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ABSTRACT 

Most audio recognition/classification systems assume a static 

and closed-set model, where training and testing data are 

drawn from a prior distribution. However, in real-world audio 

recognition/classification problems, such a distribution is un-

known, and training data is limited and incomplete at training 

time. As it is difficult to collect exhaustive training samples 

to train classifiers. Datasets at prediction time are evolving 

and the trained model must deal with an infinite number of 

unseen/unknown categories. Therefore, it is desired to have 

an open-set classifier that not only accurately classifies the 

known classes into their respective classes but also effectively 

identifies unknown samples and learns them. This paper in-

troduces an open-set evolving audio classification technique, 

which can effectively recognize and learn unknown classes 

continuously in an unsupervised manner. The proposed 

method consists of several steps: a) recognizing sound signals 

and associating them with known classes while also being 

able to identify the unknown classes; b) detecting the hidden 

unknown classes among the rejected sound samples; c) learn-

ing those novel detected classes and updating the classifier. 

The experimental results illustrate the effectiveness of the de-

veloped approach in detecting unknown sound classes com-

pared to extreme value machine (EVM) and Weibull-cali-

brated SVM (W-SVM).   

Index Terms—Acoustic scene classification, open-set 

recognition, support vector data description 

1. INTRODUCTION 

Research on acoustic scene classification (ASC) has been receiving 

increased attention over the past decade, which has led to a consid-

erable amount of new sound modeling and recognition techniques. 

ASC plays a major role in machine hearing systems. Where, the pri-

mary goal is achieving human-like auditory recognition of ambient 

sound signals [1, 2]. Some example applications include context-

aware devices that automatically adjust their operation mode accord-

ing to surrounding sounds, such as hearing aid devices that their 

speech enhancement parameters are adjusted depending on the back-

ground noise type [3]. Some other applications are robotics [4], mon-

itoring elderly people, and acoustic monitoring systems in smart 

homes for detecting events such as glass breaking, baby crying, and 

gunshot [5]. 

One limitation of the existing ASC systems is their closed-set 

nature, that is a fixed and limited number of known classes are used 

during the training. In closed-set classifiers, it is assumed that during 

test time, the test data is drawn from the same set of classes as the 

training data. This guarantees that every input samples are classified 

into exactly one of the training classes. However, most applications 

for ASCs in nature are open-set problems. In other words, in an 

open-set framework, the test data could include samples associated 

with unknown classes as well. Therefore, it is necessary for an ASC 

to detect if a sound signal is associated with an unknown category. 

It is also desired to learn the unknown instances that appear more 

frequently. To our knowledge, the following contributions are the 

only existing ASC systems that partially implement the open-set 

framework. In [6] an open-set ASC is proposed to detect unknown 

classes utilizing support vector data description (SVDD). This 

method is only able to detect unknown samples without being able 

to learn them. In [7], a real-time unsupervised model for learning 

environmental noise signals is developed. This model can detect un-

known classes in the stream of input sound signals and learn them 

on the fly. However, it can only store data from one unknown class 

and create one class at a time.  

In this work, we propose a solution to overcome the limitations 

of both systems. Our proposed technique can identify the unknown 

sound signals and classify them into multiple micro-clusters based 

on the similarity of their characteristics. We then prune the micro-

clusters according to a popularity measure, such that the micro-clus-

ters larger than a certain threshold are classified into new classes on 

the fly. Importantly, our proposed method has no limitation on the 

number of classes created on the fly.  

The rest of the paper is organized as follows. A brief overview 

of the open-set problem is covered in Section 2. The proposed open-

set evolving acoustic scene classification model is then presented in 

Section 3. Section 4 presents the experimental results followed by 

the conclusion in Section 5. 

2. OPEN-SET RECOGNITION MODEL 

In this section, we first briefly state the preliminaries related to open-

set recognition (OSR), following which we formally define the 

evolving open-set problem in Section 3.  

Traditional recognition/classification algorithms are closed-set 

problems where all training and testing data are known a priori. 

