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ABSTRACT

In this paper, we propose a novel data augmentation method for
training neural networks for Direction of Arrival (DOA) estima-
tion. This method focuses on expanding the representation of the
DOA subspace of a dataset. Given some input data, it applies a
transformation to it in order to change its DOA information and
simulate new potentially unseen one. Such transformation, in gen-
eral, is a combination of a rotation and a reflection. It is possible
to apply such transformation due to a well-known property of First
Order Ambisonics (FOA). The same transformation is applied also
to the labels, in order to maintain consistency between input data
and target labels. Three methods with different level of generality
are proposed for applying this augmentation principle. Experiments
are conducted on two different DOA networks. Results of both ex-
periments demonstrate the effectiveness of the novel augmentation
strategy by improving the DOA error by around 40%.

Index Terms— First Order Ambisonics, direction of arrival,
deep learning, data augmentation

1. INTRODUCTION

Direction of arrival (DOA) estimation is the task of detecting the
spatial position of a sound source with respect to a listener. The
approaches that has been adopted to solve this problem can be
classified in two main categories: parametric-based methods, like
multiple signal classification (MUSIC) [1] and others [2-4], and
deep neural network (DNN)-based methods [5—17]. DNN-based
models often combine DOA estimation with other tasks such as
sound activity detection (SAD), estimation of number of active
sources and sound event detection (SED) [11-13]. In particular,
Sound Event Localization and Detection was the task 3 of Detec-
tion and Classification of Acoustic Scenes and Events 2019 Chal-
lenge (DCASE2019 Challenge) [18].

In machine learning, data augmentation is an effective strat-
egy to overcome the lack of data in the training set and prevent
overfitting. For example SpecAugment [20], a recently published
augmentation method based on time warping and time and fre-
quency block masking of the spectrogram, achieved state of the art
performance on the Speech recognition task. DCASE2018 Task2
Challenge (about audio tagging) winner [21] used mixup augmen-
tation [22].

While data augmentation is effective for sound event detection
and similar tasks, none of the documented strategies is capable of
effectively increasing the spatial representativeness of a dataset, i.e.
increasing the number of DOAS represented in the dataset. The crit-
ical point of the problem is that when the observed signals are mod-
ified by a data augmentation method, it must be guaranteed that the
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relationship between the DOA information carried by the signal and
the corresponding labels is maintained. For example, augmentation
techniques such as SpecAugment, phase-shifting and mixup can in-
deed influence DOA, although it’s hard to analytically compute the
new true DOA labels. In fact, according to the technical reports of
DCASE 2019 task3, SpecAugment has affected adversely for DOA
estimation even though it is effective for SED [19, 23].

In this paper, we propose FOA Domain Spatial Augmentation,
a novel augmentation method based on the well-known rotational
property of First Order Ambisonics (FOA) sound encoding. The ba-
sic idea of the method is to apply some transformations to the FOA
channels (and corresponding labels) to modify and simulate a new
DOA of the recorded sounds in a predictable way. Such transforma-
tions are: channel swapping and inversion, application of a rotation
formula (i.e. Rodrigues’ rotation formula) and multiplication by an
orthonormal matrix, which correspond to rotations and reflections
of the sound sources positions with respect to a reference system
centered on the listener.

2. FIRST ORDER AMBISONICS

First-Order Ambisonic (FOA) is a digital audio encoding which de-
scribes a soundfield [24]. It has origin in the B-Format, which en-
codes the directional information on four channels W, XY and
Z [24]. W carries omnidirectional information, while channels
X,Y and Z carry the directional information of the sound field
along the Cartesian axes of a reference system centered on the lis-
tener [24].

