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ABSTRACT

In this paper, we describe in detail the system we submitted to
DCASE2019 task 4: sound event detection (SED) in domestic envi-
ronments. We employ a convolutional neural network (CNN) with
an embedding-level attention pooling module to solve it. By consid-
ering the interference caused by the co-occurrence of multiple events
in the unbalanced dataset, we utilize the disentangled feature to raise
the performance of the model. To take advantage of the unlabeled
data, we adopt Guided Learning for semi-supervised learning. A
group of median filters with adaptive window sizes is utilized in
the post-processing of output probabilities of the model. We also
analyze the effect of the synthetic data on the performance of the
model and finally achieve an event-based F-measure of 45.43% on
the validation set and an event-based F-measure of 42.7% on the
test set. The system we submitted to the challenge achieves the best
performance compared to those of other participates.

Index Terms— Sound event detection, weakly supervised learn-
ing, semi-supervised learning, attention, Guided Learning, Disentan-
gled Feature

1. INTRODUCTION

DCASE2019 task 4 is the follow-up to DCASE2018 task 4 [1],
which aims at exploring the possibility of the large-scale sound
event detection using weakly labeled data (without timestamps) and
unlabeled data. Different from DCASE2018 task 4, DCASE2019
task 4 introduces an additional strongly annotated synthetic training
set.

Sound event detection (SED) consists in recognizing the pres-
ence of sound events in the segment of audio and detecting their
onset as well as offset. Due to the high cost of manually labeling
data, it is essential to efficiently utilize weakly-labeled data and unla-
beled data. Simultaneously, the different physical characteristics of
events (such as different duration) and the unbalance of the available
training set also increase the difficulty of the multi-class SED in
domestic environments. For DCASE2019 task4, there are 5 issues
to be resolved:

1) How to learn efficiently with weakly-labeled data?
2) How to learn efficiently with unbalanced training set?
3) How to combine weakly-supervised learning with semi-

supervised learning efficiently using weakly-labeled data and
unlabeled data?

4) How to design a better post-processing method on the output
probabilities of the model to detect more accurate boundaries
according to the characteristics of each event category?

5) Does the strongly annotated synthetic training set help?

In this paper, we present a system to solve all these five issues.
For issue 1 and 2, we utilize convolutional neural network (CNN)
with the embedding-level attention pooling module and disentangled
feature [2] to solve them. For issue 3, we adopt a semi-supervised
learning method named Guided Learning [3]. For issue 4, according
to varied duration of different event categories, we employ a group
of median filters with adaptive window sizes in the post-processing
of output probabilities of the model. For issue 5, we simply regard
the strongly annotated synthetic training set as a weakly annotated
training set and conduct a series of ablation experiments to explore
its effects on weakly-supervised learning and unsupervised learning
separately.

In the rest of this paper, we introduce our methods in Section 2,
describe in detail our experiments in Section 3 and draw conclusions
in Section 4.

2. METHODS

In this section, we discuss the solution for issue 1 in Section 2.1,
the solution for issue 2 in Section 2.2, the solution for issue 3 in
Section 2.3 and the solution for issue 4 in Section 2.4.

2.1. A CNN model with the embedding-level attention pooling
module

In this section, we describe in detail the model we employ. As shown
in Figure 1a, the model comprises 3 parts: a feature encoder, an
embedding-level attention pooling module and a classifier. The fea-
ture encoder encodes the input feature of an audio clip into high-level
feature representations. Assuming that there are C event categories
to detect, then the embedding-level attention pooling module inte-
grates these high-level feature representations into C contextual rep-
resentations. Eventually, the clip-level probabilities can be obtained
by passing this C contextual representations through the classifier.

As shown in Figure 1b, the feature encoder we employs is com-
posed of a Batch normalization layer [4], 3 Max pooling layers and 3
CNN blocks, each of which consists of a CNN layer, a Batch normal-
ization layer and a ReLU activation layer as shown in Figure 1c. And
the classifier for each contextual representation is a fully-connected
layer with a Sigmoid activation layer.

