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ABSTRACT 

The main scientific question of this year DCASE challenge, 

Task 4 - Sound Event Detection in Domestic Environments, 

is to investigate the types of data (strongly labeled synthetic 

data, weakly labeled data, unlabeled in domain data) re-

quired to achieve the best performing system. In this paper, 

we proposed a deep learning model that integrates Non-

Negative Matrix Factorization (NMF) with Convolutional 

Neural Network (CNN). The key idea of such integration 

is to use NMF to provide an approximate strong label to the 

weakly labeled data. Such integration was able to achieve 

a higher event-based F1-score as compared to the baseline 

system (Evaluation Dataset: 30.39% vs. 23.7%, Validation 

Dataset: 31% vs. 25.8%). By comparing the validation re-

sults with other participants, the proposed system was 

ranked 8th among 19 teams (inclusive of the baseline sys-

tem) in this year Task 4 challenge. 

Index Terms— Non-negative matrix, convolutional 

neural network, DCASE 2019 

1. INTRODUCTION 

The primary objective of a Sound Event Detection (SED) 

system is to identify the type of sound source present in an 

audio clip or recording and return the onset and offset of the 

identified source. Such a system has great potential in sev-

eral domains, such as activity monitoring, environmental 

context understanding, and multimedia event detection [1], 

[2]. However, there are several challenges associated with 

SED in real-life scenarios.  

Firstly, in real-life scenarios, different sound events can 

coincide [2]. Secondly, the presence of background noise 

could complicate the identification of sound event within a 

particular time frame [3]. This problem is further aggra-

vated when the noise is the prominent sound source result-

ing in a low Signal to Noise Ratio (SNR). Thirdly, each 

event class is made up of different sound sources, e.g., a dog 
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bark sound event can be produced from several breeds of 

dogs with different acoustic characteristics [1]. Finally, to 

achieve the best results, SED detection algorithm may re-

quire strongly labeled data where the occurrence of each 

event with its onset and offset are known with certainty dur-

ing the model development phase.  

While such data are useful, collecting them is often 

time-consuming, and sizes of such dataset are often limited 

to minutes or a few hours [3], [4]. In certain scenarios such 

as an approaching vehicle, the onset and offset time is am-

biguous due to the fade in and fade out effect [5] and is sub-

jective to the person labeling the event. 

On the other hand, there exist a substantial amount of 

data known as the weakly labeled data where only the oc-

currence of an event is known without any offset or onset 

annotations. While it seems like the core information is 

missing, previous implementations proposed in the annual 

Detection and Classification of Acoustic Scenes and Events 

(DCASE) challenge that utilized only weakly labeled data 

had achieved a certain level of success [6]-[8]. Although a 

large number of different SED systems  were proposed in 

the past, a majority of them were mainly based on Gaussian 

Mixture Model (GMM) [9], Hidden Markov Model (HMM) 

[10] or the use of dictionaries constructed using NMF [11-

13]. However, due to the rising success of deep learning in 

other domains [14-17], deep learning for SED development 

is now a norm and has been shown to perform slightly better 

than established methods [1]. Riding on the success of deep 

learning, this paper proposes a deep learning model that in-

tegrates NMF and CNN which can provide an approximate 

strong label to the weakly labeled data. Results have shown 

that the proposed system achieved a much higher event 

based F1-score as compared to the baseline system (Evalu-

ation Dataset: 30.39% vs. 23.7%, Validation Dataset: 31% 

vs. 25.8%) and by comparing the validation results with 

other participants, the proposed system was ranked 8th 

among 19 teams (inclusive of the baseline system) in this 

year Task 4 challenge. 
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2. RELATED WORK 

In recent years, SED development has been overwhelmed 

with the use of deep learning algorithms particularly the use 

of CNN or Convolutional Recurrent Neural Network 

(CRNN). This phenomenon was also reflected in the 2018 

and 2019 DCASE Task 4 challenge, where a large group of 

participants proposed the use of CRNN. As discussed in [1], 

CNN has the benefit of learning filters that are shifted in 

both time and frequency while Recurrent Neural Network 

(RNN) has a benefit of integrating information from the ear-

lier time windows. Thus, a combined architecture has the 

potential to benefit from two different approaches that sug-

gest its popularity.  

The CRNN architecture proposed by Cakir et al. [1] 

first extracted features through multiple convolutional lay-

ers (with small filters spanning both time and frequency) 

and pooling in the frequency domain. The features were 

then fed to recurrent layers, whose features were used to ob-

tain event activity probabilities through a feedforward fully 

connected layer. Evaluation over four different datasets had 

also shown that such a method has a better performance as 

compared to CNN, RNN and other established SED system. 

