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Three examples of ancient “universal” portable sundials

Denis Savoie

Introduction

Ancient portable sundials (see Table 1) represent only 5% to 6% of the corpus of all ancient sun-
dials, 1 which is at present estimated to be between 500 and 600 dials. Nevertheless they must 
have been in rather frequent use if one is to believe Vitruvius when he writes in his De Architec-
tura (between 35 and 25 BC):2 “Again, following these types, many authors have left notices for 
the construction of travelers’ sundials or portable sundials. If one wishes, one can find various 
kinds of projections in their works, so long as one is familiar with the drawings of the analem-
ma.” Unfortunately, none of these notices has reached us. For the gnomonists of antiquity, these 
horologia viatoria lent themselves particularly to the development of original models, and to the 
pursuit of dials intended to be usable at practically all latitudes.

One can divide ancient portable sundials into two categories:

– those that are only usable for a given latitude. This is the case with the “Portici Ham,”3 the 
dials found at Mainz and Ponteilla,4 the medallion dials,5 and generally the cylinder dials.6

– those that are usable at multiple latitudes or at all latitudes. These include the Berteau-
court and Merida disks, dials of the “Crêt Chatelard” type, and lastly the most perfect of all, 
the armillary dial.7

1  The standard catalogue is now that of J. Bonnin, La mesure du temps dans l’Antiquité, Les Belles Lettres, Paris, 
2015, accompanied by an online database at https://syrte.obspm.fr/spip/actualites/article/en-ligne-la-base-de-
donnees-la-mesure-du-temps-dans-l-antiquite-temoignages/ . The well known work of S. L. Gibbs, Greek and Roman 
Sundials, New Haven, 1976, is more or less silent about portable sundials. For a succinct discussion of ancient por-
table sundials, see K. Schaldach, Römische Sonnenuhren, Verlag Harri Deutsch, Frankfurt, 2001. See also R. J. A. Talbert, 
Roman Portable Sundials: The Empire in Your Hand, Oxford, 2017, which is especially significant for the geographical 
aspects.

2  Vitruve, De l’Architecture, Livre IX, texte établi, traduit et commenté par J. Soubiran, Les Belles Lettres, Paris, 
1969, p. 31.

3  Accademia Ercolanese, Le Pitture Antiche d’Ercolano e conformi incisi con qualche spiegazeione III, Naples, 1762, p. 
V-XVII. See also J. Drecker, Die Theorie der Sonnenuhren, Berlin, 1925, p. 58-60.

4  K. Körber, Die neuen römische Funde Inschriften des Mainser Museums, 1900, n° 202, p. 119-121. See especially J. 
Drecker, Die Theorie der Sonnenuhren, op. cit., p. 61-64. The Ponteilla fragment will be the subject of a forthcoming 
article.

5  For the medallion dial in the Musei Civici di Trieste see now R. J. A. Talbert, “A lost sundial found, and the role 
of the hour in Roman daily life,” Indo-European Linguistics and Classical Philology 23 (2), 2019, 971–988.

6  M. Arnaldi, K. Schaldach, “A roman cylinder dial  : witness to a forgotten tradition,” Journal for the History of 
Astronomy, 28, 1997, p. 107-117.

7  G. Gounaris, “Anneau astronomique solaire portative antique découvert à Philippes,” Annali dell’Istituto e Museo 
di Storia della Scienza di Firenze, 5 (2), 1980, p. 3-18. This exceptional dial deserves a more extensive study. 



Fixed latitude Medium Number of Findspot, present location, language, date
  exemplars

"Portici Ham" bronze 1 Herculanum, Museo Nazionale di Napoli, Latin, 1st century

Mainz type bone, stone 1 — Mainz, Landesmuseum Mainz, Latin, 2nd-5th century 
   — Ponteilla, lost, 

Cylindrical dial bone, bronze 3 — Este, Museo Nazionale di Atestino, Latin, 1st century

   — Amiens, Musée de Picardie (France), Latin, 3rd century

   — Domjulien (Vosges), Musée d’Art Ancien et Contemporain 
        d’Epinal (France), Latin, Roman imperial period

Medallion dial bronze 6 — 1 at Rome, Museo Nazionale Romano, Latin,  
        end of 2nd century

   — 2 at Aquileia (Italy), Kunsthistorisches Museum,Vienna, 
        and Civici Musei di Trieste, Latin, 1st-4th century

   — 2 in Bithynia, 1 Latin, 1 Greek, AD 130

   — 1 at Forbach, Hérapel, Musée de la Cour d’Or,  
        Metz (France), Latin, 1st-4th century

Variable latitude

Medallion dial bronze 1 Exemplar of the Vienna Museum

Armillary bronze 1 Philippi (Greece), Kavala Museum, Greek, 3rd-4th century

Portable meridian  bronze 2 — Berteaucourt-les-Dames (France), Musée de Picardie,  
or latitude indicator        Latin, 2nd-3rd century

   — Merida (Spain), National Museum of Roman Art of Merida 
        (Estremadura, Spain), Latin, 3rd century

"Crêt-Chatelard" bronze, brass, 11 — Crêt-Chatelard (France), lost, 1st-4th century 
type copper alloys  — Rome, lost, 1st-4th century

   — Trier (Germany), Rheinisches Landesmuseum Trier,  
        1st-4th century

   — Bratislava, Museum of the History of Science, Oxford,  
        1st-4th century

   — Unknown findspot, Science Museum, London,  
        2nd-6th century

   — Unknown findspot, ex-Time Museum, Rockford, USA, 
        private collection, 5th century

   — Unknown findspot, British Museum, London,  
        4th-6th century

   — Aphrodisias, Aphrodisias Museum, 4th century

   — Bulgaria, private collection, replica in Römisch- 
        Germanisches Zentralmuseum, Mainz,  
        end of the 1st century to beginning of the 4th century

   — Memphis, Hermitage Museum, St. Petersburg, 4th century,  
        lost?