Closed-set classifiers have been developed that maximize the opti-

mal posterior probability, 𝑝(𝐶𝑖|𝑥; 𝐶1, 𝐶2, … 𝐶𝑀), 𝑖 ∈ {1,2, … , 𝑀} , 

where 𝑥 is an input sample, 𝑖 is the index of the known class 𝐶𝑖, and 

𝑀 in the number of the known classes. However, a practical auto-

matic recognition/classification problem is an open-set problem, 
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where during testing, data from unknown classes can emerge at any 

time unexpectedly. Therefore, during the test, the optimal posterior 

probability becomes 𝑝(𝐶𝑗|𝑥; 𝐶1, 𝐶2, … 𝐶𝑀, 𝐶𝑀+1, . . 𝐶𝑀+𝑄), 𝑗 ∈
{1,2, … , 𝑀 + 𝑄}, with 𝑄 being the number of unknown classes [8]. 

This posterior probability cannot be modeled as classes 𝐶𝑀+1 

through 𝐶𝑀+𝑄 are unknown.  

In [9], the OSR problem was formalized for the first time and a 

preliminary solution was proposed. It incorporates an open space 𝑂 

risk term to account for the space beyond the reasonable support of 

the known classes. Open space is a space that is sufficiently far from 

the known classes. Let 𝑓 be a measurable function where 𝑓𝑦(𝑥) ≥ 0 

implies recognition of the known class 𝑦 and 𝑓𝑦(𝑥) = 0 implies, in-

put 𝑥 does not belong to class 𝑦. The open space risk 𝑅𝑜(𝑓) for a 

class 𝑦 can be defined as follows [9]:  

𝑅𝑜(𝑓𝑦) =  
∫ 𝑓𝑦(𝑥)𝑑𝑥

𝑂

∫ 𝑓𝑦(𝑥)𝑑𝑥
𝑆𝑜

      (1) 

where 𝑆𝑜 is the space that contains all the known training classes as 

well as the open space 𝑂. The objective OSR function must balance 

the open space risk against empirical error.   

The OSR problem has been studied in various frameworks [10-

12]. In [12] the existing open-set techniques are categorized into five 

main categories. 1) deep neural network-based, 2) adversarial learn-

ing-based, 3) extreme value theory-based, 4) Dirichlet process-based, 

and 5) traditional machine learning-based models. Although much 

effort has been made to develop promising solutions for OSR prob-

lem, the flexibility of these methods in continuously learning new 

classes, at a lower computational complexity, is still a challenge. Ad-

dressing this challenge using traditional machine learning ap-

proaches is the focus of this paper.   

3. MULTI-CLASS OPEN-SET EVOLVING ACOUSTIC 

SCENE CLASSIFICATION MECHANISM 

A dynamically evolving classification system needs to continuously 

detect unknown classes and learn them at a low training cost. The 

key components of such a system are as follows: 1) accurately as-

signing the input samples from the known classes into their respec-

tive labels, 2) rejecting samples that are from unknown classes, 3) 

keeping track of the rejected unknown samples to identify potential 

new classes among all the rejected samples in 2), and 4) learning/la-

beling the detected new classes and expanding the existing model at 

a low training cost. 

In this work, similar to [7], known classes are labeled with pos-

itive integers and unknown samples are temporarily labeled as 0. As-

suming 𝑥 ∈ ℝ𝑑 to be an input sample in the feature domain, the pro-

posed open-set evolving model is defined as follows.  

Definition (Multi-class Open-set Evolving Recognition (MCOSR) 

Model): A solution to a multi-class open-set evolving recognition:  

1. A multi-class open-set model 𝐹(𝑥): ℝ𝑑 ↦ ℤ≥0  is an ensemble 

of multiple OSR functions, 𝑓𝐶𝑖
(𝑥)  ∶ ℝ𝑑 ↦ ℝ,   𝑖 = 1, … , 𝑀 , 

where 𝑀 is the number of known classes.  

2. Let 𝒳𝑁𝑜𝑣 ≔ {𝑥𝑘|𝑥𝑘 ∈ ℝ𝑑 , 𝑘 = 1, … , 𝒦} be a dataset of 𝒦 sam-

ples, that are detected as unknown. 𝐿(𝒳𝑁𝑜𝑣): ℝ𝑑 ↦ ℕ is a nov-

elty detection process that is applied to 𝒳𝑁𝑜𝑣 to determine the 

existence of new classes in 𝒳𝑁𝑜𝑣.  