Adopting the same notation and convention of the dataset used
for the following experiments [25], the spatial responses (steering
vectors) of the FOA channels are H1 (¢,0, f) =1, H2 (¢,0, f) =
V3 xsin¢ x cosf, Hs (4,0, f) = /3 *sinb, and Hy (4,0, f) =
V3 % cosd * cos, where ¢ and 6 are the azimuth and eleva-
tion angles of a sound source, f is frequency and * is used for
the multiplication operation. As it is noticeable from the expres-
sions, FOA channels can be seen as the projections of the sound
sources to the three dimensional Cartesian axes, with H; corre-
sponding to channel W, Hs to channel Y, H3 to channel Z and
Hy to channel X. Thus, indicating with S = {S1,...,5,} a
set of sound sources in their STFT domain, FOA channels can
be written as a sum of each source and its steering vector, that is
X = = 3N Hi(¢n,0n, f) * Sn, where N = |S], and ¢,, and
0y, are the azimuth and elevation of S, respectively.

3. FOA DOMAIN SPATIAL AUGMENTATION

The goal of the method is, from the audio recordings in the dataset,
to generate new ones with different DOA information. More specif-
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ically, the problem consists in simulating a new set of spatial re-
sponses {H; (¢, 05, f)}izo corresponding to new DOA labels
{¢1,, 00, YN, for the audio recordings by applying a transformation
directly to the FOA channels. It is a known property of FOA that,
since it encodes a soundfield rather than the sources themselves, it
is possible to apply some operations directly to the channels [24],
such as rotations and reflections. There are several ways to apply
these transformations, leading to different augmentation strategies
with different pros and cons. In the following, three strategies are
proposed and compared.

3.1. First method: 16 patterns

The 16 patterns method simply consists in applying to the data one
of the 16 prefixed channel transformations summarized in Table 1,
where < indicates an assignment. The basic operations used in this
method are channel swapping (e.g. X' < Y, Y’ < X) and chan-
nel sign inversion (e.g. Z' < —Z) or a combination between the
two. Using this set of operations, it is possible to obtain 8 rotations
about the z axis and 2 reflections with respect to the zy : z = 0
plane, for a total of 16 augmentation patterns (i.e. 15 new patterns
plus the original one). The corresponding transformations for the
labels are also reported in Table 1. In particular, the listed transfor-
mations correspond to the translations of +0, +, +g and —g of
the azimuth angles ¢ and —¢ and to the pair of opposites ¢ and —¢.

The main advantage of this algorithm, other than it’s simplic-
ity and straightforward implementation, is the possibility of it being
applied to many pre-computed features, such as logmel magnitude
spectrogram or phase spectrogram, since the corresponding trans-
formations in the feature-domain are straightforward to compute
(channel swapping maps to the same channel swapping, channel
sign inversion maps to identity for magnitude and to a 180 degrees
difference for phase). Another advantage is that it is easy to control
that mapped angles remain in the same domain as the original ones.
For example, in the dataset in use for DCASE2019 Challenge task3,
all angles are multiples of 10 degrees and elevation angles range
from —40 to +40 degrees. It is easy to see that the augmented an-
gles maintain the same domain. One more important advantage of
this method is that it can be applied independently on the number
of the maximum number of overlapping sound sources, which is a
complication for the next proposed method.

3.2. Second method: Labels First

In Labels First method, the basic idea is to first decide the target
augmented labels, than to apply a transformation to the data accord-
ingly. The critical aspect of this method is that while for azimuth
this is always possible independently on the number of overlapping
sources, it isn’t the same for elevation. The reason is that when
modifying the azimuth coordinates by a fixed amount by means of
a rotation, z-axis is the common rotational axis for all the sources,
while for modifying only the elevation coordinate by a fixed amount
by means of a rotation, for each source, an appropriate rotation axis
must be selected.

Keeping into consideration this critical aspect, assuming at first
to have sound files with non-overlapping sound events, the proposed
algorithm for this method is follows. For convenience, it is divided
in two steps in which azimuth and elevation are augmented sepa-
rately. In the first step, at first a random angle « is selected and used
to translate, at each time step ¢ with arbitrary range, the azimuth
labels:
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a + random(0, 27)

P+ ¢ B«
where @ here indicates an addition with a wrap-around on the do-
main (—m, ), i.e. (¢+ + o + m) mod 2w — 7. At this point, the
rotation matrix around z-axis R is computed:

cosae —sina 0
R, = |sina cosa 0}, (1)