However, such a system would require a large amount of 

annotated data for training.  

Lu [8] proposed the use of a Mean Teacher Convolu-

tion System that won the DCASE Task 4 challenge with an 

F1 score of 32.4%. In their system, context gating was used 

to emphasize the important parts of audio features in frames 

axis. Mean-Teacher semi-supervised method was then ap-

plied to exploit the availability of unlabeled data to average 

the model weights over training steps. Although this system 

won the 2018 challenge, there is still a large room for im-

provement. 

3. SYSTEM OVERVIEW 

3.1. Audio Processing 

In this system, training inputs are mel-frequency scaled. 

This is because they can provide a reasonably good repre-

sentation of the signal’s spectral properties. At the same 

time, they also provide reasonably high inter-class variabil-

ity to allow class discrimination by many different machine 

learning approaches [18]. 

In this paper, audio clips were first resampled to 32 kHz 

that were suggested to contain the most energies [19]. 

Moreover, segments containing higher frequency may not 

be useful for event detection in daily life [8].  

A short-time fast Fourier transform with a Hanning 

window size of 1024 samples (32 ms) and a hop size of 500 

samples (15.6 ms) was used to tabulate the spectrogram. Af-

ter that, a mel filter bank of 64 and bandpass filter of 50 Hz 

to 14 kHz was applied to obtain the mel spectrogram. Fi-

nally, a logarithm operation was applied to obtain the log-

mel spectrogram to use be used as input to the training 

model..  

3.2. Non-Negative Matrix Factorization 

The NMF popularized by Lee and Seung [20] is an effective 

method to decompose a non-negative L N matrix M into 

two non-negative matrices, W and H of sizes L R and

R N respectively where R is the number of components. 

The linear combination of W and H produces an approxi-

mated M and can be represented as 

M WH                            (1)       

𝑊  can be interpreted as the dictionary matrix and 𝐻 

can be interpreted as the activation matrix. These two ma-

trices can be randomly initialized and updated through the 

multiplicative rule given as [20] to produce an optimized set 

of W and H . The updating procedure can be terminated 

when any further updating produces no improvement or 

when the difference of M   and WH is below a user-de-

fined threshold. 
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W is commonly extracted on isolated events to form a 

dictionary and SED is performed by applying a threshold 

on the activation matrix obtained from the decomposition 

of the test data [12]. Since NMF only works on non-nega-

tive matrix, it was applied on the mel spectrogram prior to 

the logarithm operation. Thus, M  represents the mel spec-

trogram with L as the number of mel bins and N as the 

number of frames. In this paper, instead of consolidating 
W  to form the dictionary, we find the H to indicate which 

frames of each audio clip are activated (above a pre-defined 

threshold) to label the weakly labeled data so that the 

weakly labeled data becomes an approximated strongly la-

beled data. If the clip contains multiple events, then those 

activated frames are deemed to contain all the sound 

events. 

3.3. Convolutional Neural Network 

The CNN used in this system is modified based on the one 

proposed in [19]. Kong et al. [19] proposed four different 

CNN with a different number of layers and pooling opera-

tors and found that the 9 layers CNN with max-pooling op-

erator achieved the best performance. In this paper, we are 

interested in finding out whether with the inclusion of NMF, 

will a shallower CNN produce a comparable or even a better 
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result. In this paper, a 5 layers CNN with max-pooling op-

erator is proposed. In this architecture, the 5 layers consist 

of 1 input layer and 4 convolutional layers of kernel size 5 

x 5 with a padding size of 2 x 2 and strides 1 x 1. This ar-

chitecture is similar to Kong et al. [19] except for the kernel 

size and the number of layers as shown in Table 1.  

Table 1. CNN architectures 

Proposed Kong [19] 

Input : log-mel spectrogram 

5 5@64

,BN ReLU

 
 
 

  
3 3@64

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@128

,BN ReLU

 
 
 

 
3 3@128

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@ 256

,BN ReLU

 
 
 

 
3 3@ 256

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@512

,BN ReLU

 
 
 

 
3 3@512

2
,BN ReLU

 
 

 
 

For both architectures, Binary Cross Entropy is adopted 

as the loss function which is similar to the loss function 

adopted in [19] given as  

( , )

1

[ ln( ) (1 ) ln(1 )]

K

BCE p y k k k k

k

l y p y p

=

= + − −                 (4) 

3.4. System Flow 

 