3. If 𝐿(𝒳𝑁𝑜𝑣) discovers 𝑄 potential new classes, the existing 

MCOSR model is expanded by adding the discovered classes to 

the previously learned class set. Thus, the set of known classes 

becomes {𝐶1, 𝐶2, … , 𝐶𝑀} ∪ {𝐶𝑀+1, 𝐶𝑀+2, … , 𝐶𝑀+𝑄}. It is worth 

noting that 𝑀 varies in time as a result of the evolution process. 

The diagram of the proposed MCOSR is shown in Fig. 1. Details of 

each step are introduced in the following subsections. 

3.1. Multi-class open-set evolving recognition function 

This section states the details of the proposed open-set acoustic 

scene classification. The algorithm consists of four main steps, fea-

ture extraction, classification/rejection, new class detection, and 

model evolution as follows.  

3.1.1.  Feature extraction: 

The spectrogram of the input audio signal is first passed through a 

pre-trained neural network (details discussed in section 4) to extract 

the embedding representation. In this work, an L3-Net-based [13] 

audio embedding network is used as the feature extractor. The ex-

tracted embeddings are used as the input feature vectors to the 

MCOSR model.  

3.1.2. Classification/rejection 

The extracted embeddings from an input sound file are passed into 

the multi-class open-set recognition model 𝐹(𝑥): ℝ𝑑 ↦ ℤ≥0  to de-

termine if the input sound signal belongs to any of the known clas-

ses, 𝐶𝑖, or it is an unknown sample (0). 𝐹(𝑥) is an ensemble of mul-

tiple OSR functions, 𝑓𝐶𝑖
(𝑥)  ∶ ℝ𝑑 ↦ ℝ,   𝑖 = 1, … , 𝑀 , where 𝑀  is 

the number of known classes. Each of the OSR functions character-

izes one of the known classes utilizing a support vector data descrip-

tion (SVDD) model [14].   

SVDD is a kernel-based sphere-shaped data description method 

that provides an effective description of the data boundary in the fea-

ture space. SVDD has been investigated in the context of various 

open-set problems [15,16]. The objective of SVDD is to find the 

 
Figure 1: Block diagram of the developed open-set evolving acoustic scene classification system 
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smallest hypersphere that encloses most of the data in feature 

space  𝒳 . Let 𝒳 ≔ {𝑥𝒿|𝑥𝒿 ∈ ℝ𝑑 , 𝒿 = 1, … , 𝒥}  be a dataset of 𝒥 

points. Using a nonlinear transformation 𝜑 from 𝒳 to a high-dimen-

sional kernel feature space, the smallest enclosing hypersphere of 

radius 𝑅 and center 𝛼 can be stated as: 

min
𝑅,𝛼,𝜉

𝑅2 +
1

𝛾
∑ 𝜉𝒿𝑗           (2) 

𝑠. 𝑡. ‖𝜑(𝑥𝒿) − 𝛼‖
2

≤ 𝑅2 + 𝜉𝒿,        𝜉𝒿 ≥ 0,      ∀𝒿.       (3) 
 

The slack variables 𝜉𝒿 ≥ 0, associated with each training sample 

𝑥𝒿, allow a soft boundary and hyperparameter 𝛾 ∈ (0,1] establishes 

a trade-off between the sphere volume and the accuracy of data de-

scription. To optimize 𝛼, 𝑅 and 𝜉𝒿  [14] a Lagrangian procedure is 

used. The local maximum of the Lagrange function can be written 

as: 

ℒ =  ∑ 𝛽𝒿𝜑(𝑥𝒿). 𝜑(𝑥𝒿) −𝒥
𝒿=1 ∑ 𝛽𝒿𝛽𝓀𝜑(𝑥𝒿). 𝜑(𝑥𝓀)𝒥

𝒿,𝓀 =1  

            (4) 

𝑠. 𝑡.  ∑ 𝛽𝒿  𝒿 = 1, 𝛼 = ∑ 𝛽𝒿𝜑(𝑥𝒿) 𝒿 , 0 ≤  𝛽𝒿 ≤ 𝛾  

where 𝛽𝒿 ≥ 0 represent Lagrange multipliers. Samples with 𝛽𝒿 = 0 

lie inside the sphere surface, while those with 𝛽𝒿 = 𝛾 fall outside. 

