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ABSTRACT

This paper details our approach to Task 3 of the DCASE’19 Chal-
lenge, namely sound event localization and detection (SELD).
Our system is based on multi-channel convolutional neural net-
works (CNNs), combined with data augmentation and ensembling.
Specifically, it follows a hierarchical approach that first determines
adaptive thresholds for the multi-label sound event detection (SED)
problem, based on a CNN operating on spectrograms over long-
duration windows. It then exploits the derived thresholds in an en-
semble of CNNs operating on raw waveforms over shorter-duration
sliding windows to provide event segmentation and labeling. Fi-
nally, it employs event localization CNNs to yield direction-of-
arrival (DOA) source estimates of the detected sound events. The
system is developed and evaluated on the microphone-array set of
Task 3. Compared to the baseline of the Challenge organizers, on
the development set it achieves relative improvements of 12% in
SED error, 2% in F-score, 36% in DOA error, and 3% in the com-
bined SELD metric, but trails significantly in frame-recall, whereas
on the evaluation set it achieves relative improvements of 3% in
SED, 51% in DOA, and 4% in SELD errors. Overall though, the
system lags significantly behind the best Task 3 submission, achiev-
ing a combined SELD error of 0.2033 against 0.044 of the latter.

Index Terms— Sound event detection and localization, convo-
lutional neural networks, DCASE19

1. INTRODUCTION

Sound event detection (SED) constitutes an active research area
with many applications, such as medical telemonitoring [1] and
surveillance [2]. Not surprisingly, SED has been the subject of mul-
tiple evaluation campaigns in the literature, including the recent and
well-established DCASE Challenges [3–5]. Moreover, alongside
SED, in many applications [6, 7] it is also crucial to determine the
location or, more coarsely, the direction of arrival (DOA) of each
detected sound event source. Thus, in Task 3 of the 2019 DCASE
Challenge [8], both problems are considered jointly (SED and DOA
estimation of the detected events). The task is referred to as sound
event localization and detection (SELD), and it is addressed in an
indoors scenario given multi-channel audio.

In this paper, we present our developed SELD system for Task
3 of the 2019 DCASE Challenge [8]. As deep-learning based meth-
ods are well-established, outperforming traditional machine learn-
ing ones in both SED [9–12] and DOA estimation [13,14], we adopt
a deep-learning approach. In particular, we employ convolutional
neural networks (CNNs) to first address SED, i.e., determine the
existence of each class at each time-frame, and to subsequently es-
timate the DOA for each of the audio segments predicted to exist.

Notably, for SED we follow a hierarchical approach, where, first, a
CNN operating over long-duration audio windows determines adap-
tive thresholds indicating how likely it is for each class to exist, and,
subsequently, an ensemble of CNNs operating over shorter-duration
windows determines the exact moments each class occurs.

The remainder of the paper is organized as follows: Section 2
overviews the Challenge dataset; Section 3 focuses on the devel-
oped SELD system; Section 4 details its evaluation on the Chal-
lenge data; and, finally, Section 5 concludes the paper.

2. CHALLENGE DATASET

Task 3 of the 2019 DCASE Challenge provides two datasets of
the same indoors sound scene: “Microphone Array” and “Am-
bisonic” [15]. In this paper, the “Microphone Array” set is em-
ployed, containing four-channel directional microphone recordings
from a tetrahedral array configuration. The development dataset
consists of 400 1-min long recordings sampled at 48 kHz, divided
into four cross-validation splits. For the purposes of the Challenge,
the given cross-validation split should be used during system devel-
opment, and the use of external data is not allowed. In addition, the
evaluation dataset consists of 100 1-min long recordings. Note also
that, in our system, all audio data are downsampled to 16 kHz.

There exist 11 sound event classes, taken from Task 2 of the
2016 DCASE Challenge [4]. The duration of each event segment
in the development set ranges from 205ms to 3.335s, and there can
be at most two overlapping sounds at any given time. The number
of segments is almost the same for all classes, however there exists
significant variation in their total durations (see also Fig. 1).

Each segment is associated with an elevation and an azimuth
value. Elevation values lie within the [-40◦, 40◦] range, while az-
imuth values are within [-180◦, 170◦], both at a resolution of 10◦.
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Figure 1: Class total durations in the four development set splits.