The ability of this model to carry out weakly-supervised learning
attributes to its embedding-level attention pooling module. Let
x = {x1, ..., xT } be the high-level feature representations generated
by the feature encoder and y = {y1, ..., yC} (yc ∈ {0, 1}) be the
groundtruth, where T denotes the number of total frames of the
high-level feature representations.
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Figure 1: CNN model with the embedding-level attention pooling
module.

Then for each category c, the embedding-level attention pooling
gives different weights ac = {ac1, ..., acT } to the corresponding xt
in x. Then the contextual representation h = {h1, h2, ..., hC} can
be obtained by the following way:

hc =
∑

t

act · xt (1)

Such an ac enables the model to treat each frame differently.
Important frame xt in x with larger act contributes more to hc.
The embedding-level attention pooling module generates ac by the
following way:

act =
exp

(
(wTc xt + bc)/d

)
∑
k exp ((wTc xk + bc)/d)

(2)

where d is equal with the dimension of x, wTc is a trainable vector,
and bc is the trainable bias.

More importantly, act possess the ability to indicate key frames
of an audio and is able to generate frame-level probabilities as ex-
plained in [2]:

p̂ (yc | xt) = σ
(
wTc xt + bc

)
(3)

where σ is Sigmoid function.
Assuming that P̂ (yc | x) is the clip-level probabilities for event

category c, then the clip-level prediction is:

φc (x) =

{
1, P̂ (1 | x) ≥ α
0, otherwise

(4)

The frame-level prediction is:

ϕc (x, t) =

{
1, p̂ (1 | xt) · φc (x) ≥ α
0, otherwise

(5)

Without loss of generality, we set α = 0.5.
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Figure 2: The model architecture of the PT-model.

2.2. Disentangled feature

We take disentangled feature (DF) [2], which re-models the high-
level feature subspace of each event category according to the prior
information without pre-training, to mitigate the effect of the inter-
ference caused by the co-occurrence multiple events.

Assuming that χd (x ⊂ χd) is a d-dimensional space generated
by the feature encoder and ß = {e1, e2, ..., ed} is an orthogonal
basis of χd where the element of ei in ith dimensional is 1. DF
selects specific bases of χd to construct a specific subspace for each
category and the basis of the re-modeled feature space χ

′
c of category

c is
ß
′
c = {e1, e2, ..., ekc} (6)

kc = d((1−m) · fc +m) · de (7)

fc =

C∑

i

ri ·Nci
R

(8)

R = max
c

C∑

i=1

ri ·Nci (9)

where m is a constant to avoid too-small kc and Nci is the number
of clips containing i categories including category c in the training
set. The constant coefficient ri denotes the importance these clips:

ri =

{
1, i = 1
0, otherwise

(10)

2.3. Guided Learning

To combine weakly-supervised learning with semi-supervised learn-
ing, we utilize Guide Learning (GL) proposed in [3] with a more
professional teacher model (PT-model) to guide a more promising
student model (PS-model).

The architecture of the PS-model is consistent with the model
described in Section 2.1 and we show that of the PT-model in Fig-
ure 2. The CNN feature encoder of the PT-model is considered to be
better designed than the PS-model on the audio tagging performance
with larger sequential sampling size and less trainable parameters.
This is because that the larger sequential sampling size allows the
CNN feature encoder of the PT-model to have a larger receptive field
followed by better exploitation of contextual information.

However, the larger sequential sampling size also disables the
PT-model to see finer information due to the compress of sequential
information. Therefore, the PS-model is designed with smaller
sequential sampling size to see finer information and then achieves
better frame-level prediction.

This gap between their ability makes it possible to optimize the
PS-model with the guide of the PT-model using unlabeled data. As
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Algorithm 1 Guided learning pseudocode.