Samples with 0 < 𝛽𝒿 < 𝛾 are on the boundary of the corresponding 

hypersphere. It can be seen from (4), the center of the sphere (𝛼) is 

a linear combination of the data samples. To describe the hy-

persphere, only samples with  𝛽𝒿 > 0 are needed, hence they are 

called support vectors.  𝑅2 is the distance from the center of the 

sphere (𝛼) to (any of the support vectors on) the boundary, excluding 

the ones outside the sphere. 

Therefore, given a set of 𝒥 data samples, the open-set recognition 

function for representing it as a class/hypersphere 𝐶𝑖 is defined as:  

𝑓𝐶𝑖
(𝑥) = ‖𝜑(𝑥) − 𝛼𝑖‖2 − 𝑅𝑖

2     (5) 

Input 𝑥 is associated with class 𝐶𝑖, if its distance to the center 

of the sphere 𝐶𝑖 ,i.e. 𝛼𝑖, is equal or smaller than the radius 𝑅𝑖
2, i.e.  

𝑓𝐶𝑖
(𝑥) ≤ 0. Therefore, the decision mechanism of identifying the la-

bel of the input sample 𝑥 in MCOSR is as follows:  

 

𝐶∗ =  {
𝑎𝑟𝑔 min

𝑖
𝑓𝐶𝑖

(𝑥)    𝑓𝐶𝑖
(𝑥) ≤ 0, ∀ 𝑖 = 1, … , 𝑀

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (6) 

The 𝐶∗ is the output label, where 0 stands for unknown samples. 

To minimize misclassifications, majority voting of 3 decisions is 

considered. This way if inputs at time 𝑡  and 𝑡 + 2, 𝑥𝑡 and 𝑥𝑡+2 are 

both from class ℓ, then 𝑥𝑡+1 is expected to be from the same class, 

noting that signal data occur in a streaming manner and the interest 

is primarily on the sustained type of sound. 

3.1.3. Model evolution with detected new classes 

Samples that are detected as unknown are stored in a buffer. Length 

of this buffer should be larger than a minimum number of samples, 

𝒟 , required for establishing a new class. Let 𝒳𝑁𝑜𝑣 ≔ {𝑥𝑘|𝑥𝑘 ∈
ℝ𝑑 , 𝑘 = 1, … , 𝒦} be the set of 𝒦  samples in the buffer. Among 

these stored unknown samples, we need to determine if there is any 

consolidated ensemble that should be declared as a new separate 

class. A similarity measure is used to assess such consolidation. Let 

𝐿(. ): ℝ𝑑 ↦ ℕ to be the process of detecting the existence of a new 

class using that similarity measure. We use cosine similarity meas-

ure and denote a pair of data points as similar if their cosine simi-

larity is greater than a predefined threshold value 𝜆. In this work, 

this value is set empirically to 𝜆 = 0.85. An ensemble of similar 

samples is called micro-cluster. A sample is assigned to a micro-

cluster if its similarity not only with the center of the micro-cluster, 

but also with each sample from a randomly selected set, is greater 

than 𝜆. If not assigned to any of the existing micro-clusters, the sam-

ple will form a sporadic micro-cluster. Micro-clusters with size less 

than two are considered sporadic. Once the size of a micro-cluster 

exceeds 𝒟, an open-set recognition function, e.g. SVDD, is used to 

model it as a new class. To set 𝒟, one needs to specify how long an 

occurring sound to be sustained in order to establish a new class. In 

other words, how long sound data from a scene class is needed to 

establish a new class. Finally, when a new class is created, the pre-

trained model gets updated accordingly. The newly created class is 

labeled as the number of existing classes plus one.  

4. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of MCOSR algorithm 

in terms of OSR accuracy, and qualitatively analyze its evolving as-

pects. We then perform a comparative study of the OSR accuracy 

of the proposed method against the existing state-of-the-art OSR al-

gorithms such as EVM [8], Weibull-calibrated SVM (W-SVM) 

[17], PI-SVM and PI-OSVM (one-class SVM) [18]. EVM has a 

well-grounded interpretation derived from the statistical extreme 

value theory (EVT) and is the first classifier capable of performing 

nonlinear kernel-free learning. In W-SVM, the decision scores are 

used to fit the data into a single Weibull distribution, and a specific 

threshold is set to reject the unknown classes [8].  