3. SYSTEM DESCRIPTION

In our method, we first address the SED sub-task and then the DOA
one. Specifically, we develop a hierarchical approach to the for-
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Figure 2: Overview diagram of the developed system for Task 3 of DCASE’19 (CNNs are drawn using the PlotNeuralNet software [16]).

mer, determining the existence of each sound event class at each
time-frame. For this purpose, first a “long SED model” estimates
adaptive thresholds for each class, also taking into account the class
prior probabilities. Then, an ensemble of “short SED models” deter-
mines the exact time-frames each class exists, exploiting the afore-
mentioned thresholds. Following SED, we utilize a DOA model to
localize the source of each detected event, estimating its elevation
and azimuth values. All models are multi-channel CNNs, operating
on raw waveforms or spectrograms over sliding windows of differ-
ent durations. A schematic of the system is provided in Fig. 2.

3.1. Short SED models

We create an ensemble of multi-channel CNNs (12 in total, as ex-
plained in the next paragraph), all with the architecture of Table 1.
These operate on raw audio waveforms over short-duration win-
dows of 100ms or 200ms, with these values determined after ex-
perimenting with various window lengths on the development set.
We do not apply any preprocessing to the four channels (other than
their downsampling to 16 kHz), and we use all four microphone
data streams as input to the CNNs. The output layers of the models
have 11 neurons (same as the number of sound event classes), each
providing the probability of its corresponding class, following sig-
moid activation. Note that, during training, windows with no sound
events are kept, and windows with overlapping events are assigned
to all occurring events inside them (maximum of two), while they
slide in steps equal to half their duration, i.e. by 50 or 100ms. All
CNNs are trained with a binary cross-entropy objective using the
Adam optimizer and early stopping to prevent overfitting, employ-
ing the Keras API for development [17].

In order to have more segments with overlapping sounds, we
employ data augmentation as follows: we add segments, each be-
longing to only one class, two at a time. Concerning the Challenge
evaluation metrics, we observed that datasets with more overlap-
ping segments tend to yield better frame-recall results, while data
with less overlapping segments tend to perform better in terms of
SED error and F-score. As we wish to improve all three metrics si-
multaneously, we choose to create different models, trained on data
with various degrees of artificial overlap, and then ensemble them.
Thus, we create six datasets, having 0%, 5%, 10%, 20%, 30%, and
40% extra overlapping segments, and we train two different CNNs
on each (i.e. with input window sizes of 100ms and 200ms length),
thus resulting to 12 models. The process is repeated for each of the
four given development data splits.

3.2. Long SED model

A major issue in multi-label problems concerns the choice of class
thresholds, used to decide if a class exists or not. A simple ap-
proach is to set all thresholds to 0.5, as in the Challenge baseline
system [18], however their careful tuning may yield significant im-
provements. For example, in [9] exhaustive search is utilized to
yield a single optimal threshold for all classes, whereas in [10, 11]
separate thresholds are employed for each class, found by exhaus-
tive search. Nevertheless, both approaches may be prone to overfit-
ting due to the exhaustive search used.

To prevent overfitting, we opt to create a SED model operat-
ing on longer-duration data windows. Our motivation stems from
the expectation that such a model will provide a “bigger picture”
concerning class existence, and thus can help in determining class
thresholds adaptively. These can then be utilized in conjunction
with the outputs of the short SED models to predict the exact time-
frames in which each sound event occurs.

For this purpose, we create a multi-channel CNN that operates
on power spectrograms over signal windows of one-second duration
(sliding in 100ms steps during training), with 128×32-dimensional
spectrograms generated by libROSA [19] under its default param-
eters. We use all available channels, ending up with four spectro-
grams as input. For data augmentation, we consider all permuta-
tions of the four channels, resulting in 24 times more training data.
Details of the long SED model architecture are provided in Table 2.

3.3. Adaptive thresholds and SED predictions

To determine the class thresholds, we work with a time-resolution
of 20ms, exploiting the long SED model predictions. These
fine-resolution predictions are obtained by averaging the coarser-
resolution probabilities of each class over all 1s-long windows that
contain the given 20ms time-frame, while sliding by 200ms.

A first approach is to simply set the desired thresholds to

θ t
c = 1− lpt

c , (1)

where lpt
c denotes the long SED model prediction (probability) of

class c at time-frame t , and θ t
c is the corresponding threshold. In

general, however, we do not wish the thresholds to be too close to
1, in order to guard against false negatives of the long SED model.
Thus, we choose to smooth (1) by multiplying the thresholds with
a number within the [0.6, 0.9] range. This number is different for
each class, and it is based on its total duration in the training data
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Input (4 x segment size)

100 filters, Conv 1x10, ReLU
MaxPool 1x5

200 filters, Conv 1x10, ReLU
MaxPool 1x6

300 filters, Conv 1x10, ReLU
MaxPool 1x7

500 filters, Conv 4x1, ReLU

Flatten
Dropout 0.6

1000 neurons, Dense, ReLU
Dropout 0.3

11 neurons, Dense, sigmoid

Table 1: Architecture of the short SED
models. Segment sizes are 1600 for 100ms
windows and 3200 for 200ms ones.

