section

2.) Define

n/2-1 neven

1 neven
&{n even) = 0 .5

Finally, define the inverse Fourier transform (/FT) of the sequence {z))]<g of complex

numbers by

LEA
IFT, ({z2,);) = Syexplimg) , ¢=0..... n-1
j=0
Then our bootstrap methods can be described as follows.
Method 1: Parametric bootstrap

1) Generate n iid N(O,%) random variables

{z‘,‘.j};:ﬂa""e""} L] {ZB_J};’ﬂ

2) Form simulated Fourier coefficients

\/.-f’—- P i + 8{n even}



3)  Obtain a bootstrap data set {x;}/_ by

Vi g
g E {Alcosw t + Bsinw 1
! W}'D : / ( )
4)  Evaluate T({x }7_)

5)  Repeat steps 1-4 B times (with B large) and approximate the true distribution of T({x})

by the bootstrap distribution of T({x;}) .

Method 2: The Nonparametric Bootstrap

This method assumes that {X,} has a one-sided moving average representation

X, = Y ge., where the {e} are iid . Let I'(w)= 2 gexp(~iwk) . Note that
k=0 £=0

f(w) = |F'(w)F . The method is as follows:
1) Obtain {:} = DFT {x}

2)  Obtain an estimate ['(w) of ['(w)

3) Form{e) = IFT {z/F ()}

4)  Resample from {&,} to obtain {e}

5) Form (W)} = DFT {€}

6) Define {X;} = IFT{T(w) W }.
Motivation for the bootstrap methods

Method 1:

The key assumption here is that the true normalized Fourier coefficients are exactly iid
N(O, -;~) . The parametric bootstrap relics on this assumption and uses f in place of f . Thus,
iid Gaussians are gencrated, multiplied by \/f:‘ and inverse Fourier transformed to obtain a

bootstrap sample. If the process is exactly Gaussian and f is close to f , the parametric

bootstrap can be expected to work well. Note, however, that the method indeed assumes that
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the process is exactly Gaussian, since the bootstrap distribution of {x;} is always exactly
Gaussian. As indicated earlier, the choice of spectrum estimate may be crucial to the success

of this method.

Method 2:
To motivate method 2, note first that if x,, . ..,x, are known to be iid , then the

method reduces to the ordinary bootstrap of Efron. This follows since we can take

MNo)= f(w) =1,

so that the {€ } sequence defined in step 3) and resampled from in step 4) is
{¢,} = IFT {2} = {x}
Suppose next that I'(w) is known, but not necessarily constant. Then {X,} bas a spectral

representation

X, = j'cxp{fmr)l‘(w) dZ (v)
and the DFT’s of {x,}"_, and {€}/, arle related by

1(@) = T(@) (@) + r,(w) , (2)
where £ |r, (0} = O(n~') , uniformly in o . (Equation (1) holds under fairly weak
conditions. See Priestley, 1981.) Thus, step 3) yields

{e,} = IFT {zT(0)} = IFT {J (o)} = {e}

We sce that the resampling in Step 4 is well-motivated, since the {¢,} are approximately equal
1o the underlying iid random variables {¢,} . Thus if {X,} has a known one-sided moving
average representation with respect to itd white noise, then Method 2 is clearly superior to
Method 1. In practice I'(w) must be estimated using, for example, the method of Bhansali

(1974, 1977).

4: MONTE CARLO COMPARISONS OF METHOD 1 WITH SWANEPOEL AND VAN

WYK'S METHOD
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Here, we compare the performance of the parametric frequency domain bootstrap
(Method 1) with the time domain method of Swanecpoe! and van Wyk. The particular
application of the bootstrap we consider here is the assessment of the variances of log
spectrum estimates. For simplicity, we focus on this application instead of the simultaneous
spectral confidence interval application. (Schenker (1985) discusses some drawbacks inherent
in (individual) bootstrap confidence intervals. In addition, it is not clear how best to judge
the quality of the simultaneous confidence intervals considered by Swanepoel and van Wyk.
Finally, we feel that more can be learned about the advantages and disadvantages of the
methods, and about the reasons for these advantages and disadvantages, by studying the
behavior of the bootstrap variances.)

For each of three Gaussian processes, 100 simulated realizations were generated. Each
realization was of length n = 100 . The three process types were a superposition of complex
exponentials with random phases and amplitudes (called the Sinusoids process), a third order
moving average process, and a third order autoregression. (These are the same three
processes used in Hurvich, 1985.) Details on the generation of these processes is given in the
Appendix. The bootstrap methods to be compared are the time domain bootstrap method of
Swanepoel and van Wyk (SVW), and the frequency domain bootstrap method (i.c., Method
1). For the latter, two different normalizing spectrum estimates are considered: WHOOSH,
and BIC. Thus, in all, there are three different methods considered, and they are denoted by
SVW, WHOOSH and BIC. For each realization of the process, the three bootstrap methods
were used to estimate the variances of the logarithms of three different spectrum estimates: a
discrete Daniell estimate (1) with bandwidth 5 = S (denoted BTS), an autoregressive estimate
of order § (ARS), and an autoregressive estimate with the order automatically selected by the
CAT criterion (ARCAT). In all cases, the bootstrap variance estimates were based on

B = 100 bootstrap replications of the process.