Data from the DCASE 2018 task5, a subset of SINS [19], TUT 

Acoustic Scenes 2017 [20], and Audioset [21] are used to evaluate 

the proposed algorithm. The dataset comprises 12 acoustic scenes, 

which are “absence”, “cooking”, “dishwashing”, “eating”, “social 

activity”, “watching TV”, “car”, “music”, “restaurant”, “transport”, 

“vacuum cleaner”, and “working”. 

OpenL3 [22] is used for extracting the audio embeddings, con-

sidering the default settings and a 512-embedding dimension. The 

input to the L3-Net is a 10-second audio signal and the extracted 

embedding feature is a matrix of size 96×512. The averages of the 

extracted embeddings from the 10-second sound files are used as 

inputs to the MCOSR.  

We begin by pre-training a model using data from the follow-

ing five acoustic scenes “cooking”, “dishwashing”, “eating”, “social 

activity”, and “watching TV”. This leads to five pre-trained classes, 

which we will refer to as C1, C2, …, C5, respectively. For pre-train-

ing, we used 30 audio embedding samples, i.e. 𝒟, extracted from 

five minutes of sound signals per acoustic scene. The remaining du-

ration of data associated with the five pre-training scenes, men-

tioned above, along with the full duration of the data associated with 

the other seven acoustic scenes, i.e. “absence”, “car”, “music”, “res-

taurant”, “transport”, “vacuum cleaner”, and “working”, are used 

for testing. 

4.1. Multi-class open-set recognition   

We evaluate the OSR aspect of the MCOSR in two steps. In the first 

step, the proposed system identifies if an input sample is associated 

with the pre-trained classes and if so, it labels them as known sam-

ples. In the second step, the system classifies the known samples 

into their respective classes, which is known as closed-set recogni-

tion. Denote by 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 the true-positive, false-posi-

tive, true-negative and false-negative, respectively. We measure the 
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accuracy of the first step in the form of true-positive rate, given by 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and specificity, that is 1 − 𝐹𝑃𝑅 =  𝑇𝑁/
(𝑇𝑁 + 𝐹𝑃). The results are reported in Table 1, where each entry is 

an average of a 10-fold cross-validation process.  

Aside from MCOSR results, Table 1 also reports the results for 

comparable algorithms in the literature, including EVM, W-SVM, 

PI-SVM, and PI-OSVM. The rejection threshold, i.e. 𝛿, for EVM is 

set to 0.05, which is deduced empirically. At first glance, it may 

appear that W-SVM outperforms other algorithms since its specific-

ity is slightly higher than that of MCOSR and EVM. However, it 

drastically underperforms, in terms of 𝑇𝑃𝑅, compared to MCOSR 

and EVM. It is worth mentioning that, EVM has the highest 𝑇𝑃𝑅 

while its specificity is close to the MCOSR. Importantly, as reported 

in Table 2, EVM suffers from large confusion error in close-set 

recognition. Our analyses suggest that PI-OSVM and PI-SVM pro-

vide the lowest performance.  

4.2. The performance of the open-set technique as a function of 

class-set evolution   

In this section, we study the performance of our proposed algorithm 

while changing the order in which the data are fed to the system. 

Our contribution is two-fold. First, we investigate the effect of 

choosing the initial sound samples on the number of created classes 

during the test and their accuracy. Next, we measure the overall 

post-evolution accuracy of the system, in terms of a confusion ma-

trix. 

To evaluate the effect of the initial sound samples on the per-

formance of the proposed MCOSR technique, we used a pre-trained 

model comprising C1, C2, C3, C4, and C5. During the test, the in-

puts to the pre-trained model are the samples from known and un-

known classes. The experiment is repeated 10 times while randomly 

shuffling the sound files associated with each class. Samples that 

are detected as unknown are stored in a buffer. The 𝐿(. ) process is 

continuously assessing the existence of a new class among the 

stored unknown samples. Once it detects a new class, MCOSR to 

be updated with this new class and the set of known classes is ex-

panded. It is expected the forthcoming samples from the newly 

added class to be assigned to it and not identified as unknown sam-

ples anymore. However, in some of the experiments, MCOSR cre-

ates multiple classes for “music” class. Because the music data is 

not coherent enough, the initially created music class by MCOSR 

does not provide enough representative information of the music 

class. Therefore, other incoming music samples are identified as un-

known samples and later will be learned as a new class. Data from 

the “working” sound scene is also a challenging one.  In some ex-

periments, no new class is created for this scene, as data from this 

scene is always misclassified by one of the known classes, mostly 

the “absence” class. Also, the samples from this scene that are iden-

tified as unknown are not similar enough to create meaningful mi-

cro-clusters to be declared as a new class.  

