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Abstract 
The normalization model has been applied to explain neural activity in diverse neural systems including pri-

mary visual cortex (V1). The model’s defining characteristic is that the response of each neuron is divided by a 
factor that includes a weighted sum of activity of a pool of neurons. In spite of the success of the normalization 
model, there are 3 unresolved issues. 1) Experimental evidence supports the hypothesis that normalization in V1 
operates via recurrent amplification, i.e., amplifying weak inputs more than strong inputs. It is unknown how nor-
malization arises from recurrent amplification. 2) Experiments have demonstrated that normalization is weighted 
such that each weight specifies how one neuron contributes to another’s normalization pool. It is unknown how 
weighted normalization arises from a recurrent circuit. 3) Neural activity in V1 exhibits complex dynamics, includ-
ing gamma oscillations, linked to normalization. It is unknown how these dynamics emerge from normalization. 
Here, a new family of recurrent circuit models is reported, each of which comprises coupled neural integrators to 
implement normalization via recurrent amplification with arbitrary normalization weights, some of which can reca-
pitulate key experimental observations of the dynamics of neural activity in V1. 

Significance Statement 
A family of recurrent circuit models is proposed to explain the dynamics of neural activity in primary visual cor-

tex (V1). Each of the models in this family exhibits steady state output responses that are already known to fit a 
wide range of experimental data from diverse neural systems. These models can recapitulate the complex dy-
namics of V1 activity, including oscillations (so-called gamma oscillations, ~30-80 Hz). This theoretical framework 
may also be used to explain key aspects of working memory and motor control. Consequently, the same circuit 
architecture is applicable to a variety of neural systems, and V1 can be used as a model system for understand-
ing the neural computations in many brain areas. 
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Introduction 
The normalization model  was initially developed to explain stimulus-evoked responses of neurons in primary 

visual cortex (V1) (1-7), but has since been applied to explain neural activity and behavior in diverse cognitive 
processes and neural systems (8-52). The defining characteristic of normalization is that the response of each 
neuron is divided by a factor that includes a weighted sum of activity of a pool of neurons (Fig. 1a). In V1, this 
normalization pool includes neurons selective for different visual stimulus features and spatial positions (i.e., re-
ceptive-field locations). 

The normalization model mimics many well-documented physiological phenomena in V1 (29, 53-63) and their 
perceptual analogues (64-68). 1) Responses saturate (level off) when increasing the contrast of a preferred orien-
tation test stimulus (e.g., a grating restricted to a neuron’s receptive field, RF) (Fig. 1b, blue curve). 2) Responses 
to a non-preferred orientation are smaller than responses to the preferred orientation by a constant scale factor at 
all contrasts, in spite of response saturation (Fig. 1b, red vs. blue curves). Response saturation, consequently, is 
due to a network effect rather than a mechanism that is intrinsic to each neuron individually (e.g., refractory peri-
od) because responses saturate at the same contrast, not the same firing rate, for preferred and non-preferred 
stimuli. 3) Responses to two or more stimuli presented together are much less than the linear sum of the individ-
ual responses. Cross-orientation suppression results when a mask stimulus (e.g., a grating of fixed contrast) that 
is orthogonal to the preferred orientation is superimposed with a preferred-orientation test stimulus (Fig. 1c, yel-
low vs. blue curves). Likewise, surround suppression results when a mask stimulus is added in the region sur-
rounding a neuron’s RF. Different stimuli suppress responses by different amounts, suggesting the normalization 
is “tuned” or “weighted” (14, 55, 60, 61, 69-72). The normalization weights specify the contribution of one neuron 
to another’s normalization pool, thereby determining the tuning of normalization.  

Normalization has been shown to serve a number of functions in a variety of neural systems (73) including 
automatic gain control (needed because of limited dynamic range) (4, 8, 74), simplifying read-out (8, 75, 76), con-
ferring invariance with respect to one or more stimulus dimensions (e.g., contrast, odorant concentration) (4, 8, 
28, 74, 77), switching between averaging vs. winner-take-all (19), contributing to decorrelation & statistical inde-
pendence of neural responses (10, 28, 78, 79), stabilizing delay-period activity (80), and facilitating learning (81, 
82). 

Neural activity in V1 exhibits complex dynamics linked to normalization. The rate of response increase follow-
ing stimulus onset is typically faster than the rate of response decrease following stimulus offset (83). The rate of 
response increase is also stimulus dependent: faster for stimuli placed in the center of a RF and slower on the 
flanks of the RF (83). The timing of response suppression depends on its strength (72). Temporal-frequency tun-
ing depends on stimulus contrast, and simple-cell response phase depends on contrast (6, 55, 84-86). Complex 
dynamics are evident also in the combined activity (e.g., as measured with local field potentials, LFPs) of popula-
tions of neurons. LFPs exhibit so-called gamma oscillations (~30-80 Hz) that have also been linked to normaliza-
tion (35, 87, 88). Oscillation amplitude and frequency depend systematically on stimulus contrast, size, and spa-
tial pattern (35, 87, 89-102). 

The circuit mechanisms underlying normalization are not well understood. Experimental evidence supports 
the hypothesis that normalization operates via recurrent amplification, i.e., amplifying weak inputs more than 
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Figure 1. Normalization model. a. Conceptual diagram of normalization in which the neuron’s response is 
suppressed by a weighted sum of activity of a pool of neurons. b. Response saturation. Blue, responses to pre-
ferred stimulus orientation saturate at high contrasts. Orange, responses to non-preferred orientation are a 
scaled-down copy of the responses to preferred orientation, saturating at the same contrast. c. Cross-orienta-
tion suppression. Blue, preferred orientation. Yellow, superimposing an orthogonal stimulus (fixed contrast) 
suppresses responses to the preferred orientation. A similar result would be observed by adding a stimulus 
component that surrounds the preferred stimulus (surround suppression).
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strong inputs (103-106). The recurrent amplification hypothesis is also supported by anatomy: cortical circuits are 
dominated by recurrent connections (107-112). We have known since we first introduced the normalization model 
that it can be implemented in a recurrent circuit (4, 5). Since then, several hypotheses for the circuit mechanisms 
underlying normalization have been proposed, including shunting inhibition, synaptic depression, and inhibition-
stabilized networks (6, 39, 55, 113-117). See also Refs. (118-120) for precursors to these circuit models. But 
these models do not rely on recurrent amplification to achieve normalization and/or they do not exhibit complex 
dynamics (including gamma oscillations) linked to normalization (see Discussion). Furthermore, these previous 
models only approximate weighted normalization; this has practical consequences for making experimentally-
testable predictions and for fitting data (see Discussion). 

Here, we introduce and characterize a family of dynamical systems that implement normalization with recur-
rent amplification. When the input drive is constant over time, each of the recurrent circuits in this family exhibits 
output responses that follow the normalization equation exactly, with arbitrary (non-negative) normalization 
weights. Each model in this family is expressed as a coupled system of neural integrators, composed of two 
classes of neurons: principal cells and modulator cells. The key idea is that the amount of recurrent amplification 
in the principal cells depends inversely on the responses of the modulator cells. When the input is weak, the 
modulator cells have small responses and there is a large amount of recurrent amplification. When the input is 
strong, the modulator cell responses are large, which shuts down the recurrent amplification. The various models 
in this family of dynamical systems imply different circuits, some (but not all) of which recapitulate the complex 
dynamics V1 activity, including gamma oscillations. Although we focus on V1, this family of models is applicable to 
many neural systems (see Discussion). 

A preliminary version of this work was posted on a preprint server (121). MATLAB code for recreating the 
simulation results is available at http://hdl.handle.net/2451/61045 (122).  

Results 
Recurrent circuit models of normalization 

We begin by introducing one model out of the family of dynamical systems that implement normalization with 
recurrent amplification. We use it to introduce the basic principles of the model, key parameters and main results. 
Then we discuss the broader family of dynamical systems to which this model belongs. 

Following our previous work (80, 123), responses of 
a population of V1 neurons are modeled as dynamical 
processes that evolve over time in a recurrent circuit 
(Fig. 2). The circuit is composed of different cell types. 
First and foremost is a population of principal cells (i.e., 
V1 simple-cells and complex-cells). The output firing 
rates these principal cells depend on the sum of two 
terms: 1) input gain (Fig. 2, orange) multiplied by input 
drive (Fig. 2, blue), and 2) recurrent gain (Fig. 2, purple) 
multiplied by recurrent drive (Fig. 2, green). The input 
drive is a weighted sum of the responses of population of 
input neurons, and the input gain is specified by a con-
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Figure 2. Recurrent circuit. Orange, input gain. Blue, 
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drive. Solid circles represent neurons. Different cell 
types: xk, LGN inputs; yj, principal cells; uj and aj, 
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Thin lines with arrow heads, axons. Solid lines, excita-
tory connections. Dashed lines, inhibitory connections. 
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partments. Synaptic weights: Wzx, orientation-selective 
weights determine input drive to simple-cells; Wŷy, re-
current weights; W, normalization weights. Dendritic 
computations (sum of synaptic currents): zj, input 
drive; ŷj, recurrent drive. Thick horizontal bar, input 
stimulus. Dotted circles superimposed on horizontal 
bar, LGN receptive field locations. Dashed circles, 
magnified view of LGN inputs with center-surround 
receptive fields.

http://hdl.handle.net/2451/61045


Dynamic Normalization          May 30, 2020

stant. These input neurons are presumed to be in the lateral geniculate nucleus (LGN) of the thalamus which, in 
turn, receive their inputs from neurons in the retina that respond with center-surround receptive fields to a visual 
stimulation (Fig. 2, thick horizontal bar). The recurrent drive is a weighted sum of principal cell responses, and the 
recurrent gain depends on the responses of a population of modulator cells. (We use the term “modulator” to 
mean a multiplicative computation regardless of whether or not it is implemented with neuromodulators). The re-
sponses of the modulator cells also depend on the principal cell responses (Fig. 2, purple).  

A key feature of the model is that there are two nested recurrent loops that oppose each other. 1) Recurrent 
drive. The recurrent drive is a weighted sum of the principal cell responses, and the principal cells responses de-
pend on the recurrent drive (Fig. 2, green). 2) Recurrent gain. The recurrent gain depends inversely on the modu-
lator cell responses, and the modulator cell responses depend on a sum of principal cell responses (Fig. 2, pur-
ple). The recurrent drive is multiplied by the recurrent gain so that the modulators control the amount of recurrent 
amplification. Increasing the principal cell responses causes the modulator cells to increase their responses which 
causes the amount of recurrent amplification to decrease. Therefore, as the activity of the principle cells increas-
es, the first recurrent loop increases the amount of recurrent amplification while the second loop decreases the 
amount of recurrent amplification. These two recurrent loops oppose each other such that the activity of the circuit 
may achieve a fixed point at which the neural activity is normalized. The responses at this fixed point typically ex-
hibit one of two kinds of dynamics. If the modulator cells are sluggish then the responses of the principal cells can 
exhibit an initial transient overshoot before achieving the fixed point. If instead the modulator cells have a short 
time constant and a delay, then the fixed point may be unstable and the responses may exhibit oscillations. 