In Figures 4.1-4.3, we plot the averages of these bootstrap variance estimates, taken

over the 100 realizations of the process. We also plot the “true” variances, which are based
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on 100060 realizations of the process. The true variances are given by the solid line, the
averages of the WHOOSH variances are given by the dotted line, the averages of the BIC
variances are given by the dashed line (long dashes), and the averages of the SVW variances
are given by the dashed line (short dashes). In Figure 4.4, we give boxplots of the intcgrat;ad

squared errors of the log spectrum estimates,

ISE(f)

a. 'lH

p
= - Z llogf(w)) - logf(a))¥

The principle finding of our study is that bootstrap variance estimates can be highly
inaccurate unless the spectrum used to generate the bootstrap replications is close to the
actual spectrum. Of course, in practice the actual spectrum is unknown and hence bootstrap
variances for spectrum estimates must be used with caution. The largest bias was found in
bootstrap variances for ARCAT spectrum estimates, followed by BTS, thén ARS estimates.
We have found the parametric frequency domain bootstrap with the BIC normalization to be
essentially equivalent to the time domain method of Swanepoel and van Wyk (1986). These
two methods perform well when the data satisfy an autoregressive model but perform poorly
for the MA and Sinusoids process, Overall, the WHOOSH parametric bootstrap was

preferable.

Figure 4.1 displays the bootstrap variances for the ARCAT spectrum estimate for the
MA, Sinusoids and AR processes. The actual variance and parametric bootstrap estimates
normalized by WHOOSH and BIC as well as the variance obtained by the time domain
bootstrap are shown. For the MA and Sinusoids process, the time domain and frequency
domain BIC variances substantially underestimate the true variance, in the MA case by a
factor of 1.5 to 2. (Assuming the log spectrum estimates are approximately Gaussian and
unbiased for the log spectrum, underestimating the variance by a factor of 2 corresponds to
95% nominal coverage probabilitics with actual coverages of only 85%.) These methods
generate bootstrap replications having the correlation structure of the AR process. When the
data are autoregressive, they perform well (Figure 4.1¢c); when they are not, they perform

poorly, in part because they fail to properly reflect the contribution fo the spectrum
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estimate's variance from the order-selection stage. Since for a given data set all bootstrap
replications have the correlation structure of a fixed-order AR process, variability in the
CAT-selected order of the bootstrap-replicated spectrum estimates will be minimized. The
WHOOSH variance is less biased for the MA and Sinusoids process. One reason is that the
WHOOSH spectrum estimates are superior to the AR-BIC spectrum estimates for these
processes. Another contributing factor is that the WHOOSH-chosen spectrum cstimates are
often not autoregressive. When they are, however, the bootstrap variances will be biased
downward, for reasons described above. Thus the average WHOOSH bootstrap variances
shown in Figures 4.1a and 4.1b are still somewhat smailer than the frue variances. For the
AR data, WHOOSH overestimates the variance of the ARCAT spectrum estimates by up to
a factor of 2. This problem may be linked to the inferior performance of WHOOSH for
selecting a spectrum estimate when the underlying process is a small-order autoregression.

Figure 4.2 displays the variance of the Blackman-Tukey spectrum estimate (BT5) for
the three processes. WHOOSH gives the best variance estimate for the MA and Sinusoids
process. For the AR process, BIC and WHOOSH are best. Interestingly, this is the one case
where the time domain and BIC frequency domain variances differ, but this occurs only at
low frequencies. The WHOQOSH variance appears best overall.

For ARS spectrum estimates, all methods perform reasonably well, as is evidenced in

Figure 4.3.
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5: APPENDIX: SIMULATION METHODS

Using the AT&T Bell Laboratories § random number generator on a Vax 11/750, we

simulated three different types of zero mean Gaussian processes, all of length 2 = 100: a
superposition of sinusoids, a third order autoregression, and a third order moving average.
The basic uniform random number generator used by $ is the McGill generator, described in
Chambers (1977, pp. 174, 191).

The superposition of sinusoids (referred to simply as "sinusoids” in the text) has form

nl
x, = X (Acosw . + B sinwt) (3)
_|-I

where for each j, A. and B, are independent N (0,c?) and where the pairs (4,,8,) and (4,,8))

are independent if i # j. Here, theo, (j=1.... ,n/2) are constants. It is casy to show that

{x,} has a discrere spectrum with power %crf at . Since the interval (w,_j,@,] has length
—21. we see that {x,} provides an approximation to a process with spectral density f(w),

where

na?
f(m»’):# § = Eopavs vl

Thus, by properly choosing the a2, we can approximate processes with spectral densities f(o)

having any desired shape. Simulation of {x,} is straightforward: if

Wi, .o-p WeasXpv-ss Yy

are simulated iid N(0,1) random variables, then we define

Aj=ow, , B;=ay = D a2

and then form the sum (3). The values of o, we have chosen to use here are

vy

- nl2m| G=1,....50)
o 'ml[m1 U

The autoregression is

e
w00 B ™ 0K, T Ky e -N{0,1)

To simulate {x}, we first gencrate {e} 2 . @ set of 200 simulated sid N{(0.1) random
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variables. Next, we define {y} recursively by

¥, = =,y = BYa = By +eE, t=0,...,199

and finally, we set
X 2 Yoips L0 a9

The moving average is

Hd
x, =€+ 9, + 8¢ .+ b¢_; , ¢- NI

'

Simulation of {x } is straightforward: generate the {¢,} and form the indicated sum.
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