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ABSTRA.CT

Two frequency domain bootstrap methods for weakly stationary time

series will be proposed. Toe mo(i"arions for the proposed methods will be

discussed. and the performance of the first method will be compared with that

of a recently proposed method of Swanepoel and van wyc, in a Monte Carlo

study. It is found that. when applied to the problem of estimating the

variance of a log spectrum estimate, all methods under consideration can

Sometimes perform poorly. Overall, the frequency domain method used in

conjunction with an automatic spectrum estimate choice criterion developed

by Hurvtch, is found to perform best.

I: INTRODUCTION

In a recent paper. Swanepoel and Van Wyk (1986) proposed a bootstrap method

designed for finite-order autoregressive (AR) stochastic processes. The method consists of

resampliD& from the residuals of a fitted autoregression (0 construct AR bootstrap

replications of the process. In a Monte Carlo study in which the simulated processes were all

low order autoregresstcns, the)' examined the performance of the simultaneous spectral
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confidence bands generaled by the bootstrap distribuhon of an AR spectrum estimate.

Swanepoet and van wyk's method is lime domain in character and seems to depend on the

assumption that the process is either a finite order AR. or that it can be well modeled by a

fined finite order AR. (Analogous comments 'Would apply 10 a new ARMA version of tbe

method, which is under develcpmenr.)

In this paper, we will propose two frequency domain bootstrap methods for weakly

stationary stochastic processes. Our methods are free of any finite order time domain

parametric assumptions (e.g., ARMA), and rely instead on the distributional properties of

the discrete Fourier transform of the data (for Method I) and the infinite order moving

average represeutauon of the process (for Method 2). Botb methods require a basic spectrum

estimate, and their success depends strongly on the quality of this estimate. We will use the

cross-validatory WHOOSH method of Hurvich (1985) to automatically and objectively setecr

both the estimate type (eitht:r AR or Blackman-Tukey), and the corresponding smoothness

parameter (i.e. the model order or bandwidth). In a Monte Carlo study, we will treat the

problem of estimating the variance of an AR spectrum estimate with the model order either

fixed at 5, or variable and determined by Parzen's CAT criterion (Parzen, 1977). The case of

CAT-selected order is particularly interesting, since the model order selection stage

contributes to the variability of the resulting spectrum estimate. We will also treat the

problem of esnmanng the variance of a Blackman-Tukey spectrum estimate having a fixed

bandwidth. We will compare tbe performance of Method 1 with Swenepoel and van Wyk's

method for three different simulated Gaussian processes: a superposition of complex

exponentials with random phases and amplitudes, a third order moving average, and a third

order eutoregresston. For Method 1, we will use a variety of basic estimates (of varying

quaHly), including the automatically-selected wHOOSH estimate mentioned above.

Method 1 was independently proposed by Ramos (1984). The method relies on the

approximate independence and normality of the Fourier coefficients: a sequence of bootstrap

Fourier coefficients is generated by multiplying independent standard Geesstans by (a
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constant multiple of) the square root of the spectrum estimate. These bootstrap Fourier

coefficients are then inverse Fourier transformed 10 yield a bootstrap replication of the

process. Since the resulting bootstrap replications are Gaussian, Method 1 cannot be expected

to give accurate bootstrap distributions for time domain statistics (such as fined AR

coefficients) if the process is non Gaussian. (For frequency domain statistics such as spectrum

estimates the problem may not be as severe, bUI some deterioration for non Gaussian

processes is still to be expecred.) Ramos (1984) and Stine (1985) propose bootstrap methods

involving empirical resampling in the Frequency domain. (Ramos rcsamples from the

normalized Fourier coefficients, while Stine resampies from the normalized penodogrem. In

both cases, normalization by a suitable function of the spectrum estimate is essennal.) We,

however, feel that these methods will be (slightly) outperformed by Metbod 1 for Gaussian

processes, while for non-Gaussian processes they will still fail to capture any pertinent non-

Gaussian aspects of the data.