4

Symbol Description Possible mechanism

x = (x1, x2,…, xi,…, xM) Inputs Firing rates of LGN cells

y = (y1, y2,…, yj,…, yN) Principal cell responses Firing rates of pyramidal cells

v = (v1, v2,…, vj,…, vN) Principal cell membrane potential 
(deviation from rest in the absence of 
stimulation)

Input drive and recurrent drive computed in separate 
compartments of dendritic tree

z = (z1, z2,…, zj,…, zN) Input drive Dendritic computation, sum of synaptic currents

ŷ = (ŷ1, ŷ2,…, ŷj,…, ŷN) Recurrent drive Dendritic computation, sum of synaptic currents

Wzx Input weight matrix (NxM): each row 
corresponds to the spatial RF of one 
principal cell

Excitatory and inhibitory (i.e., positive and negative) 
synaptic weights

Wŷy Recurrent weight matrix: each row 
determines the recurrent drive for one 
principal cell

Excitatory and inhibitory (i.e., positive and negative) 
synaptic weights

a = (a1, a2,…, aj,…, aN) Modulator cell responses and recur-
rent gain

Firing rates of inhibitory neurons (proportional to 
membrane depolarization), each of which determines 
conductance of the dendritic compartment of a princi-
pal cell receiving the recurrent drive

u = (u1, u2,…, uj,…, uN) Responses of 2nd population of mod-
ulator cell

Firing rates of a type of excitatory neurons (propor-
tional to membrane depolarization, above a sponta-
neous firing rate)

W and wjk ≥ 0 Normalization weight matrix W com-
prising normalization weights wjk

Excitatory synaptic weights

τv, τa, τu Intrinsic time constants of each of the 
corresponding cell classes

Membrane capacitance and conductance

b0 > 0 Input gain (constant) Conductance of the dendritic compartment of the 
principal cells receiving the input drive

σ > 0 Contrast gain (constant) Spontaneous firing rates of u modulator cells

Table 1. Mathematical notation. Boldface lowercase letters denote vectors and boldface uppercase letters 
denote matrices. The variables (y, v, ŷ, x, z, a, u) are each functions time, e.g., y(t), but we drop the explicit de-
pendence on t to simplify the notation.



Dynamic Normalization          May 30, 2020

Recurrent normalization, as depicted in Fig. 2, agrees with experimental results suggesting that normalization 
operates via recurrent amplification (103-106). The recurrent drive involves both excitation and inhibition (Fig. 2, 
green solid and dashed lines, respectively). The modulator cells control the amount of recurrent amplification 
(Fig. 2, purple line with circle head). Consequently, both excitatory and inhibitory recurrent signals are amplified 
by an amount that is controlled by the modulator cells (Fig. 2, purple). 

The remainder of this subsection walks through the equations of the dynamical system corresponding to the 
circuit model in Fig. 2 (see SI Appendix for additional details). In the subsections that follow, we demonstrate that 
this model mimics experimental observations of the dynamics of neural activity. We present the model as a com-
putational theory for the computations performed by neural circuits in V1, not how they are implemented (but see 
Table 1 and Discussion for possible mechanisms). 

Specifically, the responses of the principal cells are modeled by the following dynamical system (see SI Ap-
pendix of Ref. (80) for a primer on recurrent neural integrators):  

 

See Table 1 for a description of the mathematical symbols and possible biological mechanisms. Vector y = (y1, y2,
…, yj,…, yN) represents the firing rate responses of the principal cells, where the subscript j indexes different neu-
rons in the population, with different RF centers, orientation preferences, and spatial and temporal phases. The 
underlying membrane potentials of the principal cells are represented by vector v. Membrane potential of the jth 
principal cell vj depends on a sum of two terms (Eq. 1): 1) input gain multiplied by input drive zj and 2) recurrent 
gain multiplied by recurrent drive ŷj. The input drive zj is a weighted sum of LGN inputs (Eq. 3; Fig. 2, blue; see SI 
Appendix for details). The rows of the weight matrix Wzx determine the spatial RFs of the simple-cells 
(Figs. S1b,c,d; see SI Appendix for details). The recurrent drive ŷj is a weighted sum (with recurrent weights Wŷy) 
of the square-root of the responses of the principal cells yj (Eq. 4; Fig. 2, green; see SI Appendix for details). The 
input drive and the recurrent drive are each multiplied by a gain factor. The input gain is specified by a constant b0. 
The recurrent gain depends on the responses of the modulator cells aj, as detailed below. Half-squaring (halfwave 
rectification and squaring) in Eq. 2 is an expansive nonlinearity that approximates the transformation from the 
membrane potential of the principal cells to their firing rates. The square root in Eq. 4 is a compressive nonlineari-
ty that approximates a transformation from firing rates to synaptic currents. 

The modulator cells, which control the amount of recurrent amplification, are also modeled by dynamical sys-
tems: 

 

noting that all of the variables in these equations are constrained to be ≥ 0. Vectors a and u represent responses 
of the two types of modulator cells (firing rates proportional to membrane depolarization, i.e., without squaring 
unlike Eq. 2). The need for both classes of modulator cells is explained below (see Variants of the model). Modu-
lator cell responses uj represent a normalization pool, computed from the normalization weights wjk and the princi-
pal cell responses yj (Eq. 6; Fig. 2, purple). Responses of the other population of modulator cells aj are multiplied 
by the recurrent drive ŷj (Eq. 1), thereby determining the recurrent gain and recurrent amplification. Responses aj 
depend on responses uj (Eq. 5), so that the recurrent amplification depends on the normalization pool. 

When the input drive is constant over time, the model has a fixed point such that the neural activity is normal-
ized: 

 

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 1
1+a j( ) ŷ j  , (1)

y j = v j⎢⎣ ⎥⎦
2
 , (2)

z =Wzxx  , (3)

ŷ =Wŷy y  . (4)

τ a
da j
dt

= −aj + uj + aj u j  , (5)

τ u
du j
dt

= −uj + wjk ykuk
k
∑ + σb0

1+b0( )2
 , (6)

y =
z⎢⎣ ⎥⎦

2

σ 2 +Wz2  , (7)
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where the numerator is half-squared, and the quotient 
means element-by-element division. Indeed, the exact 
form of Eqs. 1-6 was designed so that it would achieve 
this fixed point. To derive Eq. 7, set the derivatives in 
Eqs. 1, 5, and 6 equal to 0 and simplify (see SI Ap-
pendix). The values of wjk in Eq. 6 are the normalization 
weights, i.e., the elements of W in Eq. 7. Variants of 
Eq. 7 (with various exponents) have been fit to a wide 
range of experimental data (see SI Appendix for refer-
ences).  

Simulated neural responses in the following figures 
are intended to exhibit qualitative aspects of neurophysi-
ological phenomena, i.e., the models have not (yet) been 
optimized to replicate published data by tuning or fitting 
the model parameters (see SI Appendix). We simulated responses to drifting sinusoidal gratings (or pairs of grat-
ings) with various orientations, temporal frequencies, and contrasts. Responses to transient drifting gratings are 
more sustained than the responses to transient stationary gratings (124, 125). Unless otherwise stated, model 
parameters were: b0=0.2, σ=0.1, τv=1 ms, τa=2 ms, τu=1 ms. The normalization pool included all orientations (evenly 
weighted) at the center of a neuron’s RF, and included only orientations near the preferred orientation at spatial 
locations surrounding the RF. Euler’s forward method was used to compute Eqs. 1, 5, and 6 with time step 
Δt=0.1 msec. 

Recurrent amplification, effective time constant, onset transients, and oscillations 

The recurrent circuit model (expressed by Eqs. 1-6 and depicted in Fig. 2) mimics many features of the dy-
namics of V1 activity. We focus on response dynamics because the mean firing rates are given by Eqs. 7-8 which 
are already known to fit a wide range of experimental data (Fig. 1) (see SI Appendix for references).  

Simulated responses to grating stimuli with various contrasts replicated experimental observations (Fig. 3). 
Response amplitudes of simulated simple- and complex-cells were exactly equal to Eq. 8, saturating at high con-
trasts (Figs. 3a,e,f). The responses of the modulator cells increased monotonically with contrast but did not satu-
rate (Fig. 3b). Responses were amplified by 100x when contrast was low but by only ~1x when contrast was high 
(Fig. 3c), following Eq. 9. The effective time constant was correspondingly long for low contrasts but short for high 
contrasts (Fig. 3d), following Eq. 10. Consequently, high-contrast stimuli evoked rapid increases in activity, 
whereas low-contrast stimuli evoked much slower and more gradual increases in activity before achieving steady 
state (Fig. 3e). The rate at which activity decreased following stimulus offset was different from the rate at which 
activity increased after lifting off from zero following stimulus onset (Fig. 3e). These results are similar to a variety 
of electrophysiological measurements (52, 55, 63, 100, 124-129).  
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Figure 3. Recurrent amplification, effective time 
constant, onset transients, and oscillations. a. Re-
sponse amplitudes of simulated simple- and complex-
cells as a function of grating contrast. Different colors 
correspond to different orientation preferences. b. Re-
sponse amplitudes of the modulator cells: a (dark gray 
curve) and square root of u (light gray curve). c. Effec-
tive gain (i.e., the ratio of y to z2). d. Effective time 
constant. e. Response dynamics of simulated com-
plex-cells for a sequence of stimulus contrasts. Thick 
horizontal bars, each stimulus presentation was 
250 ms. Stimulus contrasts: 5, 10, 20, 50, and 100%. 
Different colors correspond to different orientation 
preferences. Open circles, steady state response am-
plitudes (from panel a). Modulator cell time constant 
τu=10 ms. f. Response dynamics of simulated com-
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sponses (v) of simulated simple-cells for τu=1 ms. Dif-
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We can derive expressions for the effective gain and the effective time constant of the responses, to generate 
experimentally-testable predictions and for fitting data. The effective gain and effective time constant both de-
crease with increasing stimulus strength. Weak stimuli are strongly amplified (large effective gain) via the recur-
rent circuit which takes a period of time (long effective time constant). Strong stimuli are weakly amplified (small 
effective gain) which happens more quickly (short effective time constant). The effective gain of each neuron in 
the circuit (the ratio of each element of y to each element of z2) depends on the input drive and the normalization 
weights: Wz2. The effective time constant depends on the effective gain (see SI Appendix) so it too depends on 
Wz2. For stimuli comprised of drifting sinusoidal gratings or pairs of gratings: 

 

where r is the amplitude of a principal cell’s response (e.g., the mean firing rate of a V1 complex-cell), g is the ef-
fective gain of that neuron’s responses, and τ is that neuron’s effective time constant (see SI Appendix for deriva-
tions). The value of ct is the contrast of a test grating (e.g., a preferred orientation grating restricted to the RF). 
The value of cm is the contrast of a mask grating that by itself does not evoke a response. The value of 0<β<1 de-
pends on the normalization weights. Eqs. 8-10 follow from Eq. 7 because the input drive is weighted sum of the 
input, i.e., zj is proportional to contrast. From Eq. 8, it is evident that responses saturate (level off) when the test 
contrast is large (≫σ), cross-orientation suppression results when a mask grating is superimposed that is orthogo-
nal to the preferred orientation, and surround suppression results when a mask grating is added in the region sur-
rounding the RF, all characteristics of visual neurophysiology (Fig. 1). From Eqs. 9-10, it is evident that these 
stimulus components also have an impact on the timing of the responses. 