0 0 1

and applied to the channels at each time step ¢:
vi = R.vy, 2

where v (X4, Y, Z,g)T denotes original channels and v';

(X1,Y!,Z)" denotes azimuth-augmented channels. In the sec-
ond step, the elevation coordinate is augmented. At first, a random
augmentation angle [ is selected. To do so, elevation labels in the
selected time range (e.g. a batch) is inspected and maximum and
minimum values M. and m. are extracted. The elevation angle, by
definition, has range (— g, g), but in some datasets like the one in
use for DCASE2019 Challenge task3, it might have a custom range
(mer, Mer). In order not to go out of this range, the augmentation
angle § is extracted randomly in the range (me, —me, Mer — Me)1 .
At this point, elevation labels are updated:

B < random(Mer — Me,Mer — me)

0 + 0. + B
Secondly, at each time step ¢, the rotation axis for augmenting el-
evation is computed. This axis is defined by the unit vector per-
pendicular to the one along the azimuthal axis, oriented properly
so that a rotation of the audio channels by an angle 3 corresponds
to the same increment of the elevation label. It can be easily veri-
fied with the right-hand rule that this unit vector corresponds to the
azimuthal one rotated by — 7 about the z-axis:

0 1 0\ [coso; sin ¢,
w=[-1 0 0] [sing, | =|—cosd;|, 3
0 0 1 0 0

where the first term means R, (—7/2). Now, Rodrigues’ rotation
formula is applied to the v'¢, we obtain full-augmented channels:

v =v/icos B+ (ur x v'¢) sin B+ (ur V') (1—cos B), (4)

where X and - denote the cross-product and the inner-product, re-
spectively.

The main advantage of this method is the high control over the
augmented labels. For example, it allows for generating new labels
which belong to the same domain of the original ones (e.g only mul-
tiple of 10° and elevation restricted to the range (—40°,40°), such
as in the dataset used for the experiments [25]. The main disad-
vantage is that it is best suitable for non-overlapping sound events.
There are some workarounds to adapt it to sound recordings with
multiple overlapping sound events, though. Some possibilities are
to apply it only to time frames with one event, to check for the
somewhat rare cases in which all of time events share the same az-
imuth coordinates or to apply a hybrid strategy such as applying the
16 patterns method only for elevation augmentation or considering
only one of the overlapping sources and computing labels for the
others sources as in Channels First.

In order to maximize the augmentation range, one could segment the
audio recordings in frames containing the single sources. Alternatively, one
could accept to extend the elevation domain of the dataset and agnostically
select a fixed range for the augmentation angle 3, which is convenient when
augmenting an entire audio file altogether, as done in experiment 2.
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Table 1: Sixteen patterns of simple spatial augmentation. Swap(X,Y’) denotes X’ <+ Y and Y’ + X.

¢—m/2 o) O+ /2 p+m
0 Swap(—X,Y) original Swap(X, —-Y) Swap(—X, —Y)
—0 | Swap(—X,Y),Z' + —Z 7'+ -7 Swap(X,-Y), Z" <+ —Z | Swap(—X,-Y),Z' + —Z
—¢—m/2 —¢ —¢+7/2 -9+
0 Swap(X, —Y) Y« -Y Swap(X,Y) X« -X
0| Swap(—X,-Y).Z + —Z | Y -V, Z « ~Z | Swap(X,Y), Z' — —Z X' —X, 7 -2

3.3. Third method: Channels First

Channels first is the most general case of FOA Domain Spatial Aug-
mentation. This method doesn’t depend on the number of overlap-
ping sources, but the control over labels is almost completely lost.
The procedure is as follows. A random (3 x 3) orthonarmal
matrix R is selected. An orthonormal matrix R is a matrix such
that HH' = I and det(H) = 41. This can be done by select-
ing a random (3 x 3) matrix and then orthonormalizing it with the
Graham-Schmidt method. Augmented channels v’ are then com-
puted as:
v =Rv. &)

The same transformation is also applied to the labels y = (¢,0) ",
in Cartesian coordinates®:

Ye < to_cartesian(y)

Yo < Rye

y' + to_spherical(yL,)
An orthonormal matrix expresses a general rotoreflection. This
method allows generating the most number of augmentation pat-
terns for any number of sources, but, since there is few to none
control over the labels, it is recommended to use only with datasets
without any restrictions on the labels’ domain, as justified by the
results of experiment 2.

