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ABSTRACT

This paper proposes to perform unsupervised detection of bioacous-
tic events by pooling the magnitudes of spectrogram frames after
per-channel energy normalization (PCEN). Although PCEN was
originally developed for speech recognition, it also has beneficial
effects in enhancing animal vocalizations, despite the presence of
atmospheric absorption and intermittent noise. We prove that PCEN
generalizes logarithm-based spectral flux, yet with a tunable time
scale for background noise estimation. In comparison with point-
wise logarithm, PCEN reduces false alarm rate by 50x in the near
field and 5x in the far field, both on avian and marine bioacoustic
datasets. Such improvements come at moderate computational cost
and require no human intervention, thus heralding a promising future
for PCEN in bioacoustics.

Index Terms— Acoustic noise, acoustic sensors, acoustic signal
detection, spectrogram, underwater acoustics.

1. INTRODUCTION

The deployment of autonomous recording units offers a minimally
invasive sampling of acoustic habitats [1], with numerous applica-
tions in ecology and conservation biology [2]. In this context, there
is an extensive literature on tailoring spectrogram parameters to a
specific task of detection or classification: the effects of window size,
frequency scale, and discretization are now well understood [3, 4].
However, the important topic of loudness mapping, i.e. representing
contrast in the time–frequency domain, has received less attention.

This article investigates the impact of distance between sensor
and source on the time–frequency representation of acoustic events.
In particular, we point out that measuring local contrast by a dif-
ference in pointwise logarithms, as is routinely done in machine
learning for bioacoustics, suffers from numerical instabilities in the
presence of atmospheric attenuation and intermittent noise. To ad-
dress this problem, we propose to employ an adaptive gain control
technique known as per-channel energy normalization (PCEN) [5].

We deliberately err on the side of design simplicity: rather than
training a sophisticated classifier, we apply a constant threshold on
the time series of max-pooled PCEN magnitudes. In doing so, our
goal is not to achieve the lowest possible false alarm rate, but to argue
in favor of replacing the logarithmic mapping of loudness by PCEN
in all systems for long-distance sound event detections, including
more powerful yet opaque ones such as deep neural networks [6, 7].

Section 2 discusses the theoretical benefits of such a replace-
ment: it proves that PCEN extends temporal context beyond a single
temporal frame, thus improving effective detection radius. Sections
3 and 4 present applications to avian and underwater bioacoustics
respectively, thereby revealing complementary issues: while bird
call detection focuses on mitigating atmospheric absorption at high
audible frequencies (1–10 kHz), whale call detection focuses on miti-
gating the interference of amplitude-modulated noise from near-field
passing ships at low audible frequencies (50–500 Hz).

2. SPECTROTEMPORAL MEASURES OF NOVELTY

2.1. Averaged spectral flux

Let E(x)[t, f ] be the magnitude spectrogram of some discrete-time
waveform x[t]. In full generality, the ordinal variable f may either
represent frequency on a linear scale, a mel scale, or a logarithmic
scale. Given E, an implementation of spectral flux composes three
operators: loudness mapping, contrast estimation, and feature aggre-
gation. In its most widespread variant, named averaged spectral flux,
these three operators respectively correspond to pointwise logarithm,
rectified differentiation, and frequential averaging:

SFavg(x)[t] = ∑
f

max
(

logE(x)[t, f ]− logE(x)[t−1, f ],0
)

Nfr
(1)

where Nfr is the number of frequency bands f in E. The motivation
underlying this design choice finds its roots in psychoacoustics, and
notably the Weber-Fechner law, which states that the relationship
between stimulus and sensation is logarithmic [8]. We may also
remark that Equation 1 is invariant to gain. Indeed, multiplying
the waveform x[t] by some constant K 6= 0 incurs a multiplication
by K in each frequency band of E(x), and thus an additive bias of
logK in logE(x), which eventually cancels after first-order differen-
tiation. In the case of a single point source at some distance d, the
relative change in acoustic pressure K caused by a spherical wave
propagation is proportional to 1

d . Therefore, in a lossless medium
without reflections, logarithm-based spectral flux is invariant to ge-
ometric spreading insofar as acoustic sources do not overlap in the
time–frequency domain.

This work is partially supported by NSF awards 1633206 and 1633259,
the Leon Levy Foundation, and the Pinkerton Foundation.

The source code to reproduce experiments and figures is available at:
https://www.github.com/BirdVox/lostanlen2019dcase



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

Figure 1: Effect of pointwise logarithm (left) and per-channel energy
normalization (PCEN, right) on the same Common Nighthawk vo-
calization, as recorded from various distances. White dots depict the
time–frequency locations of maximal spectral flux (left) or maximal
PCEN magnitude (right). The spectrogram covers a duration of
700 ms and a frequency range between 2 and 10 kHz.