By changing one of the model parameters (specifically, the intrinsic time constant of the modulator cells uj), 
simulated responses to high contrast stimuli exhibited either strong transients following stimulus onset (Fig. 3e, 
τu=10 ms) or stable, high-frequency (~40-50 Hz) oscillations (Fig. 3f, τu=1 ms). Both of these phenomena – onset 
transients (124, 125, 130) and stable oscillations (35, 87, 89-102) – have been widely reported from experimental 
observations.  

For some parameter regimes, the responses exhibit onset transients (Fig. 3e) followed by stable oscillations 
(Fig. 3f), but we have not systematically characterized the parameters that do so. The temporal filter that is used 
to simulate the responses of the LGN inputs (see SI Appendix) attenuates the onset transients. Without that tem-
poral filter, there would typically be an initial transient overshoot. 

In these simulations, the normalization weights were all equal, so the response transients and/or oscillations 
were synchronized across the population of neurons. Consequently, in spite of the complex dynamics, ratios of 
the responses across neurons with different orientation preferences were maintained throughout each stimulus 
presentation, resembling some experimental results (125), and enabling an accurate readout of the stimulus ori-
entation at any time point. With unequal (non-negative) normalization weights, response ratios evolved over time 
with non-stationary readout, analogous to other experimental results (131). Furthermore, with unequal normaliza-
tion weights, response ratios also depended on stimulus contrast so that the simulated neural responses did not 
exhibit perfectly contrast-invariant tuning curves. 

Disabling the recurrent amplification (i.e., simulating an experiment in which cortical spiking is shut down) at-
tenuated the membrane potential response amplitudes by a factor of ~10x at high contrasts (Fig. 3g,h), while 
maintaining their orientation-selectivity, resembling electrophysiological results (132-135). 

Temporal-frequency tuning and phase advance depend on contrast 

Temporal-frequency tuning of both simple- and complex-cells depends on stimulus contrast, and simple-cell 
response phase depends on contrast (6, 55, 84-86). It was previously proposed that these phenomena can be 
explained by a recurrent normalization model in which a neuron’s conductance (and consequently its intrinsic time 
constant) depends on stimulus contrast (6, 55). Here, we hypothesize instead that the effective time constant de-
pends on contrast because the amount of recurrent amplification in the circuit decreases with increasing contrast 
(Eqs. 9-10). 

Simulated temporal-frequency tuning depended systematically on contrast, responding to a broader range of 
temporal frequencies at high contrasts (Fig. 4). Figs. 4a,b plot results for a population of neurons with preferred 

r ∝
ct

2

σ 2 + ct
2 + βcm

2  , (8)

g = 1
σ 2 + ct

2 + βcm
2  , (9)

τ = τ v
1+b0
b0( ) g  , (10)
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temporal frequency ω=0 Hz, i.e., the recurrent drive in the model acted like a lowpass filter (see SI Appendix). In-
creasing stimulus contrast increased the responsivity of the simulated neurons for high temporal frequencies. 
Figs. 4d,e plot results for neurons with preferred temporal frequency ω=8 Hz, i.e., the recurrent drive in the model 
acted like a bandpass filter, matching the preferred temporal frequency of the simulated LGN inputs. In this case, 
increasing stimulus contrast increased the responsivity of the simulated neurons for both low and high temporal 
frequencies. For low contrasts, temporal-frequency tuning was bandpass with a relatively narrow bandwidth. In-
creasing stimulus contrast transformed the temporal frequency tuning from bandpass to lowpass while nearly 
doubling the high temporal-frequency cutoff. This behavior arises in the model because the effective time constant 
depends on contrast: the effective gain decreases with increasing contrast (Eq. 9) and the effective time constant 
decreases with decreasing effective gain (Eq. 10). A shorter time constant corresponds to a broader bandwidth, 
raising the high temporal-frequency cutoff for a lowpass tuning curve, and raising both the low and high cutoffs for 
a bandpass tuning curve. 

Response phase also depended systematically on contrast (Figs. 4c,f). For simulated simple-cells with low-
pass temporal-frequency tuning, response phases advanced with increasing contrast, more so for higher temporal 
frequencies (Fig. 4c). For simulations with bandpass temporal-frequency tuning, response phases shifted in op-
posite directions for temporal frequencies above and below the preferred temporal frequency (Fig. 4f).  

Results like those shown in Figs. 4a-c have been observed experimentally (6, 55, 84-86): increasing phase 
advance and increasing the high temporal-frequency cutoff with increasing contrast. The model predicts that the 
effects shown in Figs. 4d-f may be evident for neurons with narrow temporal-frequency tuning, e.g., perhaps di-
rection-selective neurons in layer 4b. 

Response dynamics depend on stimulus location 

The dynamics of V1 activity depends on whether a stimulus is placed in the center or flanks of a neuron’s re-
ceptive field (83). Activity evoked by a small grating patch extends over a cortical region of several millimeters 
(depending on stimulus size, spatial frequency, and eccentricity). Following stimulus onset, responses rise simul-
taneously over the entire active region, but reach their peak more rapidly at the center. Furthermore, the rate of 
response increase following stimulus onset is faster for higher contrasts. Following stimulus offset, responses fall 
simultaneously at all locations, and the rate of response decrease is the same for all locations and all contrasts. It 
was previously proposed that these phenomena can be explained by a recurrent normalization model in which a 
neuron’s conductance (and consequently its intrinsic time constant) depends on the spatial distribution of stimulus 
contrasts, via the normalization weights (83). Here, we hypothesize instead that the effective time constant (as 
opposed to the intrinsic time constant) of each neuron depends on normalization weights. 

Simulated responses recapitulated the experimentally-measured spatiotemporal dynamics (Fig. 5). Respons-
es lifted off simultaneously following stimulus onset, but increased at a faster rate for RF locations centered on the 
stimulus (Fig. 5, darker colors), and for higher contrasts (Fig. 5, responses to 2nd stimulus presentation at 
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t=500 ms). Recurrent amplification was weaker when the stimulus was presented closer to the center of a neu-
ron’s RF, and it was weaker for higher contrasts. Consequently, the effective gain was smaller (Eq. 9) and the 
time constant was shorter (Eq. 10) for these conditions. The effective time constant following stimulus offset was 
~60 ms, regardless of what the stimulus had been (Eqs. 9-10 with ct=cm=0, b0=0.2, σ=0.1, and τv=1 ms). 

Oscillations depend on stimulus contrast and size 

Simulated responses exhibited oscillations at high frequencies (Fig. 3f). For grating stimuli, and in the ab-
sence of noise, these oscillations were evident only at high (> 50%) contrasts, and the oscillation amplitudes 
(Fig. 6b) increased with stimulus size and contrast. Oscillation frequencies also increased with contrast. Re-
sponse amplitudes, on the other hand, exhibited surround suppression so they were non-monotonic with stimulus 
size at high contrasts (Fig. 6a, dark gray and black curves). The oscillations depended indirectly on stimulus tem-
poral frequency because the input drive to each neuron depended on stimulus temporal frequency with respect to 
the neurons’ preferred temporal frequency (Fig. 4). That is, a lower contrast grating with a temporal frequency at 
the peak of the tuning curve generated the same oscillations as a higher contrast with a temporal frequency on 
the flank of the tuning curve, such that the two stimuli evoked the same input drive amplitudes. But the oscillations 
were otherwise (beyond the dependence on input drive amplitudes) independent of stimulus temporal frequency.  

Oscillations were also evident for high contrast plaid stimuli, composed of a pair of orthogonal gratings, but 
the oscillations generated by plaids were smaller in amplitude and lower in frequency than those generated by 
gratings of the same contrast. Responses to plaids exhibited cross-orientation suppression; the response evoked 
by a 50% contrast grating with a neuron’s preferred orientation was suppressed by about a factor of 2 when an 
orthogonal mask grating (also 50% contrast) was superimposed (Fig. 6a, dashed blue curve vs. 3rd to darkest 
gray curve). Oscillation amplitudes generated by 100% contrast plaids were about midway between those gener-
ated by 50% and 100% contrast gratings (Figs. 6b, dashed blue curve). 

The oscillations depended on the strength of the 
normalization pool: specifically, the product of the nor-
malization weights and the input drive Wz2. The normal-
ization pool increased with contrast because the input 
drive z was proportional to contrast. The normalization 
pool increased with stimulus size because it comprised a 
weighted sum (with non-negative weights) over space. 
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The normalization pool was smaller for a 100% contrast plaid than a 100% contrast grating. If the normalization 
was untuned such that all of the normalization weights were 1, then the normalization pool for a 100% contrast 
plaid composed of two 50% contrast gratings (Wz2 = 0.52 + 0.52) would have been equal to that for a 70.7% con-
trast grating (Wz2 = 0.7072). The simulated oscillations differed for these two stimulus conditions (Figs. 6b, dashed 
blue curve vs. 2nd to darkest gray curve) because the normalization pool included all orientations (evenly weight-
ed) at the center of each neuron’s RF, and only orientations near the preferred orientation at surrounding loca-
tions. 

All of these results are commensurate with experimental observations that oscillation amplitudes and fre-
quencies depend systematically on stimulus contrast, size, and spatial pattern (35, 87, 89-102), and that oscilla-
tions are linked to normalization (35, 87, 88). Like the simulation results, oscillation amplitudes in V1 increase with 
stimulus contrast and size, oscillation frequencies increase with stimulus contrast, and oscillation amplitudes are 
smaller for plaids than for gratings (and even smaller for stimuli composed of multiple components, also predicted 
by the model).  

Using the current model configuration, simulated oscillation frequencies increased with stimulus size, howev-
er, unlike the experimental measurements that decreased with stimulus size (35, 87, 98). Previous models have 
tackled this problem by incorporating a mechanism that pools over large spatial regions that provides excitatory 
feedback to the principal cells (98, 136). The current family of models may, likewise, be extended by enhancing 
the recurrent drive with an additional weighted sum over a larger region of the visual field (80). We have verified 
that doing so may explain the observed decrease in oscillation frequency with increasing stimulus size. 

Phase space trajectories and bifurcation analysis 

Oscillations emerged for some parameter regimes of the model, not others, and oscillations in the gamma 
frequency band corresponded to restricted ranges of those parameter regimes. A bifurcation analysis was per-
formed to determine ranges of parameter values for which oscillations occur and to determine the corresponding 
oscillation frequencies.  

We analyzed a reduced version of the model in which each of the variables was a scalar instead of a vector 
(SI Appendix, Eq. S37), i.e., one neuron of each of the 3 types (y, a, and u) instead of a population of neurons with 
different RF centers and orientation preferences. We characterized the dynamics of the model as a function of the 
input drive (z), the intrinsic time constants of the modulator cells (τa and τu), and the input gain (b0). In this reduced 
model, the input was a step at time t=0 and maintained a constant value thereafter. 