As mentioned earlier, we next measured the post-evolution ac-

curacy of the system. The results are reported in Table 3 in terms of 

a confusion matrix. In this table “absence”, “car”, “music”, “restau-

rant”, “transport”, “vacuum cleaner”, and “working” scenes are re-

ferred as C6, C7, …, C12, respectively. It was found as the number 

of classes increases in the model; the confusion rate increases. Be-

cause SVDD ignores the discriminative information between the 

known classes, which leads to poor classification performance. This 

issue needs to be addressed to achieve a higher classification accu-

racy when dealing with more complex acoustic scenes.  

5. CONCLUSION 

This paper provides an open-set evolving audio scene classification 

technique, MCOSR, which can effectively recognize and learn un-

known acoustic scenes in an unsupervised manner. The developed 

model is evaluated utilizing the DCASE challenge dataset, TUT 

Acoustic Scenes 2017, and music files from Audioset. Experimental 

results demonstrate the effectiveness of the developed approach in 

identifying unknown samples compared to EVM, W-SVM, PI-

OSVM, and PI-SVM. This paper exemplifies how the proposed 

MCOSR method can be used as a proper evolving open-set system 

for sound classification applications. Future research will focus on 

addressing practical issues during run time.   

Table 2. Confusion matrices of the proposed MCOSR and EVM for Table 1. 
 cooking dishwashing eating social activity watching TV unknown 

MCOSR EVM MCOSR EVM MCOSR EVM MCOSR EVM MCOSR EVM MCOSR EVM 

cooking 81.54 58.33 3.97 27.08 0 4.17 0 0 0 0 14.49 10.42 

dishwashing 3.08 16.67 88.21 62.5 3.72 20.83 0 0 0 0 5 0 

eating 0 8.33 1.03 12.5 96.41 79.17 0 0 0 0 2.56 0 

social activity 0 6.25 0 0 1.28 4.17 86.28 87.5 0 0 12.44 2.08 

watching TV 0.13 2.08 0 0 0 2.08 0.9 6.25 89.1 87.5 9.87 2.08 

unknown 0.04 7.79 0.04 0.31 5.48 0 0 0 0.15 0 94.29 91.9 

 
Table 3. Accuracy of the developed open-set evolving acoustic scene recognition model (%), after all classes have been learnt on the fly 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 unknown 

C1 73.21 4.36 0 0 0 0.13 1.03 0 0 0 0 0.51 20.77 

C2 2.05 88.46 3.08 0 0 0 0 0 0 0 0 0 6.41 

C3 0 1.67 81.67 0 0 4.36 0 0 0 0 0 3.08 9.23 

C4 0.13 0.38 0.51 84.62 0 0 0 0 1.15 0.38 0 0 12.82 

C5 0 0 0 0.13 89.74 0 0 0 0 0 0.51 0.51 9.1 

C6 0.13 0 0.26 0 0 94.49 0 0 0 0 0 0.13 5 

C7 0 0 0 0 0 1.28 92.95 0 0 0.26 0 0 5.51 

C8 0 0 0.9 0 0 0 0 94.62 0.64 0 0 0 3.85 

C9 0 0 0 0 0 0 0 0.9 97.56 0 0 0 1.54 

C10 0 0 0 0.77 0 0 0.26 0 0 92.56 0 0 6.41 

C11 0 0 0 0 0 0 0 0 0 0.77 91.15 0 8.08 

C12 0.63 2.7 13.81 0 0.63 29.05 0 0 0 0 0 19.68 33.49 

 

Table 1. Accuracy of MCOSR, EVM, W-SVM(Linear), PI-

OSVM, and PI-SVM in detecting the known classes and reject-

ing the unknown classes (%), in terms of TPR (higher, better) 

and 1-FPR (higher, better) 

Methods 
Detecting known: 

TPR 

Rejecting unknown: 

1-FPR 

MCOSR 88.22 93.03 

W-SVM (Linear) 59.58 96.61 

EVM 97.08 91.9 

PI-OSVM 21.7 15.68 

PI-SVM 60.8 51.41 
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