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ABSTRACT

In this paper, we describe our method for DCASE2019 task 3:
Sound Event Localization and Detection (SELD). We use four
CRNN SELDnet-like single output models which run in a consecu-
tive manner to recover all possible information of occurring events.
We decompose the SELD task into estimating number of active
sources, estimating direction of arrival of a single source, estimat-
ing direction of arrival of the second source where the direction of
the first one is known and a multi-label classification task. We use
custom consecutive ensemble to predict events’ onset, offset, direc-
tion of arrival and class. The proposed approach is evaluated on the
TAU Spatial Sound Events 2019 - Ambisonic and it is compared
with other participants’ submissions.

Index Terms— DCASE 2019, Sound Event Localization and
Detection, CRNN, Ambisonics

1. INTRODUCTION

Sound Event Localization and Detection (SELD) is a complex
task which naturally appears when one wants to develop a sys-
tem that possesses spatial awareness of the surrounding world us-
ing multi-channel audio signals. This year, the task 3 from the
IEEE AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE 2019) [1] concerned the SELD prob-
lem. SELDnet introduced in [2] is a single system of a good quality
designed for the SELD task, and the slight modification of SELDnet
was set as the baseline system [3] during the DCASE 2019 Chal-
lenge. Solely based on [2] and [3], we develop a novel system de-
signed for the task 3 from the DCASE 2019 Challenge.

In our work, we follow the philosophy that if a complex prob-
lem can be split into simpler ones, one should do so. Thus we de-
compose the SELD task with up to 2 active sound sources into the
following subtasks:

• estimating the number of active sources (noas),
• estimating the direction of arrival of a sound event when there

is one active sound source (doa1),
• estimating the direction of arrival of a sound event when there

are two active sound sources and we posses the knowledge of
the direction of arrival of one of these sound events, which we
will call an associated event (doa2),

• multi-label classification of sound events (class).

∗Corresponding author.

Figure 1: An example of the normalised amplitude spectrogram in
the decibel scale and the normalised phase spectrogram obtained
from the first foa channel from some randomly selected recording.
The horizontal and vertical axes denote frame numbers and frequen-
cies respectively obtained from the STFT. Note that the values from
the legends on the right are dimensionless due to the normalization
used in the preprocessing.

For each of this subtasks, we develop a SELDnet-like convolutional
recurrent neural network (CRNN) with a single output. We discuss
it in detail in section 3. Given such models, we develop a custom
consecutive ensemble of these models. This allows us to predict the
events’ onset, offset, direction of arrival and class, which we discuss
in detail in section 4. Due to the sequential nature of generating pre-
dictions in our system, errors in models’ predictions may cascade,
and thus an overall error may cumulate. Despite this drawback, our
system acquire very good results on the TAU Spatial Sound Events
2019 - Ambisonic database. We discuss the results in detail in sec-
tion 5.

2. FEATURES

The DCASE 2019 task 3 provides two formats of the TAU Spa-
tial Sound Events 2019 dataset: first order ambisonic (foa) and 4
channels from a microphone array (mic) [3]. In our method we only
use the ambisonic format.

https://doi.org/10.33682/9f2t-ab23
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Each recording is approximately 1 minute long with sampling
rate of 48k. We use the short time Fourier transform (STFT) with
Hann window. We use the window of length 0.4s and hop of length
0.2s in STFT to transform a raw audio associated to each foa chan-
nel into the complex spectrogram of size 3000x1024. If audio is
longer than 1 minute, we truncate spectrograms. If an audio is
shorter than 1 minute, we pad them with zeros.

From each complex spectrogram we extract its module and
phase point-wise, that is amplitude and phase spectrograms, re-
spectively. We transform amplitude spectrograms to the decibel
scale. Finally, we standardize all spectrograms frequency-wise to
zero mean and unit variance, to obtain spectrograms as in Figure 1.

In summary, from each recording we acquire 4 standardized
amplitude spectrograms in the decibel scale and 4 standardized
phase spectrograms corresponding to 4 foa channels.