The model exhibited distinct behaviors with boundaries (state transitions) between them (Fig. 7). When the 
input drive was small, the fixed point was stable (i.e., an attractor) and simulated responses (y) achieved steady 
state with no oscillations (Fig. 7a, green point; Fig. 7b). When the input drive was large, the fixed point was un-
stable with a stable limit cycle and responses exhibited stable oscillations (Fig. 7a, red point and dotted gray 
curves; Fig. 7d). For a middle range of input drives, the fixed point was a spiral attractor and responses exhibited 
oscillations transiently before achieving steady state (Fig. 7a, yellow point; Fig. 7c). The steady state responses 
increased monotonically with input drive until the bifurcation, at which point the responses exhibited stable oscilla-
tions around the fixed point and no longer achieved a steady state (Fig. 7a, intersection of solid black, dashed 
black, and dotted gray curves). 

The input drive that induced a bifurcation depended systematically on model parameters (Figs. 7e). Each 
panel of Fig. 7e depicts a 2D bifurcation diagram, i.e., a 2D slice through the space of model parameters. Each 
panel indicates the input drives for which bifurcations occurred (solid black curves) for different values of τu, and 
the different panels correspond to different values of τv and τa. Also indicated are the oscillation frequencies (gray 
scale) when the model exhibited stable oscillations or zero (white) otherwise. 

Variants of the model 

The dynamical system expressed by Eqs. 1-6 is but one example of a family of circuit models of normaliza-
tion, each of which implements normalization via recurrent amplification (see SI Appendix for several examples of 
alternative models from this family). Some of these various models exhibit qualitatively different dynamics such 
that measurements of the dynamics of neural activity in V1 may be used to distinguish between the alternatives. 
Each of the various models in this family imply different circuits, such that they may be distinguished experimen-
tally using cell-type specific indicators. 

For example, one of these variants can be ruled out as a plausible model of V1 activity because it does not 
exhibit dynamics commensurate with V1 activity. This variant (see SI Appendix, Eq. S35) is a simpler circuit with 
only two types of neurons, a principal cell and a single type of modulator cell instead of two. The circuit has a sta-
ble fixed point such that the primary neurons achieve steady state responses given by the normalization equation 
(Eqs. 7-8). We have been able to prove mathematically, over a very broad range of parameter values, that the 
fixed point is stable over the full range of input drives. That is, there is no parameter regime in which the respons-
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es exhibit stable oscillations (see SI Appendix). 

An intuition for why two modulator cells are needed relies on the observation that the membrane equation 
acts as an exponential lowpass filter. A single exponential lowpass filter imposes a phase delay. A cascade of two 
lowpass filters in sequence also imposes a time delay (the peak of the impulse response function is delayed). This 
time delay suffices for oscillations to emerge (see SI Appendix, compare the system of Eq. S35 which does not 
oscillate with the system of Eq. S36 which does oscillate when the input drive is strong enough). 

Discussion 
We developed a family of circuit models of normalization. The key idea is that normalization operates via re-

current amplification, i.e., amplifying weak inputs more than strong inputs (103-106). The modulator cells deter-
mine the recurrent gain, thereby controlling the amount of recurrent amplification. Each of the models in this fami-
ly exhibits output responses with a fixed point that follows the normalization equation (Eqs. 7-8) exactly, for arbi-
trary (non-negative) normalization weights. The normalization equation is already known to fit a wide range of ex-
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perimental data (see SI Appendix for references).  

This family of models mimics experimental observations of V1 dynamics linked to normalization: onset tran-
sients, the contrast dependence of the rate of response increase following stimulus onset and response decrease 
following stimulus offset (Figs. 3 and 5), and the contrast dependence of temporal-frequency tuning and phase 
advance (Fig. 4). Furthermore, for some of the models in this family, the fixed point can become unstable for 
large, high-contrast narrow band stimuli like sinusoidal gratings. Under these circumstances, the circuit achieves 
a dynamic equilibrium (i.e., a limit cycle) and responses exhibit oscillations (see also Ref. 88). The oscillations 
emerge because of the recurrent circuitry, depending on the strength of the normalization pool (the product of the 
normalization weights and the corresponding input drive), thereby providing us with an explanation for why gam-
ma oscillations are linked to normalization (35, 87, 88). In spite of the complex dynamics, ratios of the simulated 
responses across neurons with different stimulus preferences may be maintained throughout each stimulus pre-
sentation, enabling an accurate readout of stimulus orientation (or other stimulus parameters) at any time point 
following the onset of the responses. 

The recurrent circuit models presented here are examples of a class of circuit models called Oscillatory Re-
current Gated Neural Integrator Circuits (ORGaNICs) (80, 123). ORGaNICs are a generalization of and a bio-
physically-plausible implementation of Long Short Term Memory units (LSTMs), a class of artificial recurrent neur-
al networks (137). LSTMs have been applied to a number of machine learning applications including video sum-
marization, language modeling, translation, and speech recognition (e.g., 138, 139-141). By virtue of being a gen-
eralization of LSTMs, ORGaNICs inherit all of the capabilities LTSMs. Consequently, the theoretical framework 
proposed here actually works – it is capable of performing useful computations that solve real-world problems. 
ORGaNICs may also be used to explain key aspects of working memory and motor control. ORGaNICs may be 
used to explain the complex dynamics of delay-period activity during a working memory task, how information is 
manipulated (as well as maintained) during a delay period, and how that information is read out from the dynami-
cally varying responses at any point in time in spite of the complex dynamics (80). When applied to motor sys-
tems, these circuits convert spatial patterns of premotor activity to temporal profiles of motor control activity: dif-
ferent spatial patterns of premotor activity evoke different motor control dynamics (80). ORGaNICs are also capa-
ble of prediction over time (123). The modulators in ORGaNICs perform multiple functions including normalization, 
controlling maintenance of a representation over time, controlling pattern generators, gated integration/updating, 
time warping, reset, controlling the effective time constant, controlling the relative contributions of bottom-up ver-
sus top-down connections, and weighting the reliability of sensory evidence (likelihood) and internal model (prior, 
expectation) for inference and multisensory integration (80, 123, 142). 

Here, we demonstrated that this same family of circuit models can simulate the dynamics of neural activity in 
V1. Consequently, this theoretical framework is applicable to diverse cognitive processes and neural systems, and 
we can use V1 as a model system for understanding the neural computations and circuits in many brain areas. 

Gamma oscillations 

Narrow-band gamma oscillations have been proposed to play a functional role in stimulus feature binding 
(143-146), attention (147-150), and/or synchronizing neuronal activity to enhance signal transmission and com-
munication between brain areas (146, 149, 151-158). These speculations have been met with considerable skep-
ticism (90, 93, 95, 98, 99, 159-163), in part because oscillation amplitude depends strongly on stimulus conditions 
(35, 87, 89-102), incommensurate with the perception of those stimulus conditions. 

Gamma oscillations in the current family of models emerge from the nonlinear dynamics of the recurrent cir-
cuit. Synchronized spiking was not required to generate gamma oscillations. Gamma oscillations were generated 
for a restricted subset of stimulus conditions, depending on the strength of the normalization pool. Consequently, 
oscillation amplitude was strongest for large, high contrast gratings, and weaker (or non-existent) for other spatial 
patterns and low contrasts, similar to experimental results (35, 87, 89-102). 

Long wavelength stimuli have been found to generate particularly large amplitude gamma oscillations (101, 
164). It should be straightforward to extend the current family of models to account for these results by including 
red-green and blue-yellow color-opponent channels (165-167) in the LGN input, and by setting the normalization 
weights to be large for the red-green channel. 

The current theoretical framework is most similar to bifurcation-based models of gamma oscillations (168, 
169), as opposed to the so-called pyramidal-interneuron gamma (PING) and interneuron gamma (ING) mecha-
nisms for producing gamma oscillations (136, 162, 170-180). ING models generate oscillations with an intercon-
nected network of inhibitory neurons (although some of these models rely on weak excitatory interconnections to 
synchronize the oscillations across multiple subpopulations of inhibitory neurons). In PING models, a volley of 
activity in the excitatory cells recruits a slightly delayed volley of activity in the inhibitory cells, which inhibits the 
excitatory cells for a gamma cycle, after which they recover. In both PING and ING models, oscillations are gen-
erated by neural circuits that behave as intrinsic oscillators. In bifurcation-based models (including ours), unlike 
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PING and ING models, oscillations emerge as drive to the excitatory population increases so that a steady state 
loses stability via Hopf bifurcation. The appearance of oscillations critically depends on the relative timescales of 
excitation and inhibition. In both of the previous bifurcation-based models (168, 169), oscillation frequencies de-
crease with slower inhibition. In our models, decreasing the time constants of the modulatory cells likewise results 
in slower oscillations, but only up to a point. If the modulator cell time constants are either too slow or too fast, 
then bifurcations and oscillations are eliminated altogether (Fig. 7e). Analogous to PING models, we observed 
that the simulated oscillatory activity of modulator cells lagged (~90° phase) behind the activity of principal cells. 
Unlike any of previous models of gamma oscillations, we designed the current family of models to perform a func-
tion (normalization), and gamma oscillations emerged as a by-product. 

Failures and extensions 

Stable oscillations were observed in the simulation results for input drives (i.e., contrasts) above a threshold 
level (above the bifurcation), but narrow-band gamma power has been observed experimentally to change gradu-
ally with continuous parametric variation in stimulus parameters (87, 90, 97, 98). Weaker inputs evoked transient 
oscillations (spiral attractor dynamics, Fig. 7) after stimulus onset in our model simulations, and such transient 
oscillations could be confounded with stable oscillations in some experimental results (e.g., such transient oscilla-
tions may follow saccades). Furthermore, all the simulation results reported above were performed in the absence 
of noise. With noise added to the input drive, we observed stochastic resonance in the gamma frequency range, 
even for weak inputs below the bifurcation (Fig. S2, see SI Appendix). This suggests that gamma-band activity 
may be induced by broadband noise in neural activity (136, 162), because the noise spectrum is shaped by recur-
rent normalization to exhibit a resonant peak in the gamma-frequency range.  

The effective time constants of the principal cells in our simulations ranged from 6 – 60 ms, which is within a 
reasonable range for in vivo cortical neurons, but the values of the intrinsic time constants (1-2 ms) were extreme-
ly short. Increasing the values of the time constant parameters would make the responses sluggish. For example, 
setting τv=10 ms (while holding the other parameters unchanged) would mean that the effective time constant (the 
integration time) for low contrast stimuli would be as long as 600 ms, which is unrealistic. Increasing the time con-
stants would also decrease the oscillation frequencies (Fig. 7). For example, setting τv=10 ms (while holding the 
other parameters unchanged) would generate ~15 Hz oscillations. This is a challenge for any model that relies 
heavily on recurrent amplification because the recurrence takes time (multiples of the time constant). It may help 
for some of the normalization to be feedforward and/or precortical (see Mechanisms), so that the cortical circuit 
need not responsible for all of the amplification. Furthermore, increasing the intrinsic time constant could be com-
pensated for by increasing the value of the b0 parameter so as to leave the effective time constant unchanged 
(Eq. 10). Doing so, however, would partially undermine the result illustrated in Fig. 3h, that membrane potential 
response amplitudes are reduced by disabling the recurrent amplification; this result would still be evident at low 
contrasts (because of the half-squaring nonlinearity) but not at high contrasts. 