Input (4x128x32)

40 filters, Conv 1x6x1, ReLU
MaxPool 1x3x1

60 filters, Conv 1x1x6, ReLU
MaxPool 1x1x3

80 filters, Conv 1x6x6, ReLU
MaxPool 1x3x3

Flatten
Dropout 0.5

500 neurons, Dense, ReLU
Dropout 0.3

11 neurons, Dense, sigmoid

Table 2: Long SED model architecture.

Input (4 x segment size)

100 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x3

200 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x5

300 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x5

400 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x5

500 filters, Conv 4x1 (same padding), ReLU

Flatten
Dropout 0.5

1000 neurons, Dense, ReLU
Dropout 0.3

22 neurons, Dense, linear

Table 3: Architecture of the DOA models.

(class prior), meaning that less frequent classes tend to have lower
thresholds. The resulting thresholds are given by

θ t
c =

(
1− lpt

c

)(
0.6 + 0.3

pc − pmin

pmax − pmin

)
, (2)

where pc denotes the prior of class c (based on duration), while
pmin and pmax are the minimum and maximum of all class priors.

The desired SED results are finally derived at a time-resolution
of 20ms, by employing the ensemble of the 12 short SED models
of Section 3.2 and the adaptive thresholds of (2). Specifically, let
spt

c denote the combined short model prediction of class c at time-
frame t . This is estimated for each of the 12 CNNs by averaging
the class probabilities over all windows (of length 100 or 200ms,
depending on the model) that contain the given 20ms time-frame,
while sliding by a 20ms step. The resulting estimates are then av-
eraged over all 12 models of the CNN ensemble to yield spt

c . As a
final step, class c is detected at time-frame t , whenever spt

c ≥ θ t
c .

3.4. DOA models

Following SED, we proceed to the DOA sub-task. For this purpose,
and similarly to the short SED models, we create short models for
DOA estimation that provide 22 numbers at their output layer, i.e.
the elevation and azimuth for each of the 11 classes. The goal is,
given a raw multi-channel audio segment of short duration, to pre-
dict the DOA of each class, no matter if it exists or not (SED results
will determine what to keep). Specifically, we create two CNNs,
with their architecture detailed in Table 3. The CNNs operate on
four channels of raw audio over windows of 100ms or 200ms in du-
ration that, during model training, slide at steps of 50ms or 100ms,
respectively. For training the two networks, we use the same data
as in the SED sub-task, but exclude audio with no sound events, as
such data are not associated with DOA values. We employ the mean
squared error loss as training objective, but slightly modified, as we
calculate it only in the 2 (in the case of one class) or the 4 (for two
overlapping classes) output neurons of interest. As before, we use
the Adam optimizer and early stopping to prevent overfitting.

DOA estimation occurs at a time resolution of 20ms, first by
averaging the elevation and azimuth predictions for the 20ms time-
frame of interest within the model sliding windows, and subse-
quently averaging the predictions across the two models. A prob-
lem arises in this approach towards the boundaries of each segment.
To prevent noisy DOA estimates there, these are smoothed by set-
ting predictions for the first and last 300ms of each segment to the
minimum or maximum of that sub-segment (depending on the rel-
ative position to the zero), thus preventing steep DOA ascents or
descents. An example of this process is depicted in Fig. 3.

3.5. Submitted systems

Following the above process, we create a total of four SELD sys-
tems, each trained on one of the four given cross-validation develop-
ment data splits. We then combine these four systems in two ways,
thus providing two submissions to the Challenge, resulting from:
(a) their average; and (b) their weighted average. In both cases, av-
eraging occurs at the sub-component level across the four systems
(e.g., each short SED CNN is averaged across the four systems first,
before model ensembling). Particularly in the weighted averaging
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Figure 3: Example of DOA (here, azimuth) estimate smoothing at
segment edges: (top) before smoothing; (bottom) after smoothing.
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Figure 4: Evaluation of design choices of the proposed system components on the Challenge development set, namely of various: (a) short
SED model window durations; (b) class threshold estimation approaches; (c) DOA model window durations with or without smoothing.

case, the performance of the four systems on the corresponding fold
test-set is taken into account, based on the appropriate metrics (i.e.,
the average of the three SED metrics or the DOA error).