3. ARCHITECTURE

As mentioned in the introduction, each of the subtasks (noas,
doa1, doa2 and class) has its own SELDnet-like CRNN. Each of
these models is a copy of a single SELDnet node with just minor
adjustments so that it fits to the specific subtask and for the regular-
ization purpose.

Each of these models takes as an input a fixed length subse-
quence of decibel scale amplitude spectrograms (in case of noas
and class subtasks) or both decibel scale amplitude and phase spec-
trograms (in case of doa1 and doa2 subtasks) from all 4 channels.

In each case, the input layers are followed by 3 convolutional
layer blocks. Each block is made of a convolutional layer, batch
norm, relu activation, maxpool and dropout. The output from the
last convolutional block is reshaped so that it forms a multivari-
ate sequence of a fixed length. In the case of doa2, we addition-
aly concatenate directions of arrivals of associated events with this
multivariate sequence. Next, there are two recurrent layers (GRU
or LSTM) with 128 units each with dropout and recurrent dropout.
Next layer is a time distributed dense layer with dropout and with
the number of units depending on subtask.

Lastly, depending on a subtask, the model has a different out-
put. For noas, the model has just a single time distributed output that
corresponds to the number of active sources (0, 1 or 2). For doa1
and doa2, the models have 3 time distributed outputs that corre-
sponds to cartesian xyz coordinates as in [2]. Cartesian coordinates
are advantageous over spherical coordinates in this task due to their
continuity. Lastly, for class, the model has 11 time distributed out-
puts corresponding to 11 possible classes. We present the detailed
architecture in Table 1.

Depending on a subtask, we feed the network with the whole
recordings or just their parts. For noas, we feed all the data. For
doa1, we extract only those parts of the recordings where there is
just one sound source active. For doa2, we extract only those parts
of the recordings where there are exactly two active sound sources.
For class, we extract those parts of the recordings where there are
at least one active source.

As for the learning process, we used mean square error loss for
the noas, doa1, doa2 subtasks and binary cross-entropy loss for the
class subtask. For all subtasks we initialised learning process using
Adam optimizer with default parameters [4]. The noas and class
subtasks were learned for 500 epochs with exponential learning rate
decay; every 5 epochs the learning rate were multiplied by 0.95. In
doa1 and doa2 subtasks, we run learning process for 1000 epochs
without changing the initial learning rate.

As for complexity, the noas, doa1, doa2 and class have
572,129, 753,603, 591,555 and 572,299 parameters respectively,
making total of 2,651,634 parameters.

4. CONSECUTIVE ENSEMBLE

In this section, we introduce and describe the idea of the con-
secutive ensemble which is the core of our approach. This custom
binding of our four models allows us to predict the events’ onset,
offset, direction of arrival and class.

4.1. The algorithm

We assume that recordings have at most 2 active sound sources
at once and the sound events occur on a 10 degrees resolution grid.
In our setting, the audios after feature extraction have exactly 3000
vectors corresponding to the time dimension. Henceforth we will
call these vectors as frames. The algorithm itself goes as follows:

1. We feed the features to the noas network to predict the num-
ber of active sources (NOAS) in each frame.

2. We transform the predicted NOAS so that each recording
starts and ends with no sound sources and the difference of NOAS
between each frames is no greater than 1.

3. From the predicted NOAS we deduce the number of events,
their onsets and the list of possible offsets for each event. If NOAS
in two consecutive frames increases, then we predict that a new
event happened at the second frame. If in two consecutive frames
NOAS decreases, then we append the first frame to all events since
last time NOAS was 0 as a possible offset.

4. In order to determine which offset corresponds to which
event we use the doa1 network. We extract chunks (intervals of
equal NOAS) of audio where the predicted NOAS equals 1 and we
feed it to doa1 network. For each chunk where NOAS was 1 we
predict the average azimuth and elevation, and we round it to the
closest multiple of 10. If two consecutive chunks have the same
azimuth and elevation then we conclude that the first event covered
two chunks and the second event started and ended between those
chunks. If two consecutive chunks have a different azimuth or ele-
vation, then we conclude that the first event ended when the second
chunk started and the second event continued in the second chunk.