Our Method 2, which we believe to be new, involves estimating the moving average

transfer function of the process through the frequency domain FLES (Factorized Log of

Estimated Spectrum) method of Bhansali 10 obtain estimates of the underlying innovations

process (assumed to be strict white noise), resampling Irom the estimated innovations, and

then reversing the whitening procedure to obtain a bootstrap: replication. Method 2 is similar

in spirit to Swaaepoet and van Wyk's method in that both involve resampling from estimated

innovations. The key difference is that Method 2 employs a frequency domain method to

estimate the innovations while: Swanepoel and van Wyk's method employs a time domain

method. Both methods can be expected to work even if the process is non Gaussian.

2: MATHEMATICAL BACKGROUND

Suppose that we have data xo, .. , xn_1 generated by a weakly stationary zero mean

real valued stochastic process {X,} with covariance function {c.} , c,» E[X/X,_f] , and

spectrum
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f(w)'" -:!--~(',exp(i,wl . WE [-n,1Tj."
The Discrete Fourier Transform (DFT) of the data is Ii },,-I • where

I ,."

i •,
( w .. is called the Flh Fourier Prequency.) We can write J)" A.I- iBj where the Fourier

coefficients {A,} and {Sf} arc given by

,,-I

V 1 ~ X,COSW.l
2 'rr n !"'()

even). The original data can be recovered from the OFT by the inversion formula

Yh"n-I \1'2;"-1 .
x, --y:-- L Jjcxp(jw,.t) '" --v:- ~ (A}cosw"t + B-,smw.:l)

II ,.-0 " ,-0

The normalized Fourier coefficients {AJ\.!fl7.1 ' {B/~~;·.I (with fl=!(wj) and

n= (n- 1)/21) arc often treated as itd N(O, ~) random variables. This distributional result

indeed holds asymptotically as n ~IX if the process is Gaussian and if the coefficients gk of its

moving average representation satisfy Ljgdlk Ie>< 00 for some Q. > 0 . (See Priestley, 1981.),
Without assuming a Gaussian process, Brilltnger (1975) shows that under fairly weak.

conditions, any finite number of these normalized Fourier coefficients arc asymptotically

Since f is unknown, we cannot actually com pule the normalized Fourier coefficients.

We can. however, use a consistent estimate j in place of f . We will consider two basic

methods of spectrum estimation, the classical Btackman-Fukey (BT) metbod and the

autoregressive (AR) method. The BT method is based on the peticdogram

{/I"~" {if 1'1'-'I ,"'0 ; J=O

and takes the form
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IIi,

ii'(w.,) ~ L gj,l,l/-( •
l~ ",.

(1)

where the {guL, are fixed weig hts , and b is a bandwidth parameter to be chosen by the user.

The m'th order AR estimate take!'> the form

j(~)
I P,.

2T1" I~

ILOtt'xp(iw/.I:)F
<-0

.• a,~,P,~are determined from the sample covartences li,};"-o •

through toe Yule-Walker Equations.

Co C, f,n 1 P"
C, Co c,. -1 ", 0

"

em C,"_ I Co "" 0

The model order m is to be chosen by the user.

A key question is how to choose the estimate type and corresponding smoothness

parameter solely on tbe basis of the data. The WHOOSH method of Hurvich (1985), which

will be used here. allows for the objective choice of an estimate from an arbitrary finite

collection C of candidate estimates. In this paper I we will rake C to be the union of the

Yule- Walker AR estimates of orders I, .. ,20. asd the modified discrete Daniell BT

estimates (1) with

(
1I2nb 1.l:I<nb

81..11 = 1f4nb j.tl=nb

It; 100 , for b:. 1.... ,24. For an estimate i in C • define

WHOOSHrj) " .!.i{[Jogf-'(~j) - (Iogf,' e)l'
n J- r

,- ~}
6

where C = .577216 is Euler's constant, and j-j(w
J
) ,tbe Ieave-out-j version of the estimate,

is defined below. The chosen estimate j is the minimizer of WHOOSH(j) over the class C .

The motivation for the WHOOSH criterion is that WHOOSHU) gives an approximately
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unbiased estimate of the mean integrated squared error of j .