Require: xk = training input with index k
Require: L = set of weakly-labeled training input
Require: U = set of unlabeled training input
Require: yk = label of weakly-labeled input xk ∈ L
Require: Sθ (x) = neural network of the PS-model with trainable

parameters θ
Require: Tθ′ (x) = neural network of the PT-model model with

trainable parameters θ
′

Require: g (x) = stochastic input augmentation function
Require: J (t, z) = loss function
Require: φ(z) = prediction generation function
Ensure: θ, θ

′

for i = 1→ num epoches do
if i > start epoch then
a← 1− γi−start epoch . calculate the weight of
unsupervised loss of the PT-model

else
a← 0

end if
for each minibatch ß do
sk ← Sθ (xk ∈ ß) . the coarse-level predicted probability
of the PS-model
tk ← Tθ′ (g(xk) ∈ ß) . the coarse-level predicted
probability of the PT-model
s̃k ← φ (sk) . convert the predicted probability into 0-1
prediction
t̃k ← φ (tk)
if xk ∈ L then
loss← 1

|ß|

{∑
xk∈J∩ß [J (yk, sk) + J (yk, tk)]

}

end if
if xk ∈ U then
loss← 1

|ß|

{∑
xk∈U∩ß

[
J
(
t̃k, sk

)
+ a · J (s̃k, tk)

]}

end if
update θ, θ

′
. update network parameters

end for
end for

shown in Algorithm 1, an end-to-end process is employed to train
these two models.

2.4. Adaptive post-processing

The median filter is utilized for post-processing of the frame-level
probabilities output by the model. Instead of determining the window
size of the median filter empirically, we adopt a group of median
filters with adaptive window sizes for different event categories by
the following formulation based on the varying length of different
event categories in real life:

Swin = durationave · β (11)

All the frame-level probabilities output by the network are
smoothed by a group of median filters with these adaptive window
sizes. After smoothed, the probabilities are converted into the 0-1
prediction with a threshold of 0.5 as described in Section 2.1. Then
the operation of smoothing is repeated again on the final frame-level
prediction.

Figure 3: The total duration, number of events and average duration
per event category in the synthetic training set.

Figure 4: The class-wise F1 performance

3. EXPERIMENTS

3.1. DCASE 2019 Task 4 Dataset

The dataset [5, 6, 7, 8, 9] of DCASE2019 task 4 is divided into 4
subsets: the weakly annotated training set (1578 clips), the unlabeled
training set (14412 clips), the strongly annotated validation set (1168
clips) and the strongly annotated synthetic training set (2045 clips)
[10]. We integrate the weakly annotated training set, the unlabeled
training set and the strongly annotated synthetic training set (actually
we only use weakly labels during training) into a training set and
take the validation set as our validation set. The average duration of
each event category in the synthetic set is shown in Figure 3.

3.2. Feature exaction and post-processing

We produce 64 log mel-bank magnitudes which are extracted from 40
ms frames with 50% overlap (nFFT = 2048) using librosa package
[11]. All the 10-second audio clips are extracted to feature vectors
with 500 frames. In post-processing, we take β = 1

3
(see details in

Section 2.4) in our experiments and the window sizes for different
events are shown in Table 1.

3.3. Model architecture

The model architectures of the PS-model and PT-model are described
in detail in Section 2. We take m = 0.04 for DF. The dimension of
DF per category is shown in Table 1. The PS-model has about 2.6
times the number of trainable parameters as the PT-model (877380 /
332364). The start epoch for GL is set to 5. The PS-model with only
weakly-supervised learning is named ATP-DF and the co-teaching
of the PS-model and the PT-model is named GL-α-PT in the per-
formance report, where α is a hyper-parameter for GL discussed in
Algorithm 1.

3.4. Training

The Adam optimizer [12] with learning rate of 0.0018 and mini-batch
of 64 10-second patches is utilized to train models. The learning rate
is reduced by 20% per 10 epochs. Training early stop if there is no
more improvement on clip-level macro F1 within 20 epochs. All the
experiments are repeated 30 times and we report the average results.
Event-based measures [13] with a 200ms collar on onsets and a
200ms / 20% of the events length collar on offsets are calculated
over the entire test set.
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Table 1: The dimension of the disentangled feature when m = 0.04
and the window sizes of the median filters when β = 1

3
.