4. RESULTS

4.1. Development set results

We first present in Table 4 (top) our system performance on the de-
velopment set (over its four data splits, thus there is a single result
according to the evaluation paradigm), in terms of the four Chal-
lenge metrics and their combination (SELD score). We can read-
ily observe that, compared to the Challenge baseline, our system
achieves a 3% relative reduction in the SELD score (from 0.22 to
0.213). In terms of the individual metrics, the system yields relative
improvements of 12% in SED error, 2% in F-score, 36% in DOA er-
ror (from 30.8◦to 19.8◦), but trails significantly in the frame-recall
metric, where it achieves only 75.3% vs. 84.0% for the baseline.

In Fig. 4 we present results to highlight performance differences
between the various design choices of our developed system com-
ponents. First, in Fig. 4(a) we depict performance of the short SED
models of Section 3.1 and their ensembles in terms of SED error,
F-score, and frame-recall (difference from 1 is shown for the latter
two). We also depict results for additional window sizes, namely
300ms and 400ms. Each bar shows results of the ensemble of six
models, trained on various data augmented sets (from 0% to 40%,
as discussed in Section 3.1), with the error bars indicating the range
of the individual model results. Note that the 12-model ensemble
results are also shown (“100+200 ensemble”). We observe that
shorter window sizes (100ms) yield the best results in frame-recall,
mainly because two sounds may overlap for very short periods of
time, but have much worse results in SED error and F-score, be-

se
t system

SED
F-score

frame- DOA SELD
error recall error score

de
v proposed 0.309 81.2% 75.3% 19.8◦ 0.213

baseline ∗ 0.350 80.1% 84.0% 30.8◦ 0.220

ev
al

proposed (a) 0.29 82.4% 75.6% 18.6◦ 0.2033
proposed (b) 0.29 82.3% 75.7% 18.7◦ 0.2034
baseline ∗ 0.30 83.2% 83.4% 38.1◦ 0.2114
best 0.08 94.7% 96.8% 3.7◦ 0.044

Table 4: Comparison of our system on the development (dev) and
evaluation set (eval) of DCASE’19 Task 3 against the Challenge
baseline (∗: on Microphone Array data), in terms of the five task
metrics. Performance of the best-scoring submission is also shown.

cause short windows may not carry adequate class information. On
the other hand, medium window sizes (200ms) yield the best results
in SED error and F-score, but worse frame-recall as they may fail
to detect very short segments. Combining the two window sizes by
model ensembling exploits the relative advantages of both, improv-
ing SED error and F-score significantly, but at minor detriment in
frame-recall. Longer windows (e.g. 300ms or 400ms sizes) signifi-
cantly degrade frame-recall, thus are not used in our system. Next,
in Fig. 4(b) we examine the effect of class thresholds to SED per-
formance. Thresholds fixed to 0.5 for all classes perform the worst,
whereas adaptive thresholds estimated by means of (1) – labeled as
“long” in the graph, perform better in all three metrics (SED error,
F-score, and frame-recall). Results further improve when adaptive
thresholds are computed by (2) – labeled as “long and prior” in
the bar-plot. Finally, in Fig. 4(c) we consider the DOA estimation
component. There, we can readily observe the importance of DOA
estimate smoothing, as systems “without” smoothing perform sig-
nificantly worse than systems “with” it. Also DOA models operat-
ing on windows of 100ms or 200ms in duration outperform systems
built on 300ms windows. The ensemble of both 100ms and 200ms
systems performs even better in terms of the DOA error metric.

4.2. Evaluation set results

Finally, in Table 4 (bottom) we present our system performance on
the Challenge evaluation set. Both system variants of Section 4.2
are shown: (a) averaging; and (b) weighted averaging. They per-
form similarly, with variant (a) being slightly superior. Compared
to the baseline, it yields a slight 4% relative reduction in the SELD
metric (from 0.2114 to 0.2033), with the greatest improvement in
the DOA error metric (51% relative reduction, from 38.1◦to 18.6◦).
It should be noted however that the proposed system lags signifi-
cantly behind the best overall submission in Task 3 in all metrics.

5. CONCLUSIONS

We presented a SELD system for Task 3 of the DCASE’19 Chal-
lenge using CNNs only, separately addressing SED and DOA esti-
mation, while making no explicit assumptions about the maximum
possible number of overlapping segments. We followed a hierar-
chical approach to SED, first determining adaptive class thresholds
based on a CNN operating over longer windows, which we then uti-
lized in an ensemble of CNNs operating on shorter waveforms, also
exploiting data augmentation in their training. Our system outper-
formed the baseline, particularly in DOA error, exhibiting consis-
tent performance across development and evaluation sets, but trailed
the best Challenge submission considerably.
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