• 1 ,f A ,

MISE([) : -:-~E(lO&f(w,) - lo&f,l-
",I"'j

provided that i-Jew J) and I} are approximately iDd~penden[. and that t:jew) and j(Wj) are

similar. Since all spectrum estimates considered bere caa be written as functions of the

sequence {c.J of estimated covariances.

i(w;{l,n
the Ieave-out-j version of i can be defined (for a given fixed j ) as

t'(w) : i(.-,ll;'!) .
where

" -,cr-';o 2~~ ri(w'dexp(irw't)
" .-0

"'=21'1. w',= 2~k and rJ(w) is the periodic exrenston of the function defined on [-1f,n)

"
by

w6" {(W)_I.Wj_I)U(W_j_l,CII~;_l)}

IIJE(wi_l,wrr)

WE(W_j_I'W_j_1)

but that the computation of j-J(Wj) does not involve: I(w) for w in these intervals. Thus,

j-l(w J} and j(w)} will be similar and j-J(w ,} and I
J

will be approximately independent.

Finally, we describe the bootstrap metbod of Swanepoel and van Wyk.

1) Given data Xo" • 'Xn_1 • fit an m'th order autoregression, witb. parameters

Ql' . ,aM' Swanepoel and van Wyk: select," by a procedure of Hannan and Quinn

(1979) and fit the parameters by least squares. We will select m by SIC (see Priestley

1981, p. 375) and fit the parameters by the Yule-Walker metbod.

"2) Compute the residuals t, - LQ<.f._ •. I-~ m , .
•'~O

. /I - 1 .
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3) Re sample from the {E,};'~,.~to obtain ~<.i'..-;/ where N» n .

4) Use the (E.-Ito generate a bootstrap replication {..;l;':ol : Define

'"Y, - ~atYt-i + Et , 1=0 0, .... N-t,.,
and

3: TWO TIME SERIES BOOTSTRAP METHODS

Suppose that we have time series data -o- . ,,[,_1 and that we arc interested in the

distribution of a statistic T(x'l' . ,x~.I)' Suppose also that a spectrum estimate i has

already been calculated. (The choice of estimate is important, and was discussed in Section

2.) Define

{
n/2 - 1 11 t'V1t"

• [(.-1)121. (.-1)12 .odd

{
In eyt'll

6{1I t'venl = 0 n odd

Finally, define the inverse Fourier transform (1FT) of the sequence {Zjl7;d of complex

numbers by

•.. I

1FT, ({Zj)j) = ~zjexp(iwl1) • I'" 0 •... , n-1
)"'0

Then our bootstrap methods C3n be described as follows.

Method I: Parametric bootstrap

1) Generate II iid N(O,.!.) random variables
2

{z .}n.6!nt\ .."1
A.) )"'0

2) Form simulated Fourier coefficients
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3) Obtain a bootstrap data set (x;}~"-n'by

5) Repeat steps 1-4 8 times (with B large} and appronmate tbe true distribution of T({.l)

by the bootstrap distribution of T({x;n .

Method 2: The Nonpar.metric Bootstnp

This method assumes that ~Xr~ has a one-sided moving average representation

,
X, "'" 2: 8..E."i where the iEJ are iid

*-0
•

Let f{UI) '" ~gtexp(-iwk) . Note that
'-0

few) = If(w)F . The method is as follows:

1) Obtain {.:) :0 DFT {A)

2) Obtain an estimate few) of few)

4) Resample from tit~ to obtain {E.;'

MoU.....tion fer the bootstrap methods

Method 1:

The key assumption here is that the true normalized Fourier coefficients are uactly iid

N(O. t) .The parametric bootstrap relies on this assumption and uses i in place of f . Thus,

jid Gausstans are generated. multiplied by vi and inverse Fourier transformed to obtain a

bootstrap sample. If the process is execrly Gaussian and j is close to f , the parametric

bootstr ap can be expected 10 work well Note, however, that the method indeed assumes that
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the process is exactly Gaussian, since the bootstrap distribution of {x;l is always exactly

Gaussian. As indicated earlier, the choice of spectrum estimate may be crucial to the success

of this method.