Event DF Window size
dimension (frame)

Alarm/bell/ringing 137 17
Blender 94 42

Cat 134 17
Dishes 69 9

Dog 132 16
Electric shaver/toothbrush 76 74

Frying 34 85
Running water 160 64

Speech 30 18
Vacuum cleaner 113 87

Table 2: The performance of models from top1 and the ensemble of
models.

Model Macro F1 (%)
Event-based Segment-based

Top1 44.47 66.74
Ensemble (Top1-6) 45.28 69.06
Ensemble (Top2-6) 45.43 69.02

3.5. Results

As shown in Table 3, GL-0.99-PT (with synthetic set) achieves the
best average performance on event-based macro F1. The class-wise
F1 performance per event category is shown in Figure 3. As shown
in Table 2, the ensemble of the models (GL-0.99-PT) from top2 to
top6 achieves the best performance, improving the performance by
21.73 percentage points from the baseline. As shown in Table 3,
all the models with semi-supervised learning outperform those only
with weakly-supervised learning significantly and the model with
the best average performance improves the performance by 20.67
percentage points from the weakly-supervised only method. As
shown in Figure 5, the performances of all the models without
disentangled feature or adaptive window sizes are poorer than those
which has.

3.5.1. Does the synthetic training set help?

As shown in Table 3, when learning only with weakly labeled data,
the synthetic training set not only does not help improve the re-
sults but also brings negative effects. But when combining weakly-
supervised learning with semi-supervised learning, the synthetic
training set contributes a lot so that the performance is raised by
about 5-8 percentage points. We argue that the model tends to be
overfitting in the synthetic training set and have difficulty in recog-
nizing the audio clips from the real-life recording since the number
of audio clips in the synthetic training set is almost 1.3 times as
much as that in the weakly annotated training set. However, the large
scale of unlabeled data complements this weakness and enable the
synthetic training set to play a positive role during training.

3.5.2. Challenge results

The model (Ensemble Top1-6) achieves an F-measure of 42.7%
on the test set and won the first price in the challenge, which is 0.6
percentage point ahead of the second place and 0.7 percentage points

Table 3: The performance of models

Model Macro F1 (%)
Event-based Segment-based

baseline 23.7 55.2

without the synthetic training set
ATP-DF 25.95± 3.22 56.82± 1.34
GL-1-PT 35.19± 3.86 61.14± 3.14
GL-0.996-PT 36.50± 3.71 62.03± 3.25
GL-0.99-PT 36.21± 4.63 61.25± 2.77
GL-0.98-PT 33.78± 2.95 57.54± 3.42

with the synthetic training set
ATP-DF 21.65± 2.55 57.02± 1.93
GL-1-PT 41.03± 2.98 65.58± 2.84
GL-0.996-PT 42.02± 3.29 66.62± 1.82
GL-0.99-PT 42.32± 2.21 65.78± 2.63
GL-0.98-PT 41.16± 2.42 63.89± 2.20

Figure 5: The performance of models without the disentangled
feature (without DF) or smoothed by the median filter with a fixed
window size of 27 (without adaptive window size).

ahead of the third place. We note that according to the supplementary
metrics released by challenge official, our model achieves the best
performance on the Youtube dataset but shows a poorer performance
than the second place and the third on the Vimeo dataset. This might
be because most of the audios in the dataset are from Youtube. From
this point, we guess the data augmentation such as pitch shifting and
time stretching might help a lot.

4. CONCLUSIONS

In this paper, we present a system for DCASE2019 task 4. Actually,
we present a complete system for large-scale weakly labeled semi-
supervised sound event detection in domestic environments. We
broke the task down into 4 small sub-problems and came up with
solutions for each. We release the implement to reproduce our system
at https://github.com/Kikyo-16/Sound event detection. We employ
a CNN model with an embedding-level attention module to carry
out weakly-supervised learning and utilize GL to carry out semi-
supervised learning. DF is employed to raise the performance of the
model by reducing the interference caused by the co-occurrence of
multiple event categories. In addition, adaptive post-processing is
proposed to get more accurate detection boundaries. We also analyze
the effect of the synthetic training set. As a result, we achieve state-
of-the-art performance on the dataset of DCASE2019 task4.
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