2.2. Max-pooled spectral flux

The situation is different in an absorbing medium. Indeed, heat con-
duction and shear viscosity, in conjunction with molecular relaxation
processes, attenuate sine waves in quadratic proportion to their fre-
quency [9]. Under standard atmospheric conditions, this attenuation
is below 5 dBkm−1 at 1 kHz, yet of the order of 100 dBkm−1 at
10 kHz. As a result, bird calls spanning multiple octaves lose in
bandwidth as they travel through air. A simple workaround is to
replace the frequential averaging in Equation 1 by a max-pooling
operator. This replacement yields the max-pooled spectral flux

SFmax(x)[t] = max
f

(
logE(x)[t, f ]− logE(x)[t−1, f ]

)
, (2)

which performs differentiation on a single frequency band, and is
thus invariant to the low-pass filtering effect induced by absorption.
However, as illustrated in Figure 1, the definition above suffers from
numerical instabilities. Indeed, SFmax(x) discards all but two scalar
values, corresponding to neighboring time–frequency bins in the
spectrogram E(x).

2.3. Max-pooled per-channel energy normalization

In order to associate invariance and stability, this article proposes
to increase the time scale of contrast estimation beyond a single
spectrogram frame. To this end, we replace both the logarithmic
mapping of loudness and the first-order differentiation by a procedure
of per-channel energy normalization (PCEN). PCEN was recently
introduced as a trainable acoustic frontend for far-field automatic
speech recognition [5]. In full generality, PCEN results from an
equation of the form

PCEN(x)[t, f ] =
1
r

(
E(x)[t, f ](

ε +M(x)[t, f ]
)α +δ

)r

− δ r

r
, (3)

where the gain control matrix M(x) proceeds from E(x) by first-
order IIR filtering:

M(x)[t, f ] = s×E(x)[t−1, f ]+ (1− s)×M(x)[t−1, f ]. (4)

Note that the definition in Equation 3 differs from the original defini-
tion [5] by a factor of 1

r . This is in order to allow the limit case r→ 0
to remain nonzero. Investigating the role of all parameters in PCEN
is beyond the scope of this paper; we refer to the asymptotic analysis
of [10] in this regard. Rather, we focus on the smoothing parameter
0 < s < 1 as striking a tradeoff between numerical stability (s→ 0)
and rapid adaptation to nonstationarity in background noise (s→ 1).
The following proposition, proven in Section 6, asserts that PCEN is
essentially a generalization of spectral flux.

Proposition 2.1. At the limit (s,ε,α,r)→ (1,0,1,0) in Equations
3 and 4, and for any finite value of δ , PCEN(x)(t, f ) tends towards

log
(
E(x)[t, f ]+E(x)[t−1, f ]

)
− logE(x)[t−1, f ], (5)

which is a smooth approximation of the summand in Equation 1.

For the sake of simplicity, we adopt the PCEN parametrization
that is prescribed by Proposition 2.1: we set ε = 0, α = 1, δ =
1, and r = 0. Derecursifying the autoregressive dependency in 4
and summarizing across frequencies yields the max-pooled PCEN
detection function

PCENmax(x)[t] = log

(
1+max

f

E(x)[t, f ]
s∑

+∞

τ=0(1− s)τ E(x)[t− τ−1, f ]

)
.

(6)
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Figure 2: Detection of Common Nighthawk calls: evolution of
mean time between false alarms at half recall (MTBFA@50) as a
function of distance between sensor of source. Shaded areas denote
interquartile variations across individual birds. See Section 3 for
details.

3. APPLICATION TO AVIAN BIOACOUSTICS

3.1. CONI-Knight dataset of Common Nighthawk calls

We consider the problem of detecting isolated calls from breeding
birds in a moderately cluttered habitat. To this end, we use the
CONI-Knight dataset [11], which contains 64 vocalizations from
five different adult male Common Nighthawks (Chordeiles minor),
as recorded by 11 autonomous recording units in a regenerating
pine forest north of Fort McMurray, AB, CA. The acoustic sensor
network forms a linear transect, in which the distance between each
microphone and the vocalizing individual varies from 30 m to 500 m.
The dataset contains 11×64 = 704 positive audio clips in total, each
lasting 700 ms. These clips were annotated by an expert, as part of a
larger collection of continuous recordings which lasts seven hours
in total. We represent each of these clips by their mel-frequency
magnitude spectrograms, consisting of 128 bands between 2 kHz
and 11.025 kHz, and computed with a Hann window of duration
12 ms (256 samples) and hop 1.5 ms (32 samples). These parame-
ters are identical as in the state-of-the-art deep learning model for
bird species recognition from flight calls [12]. We use the librosa
implementation of PCEN [13] with s = 0.09, i.e. an averaging time
scale of about T = 100ms.