4. EXPERIMENT

4.1. Experimental setup

We conducted our experiments, referred to as Experiment 1 and Ex-
periment 2, using two different DOA networks, one simpler, one
more sophisticated, here referred to as Simple DOAnet and Sophis-
ticated DOAnet. Both networks give as output a single pair of az-
imuth and elevation angles computed in a regression fashion and a
sound activity detection value computed in a classification fashion.
Both networks are trained using the maximum overlapping 1 audio
files of the DCASE2019 Challenge dataset [25], and evaluated on
DOA error (Er) and Frame-recall (FR). We used only overlap 1 files
in order to be able to evaluate the effectiveness of FOA Domain
Spatial Augmentation specifically for the DOA estimation task. In
systems that are able to localize more than one overlapping source,
such as SELDnet [11], other tasks, such as Sound Event Detection
(SED), might be influenced by the augmentation strategy and at the
same time influence the performance on DOA estimation.

4.1.1. Experiment 1

Simple DOAnet has a convolutional recurrent neural network
(CRNN) as a core structure, as in [10-12, 19, 26]. Input features

2Since distance from the listener is not relevant for the task, when con-
verting to and from cartesian coordinates, we always assume the norm
r = 1, that is we consider direction of arrivals as points on the unit sphere.
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are logscale Mel-magnitude spectrogram (logmels) and General-
ized Cross-Correlation Phase Transform (GCC-PHAT) of the mu-
tual channels, as in [12,26]. All wav-files were downsampled at
a sampling rate of 32 kHz. The length of the short-time-Fourier-
transform (STFT) and its shift length were 1024 and 640 (20 ms)
points, respectively. The dimension of Mel bins for logmels and
GCC-PHAT was 96. The DNN structure is a CRNN, similar to
a SELDnet [11] without the SED branch and with a single class
DOA output. The CRNN consists of 3 convolutional neural network
(CNN) layers, 2 gated recurrent unit layers, and 2 fully-connected
(FCN) layers, with the total number of parameters of 545K.

As aloss function, we compute the mean average errors (MAE)
between true and predicted labels for both azimuth and elevation
and mask them with the true sound activity labels, then sum them
to the binary cross-entropy loss of the sound activity output. The
model is trained adopting the four cross-validation folds defined
in [25] for 400 epochs each and selecting the best model among the
epochs according to the best validation loss. The conducted exper-
iments on this model are 3: the first is without using FOA Domain
Spatial Augmentation (No Aug), the second is applying the Labels
First method on 50% of the input data (LF Half) and the third is
applying the Labels First method on all of the input data (LF Full).
Augmentation is applied on minibatches of 100 STFT frames (2s).

4.1.2. Experiment 2

Experiment 2 is conducted on Sophisticated DOAnet. Sophisti-
cated DOAnet is a combination method of parametric-based and
DNN-based DOA estimation [27]. Sound intensity vector (IV)-
based DOA estimation is used as a base method and two CRNNs
are used for denoising and dereverberation of IVs. Each CRNN
consists of 5 CNN layers, 2 FCN layers, and 1 bidirectional long
short-term memory layer, and the total number of parameters of So-
phisticated DOAnet is 2.79M. The details of Sophisticated DOAnet
are described in [27].

Training was performed on the standard cross-validation folds,
and selecting the best model among the epochs according to the
best validation loss. Four different runs of the training are per-
formed on this network, one without augmentation (No Aug) and
one for each of the methods described in Section 3: 16 Patterns
(16P), Labels First (LF) and Channels First (ChF). Based on the
results of Experiment 1, all data augmentation was performed on
50% of the input data directly on the full length wav files. For the
Labels First method, elevation augmentation angle 3 was selected
randomly between —20° and 20°, extending the range of elevation
to (—60°,60°).