Method 2:

To motivate method 2, note first that if .r I' ...• .1" are known to he iid , tben the

method reduces 10 the ordinary bootstrap of Efron. This follows since we can cake

r(w) - few) - 1 ,
so that the {i,J sequence defined in step 3) and resempled from in step 4) is

Ii,} = 1FT I"l = Ix,l .
Suppose next that few) is known, but not necessarily constant. Then {X,} bas a spectral

representation

x, = f <Xp(iwt)r(w) dZ,(w)

and the DFT's of {x(}~:Ol and h,}~:O' are related by

J,(w) = rCw)J,(w) + "Cw) (2)

Where E Irn(wW "" O(n-I) • uniformly in Cal • (Equation (1) holds under fairly weak

conditions. See Priestley, 1981.) Tbus, step 3) yields

{',l ' 1FT I,/r(w,)} ~ 1FT (J,(wi)} , 1',1
We See thai the resampling in Step 4 is well-motivated, since the fir} are approximately equal

to the underlying iid random variables {e.} _ Thus if {xJ bas a known one-sided moving

averege representation with respect to iid white noise, then Method 2 is clearly superior to

Method 1. In practice f(w) must be estimated using, for example, the method of Bhansali

(1974, 1977).

4, MONTE CARLO COMPARISONS OF METHOD I WITH SWANEPOEL AND VAN

WYK'S METHOD
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Here, we compare the performance of the parametric frequency domain bootstrap

(Method 1) with the time domain method of Swanepoel and van Wyk. The particular

application of the bootstrap we consider here is the assessment of the variances of log

spectrum estimates. For simplicity, we focus on this application instead of the simultaneous

spectral confidence interval application. (Schenker (1985) discusses some drawbacks inherent

in (individual) bootstrap confidence intervals. In addition, it is not clear how best to judge

the quality of the simultaneous confidence intervals considered by Swaeepoe! and van Wyk.

Finally. we feel that more can be learned about the advantages and disadvantages of the

methods, and about the reasons for these advantages and disadvantages, by studying the

behavior of the bootstrap variances.)

For each of three Gaussian processes, 100 simulated realizations were generated. Each

realization was of length n ~ 100. The three process types were a superposition of complex

exponentials with random phases and amplitudes (called the Sinusctds process). a third order

moving average process, and a third order autoregression. (These are the same three

processes used in Hurvich. 1985.) Details on the generation of these processes is given in tbe

Appendix. The bootstrap methods to be compared are the time domain bootstrap method of

Swanepoet and van Wyk (SVW), and the frequency domain bootstrap method (Le., Method

1). For the latter, two different normalizing spectrum estimates are considered: WHOOSH,

and BIC. Thus, in all, there are three different methods considered, and they are denoted by

SVW, WHOOSH and DIe. For each realization of the process, the three bootstrap methods

were used to estimate the variances of the logarithms of three different spectrum estimates: a

discrete Daniell estimate (1) with bandwidth b == 5 (denoted BT5), an autoregressive estimate

of order 5 (ARS), and an autoregressive estimate with the order automatically selected by the

CAT criterion (ARCAT). In all cases, the bootstrap variance estimates Were based on

B "- 100 bootstrap replica lions of the process.

In Figures ~ 1·4.3, we plot The averages of rbese bootstrap variance estimates. taken

OVer the 100 realizations of the process We also plot the "true" variances, which are based
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on 10000 realizations of the process The true variances are given by the solid line. the

averages of the WHOOSH variances are given by the dotted line, the averages of the DIC

variances arc given by the dashed line (long dashes), and the averages of the SVW variances

are given by tbe dashed line (short dashes). 10 Figure 4.4, we give boxptots of the:integrated

squared errors of the log spectrum estimates,

• 1 ~. ,
ISE(J) • -:-r(Jogf(w,) - lo&f(w))-

n .''''1

The principle finding of our study is that bootstrap variance estimates can be highly

inaccurate unless the spectrum used to generate the bootstrap replications is close to the

actual spectrum. Of course, in practice the actual spectrum is unknown and hence bootstrap

variances for spectrum estimates must be used with caution. The largest bias was found in

bootstrap variances for ARCAT spectrum estimates, followed by BT5. then AR5 estimates.

We have found the parametric frequency domain bootstrap witb the BIC normalization to be

essentially equivalent to the time domain method of Sweaepoel and van Wyk (1986). These

two methods perform well when the data satisfy an autoregressive model bur perform poorly

for the MA and Sinusoids process, Overall, the WHOOSH parametric bootstrap was

preferable.