Fig. 1. Flowchart of proposed architecture 

In this year DCASE challenge, Task 4 - Sound Event De-

tection In Domestic Environments, is specifically orga-

nized to investigate the types of data (strongly labeled syn-

thetic data, weakly labeled data, unlabeled in domain data) 

required to achieve the best performing system. Therefore, 

the flow of the proposed system depends on the types of 

data used as seen in Fig. 1. While strongly labeled and 

weakly labeled data can be used readily, unlabeled data re-

quire a model to be trained in advance so that its content 

can be tagged and be used as training data. Example, if the 

user is keen to use all the data given, NMF will be applied 

to weakly labeled data to produce an approximated strongly 

labeled data. The log-mel spectrograms tabulated from 

both the approximated strongly labeled data and the actual 

strongly labeled data will be combined and used as input to 

the CNN. The model trained will be used to tag the events 

in the unlabeled data. Similar to weakly labeled data, NMF 

is applied to tagged unlabeled data prior to the calculation 

of log-mel spectrogram. These newly calculated log-mel 

spectrogram will be combined with previous calculated 

log-mel spectrograms and used as input to train a new 

model. 

4. RESULTS AND DISCUSSION 

Based on the proposed system flow, we tested the accuracy 

of our proposed architecture using the different combina-

tion of data on the given evaluation dataset that is a mixture 

of DCASE 2018 task 4 test set, and evaluation set consist-

ing of 1168 audio clips with 4093 events.  

Based on the results shown in Table 2, the model 

trained using both weakly labeled data and synthetic data 

achieved the highest accuracy as compared to using other 

combinations of data. It is surprising to find that strongly 

labeled synthetic data was not able to achieve higher accu-

racy than weakly labeled data. Whereas, a combination of 

data can increase the accuracy of the model.  

On the other hand, results have shown that using only 

unlabeled in domain data or training a model with the in-

clusion of unlabeled in domain data labeled using different 

models, accuracy decreases. Furthermore, by comparing 

the proposed model results with Kong et al. [19] model and 

baseline model, it shows that although the proposed model 

can achieve a better event based F1 score, it has a lower 

segment based F1-score as compared to Kong et al. [19]. 

These two phenomenon could be due to the way how NMF 

was utilized. In this system, NMF was used to find H that 

indicates when the event was activated for the calculated H 

of certain frames were above a predefined threshold. How-

ever, if the clip contains multiple events, then NMF will 

indicate that those frames above a predefined threshold be-

long to all the events present in the audio. As such, it af-

fected the quality of unlabeled data being labeled which re-

sulted in a decrease in accuracy when unlabeled data is in-

cluded and also resulted in a lower segment accuracy. 

Therefore, it may be worthwhile to investigate the use of 

source separation before the application of NMF. 

The best four models (trained using C1, C3, C5, C7 as 

described in Table 2) were submitted to the challenge where  
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the validation dataset is made up of audio clips extracted 

from YouTube and Vimeo videos. The best performing was 

the model trained using C3 which achieved an F1-score of 

31%. By comparing the validation results with other partic-

ipants, the proposed system was ranked 8th among 19 teams  

(inclusive of the baseline system) in this year Task 4 chal-

lenge.   

The system proposed by Lin and Wang [22] come in 

first place which achieved an accuracy of 42.7% while the 

system proposed by Yang et al. [23] took the last place 

which achieved an accuracy of 6.7%. On the other hand, 

the median accuracy for this challenge was at 29.25%. 

While this system can be considered as an above-aver-

age system, there is still a large room of improvement as 

compared to the top 3 models which achieved F1-score of 

above 40%. One of the common features adopted by the top 

3 models [22], [24], [25] was the use of mean teacher model 

which was also part of the winning model in 2018 [8] ([22] 

used a variant of mean teacher model called the professional 

teacher model). The idea of the mean teacher model was to 

average the model weights over training steps instead of la-

bel predictions and at the same time bringing the benefits of 

improved accuracy with fewer training labels [26] and this 

has become the new frontier in SED as seen in DCASE 

2018 and 2019 challenge. However, it should be noted that 

virtual adversarial training as proposed by Agnone and 

Altaf [27] can be promising as well where it achieved an 

accuracy of 59.57% on the evaluation dataset although it 

only achieved an accuracy of 25% on the validation dataset. 

It was mentioned in [26] that both methods are compatible 

and their combination may produce better outcomes. 

5. CONCLUSION 

In this paper, a five layers CNN with the use of NMF was 

proposed for DCASE 2019 task 4. The proposed system 

was able to achieve a higher event based F1-score as com-

pared to the baseline model. However, there is still room 

for improvement, particularly in the aspect of source sepa-

ration that may very well helps in the accuracy of sound 

event detection. Future work may also consider the integra-

tion of mean teacher model virtual adversarial training 

which may produce an even better outcome. 
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