Attention is associated with both increases in the gain of visually-evoked responses (e.g., 18, 21, 23) and in-
creases in gamma oscillations (35, 147-150, 155, 160, 181-185). The constant input gain parameter b0 may be 
replaced by a variable vector b in Eq. 1 (while keeping the constant b0 in Eq. 6), in combination with normaliza-
tion, to model the effects of attention on sensory responses. The elements of b determine the relative attentional 
gain for each neuron in the circuit (i.e., with different RF centers and different orientation preferences). Extending 
the model in this way would yield steady state output responses that are already known to fit experimental mea-
surements of response gain changes with attention (e.g., 23) (see SI Appendix for additional references). This 
change to the model would also affect the dynamics of the responses and may be used to explain the ostensible 
link between attention and gamma oscillations (35, 160). 

Cross-orientation suppression is faster than surround suppression (63, 67). The current model may be ex-
tended to explain these results by incorporating an additional delay for contributions to the normalization pool 
from surrounding spatial locations. We hypothesize that a single computational process can explain both forms of 
suppression; it may very well be that different circuits and/or cell types are involved but that both contribute to the 
same computation (albeit with different time constants or delays). 

The latency (delay) of response onset is stimulus dependent (186) and is generally longer than offset latency 
(128). The current family of models cannot, however, be falsified by measurements of response latencies. Latency 
(delay) is different from the effective time constant (sluggishness). Latency may depend mostly on precortical pro-
cessing and action potential conduction delays. For the simulations reported here, we assumed a particular form 
for the precortical temporal filter and negligible conduction delays. But the precortical filter and conduction delays 
could be changed without sacrificing the core idea that normalization arises from recurrent amplification, as ex-
pressed by Eqs. 1-6. 

Mechanisms 

We have presented a computational theory for what computations are performed by neural circuits in V1, not 
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how they are implemented. But we can speculate about the underlying mechanisms:  

• The circuit (Fig. 2) comprises an excitatory principal cell (yj, possibly layer 5 pyramidal cell), an inhibitory 
modulator cell (aj, presumably one or more of the inhibitory interneuron cell types) that may act via shunting, 
and another excitatory cell type (uj, possibly layer 2-3 pyramidal cell) that makes local recurrent connections. 
Each type of neuron performs a different dendritic computation (Eqs. 1, 5, and 6). 

• The circuit also includes inhibitory interneurons (Fig. 2, small circles) to invert the sign of the LGN inputs 
and principal cells, corresponding to negative weights in the synaptic weight matrices Wzx and Wŷy. These in-
hibitory neurons need not be 1-to-1 with their excitatory inputs, as drawn in the figure. Rather, each may com-
pute a weighted sum of their inputs to contribute the terms in Eqs. 3-4 with negative weights. 

• The responses of the principal cells (Eq. 1) may be implemented with a simplified biophysical (equivalent 
electrical circuit) model of a pyramidal cell (80, 123), in which the two terms of Eq. 1 are computed in separate 
dendritic compartments. The conductance of the first compartment determines the input gain and the synaptic 
current in that compartment is the input drive. The conductance and synaptic current in the second compart-
ment correspond, respectively, to the recurrent gain and recurrent drive. The conductances and synaptic cur-
rents in each compartment may be controlled independently (6). 

• The input drive is computed with positive and negative synaptic weights, i.e., both feedforward excitation 
and feedforward inhibition (Fig. 2, blue solid and dashed lines, respectively).  

• The recurrent drive also involves both excitation and inhibition (Fig. 2, green solid and dashed lines, re-
spectively; SI Appendix, Eq. S7), presumably via lateral connections within V1. These excitatory and inhibitory 
recurrent signals are both amplified by an amount that is controlled by the modulator cells, consistent with the 
experimental observation that surround suppression involves a decrease in both recurrent excitatory and re-
current inhibitory conductances (114).  

• Some principal cells may share the same modulators (e.g., principal cells with the same RF and orienta-
tion preference but with different temporal phases; see SI Appendix for details), suggesting a much larger 
number of principal cells than modulator cells.  

• The squaring nonlinearity (Eq. 2) may be approximated with a high threshold in combination with neural 
noise (187-189).  

• The square roots in Eqs. 4-5 may be approximated by synaptic depression, which acts as a compressive 
nonlinearity because the probability of neurotransmitter release is lower at higher firing rates. Alternatively, the 
square roots in Eqs. 4-5 may be replaced by adding another cell type in the circuit (see SI Appendix, Eq. 
S39).  

• The modulator cells with firing rates aj may act via shunting (80, 123), i.e., increasing conductance by a 
balanced increase in excitation and inhibition without changing the total synaptic current (6, 190). Such a con-
ductance increase would, of course, further decrease the intrinsic time constant. Other mechanisms for multi-
plying/dividing neural signals may be substituted for shunting.  

• The modulator cells may correspond to V1 parvalbumin-expressing (PV) inhibitory interneurons (191) and/
or somatostatin-expressing (SOM) inhibitory neurons (192). The modulator cell responses may depend in part 
on loops through higher visual cortical areas (193-196) and/or thalamocortical loops (197-204). The modulator 
cells are expected to have large RFs and broad orientation-selectivity (reflecting properties of the normaliza-
tion pool), consistent with the response properties of SOM and PV neurons, respectively.  

• Modulator cell responses aj depend on a product of aj with the square root of uj (Eq. 5); this may be com-
puted with a synaptic current from uj and an intrinsic voltage-sensitive ion channel (205) such that conduc-
tance is inversely proportional to membrane depolarization aj (noting that firing rates aj are proportional to 
membrane depolarization).  

• Eq. 6 comprises a summation over wjk yk uk, each term of which may be computed in separate dendritic 
compartments.  

Some of the effects of cross-orientation suppression may be due to feedforward (not recurrent) mechanisms, 
and the simulations here incorrectly ignored the fact that some of the normalization is inherited from the LGN in-
puts. Contrast saturation and rectification in LGN cells can largely account for the response suppression mea-
sured in cat primary visual cortex (206), and the responses of V1 neurons are suppressed by high temporal fre-
quency stimuli that do not drive cortical responses (207). Consequently, cross-orientation suppression has been 
attributed to either precortical mechanisms (206), synaptic depression at the thalamocortical synapse (113), or 
fast feedforward inhibition via local interneurons within V1 (207), whereas feedback from higher visual cortical 
areas has been implicated in surround suppression (193-196). Nevertheless, few studies have addressed this 
question in macaque (63), and some evidence suggests that cortical circuits make an important contribution to 
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cross-orientation suppression (43). As noted above, thalamocortical loops may contribute to the computation of 
the modulator cell responses, along with lateral connections within V1 and feedback connections from higher vis-
ual cortical areas. Regardless, there is consensus that some of the effects of normalization are computed with 
cortical circuits. 

Comparison with previous models  

The current theoretical framework is superior to both the original recurrent normalization model and alterna-
tive recurrent models of normalization (4-6, 39, 55, 113-117). First, none of the previous models converge exactly 
to the normalization equation (Eqs. 7-8) for arbitrary (non-negative) normalization weights. Although they may 
approximate weighted normalization, the extent to which the previous recurrent models fit the full range of exper-
imental data is unknown. The current family of recurrent circuit models has a mathematically-tractable solution 
that equals weighted normalization. This has practical consequences, enabling us to derive closed-form expres-
sions (Eqs. 7-10; see also SI Appendix) for making experimentally-testable predictions and for fitting data. Sec-
ond, the current theoretical framework, unlike previous models, mimics the dynamics of V1 activity including slow 
onsets for low contrast stimuli, rapid onsets for high contrasts, and gamma oscillations for large, high-contrast, 
narrow-band stimuli. Third, most of the previous models do not rely on recurrent amplification to achieve normal-
ization. Fourth, the current theoretical framework is applicable to diverse cognitive processes and neural systems 
(e.g., working memory and motor control), enabling us to use V1 as a model system for understanding the neural 
computations and circuits in many brain areas. Fifth, by virtue of being a generalization of LSTMs, the current 
theoretical framework can solve relatively sophisticated tasks. 

The current family of models is similar in some respects to the inhibition stabilized network (ISN) (114) and 
the stabilized supralinear network (SSN) (116), but there are also crucial differences. All of these models include 
recurrent excitation that would be unstable if inhibition was absent or held fixed. All of them also include inhibitory 
stabilization, but the stabilizing inhibition in the current model is modulatory (multiplicative), unlike ISN and SSN in 
which inhibition is subtractive. Inhibitory stabilization, by itself, does not explain the phenomena associated with 
normalization. A linear recurrent model, that does not exhibit any of the nonlinear effects associated with normal-
ization, may be stabilized by inhibition, i.e., such that it would be unstable if inhibition were removed or held fixed 
(116, 208). Normalization phenomena arise in the SSN model from a combination of amplification and inhibitory 
stabilization. SSN (116) and also earlier models (4-6, 55), amplify weak inputs more than strong inputs due to a 
power law relationship (e.g., half-squaring) between membrane depolarization and firing rate (187-189, 209). Re-
moving the power function from SSN yields a linear model that is qualitatively different, in which responses in-
crease in proportion to contrast (116). The current family of models also includes half-squaring, but it is not critical 
for normalization. Removing the squaring yields qualitatively similar phenomena; for example, the contrast-re-
sponse function would be proportional to c/(c+σ) rather than c2/(c2+σ2). Instead normalization in the current models 
relies on recurrent amplification via the product of recurrent gain and recurrent drive. 

Predictions 

The real value of this family of recurrent circuit models of normalization rests on whether it can push the field 
forward by making quantitative and testable predictions, leading to new experiments that may reveal novel phe-
nomena. Some of these predictions are as follows. 

• Our theoretical framework predicts that the effective time constant is contrast dependent (Eqs. 9-10); high 
contrast stimuli are integrated over much briefer periods of time (by a factor of ~10x) than low contrast stimuli. 
A functional advantage of doing so is to increase the signal-to-noise ratio (SNR) of responses evoked by a low 
contrast stimulus. Low contrasts evoke weak input drives with correspondingly low SNRs. Integrating these 
inputs over a long period of time (i.e., with a lowpass filter or local average) increases the SNR of the neural 
representation. This hypothesized difference in dynamics could be tested either electrophysiologically or psy-
chophysically.  

• We hypothesize a link between effective gain and effective time constant: effective time constant should 
increase with the square root of effective gain (Eq. 10). This is analogous to the previous shunting inhibition 
model of normalization (6, 55), but the prediction of that model was that both the gain and time constant 
change with intrinsic conductance, whereas the effective gain and time constant in the current family of mod-
els is a network effect, emerging from the recurrent amplification in the circuit. This hypothesized link may be 
tested either electrophysiologically or using psychophysical/behavioral methods (67). 

• The link between effective gain and effective time constant is further constrained by the value of the input 
gain parameter b0 (Eq. 10). The input gain of neurons in layer 4C (the input layer) may be estimated from in-
tracellular measurements of membrane potential fluctuations with and without disabling cortical spikes (e.g., 
via optogenetics) as simulated in Figs. 3g,h. The input gain may also be manipulated with attention (e.g., 23). 

• We predict a link between the intrinsic time constants and oscillation frequencies (Fig. 7e). In our simula-
tions, oscillation frequency depended systematically on the values of the intrinsic time constants (τv, τa, and τu), 

15



Dynamic Normalization          May 30, 2020

and the input gain (b0). An experimental test of this prediction would involve manipulating the intrinsic time 
constant (i.e., the conductance) of a particular cell type in the circuit. 