Figure 1 displays the mel-frequency spectrogram of one call at
various distances, after processing them with either pointwise loga-
rithm (left) or PCEN (right). Atmospheric absorption is particularly
noticeable above 200 m, especially in the highest frequencies. Fur-
thermore, we observe that max-pooled spectral flux is numerically
unstable, because it triggers at different time–frequency bins from
one sensor to the next. In comparison, PCEN is more consistent in
reaching maximal magnitude at the onset of the call, and at the same
frequency band.

3.2. Evaluation: mean time between false alarms at half recall

Our evaluation procedure consists in two stages: distance-specific
threshold calibration and estimation of false alarm rate. In the first
stage, we split the dataset of positive clips (i.e. containing one vocal-
ization) into disjoint subsets of increasing average distance; sort the

Figure 3: Detection of North Atlantic Right Whale calls: evolution
of mean time between false alarms at half recall (MTBFA@50) as a
function of distance between sensor of source. Shaded areas denote
interquartile variations across days. See Section 4 for details.

values of the detection function over this subset in decreasing order;
and set the detection threshold at the median value, thus yielding a
detection recall of 50%. In the second stage, we run the detector on
an external dataset of negative recordings, i.e. containing no vocal-
izations from the species of interest; apply the detection thresholds
that were prescribed by the first stage; and count the number of false
alarms, i.e. values of the detection function that are above threshold.
Dividing the total duration of the dataset of negative recordings by
this number of peaks above threshold yields the mean time between
false alarms at half recall (MTBFA@50) of the detector, which
grows in inverse proportion to false alarm rate. We repeat this op-
eration over all available subsets to obtain a curve that decreases
with distance, and which reflects the ability of the detection curve to
generalize from near-field to far-field events.

3.3. Results and discussion

In the case of the Common Nighthawk, we choose the BirdVox-
DCASE-20k dataset [14] as a source of negative recordings. A
derivative of BirdVox-full-night [15], this dataset has been divided
into 20k ten-second soundscapes from six autonomous recording
units in Ithaca, NY, USA, and annotated by an expert for presence
of bird calls. Among these 20k soundscapes, 9983 are guaranteed
to contain no bird call, and a fortiori no Common Nighthawk call.
These 9983 recordings amount to 27 hours of audio, i.e. over 30M
spectrogram frames. For each detection function, we subtract the
minimum value over each 10-second scene to the frame-wise value,
in order to account for the nonstationarity in background noise at the
scale of multiple hours.

Figure 2 summarizes our results. We find that max-pooled PCEN
enjoys a five-fold reduction in false alarm rate with respect to average
spectral flux. In addition, the false alarm rate at 300 m of max-pooled
PCEN is comparable with the false alarm rate of averaged spectral
flux at 30 m. As a post hoc qualitative analysis, we compute novelty
curves for 200 recordings of outdoor noise from the ESC-50 dataset
[16]: geophony (rain, wind), biophony (crickets), and anthropophony
(helicopter, chainsaw). For max-pooled spectral flux, we find that the
main causes of false alarms are pouring water (30% of total amount),
crackling fire (17%), and water drops (10%).
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4. APPLICATION TO MARINE BIOACOUSTICS

4.1. CCB18 dataset of North Atlantic Right Whale calls

We consider the problem of detecting isolated calls from whales in a
noisy environment. To this end, we use the CCB18 dataset, which
contains vocalizations from about 80 North Atlantic Right Whales
(Eubalaena glacialis), as recorded by nine underwater sensors during
five days in Cape Cod Bay, MA, USA. The distance between sensor
and source is estimated by acoustic beamforming, similarly as in
[17]. The dataset contains 40k clips in total, each lasting two seconds.
These clips were annotated by an expert, as part of a larger collection
of continuous recordings which lasts 1k hours in total. We represent
each of these clips by their short-term Fourier transform (STFT)
magnitude spectrograms, consisting of 128 bands between 8 Hz and
1 kHz, and computed with a Hann window of duration 128 ms and
hop of 64 ms. We set s = 0.33, i.e. an averaging time scale of about
T = 1s. We choose the ShipsEar dataset as a source of negative
recordings [18]. This dataset contains 90 ship underwater noise
recordings from vessels of various sizes, most of them acquired at a
distance of 50 m or less. These 90 recordings amount to 189 minutes
of audio, i.e. 177k spectrogram frames.

4.2. Results and discussion

Figure 3 summarizes our results. First, we find that averaged spectral
flux leads to poor false alarm rates, even in the near field. We postu-
late that this is because, in the CCB18 dataset, ship passage events
occasionally introduce high received levels of noise. In other words,
distance sets an upper bound, but no lower bound, on signal-to-noise
ratio. Therefore, achieving 50% recall with averaged spectral flux
requires to employ a low detection threshold, which in turn triggers
numerous false alarms.