5. To determine the remaining information about angles we
need to predict the direction of arrival (DOA) of events that start and
end while the associated event is happening. We feed the chunks
where NOAS is 2 to the doa2 network with the second input being
DOA of the associated event in cartesian xyz coordinates. Similarly
as in step 4, we average the predicted results from chunks and round
it to the closest multiple of 10.

6. Lastly, we predict the events’ classes. If an event has chunks
where the event is happening in an isolation (NOAS = 1), then all
such chunks are feed to the class network and the most probable
class (using soft voting among frames) is taken as a predicted class.
If an event has no such chunks, i.e. the event is only happening
with an associated event, then such chunk (NOAS = 2) is fed to the
network and two most probable classes are extracted. We choose the
first one which does not equal to the class of the associated event.

4.2. An example

The algorithm itself may seem quite complex at first glance.
Hence, we investigate here a concrete example.
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Table 1: The architecture and the parameters of the networks

Layer Type Parameters noas doa1 doa2 class

Input Shape 256× 1024× 4 128× 1024× 8 128× 1024× 8 128× 1024× 4
ConvBlock* Pool 8 8 8 8
ConvBlock* Pool 8 8 8 8
ConvBlock* Pool 4 4 4 4
Reshape Sequence length × features 256×−1 128×−1 128×−1 128×−1
Doa2 input Is used False False True False
Concatenate Is used False False True False
RecBlock** Unit type GRU LSTM GRU GRU
RecBlock** Unit type GRU LSTM GRU GRU
TD Dense Number of units 16 128 128 16
Dropout Dropout rate 0.2 0.2 0.2 0.2
TD Dense Number of units 1 3 3 11
Activation Function linear linear linear sigmoid

*ConvBlock(P )

Conv2D 64 filters, 3× 3 kernel, 1× 1 stride, same padding
BatchNorm —
Activation ReLu function
MaxPooling2D 1× P pooling
Dropout 0.2 dropout rate

**RecBlock(U)

Recurrent 128 recurrent units of type U , 0.2 recurrent dropout rate
Activation tanh function
Dropout 0.2 dropout rate

Figure 2: The plot visualising the predicted number of active
sources for some randomly selected recording.

Given a recording constituting of 3000 vectors, we predict its
NOAS in each frame as in Figure 2. For the sake of clarity we
constrain only to a part of the recording. Consider a block with
predicted NOAS as in the top plot from Figure 3. According to the
step 3 from the algorithm, we predict that 3 events happened here:
E1, E2, E3 with 3 corresponding onsets On1, On2, On3. Events
E1 and E2 may end at Off1, Off2 or Off3 and event E3 may end
at Off2 or Off3 (see the bottom plot from Figure 3). According
to the step 4 from the algorithm, we predict DOA using doa1 in
chunks from On1 to On2, from Off1 to On3 and from Off2 to
Off3. Based on that we deduce the events’ offsets as in Figure 3.
Based on step 5 from the algorithm, we predict the DOA of chunk
from On3 to Off2 using doa2 where the associated DOA is the
DOA of E2. Lastly we deduce classes of the events E1, E2 and
E3. According to the step 6 form the algorithm, we predict class
of E1 based on the chunk from On1 to On2, predict the class of
E2 based on chunks from Off1 to On3 and from Off2 to Off3.
Finally, we predict the class of E3 based on the chunk from On3

to Off2. If the predicted class of E3 is the same as the class of
E2 then we predict it to be the second most probable class from the
class network.

Table 2: The average results from all 4 splits.
Error rate F-score DOA error Frame recall Seld score

Train 0.03 0.98 2.71 0.98 0.02
Val. 0.15 0.89 4.81 0.95 0.08
Test 0.14 0.90 4.75 0.95 0.08
Baseline 0.34 0.80 28.5 0.85 0.22

5. RESULTS

We evaluate our results on TAU Spatial Sound Events 2019 -
Ambisonic dataset. This dataset constitutes of two parts: the devel-
opment and evaluation sets. The development part consists of 400
recordings with predefined 4-fold cross-validation and the evalua-
tion part consists of 100 recordings. The results from this section
relate to our submission Kapka_SRPOL_task3_2.