• The effects shown in Figs. 4d-f (increasing responsivity of both low and high temporal-frequencies with 
increasing contrast, and shifting response phases in opposite directions for temporal frequencies above and 
below the preferred temporal frequency) may be evident for neurons with narrow temporal-frequency tuning, 
e.g., perhaps direction-selective neurons in layer 4b. 
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where x0(t) is the input and x(t) is the filter output. The value of λ determines the effective time constant, 
and the value of ω determines the preferred temporal frequency. For complex-valued inputs: 

 (S2) 

The temporal filter was cascaded, analogous to cascading a standard exponential lowpass filter. 
The response of the nth filter in the cascade was: 

 (S3) 

for n=1 to N (i.e., xN corresponds to the LGN responses). The response of the first filter in the cascade 
was: 

 (S4) 

where x0(t) was the input stimulus. The parameter values for the prefilters were: N=2; λ=0.04; τx=1 ms; 
ω=8 Hz (i.e., matching the preferred temporal frequency of the simulated cortical neurons). 
Input drive: spatial RFs 

Simulated simple-cell responses depended on a weighted sum of the LGN inputs. The rows of the 
encoding matrix Wzx in Eq. 1 were the spatial RFs of the simple-cells (Figs. S1b,c,d); Wzx was an NxM 
matrix of weights where N is the number of simple-cells and M is the number of LGN inputs. The LGN 
inputs comprise pairs of ON- and OFF-center RFs (Fig. 2, center-surround weights), each halfwave 
rectified, and the input drive comprises differences between each such pair of LGN inputs (Fig. 2, solid 
and dashed blue lines), so that the input drive is a linear sum of the underlying (unrectified) LGN re-
sponses. 

Spatial filters were based on the steerable pyramid, a subband image transform that decomposes 
an image into orientation and spatial frequency (SF) channels (2). The steerable pyramid simulated the 
responses of a large number of linear RFs, each of which computed a weighted sum of the stimulus 
image; the weights determined the orientation and SF tuning. There were 12 orientation tuning curves 
(Fig. S1b). The RFs were defined so that they covered all orientations, SFs, and spatial locations even-
ly, i.e., the sum of the squares was exactly equal to one (Fig. S1b,c). For each SF and orientation, 
there were 4 spatial phases and 2 temporal prefilters. For each orientation and SF, there were RFs with 
four different phases, like odd- and even-phase Gabor filters along with their anti-phase complements. 
Each of these 4 spatial phases were combined with each of the two temporal prefilters, yielding simple-
cells with 4 temporal phases. The responses of these space-time separable linear filters provided the 
input drives to the population of simple-cells. The end result was that V1 simple-cell responses be-
haved like spatiotemporal linear filters with various spatial RF locations, orientation preferences, and 
different temporal phases, that were half-squared (halfwave rectified and squared) (3) and normalized. 
The responses of a second population of direction-selective simple-cells may be computed as a 
weighted sum of these space-time separable simple-cells (4). 

V1 complex-cell responses were simulated by summing the different temporal phases of the simple-
cell responses. Because the response of each simple-cell was half-squared, the sum computed what 
has been called an “energy” response (3, 4). The energy response depended on the local spectral en-
ergy within a spatial region of the stimulus, for a particular orientation and SF. Because the simple-cell 
responses were normalized, the complex-cells behaved like normalized, spatiotemporal energy filters. 

Because the full set of SF and orientation channels was expensive to compute, the simulation re-
sults were instead computed using a reduced set of RFs. For Figs. 3-4, we simulated a collection of 
neurons with 12 different orientation orientation preferences, but all with the same SF preference and 
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the same RF center. For Figs. 5-6, we simulated a 
collection of neurons with the same 12 orientation 
tuning curves, covering the horizontal meridian of 
the visual field from -60° to 60° eccentricity. 

The orientation tuning curves for the RFs in the 
steerable pyramid are each one cycle of a raised 
cosine: 

 

 (S5) 
where θ is stimulus orientation (in units of degrees), θ j is the preferred preferred orientation of the jth 
neuron, ψj is the tuning curve, and the proportionality constant was chosen such that the sum of the 
squares of the tuning curves was equal to 1. This corresponds to an orientation bandwidth of 22° (half 
width at half height), given that firing rate responses were half-squared (Eq. 2). 
Input drive: RF size 

The spatial RFs covered the visual field from -60° to 60° eccentricity, and tiled the visual field so 
that the sum of the squares of the RFs was equal to 1 (Fig. S1c). RF size increased with eccentricity 
(Figs. S1d), approximating measurements of V1 RF size and cortical magnification (5-9).  

RF size increased with eccentricity (Fig. S1d), approximating measurements of V1 RF size and cor-
tical magnification (5-9). Specifically, we warped visual space: 

 (S6) 

where 0 < ξ′ < 1 is the eccentricity in the visual field after warping and where 0 < ξ < 1 is the eccentricity 
before warping. Both ξ  and ξ′ are each unit-less quantities, expressed as a proportion of the field of 
view. To convert to eccentricity in units of degrees of visual angle, we multiplied by the field of view, 
e.g., 60 ξ was eccentricity in units of degrees of visual angle when the field of view was ±60° eccentrici-
ty.  

ψ j θ( )∝ 1
2 cos π

60 θ −θ j( )( )+1( )  ,
for −π ≤ π

60 θ −θ j( ) ≤ π ,  and ψ j θ( ) = 0 otherwise,

′ξ = λ ξ
3.5
+ 1− λ( )ξ  ,

3

Figure S1. Temporal prefilters, receptive 
fields, and suppressive fields. a. Temporal pre-
filters. Blue and orange curves, recursive quad-
rature temporal filters. Black curve, amplitude 
(square-root of sum of squares) of the quadrature 
pair. b. Orientation tuning curves. Different colors 
correspond to different orientation preferences. 
Black curve, sum of squares of tuning curves. c. 
Receptive fields. Different colors correspond to 
different RF centers. Black curve, sum of squares 
of RFs. d. Receptive field size increases with ec-
centricity. e. Suppressive fields. Different curves 
correspond to different receptive fields. Each 
suppressive field (except those near ±60° eccen-
tricity at the edge of the field of view) is about 4x 
larger than the corresponding receptive field.
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RFs size was uniform in the unwarped space, with raised cosine profiles (similar to Eq. S5) so as to 
cover all spatial locations evenly. RF sizes were warped along with the warping of visual space  
(Fig. S1c,d). 
Recurrent drive 

Simulated simple-cell responses y also depended on a recurrent drive ŷ, computed as a weighted 
sum of the square-root of the responses y. The recurrent weight matrix Wŷy was an NxN matrix. An ex-
ample of a simple-cell’s recurrent drive equals the difference between the square root of its own firing 
rate and the square root of the response of another simple-cell with a complementary RF, i.e., with op-
posite ON- and OFF- subregions (Fig. 2, solid and dashed green lines). This difference reconstructs 
the underlying (unrectified) membrane potential fluctuations ŷj = vj, such that the input drive zj is lowpass 
filtered by Eq. 1 to yield the membrane potential vj. The effective time constant of the lowpass filter de-
pends on the intrinsic time constant τv and the modulator responses aj.  

We used an alternative recurrent weight matrix that combined the responses of simple-cells with all 
4 temporal phases (anti-phase and quadrature phase). The recurrent drive acted as a bandpass filter 
on the input drive, with any desired preferred temporal frequency ω, and with a bandwidth that depends 
on the effective time constant of the circuit. Specifically: 

 (S7) 

The subscript φ in ŷj,φ is the temporal phase of the simple-cell responses. Simple-cells with 90° (quad-
rature phase) and 180° (anti-phase) phase relationships are adjacent to one another in V1 and the anti-
phase pairs exhibit strong mutual inhibition (10). 

The recurrent drive ŷj is a prediction over time of the principal cell responses (11, 12). Information 
processing in the brain is dynamic; dynamic and predictive processing is needed to control behavior in 
sync with or in advance of changes in the environment. Without prediction, behavioral responses to en-
vironmental events will always be too late because of the lag or latency in sensory and motor process-
ing. Prediction is a key component of theories of motor control and in explanations of how an organism 
discounts sensory input caused by its own behavior (e.g., 13, 14, 15). Prediction has also been hypoth-
esized to be essential in sensory and perceptual processing (e.g., 16, 17, 18). A further generalization 
of Eq. S7 computes a weighted sum of neural responses with different preferred temporal frequencies 
ω to better predict each neuron’s response over time.  
Normalization weights 

The normalization pool included all orientations (evenly weighted) at the center of a neuron’s RF, 
and included only orientations near the preferred orientation at spatial locations surrounding the RF. 
The spatial size of the normalization pool was about 4x larger than the RF (Fig. S1e), except where it 
was limited in size near the edge of the field of view (near ±60° eccentricity). The normalization weight 
matrix W was scaled such that the effective gain was g=1 for a full-contrast, full-field grating with a neu-
ron’s preferred spatiotemporal frequency and orientation. 

ŷ j.0 = y j ,0 − y j ,180( )− 2πωτ v y j ,90 − y j ,270( )  ,
ŷ j.180 = y j ,180 − y j ,0( )− 2πωτ v y j ,270 − y j ,90( )  ,
ŷ j.90 = 2πωτ v y j ,0 − y j ,180( )+ y j ,90 − y j ,270( )  ,
ŷ j.270 = 2πωτ v y j ,180 − y j ,0( )+ y j ,270 − y j ,90( )  .
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Derivations 
Notation conventions 

 

Fixed point 
To derive the fixed point (Eq. 7) of the dynamical system given by Eqs. 1-6: 

 (S8) 

Here, we have imposed three additional assumptions: 1) The constraint on uj may be interpreted to 
mean that this population of neurons has a small spontaneous firing rate, even when the membrane 
potential is hyperpolarized. 2) The recurrent drive equals the difference between the square root of its 
own firing rate and the square root of the response of another simple-cell with a complementary RF 
(i.e., with opposite ON- and OFF- subregions). 3) The normalization weights are identical for contribu-
tions to the normalization pool from complementary RFs. 

x2 :  element-by-element squaring

x :  element-by-element positive square root
x
y

:  element-by-element division

D(x): diagonal matrix with x  along diagonal
1: vector of 1's

y+ = x⎢⎣ ⎥⎦
2
= max(x,0)( )2

y− = −x⎢⎣ ⎥⎦
2
= max(−x,0)( )2

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 1
1+a j( ) y j

+ − y j
−( )  ,

τ a
da j
dt

= −aj + uj + aj u j  ,

τ u
du j
dt

= −uj + wjk yk
+ + yk

−( )uk
k
∑ + σb0

1+b0( )2
 ,

y j
+ = v j⎢⎣ ⎥⎦

2
 and y j

− = −v j⎢⎣ ⎥⎦
2
 ,

i.e., v j = y j
+ − y j

−( )  and v j
2 = y j

+ + y j
−( )  ,

b0 > 0 is a constant,

σ > 0 is a constant,
wjk > 0 are the elements of the normalization weight matrix W,

the values of uj  are subject to the constraint that uj ≥
σb0
1+b0( )2

> 0 .
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Set the derivatives in Eq. S8 equal to 0 and simplify: 