Secondly, we find that, across the board, replacing averaged
spectral flux by max-pooled spectral flux allows a two-fold reduction
in false alarm rate. We postulate that this improvement is due to
the fact that whale calls are locally sinusoidal whereas near-field
ship noise is broadband. Indeed, the max-pooled spectral flux of a
chirp is above its averaged spectral flux, with a ratio of the order of
Nfr; whereas the averaged and max-pooled spectral fluxes of a Dirac
impulse are the same. Therefore, maximum pooling is particularly
well suited to the extraction of chirps in noise [19].

Thirdly, we find that, in the near field, replacing spectral flux by
PCEN leads to a 50-fold reduction in false alarm rate. We postulate
that this is because ship noise has rapid amplitude modulations, at
typical periods of 50 to 500 ms (i.e. engine speeds of 120 to 1200 ro-
tations per minute). If this period approaches twice the hop duration
(i.e. 128 ms in our case), short-term magnitudes logE(x)[t − 1, f ]
and E(x)[t, f ] may correspond precisely to intake and expansion in
the two-stroke cycle of the ship, thus eliciting large values of spectral
flux. Nevertheless, in the case of PCEN, the periodic activation
of one every other frame causes M(x)[t, f ] to be of the order of
1
2 E(x)[t, f ], assuming that the parameter T is large enough to encom-
pass multiple periods. Therefore, PCENmax(x)[t] peaks at log( 3

2 ) in
the absence of any transient signal. This peak value is relatively low
in comparison with the max-pooled PCEN of a near- or mid-field
whale call.

Fourthly, we find that the false alarm rate of max-pooled PCEN
increases exponentially with distance, until reaching comparable
values as max-pooled spectral flux at a distance of 12 km. This decay
is due, in part, to geometric spreading, but also to more complex
acoustic phenomena, such as reflections and scattering with the

surface as well as the ocean floor [20]. At these large distances, a
successful detector should not only denoise, but also dereverberate
whale calls. Max-pooled PCEN does not have any mechanism for
dereverberation, and thus falls short of that objective. Thus, an
ad hoc detection function is no longer sufficient, and the resort to
advanced machine learning techniques appears as necessary. We
must note, however, that deep convolutional networks in the time–
frequency domain rely on the same functional blocks as max-pooled
PCEN — i.e. rectified extraction of local contrast and max-pooling —
albeit in a more sophisticated, data-driven fashion. Consequently, we
believe that PCEN, whether parametrized by feature learning or by
domain-specific knowledge, has a promising future in deep learning
for environmental bioacoustics.

5. CONCLUSION

An adequate representation of loudness in the time–frequency do-
main is paramount to efficient sound event detection. This is particu-
larly true in bioacoustic monitoring applications, where the source of
interest may vocalize at a large distance to the microphone. Our ex-
periments on the Common Nighthawk and the North Atlantic Right
Whale demonstrate that, given a simple maximum pooling proce-
dure across frequencies, per-channel energy normalization (PCEN)
outperforms conventional (logarithm-based) spectral flux. Beyond
the direct comparison between ad hoc detection functions at various
distances, this study illustrates the appeal in replacing pointwise
logarithm by PCEN in time–frequency representations of mid- and
far-field audio signals. In the future, PCEN could be used, for exam-
ple, as a similarity measure for spectrotemporal template matching;
as an input to deep convolutional networks in the time–frequency
domain [21]; or as a frequency-dependent acoustic complexity index
for visualizing nonstationary effects in “false color spectrograms”
[22] of open soundscapes.

6. APPENDIX: PROOF OF PROPOSITION 2.1

Proof. Applying Taylor’s theorem to the exponential function yields

δ r

r

[(
1+

E(x)[t, f ])
M(x)[t, f ]

)r
−1

]
≈ δ

r log
(

1+
E(x)[t, f ]
M(x)[t, f ]

)
(7)

with an error term proportional to rδ r log(1+ E(x)[t, f ]
M(x)[t, f ] )

2, which
vanishes at the limit r→ 0 as long as M(x)[t, f ] remains nonzero.
On the left-hand side, we recognize PCEN(x)[t, f ] with ε = 0 and
α = 1. On the right-hand side, the finite factor δ r tends towards 1 for
r→ 0. The limit s→ 1 allows to replace M(x)[t, f ] by E(x)[t−1, f ].
We conclude with

log
(

1+
E(x)[t, f ]

E(x)[t−1, f ]

)
= log

(E(x)[t−1, f ]+E(x)[t, f ]
E(x)[t−1, f ]

)
= log

(
E(x)[t, f ]+E(x)[t−1, f ]

)
− logE(x)[t−1, f ]. (8)

Interestingly, the distinction between Equation 1 and Equation 5
mirrors the distinction between the rectified linear unit (ReLU) y 7→
max(y,0) and the softplus y 7→ log(1+exp(y)) in deep learning. �
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