5.1. Development phase

As for the development part, we used 2 splits out of 4 for train-
ing for every fold using the suggested cross-validation even though
validation splits do not influence the training process.

We show in Table 2 the averaged metrics from all folds for our
setting and metrics for the baseline [3]. In order to demonstrate the
variance among folds, we present in Table 3 the detailed results on
the test splits from each fold. The development set provides the
distinction for the files where there is up to 1 active sound source at
once (ov1) and where there are up to 2 (ov2). In Table 4 we compare
metrics for the ov1 and ov2 subsets.
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Figure 3: Given the predicted NOAS from the part of some recording as in the top plot, we deduce that there are 3 events E1, E2 and E3 with
corresponding onsets denoted by the green lines in the bottom plot. Based on the predicted DOA, which we placed in the top plot above the
segments, we deduce the events’ offsets denoted by the red lines in the bottom plot.

Table 3: The results on the test splits from each fold.
Error rate F-score DOA error Frame recall Seld score

Split 1 0.13 0.91 6.01 0.95 0.07
Split 2 0.16 0.88 6.01 0.95 0.09
Split 3 0.11 0.93 4.93 0.96 0.06
Split 4 0.17 0.86 5.89 0.96 0.10

Table 4: The results on the ov1 and ov2 subsets.
Error rate F-score DOA error Frame recall Seld score

ov1 0.07 0.94 1.28 0.99 0.04
ov2 0.18 0.87 7.96 0.93 0.11

5.2. Official results

For the evaluation part, we used all 4 splits for training from
the development set. We compare our final results with the selected
submissions in Table 5.

The idea of decomposing the SELD task into simpler ones
proved to be a very popular idea among contestants. The recent
two-stage approach to SELD introduced in [5] was used and devel-
oped further by many. The best submission using two-step approach
Cao_Surrey_task3_4 [6] obtained results very similar to ours.
He_THU_task3_2 [7] and Chang_HYU_task3_3 [8] outper-
form our submission in SED metrics and DOA error respectively.
However, our approach based on estimating NOAS first allows us
to outperform all contestants in frame recall.

6. SUBMISSIONS

Overall, we created 4 submissions for the competition:

• ConseqFOA (Kapka_SRPOL_task3_2),
• ConseqFOA1 (Kapka_SRPOL_task3_3),
• ConseqFOAb (Kapka_SRPOL_task3_4),
• MLDcT32019 (Lewandowski_SRPOL_task3_1).

Table 5: The comparison of the selected submissions.
Rank Submission name Error rate F-score DOA error Frame recall
1 Kapka_SRPOL_task3_2 0.08 94.7 3.7 96.8
4 Cao_Surrey_task3_4 0.08 95.5 5.5 92.2
6 He_THU_task3_2 0.06 96.7 22.4 94.1
19 Chang_HYU_task3_3 0.14 91.9 2.7 90.8
48 DCASE2019_FOA_baseline 0.28 85.4 24.6 85.7

The first three submissions use the approach described in the
above sections. The only difference is that ConseqFOA is trained
on all four splits from development dataset. ConseqFOA1 is trained
on splits 2,3,4. ConseqFOAb is trained on all splits but the classifier
in this version was trained using categorical cross-entropy instead
of binary cross-entropy loss.

Our MLDcT32019 submission uses a different approach. It
works in the same way as the original SELDnet architecture but
with the following differences:

• We implemented the Squeeze-and-Excitation block [9] after
the last convolutional block. We pass the output from the last
convolutional block through two densely connected neural lay-
ers with respectively 1 and 4 neurons, we multiply it with the
output of the last convolutional block and we pass it further to
recurrent layers.

• We set all dropout rates to 0.2.
• We used SpecAugment [10] as an augmentation technique to

double the training dataset.
• We replaced recurrent layer GRU units with LSTM units.

7. CONCLUSION

We conclude that decomposing the SELD problem into simpler
tasks is instinctive and efficient. However, we are aware that our
solution has some serious limitations and it fails when one wants to
consider a more general setup. For example when there are more
than 2 active sources at once or when the grid resolution is more
refined. Thus, we claim that the pursuit for universal and efficient
SELD solutions is still open.
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