 (S9) 

 (S10) 

 (S11) 

dv
dt

= 0 :

v j =
b0

1+b0( ) z j + 1
1+a j( ) y j

+ − y j
−( )  ,

v j =
b0

1+b0( ) z j + 1
1+a j( )v j  ,

a j
1+a j( )v j = b0

1+b0( ) z j  ,
a j

1+a j( )2

v j
2 = b0

1+b0( )2
z j

2  ,

D v2( ) a
1+a( )2

= b0
1+b0( )2

z2  .

du
dt

= 0 :

uj = wjk yk
+ + yk

−( )uk
k
∑ + σb0

1+b0( )2
 ,

uj = wjkvk
2

k
∑ uk +

σb0
1+b0( )2

 ,

u =WD v2( )u+ σb0
1+b0( )2

 ,

I −WD v2( )( )u = σb0
1+b0( )2

1 ,

u = σb0
1+b0( )2

I −WD v2( )( )−1
1 .

da
dt

= 0 :

aj = uj + aj u j  ,

aj = 1+ aj( ) uj  ,
a j

1+a j( )2

= uj  ,

a
1+a( )2

= u .
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Combine the last line of Eq. S10 with the last line of Eq. S11: 

 (S12) 

Substitute from the last line of Eq. S9 and simplify: 

 (S13) 

Effective gain 
To derive the an expression for the effective gain, we begin with the last line of Eq. S13. The effec-

tive gain is the ratio of each element of y to each element of z2: 

 (S14) 

Because the normalization weights W are all positive: 

 (S15) 

The expression for the effective gain (Eq. S14) simplifies for stimuli comprised of sinusoidal gratings, 
because the normalization weight matrix W was scaled such that the effective gain g = 1 for a full-con-
trast, full-field grating with a neuron’s preferred spatiotemporal frequency and orientation. For a single 
sinusoidal grating Wz2 is proportional to the squared contrast c2. For sums of gratings, Wz2 is propor-
tional to a weighted sum of the squared contrasts (e.g., as expressed by Eq. 9 for a test grating of pre-

a
1+a( )2

= σb0
1+b0( )2

I −WD v2( )( )−1
1 ,

I −WD v2( )( ) a
1+a( )2

= σb0
1+b0( )2

1 ,

I −WD v2( )( ) a
1+a( )2

= σb0
1+b0( )2

D v2( )−1
v2  ,

D v2( ) I −WD v2( )( ) a
1+a( )2

= σb0
1+b0( )2

v2  ,

D v2( )− D v2( )WD v2( )⎡
⎣

⎤
⎦

a
1+a( )2

= σb0
1+b0( )2

v2  ,

I − D v2( )W( )D v2( ) a
1+a( )2

= σb0
1+b0( )2

v2  .

σb0
1+b0( )2

v2 = I − D v2( )W( ) b0
1+b0( )2

z2  ,

σ 2v2 = I − D v2( )W( )z2  ,

σ 2v2 = z2 − D v2( )Wz2  ,

σ 2v2 = z2 − D(Wz2 )v2  ,
σ 2v2 + D(Wz2 )v2 = z2  ,

σ 2I + D(Wz2 )( )v2 = z2  ,

D σ 2 +Wz2( )v2 = z2  ,

v2 = D σ 2 +Wz2( )( )−1
z2  ,

v2 = z2

σ 2 +Wz2  ,

y+ =
z⎢⎣ ⎥⎦

2

σ 2 +Wz2  and y− =
−z⎢⎣ ⎥⎦

2

σ 2 +Wz2  .

g = 1
σ 2 +Wz2  .

g < gmax  where gmax =
1
σ 2  .
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ferred orientation restricted to the RF and a mask grating that by itself does not evoke a response). 
Effective time constant 

To derive an expression for effective time constant, we begin by rewriting the first line of Eq. S8: 

 (S16) 

Substitute from the last line of Eq. S11: 

 (S17) 

To express the effective time constant in terms of the effective gain, we first derive another expres-
sion for the effective gain by combining the fixed point from Eq. S9 with the last line of Eq. S11: 

 (S18) 

I.e., 

 (S19) 

Combine Eqs. S17 and S19: 

 (S20) 

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 1
1+a j( )v j  ,

τ v
dv j
dt

= −
a j

1+a j( )v j + b0
1+b0( ) z j  ,

τ j
dv j
dt

= −v j +
b0

1+b0( ) 1+a j
a j( ) z j  ,

where τ j =
1+a j
a j( )τ v  .

τ =
τ v
u

y = 1+a
a( )2 b0

1+b0( )
2
z2  ,

g = 1+a
a( )2 b0

1+b0( )
2
 ,

g = 1
u( ) b0

1+b0( )
2
 .

1
u
= 1+b0

b0( ) g  .

τ = τ v
1+b0
b0( ) g
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Variants 
The circuit model expressed by Eqs. 1-6 is but one example of a family of dynamical systems mod-

els of normalization, each of which implements normalization via recurrent amplification. 
A simple variant of an ORGaNIC normalization circuit is expressed by the following coupled pair of 

neural integrators: 

 (S21) 

To derive the fixed point for this dynamical system, set the derivatives equal to 0 and simplify: 

 (S22) 

Substitute the first line of Eq. S22 into the second line of Eq. S22: 

 (S23) 

Substitute this back into the first line of Eq. S22: 

 (S24) 

There is, however, considerable empirical evidence that the firing rate responses of V1 neurons depend 
on the contrast energy of the stimulus, i.e., the square of the input drive (3, 19, 20). In addition, squar-
ing offers theoretical advantages. First, responses depended on the local spectral energy (ignoring 
phase) in a local spatiotemporal window of the stimulus (3, 4). Second, the summed responses across 
the population of neurons tile all orientations, SFs, and spatial locations evenly (2), i.e., the sum of the 
squares is exactly equal to one (Fig. S1b,c). 

Elaborating Eq. S21 with halfwave rectification and squaring yields another variant: 

 (S25) 

This variant has the same fixed point as Eqs. 1-6 (equivalently Eq. S8); the derivation of the fixed point 
for this system is very similar to that shown above for Eq. S8. This circuit exhibits different dynamics 

τ y
dy j
dt

= − y j + b0z j + 1− aj( ) y j  ,
τ a
da j
dt

= −aj + wjk ykak
k
∑ +σb0  .

dy j
dt

= 0 :  aj y j = b0z j  ,

daj
dt

= 0 :  aj = wjk ykak
k
∑ +σb0  .

aj = b0 wjk zk
k
∑ +σ⎛

⎝⎜
⎞
⎠⎟

 .

b0 wjk zk
k
∑ +σ⎛

⎝⎜
⎞
⎠⎟
y j = b0z j  ,

wjk zk
k
∑ +σ⎛

⎝⎜
⎞
⎠⎟
y j = z j  ,

y j =
z j

σ + wjk zk
k
∑  .

τ v
dv j
dt

= −v j + b0z j + 1− aj( ) y j
+ − y j

−( )  ,
τ a
da j
dt

= −aj + wjk ykak
k
∑ +σ 2b0

2  ,

y j = v j⎢⎣ ⎥⎦
2
 .
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from Eqs. 1-6 even though they both share the same fixed point (see below, Bifurcation Analysis). 
Another variant is: 

 (S26) 

where d > 0. In this variant, we replaced 1/(1+a) in Eq. 1 with 2a/(1+a), in which 0<a<1, with concomitant 
changes to the equation for a (Eq. 5). When the value of d = 1, the fixed point for this system is the 
same as that for Eqs. 1-6 (the derivation follows that shown above for Eqs. 1-6). The dynamics are 
also similar (the two systems are related by a simple change of variables). But when d < 1, the gain of 
this system is reduced. 

To derive the gain as a function of d, consider the reduced system in which each of the variables is 
a scalar instead of a vector (i.e., there’s only one neuron of each type instead of population of neurons 
with different RFs, SF preferences, and orientation preferences): 

 (S27) 

The fixed point for this system is derived, again, by setting the derivatives equal to zero: 

 (S28) 

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 2a j
1+a j( ) y j

+ − y j
−( )  ,

τ a
da j
dt

= −aj − uj − aj u j + d  ,

τ u
du j
dt

= −uj + wjk ykuk
k
∑ + σb0

1+b0( )2
 ,

y j = v j⎢⎣ ⎥⎦
2
 ,

τ v
dv
dt

= −v + b0
1+b0( ) z + 2a

1+a( ) y  ,

τ a
da
dt

= −a − u − a u + d  ,

τ u
du
dt

= −u + yu + σb0
1+b0( )2

 ,

y = v2  ,
z ≥ 0 .

dv
dt

= 0 :

v = b0
1+b0( ) z + 2a

1+a( )v ,

1−a
1+a( )v = b0

1+b0( ) z  ,
1−a
1+a( )2

y = b0
1+b0( )2

z2  ,

y = 1+a
1−a( )2 b0

1+b0( )2
z2  .
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 (S29) 

 (S30) 

Combine the last line of Eq. S29 with the last line of Eq. S30: 

 (S31) 

Combine the last line of Eq. S28 with Eq. S31: 

 (S32) 

Simplify: 

 (S33) 

For d < 1, σ′ > σ and the effective gain is reduced. 
Some of the other variants are as follows. Each is written as a reduced system in which each of the 

variables is a scalar instead of a vector, although each can also be expressed as a full population with 

du
dt

= 0 :

u = yu + σb0
1+b0( )2

 ,

u 1− y( ) = σb0
1+b0( )2

 ,

u = σb0
1+b0( )2 1

1− y( )  .

da
dt

= 0 :

d − a( ) = u + a u  ,

d − a( ) = 1+ a( ) u  ,

u = d−a
1+a( )2

 .

1+a
d−a( )2

= 1+b0
σ b0( )

2
1− y( )  .

y = 1+a
1−a( )2 b0

1+b0( )2
z2  ,

y = d−a
1−a( )2 1+a

d−a( )2 b0
1+b0( )2

z2  ,

y = d−a
1−a( )2

1− y( ) 1+b0
σb0( )2 b0

1+b0( )2
z2  ,

σ 2 y = d−a
1−a( )2

1− y( ) z2  .

σ 2 y = d−a
1−a( )2

z2 − z2 y( )  ,
y σ 2 + d−a

1−a( )2
z2( ) = d−a

1−a( )2
z2  ,

y =
d−a
1−a( )2

z2

σ 2 + d−a
1−a( )2

z2
 ,

y = z2

ʹσ( )2
+ z2

 ,

where ʹσ( ) = 1−a
d−a( )σ  .
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arbitrary (non-negative normalization) weights. 

 (S34) 

 (S35) 

 (S36) 

 (S37) 

τ y
dy
dt
= −y+b0z+ 1− a( ) y ,

τ a
da
dt
= −a+ ya+σ b0  ,

z ≥ 0 .

τ v
dv
dt
= −v+b0z+ 1− a( ) y  ,

τ a
da
dt
= −a+ ya+σ 2b0

2  ,

y = v2  ,
z ≥ 0 .

τ v
dv
dt
= −v+b0z+ 1− a( ) y  ,

τ a
da
dt
= −a+ u  ,

τ u
du
dt
= −u+ yu+σ 2b0

2  ,

y = v2  ,
z ≥ 0 .