4.2. Results

Experiment 1 has mainly two purposes: demonstrate the effective-
ness of FOA Domain Spatial Augmentation on training a simple
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Figure 1: Training progress graph of experiment 2; training loss (top) and DOA error of validation set (bottom). It is apparent that the 16
Patterns method and the Labels First method performed better than without augmentation. The Channels First method lead to worse results,
supposedly due to the over-extension of the labels domain and the consequent complication of the problem.

Experiment 2 has the purpose of comparing the different FOA

Table 2: Results of experiment 1 on Simple DOAnet Domain Spatial Augmentation methods illustrated in Table 3 with

Foldl | Fold2 | Fold3 | Fold4 | Ave. each other as well as with non augmented data. The results reported
No Er 5.32 4.85 5.56 5.07 5.22 in Table 3 show that in this case the 16 Patterns one was the best
Aug. FR(%) | 97.78 | 9846 | 97.79 | 97.67 | 97.93 performing method, followed by the Labels First method, also scor-
LF Er 3.34 3.28 3.27 3.07 3.22 ing better than without augmentation in terms of DOA Error. As we
Half FR(%) | 98.16 | 98.89 | 98.28 | 98.14 | 98.37 expected Labels First to be the method achieving the best scores, we
LF Er 3.53 3.64 3.53 321 3.48 believe the penalty with respect to the expectation is due to the ex-
Full FR(%) | 98.18 | 9874 | 98.41 | 98.38 | 98.43 pansion of the labels domain, which means a more difficult problem

to solve. As expected, the Channels First method was the least ef-
fective on this dataset, scoring worse with respect to non augmented
data. It is safe to say that the determining factor for the underperfor-
mance is the too big of a difference in the labels domains of the aug-
mented data and of the original data. In terms of frame recall, again

Table 3: Results of experiment 2 on Sophisticated DOAnet
Fold1 | Fold2 | Fold3 | Fold4 | Ave.

No Er 1.69 1.53 1.81 1.60 1.66 16 Patterns achieve the best score, although there aren’t any par-
Aug. FR(%) | 9691 | 9646 | 97.14 | 97.50 | 97.00 ticularly noticeable differences. In Figure 1, the training progress
16P Er 0.96 1.30 145 1.21 1.21 graphs of experiment 2 are reported. It can be clearly seen that in
FR(%) | 9730 | 97.00 | 9753 | 97.70 | 97.39 all the cross-validation folds there is a point since which DOA er-
LF Er 1.31 1.39 1.49 1.43 1.40 ror on validation split is better with the 16 Patterns and Labels First
FR(%) | 97.34 | 94.16 | 97.61 | 97.14 | 96.56 methods rather than without augmentation.
Er 1.99 1.35 1.98 1.61 1.73

ChF

FR(%) | 96.45 | 97.28 | 97.24 | 96.96 | 96.98

5. CONCLUSIONS

In this paper, FOA Domain Spatial Augmentation, a novel data
augmentation strategy, has been proposed. The basic idea of the
method is to apply rotational transformations to the FOA channels
and corresponding labels. We proposed three types of such trans-
form: channel swapping and inversion, application of a rotation for-
mula, and multiplication by an orthonormal matrix. It has been
proven effective for training two different neural networks for the
task of DOA estimation, improving the DOA error by 40%. Future
research will be to further investigate the effectiveness of this aug-
mentation strategy in different scenarios, for example with a dataset
including all the possible DOAs or with overlapping sound events.

DOA network and discover whether it is best to apply augmentation
to all the data or, heuristically, to only half of the data. As reported
in Table 2, both runs with the use of augmentation outperformed the
run without using augmentation on all the cross-validation folds, de-
creasing the DOA error by 2° on average and increasing the Frame
Recall of 0.5% on average. DOA error achieved the best results
by augmenting 50% of the input data (0.24° better on average with
respect to 100%), while augmenting all of the input data achieved
the best result in terms of Frame Recall (0.06% better on average),
although the results of these two runs were very close to each other.
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