Figure 4.1 displays the bootstrap variances for the ARCAT spectrum estimate for the

MA, Sinusoids and AR processes. The actual variance and parametric bootstrap estimates

normalized by WHOOSH and DIe as well as the variance obtained by the time domain

bootstrap are shown. For the MA and Sinusoids process, the time domain and frequency

domain DIC variances substantially underestimate the true variance, in the MA case by a

factor of 1.5 to 2. (Assuming the log spectrum estimates are approximately Gaussian and

unbiased for the log spectrum, underestimating the variance by a factor of 2 corresponds to

95% nominal coverage probabilities with actual coverages of only 85%.) These methods

generate bootstrap replications having the correlation structure of the AR process. When the

data are autoregressive, they perform well (Figure 4.1c); when they are not, they perform

poorly, in pan because they fail to properly reflect the contribution \0 the spectrum
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estimate's variance from the order-selection stage. Since for a given data set all bootstrap

replications have the correlation structure of a fixed-order AR process, variability in the

CA T-selected order of the bootstrap-replicated spectrum estimates will be minimized. The

WHOOSH variance is less biased for the MA and Sinusoids process. One reason is that the

WHOOSH spectrum estimates are superior to the AR·BIC spectrum estimates for these

processes. Another contributing factor is thai tbe WHOOSH-chosen spectrum estimates are

often not autoregressive. Wh.en they are, however, {he bootstrap variances will be biased

downward, for reasons described above. Thus the average wHOOSH bootstrap variances

shown in Figures 4.1a and 4.1b are still somewhat smaller than the true variances. For rbe

AR data, WHOOSH overestimates the variance of the ARCAT spectrum estimates by up to

a factor of 2. This problem may be linked to the inferior performance of WHOOSH for

selecting a spectrum estimate when the underlying process is a small-order autoregression.

Figure 4.2 displays the variance of the Btackman-Tukey spectrum estimate (BTS) for

[he three processes. WHOOSH gives the best variance estimate for the MA and Sinusoids

process. For the AR process, DIC and WHOOSH are best. Interestingly. this is the one case

where the time domain and BlC frequency domain variances differ, but this occurs only at

low frequencies. The WHOOSH variance appears best overall.

For AR5 spectrum estimates, all methods perform reasonably well, as is evidenced in

Figure 4.3.
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5: APPE::~DIX: SIMULATION METHODS

Using the AT&T Bell Laboratories S random number generator on a vax 11/750. we

simulated three different types of zero mean Gaussian processes, all of leagth II = 100: a

superposition of siuuscids, a third order autoregression. and a third order moving average.

The basic uniform random number generator used by Sis Ihe McGill generator, described in

Chambers (1977, pp. 174, 191).

The superposition of stnusoids (referred to simply as "sieusclds" in the text) bas form

.'
x, " 2:(A,COSW11 .... B,sinwl),-, (3)

where for each i . A, and 8, are independent N(O,al) and where the pairs (A"B,) and (Ai ,B)

are independent if i *' j. Hac, the rJ
j

(j -= 1, .... r1f2) are constants. It is easy to show that

(X,} h d' - hi,as a iscreie spectrum wit power -(Tj2 '
2n

"
WI:: see Chat {x,} provides an approximation to a process with spectral density few),

where

f1u2
few,) =:.:.::.L i > I.. .. n/2 ., 4.

Thus, by properly choosing the (f~, we can approximate processes with spectral densities f(w),

having any desired shape. Simulation of {XI} is straightforward: if

WI'" • "" ..:2 ,y., .... Y,,12

arc simulated tid N(O,I) random variables, then we define

Aj"" aJw
J

Bj = (TjJj (j =- 1, ... , nl2)

and then form the sum (3). The values of fJ./ we have chosen to use bere are

~ "".(hi] U ~ 1 .. , .. SO)
J 101

The autoregression is

,,'
e. -N(O,I)

To simulate {x,f, we first generate {tY~~. a set of 20D simulated iid N(O.l) random
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variables. Next. we define {Y,} recursively by

Y_)=Y_:""'y_,=o

J, = -.9Y'_1 - .8y,_: - .6Y,_3 + E,

and finally. we set

0, ... , 199

x, = Yr-IOO = O •... ,99

The moving average is

,,'
',- N(O,I)

Simulation of {x,I is stratgbttorward: generate the {E,} and form the: indicated sum.

b _
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