τ v
dv
dt

= −v + b0
1+b0( ) z + 1

1+a( ) y  ,

τ a
da
dt

= −a + u + a u  ,

τ u
du
dt

= −u + yu + σb0
1+b0( )2

 ,

y = v2  ,
z ≥ 0 .
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 (S38) 

 (S39) 

Eqs. S35-S39 have the same fixed point. The fixed point for Eq. S34 is similar, but without the squar-
ing. Eqs. S36-S39 exhibit the same or similar dynamics. Eqs. S34-S35 exhibit different dynamics (see 
below, Bifurcation Analysis). Eq. S34 is the reduced version of Eq. S21, Eq. S35 is the reduced version 
of Eq. S25, and Eq. S37 is the reduced version of Eqs. 1-6 (equivalently Eq. S8). Eq. S39 eliminates 
the square root in the expression for u; the square root of y may be eliminated analogously. 

τ v
dv
dt

= −v + 1
1+b0( ) z + 1

1+a( ) y  ,

τ a
da
dt

= −a + u + a u  ,

τ u
du
dt

= −u + yu + σ
1+b0( )2

 ,

y = v2  ,
z ≥ 0 .

τ v
dv
dt
= −v+ b0

1+b0( ) z+ 1
1+a( ) y  ,

τ a
da
dt
= −a+u1+u1a ,

τ u1

du1

dt
= −u1+

u2

u1

 such that u1 > 0 ,

τ u2

du2

dt
= −u2 + yu2 +

σ b0
1+b0( )

2
 ,

y = v2  ,
z ≥ 0 .
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Bifurcation Analysis 
The 2D bifurcation diagrams in Fig. 7e were computed as follows, based on the reduced model 

(Eq. S37). The fixed points of that system of equations are found by setting all of the derivatives (dv/dt, 
da/dt, and du/dt) equal zero: 

 (S40) 

There was a different fixed point for each value of the input drive z. The Jacobian of Eq. S37 was ana-
lyzed to determine if a fixed point is stable (an attractor; Fig. 7a, solid curve) or unstable (typically as-
sociated with a limit cycle; Fig. 7a, dashed curve). The Jacobian is a 3x3 matrix of partial derivatives of 
Eq. S37 evaluated at the fixed point: 

 (S41) 

To compute the Jacobian, the derivatives must be continuous, which is the case for our system of equa-
tions when a, v, and u > 0, which is the regime that we care about. Stability depends on the eigenvalues 
of this Jacobian matrix. If the real parts of all of the eigenvalues are negative, then the fixed point is 
stable. If at least one eigenvalue has a positive real part, then the fixed point is unstable because this 
means that there is at least one direction along which a trajectory will not return back to the fixed point. 
The intuition is like dropping a marble on a paraboloid. If the paraboloid is concave upward (like a bowl) 
then the marble will roll back to the fixed point at the bottom of the bowl. If it is concave downward (like 
an upside down bowl) or a hyperbolic paraboloid (a saddle), then there is at least one direction in which 
the marble will roll downward away from the fixed point.  

A Hopf bifurcation occurs when a spiraling fixed point changes from stable to unstable (or vice ver-
sa), i.e., when the real part of a complex-conjugate pair of eigenvalues changes sign. The point at 
which the real part of the complex-valued eigenvalues is equal to zero is the Hopf bifurcation point. Re-
quiring that the real part of the eigenvalues equal zero is equivalent to requiring a particular set of con-
straints on the determinant and trace of the Jacobian matrix (21), although we omit writing the exact set 
of constraints here as they are cumbersome. We found the points that satisfy these constraints by solv-
ing a polynomial in our six parameters: z, σ, b0, !v, !a, and !u. Since we have a high dimensional para-
meter space, finding the roots of this polynomial is itself a hard problem. We therefore restricted our 
analysis to a subset of the parameter space by keeping σ and b0 fixed and characterizing 3D slices 
through the other parameters, either (z, !v, !a) or (z, !a, !u). The condition on the eigenvalues to change 
sign alone is not sufficient to guarantee the existence of a limit cycle, although one almost always does 
arise (22). We therefore checked that a limit cycle did indeed arise (for each fixed point) using 
AUTO-07p (Version 0.8), a bifurcation analysis software platform for ordinary differential equations (23). 
AUTO-07p can identify the Hopf Bifurcation points, compute the emergent oscillation period, and track 
changes in the period as a function of a parameter. For each point on the grid of values for z and !u, we 
determined a unique stable periodic solution (limit cycle) and computed its period. Doing so identified 
the onset of oscillations, i.e., the point of a Hopf bifurcation (Fig. 7e, solid curves circumscribing 
grayscale shaded regions), and computed the frequencies of the observed oscillations when a limit cy-
cle appeared (Fig. 7e, grayscale). 

There are parameter regimes in which the system exhibits bistability such that a limit cycle (stable 
periodic solution) coexists with a stable fixed point. This is unlike the behavior in Fig. 7 for which each 
parameter set corresponds to a unique attractor. An example of such bistable dynamics corresponds to 

v = z
σ 2+z2

 ,

a = u
1− u

 ,

u = b0
1+b0( )

2
σ 2 + z2( )  .

J =

−1+ u
τ a

0 1+a
2τ a u

−v
τ v 1+a( )2

−a
τ v 1+a( ) 0

0 2uv
τ u

v2−1
τ u

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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the parameter set given by b0=5, !a=2, and !u=1. For these parameter values, and for increasing values 
of the input drive z, we found a periodic solution (i.e., a limit cycle) extending past the point where the 
Hopf bifurcation occurs. This means that there are two stable attractors for the same value of the input 
drive: a stable fixed point and a stable limit cycle, i.e., convergence to both steady state and oscilla-
tions. The initial values of v, a, and u determine which of the two behaviors will be observed.  

We proved that the alternative 2-dimensional circuit, given by Eq. S35, does not exhibit oscillations. 
The fixed points of that system of equations correspond to where the derivatives (dv/dt and da/dt) are 
equal to zero: 

 (S42) 

These two equations are continuously differentiable, so we derived an expression for the eigenvalues 
of the Jacobian at the fixed point. The Jacobian is given by: 

 (S43) 

The eigenvalues are computed by solving the characteristic equation: 

 (S44) 

Solving for λ gives: 

 . (S45) 

For a hopf bifurcation, the real part of this complex-conjugate pair of eigenvalues must be zero with 
non-zero imaginary part. However, this would require:  

 . (S46) 

But, in fact, the expression in Eq. S46 (same as the first term in Eq. S45) is strictly less than zero be-
cause v<1, and !v, !a, and a>0. So this system will never change its stability. To determine the type of 
stability that the system exhibits we just need to determine the sign of the real parts of the eigenvalues. 
The expression under the square root in Eq. S45 is smaller than the first term in Eq. S45, and we have 
already determined that the first term in Eq. S45 is less than zero. Consequently, the real parts of the 
eigenvalues are negative, the fixed point is stable, and all of the trajectories approach the fixed point as 
t→∞.  

The circuit expressed by Eq. S36 is similar to that expressed by Eq. S35, but with two modulator 
cells instead of one. The extra modulator cell merely adds a second stage of lowpass filtering. The re-
sulting cascade of two exponential lowpass filters imposes a time delay that suffices for oscillations to 
emerge. 

v = z
σ 2+z2

 ,

a = b0
2 σ 2 + z2( )  .

J =
− a
τ v

−v
2τ v a

2va
τ a

v2−1
τ a

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

det J −λI( ) = a
τ v
−λ( ) v2−1

τ a
−λ( )+ v2 a

τ aτ v

λ1,2 =
1
2

v2−1
τ a
− a

τ v( )± v2−1
τ a
− a

τ v( )
2
− 4 a

τ vτ a

⎛

⎝
⎜

⎞

⎠
⎟

v2−1
τ a
− a

τ v( ) = 0
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Stochastic resonance 
With noise added to the input, we observed stochastic resonance in the gamma frequency range 

even for weak inputs (below the bifurcation), and that the noise spectrum is shaped by recurrent nor-
malization to exhibit a resonant peak in the gamma-frequency range (Fig. S2). Specifically, we used the 
reduced system of Eq. S37 to simulate responses to noisy inputs. The input drive was a step function 
(constant over time after onset) with Gaussian noise added. The noisy input drive was lowpass filtered 
using Eq. S3 with ω=0 Hz and n=2 before being normalized by Eq. S37.  

With noise added, the phases of the oscillatory responses to each of a series of step inputs were 
synchronized to the onset of the input drive for a period of time following the onset. The response 
phases then drifted over time and desynchronized (Fig. S2a, different colors correspond to repeated 
simulations with different noise samples).  

The Fourier amplitude of the responses was computed by running the simulation for 100 sec, ignor-
ing the first 1 sec of the responses (to ignore the synchronized part), dividing the remaining response 
time series into 1 sec intervals, computing the Fourier transform of each 1 sec interval, and averaging 
them together. This process was repeated for several different input drive amplitudes.  

Simulated responses exhibited several properties that are qualitatively similar to experimental ob-
servations (Fig. S2b): 

1) Responses exhibited oscillations in the gamma frequency range (24, 25). The increased power 
in the gamma frequency range was evident even for small input drives (e.g., z=0.2), well below 
the bifurcation (z≈0.5; see Fig. 6). 

2) Response amplitudes decreased with increasing frequency because of the lowpass filtering im-
posed by both the prefilter and the normalization circuit (Eq. S37). Response amplitudes de-
creased roughly proportional to frequency for frequencies greater than 10 Hz, whereas it has 
been found experimentally to decrease with the square of frequency (26-28). 

3) Response amplitudes decreased with increasing input drive at low frequencies (29). 
4) Response amplitudes increased with input drive for a broad range of high frequencies above 

30 Hz (26, 30). 
5) The oscillations were non-sinusoidal, sharp at the top and broad at the bottom of each cycle 

(Fig. S2a). This was also evident in the Fourier amplitude which exhibited harmonics (Fig. S2b), 
and in the asymmetric phase space trajectories (Fig 7d). Waveform shape may be an indicator 
to distinguish underlying mechanisms and pathophysiology (31).  
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Figure S2. Stochastic resonance. a. Response time series for noisy input drive (input drive ampli-
tude z=1). Different colors correspond to repeated simulations with different noise samples. The oscil-
latory responses were induced, not evoked. Specifically, the phases of the oscillatory responses were 
synchronized immediately after the onset of the input drive, but then drifted over time and desynchro-
nized. b. Fourier amplitude of the responses for each of several input drive amplitudes. Different gray 
shades correspond to different input drive amplitudes. Increased power in the gamma frequency 
range is evident input drives as small as z=0.2. 
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6) For simulations using the full model (Eqs. 1-6), the oscillatory activity was correlated across 
neurons with different orientation preferences at overlapping RF locations (32-34). The noise 
added to each neuron’s input drive was statistically independent but, in spite of this, the phases 
of the oscillations tended to synchronize over time. 

Note, however, that this process simulated the firing rates of individual principal cell, whereas local 
field potential (LFP), electrocorticography (ECoG), electroencephalogram (EEG), and magnetoen-
cephalography (MEG) measurements depend on the synchronized membrane potential fluctuations 
across a large population of neurons (28, 35). 
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