   — Samos, Vathy Museum, Greece, 4th-6th century

Table 1. Summary of types and exemplars of ancient portable sundials known at present.
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However, there exists an exemplar of a medallion dial that belongs simultaneously to the catego-
ries of fixed-latitude dials and multiple-latitude dials, as we will see below.

Certain ancient dials experienced a new glory during the Middle Ages and Renaissance, in 
particular the altitude cylinders, which in 19th century France were called “cadrans de berger.” 
Conversely, other portable dials vanished, and it is a matter of some interest to understand why.

Medallion dials.

The term “mediallion dial” designates small altitude sundials 4-5 cm diameter, usable for a spe-
cific latitude, and resembling small pillboxes. The rim is raised, and on the principal face is a 
relief portrait, generally of an emperor. An eyehole or lateral orifice, situated in the raised rim, 
allows the Sun’s rays to enter and fall upon a small mobile ruler in the shaded interior of the box. 
The apparatus is used in a vertical position oriented towards the Sun. At the base of the box is a 
grid in the form of an angular sector, made up of hour curves and date lines. One reads the sea-
sonal hour at the intersection of the date line—on which is the ruler—and the hour curve. There 
are many variants of this altitude dial: for example in the Forbach dial each face bears the same 
dial and each ruler is at the center of the dial. In the Rome exemplar, the ruler is off-center, and 
the rear face of the medallion is decorated with a portrait of the emperor Commodus.

But it is the Vienna exemplar that is most remarkable (Fig. 1).8 Not only is one face decorated 
with a portrait of the emperor Antoninus Pius (138-160) with the inscription ANTONINVS AVG 
PIVS TR P COS III IMP II (Fig. 2), but the first “box” component is like the mater of an astrolabe, 
having disks installed in it that are adapted to different latitudes. The base of this first box bears 
a—rather crude—tracing that unquestionably resembles the hour curves of a stereographic proj-
ect (Fig. 3). These curves of course have no function in the dial; this is a “learned” ornamentation 
whose motivation is unknown. The other part of the box is equipped with a little stud for keep-
ing in place the disks that are furnished with a grid applicable to several latitudes. Thus there 
are disks for the latitudes of Rome, Alexandria, Spain, Greece, etc. The hour grids of the disks 
are overall rather poor. The seasonal hour curves are represented by sometimes chaotic line seg-
ments; as for the point of convergence of the date lines, it often falls to the side of the hole for 
the mounting. On some of the disks (for example that for Alexandria, Fig. 4), one can still read 
below the date lines the names of the Roman months. This portable sundial is thus a very clever 
system in which the traveler places a grid-disk appropriate for the locality where he is in a kind 
of mater, rather as if one was traveling with an astrolabe equipped with multiple plates. There 
is a striking parallelism between these two instruments, where the astrolabe was the subject of 
efforts to develop a universal version that became workable in the 11th century with the saphea 
of Azarquiel.9

Let us study this dial from a modern viewpoint (Fig. 5). The most general case consists of a 
stud for fixing the disks and the ruler off-center. Let R be the radius of the box, whose center is 
O, and let C be the point of convergence of the date lines, and P the orifice through which the 

8  This dial has been studied by E. Buchner, “Römische Medaillons als Sonnenuhren,” Chiron, vol. 6, 1976, p. 329-
348. The first mention and drawing of this dial appeared in F. Kenner, “Römische Medaillons,” Jahrbuch der Kunsthis-
torischen Sammlungen der Allerhöchsten Kaiserhauses, vol. 1, Vienna, 1883, p. 84-85 ; one can clearly see in the drawing 
of F. Kenner that the dial bore a ruler as well as a pin, which have both vanished today. See also A. Schlieben, “Rö-
mische Reiseuhren,” Annalen des Vereins für Nassauische Alterthumskunde und Geschichtsforschung, n ° 23, 1891, 115-128 
and plate VI.

9  The principle was revived by Gemma Frisius in his astrolabe catholique. See R. D’Hollander, L’Astrolabe, Histoire, 
Théorie, Pratique,  Institut Océanographique, Paris, 1999, p. 235-262.
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Figure 1. This "box" sundial preserved at the Kunsthistorisches Museum, Vienna, came from Aquileia. Dating from 
the 2nd century of our era, it consists of two halves of a small bronze cylindrical box (top) containing four perfo-
rated disks (bottom). On the upper half of the box one clearly sees the small metal cylinder that enables a disk to 
be installed, as well as the notched hole on the side that allows the Sun's rays to pass through. The four disks bear 
on their recto and verso the horary drawing for the latitudes of the following cities: Alexandria Aegyptus / Africa 
Mauretania / Hellade Asia / Hispania Achaiia / Roma ? / Ancona Tuscia / Britannia Germania.
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Figure 2. Outside face of the box, bearing a relief portrait of Antoninus Pius.

Figure 3. Inside face of the half of the box, bearing a drawing resembling a stereographic projection. The reason for 
its presence in this dial is unknown.

Figure 4. Disk showing the horary drawing for the latitude of Alexandria. One can clearly see that the hole is dis-
placed relative to the drawing and that the latter is quite crude. Below the lines are the names of the months.
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Sun’s rays enter. Let a system of axes pass through P, such that x tends  rightward and y upward. 
We have:

(1) 

where a designates the angle of aperture of the horary fan (a = 90° signifies that C coincides with 
O). One must fix the radius of the horary fan taking into account the eccentricity of C with a view 
to filling up the greatest possible surface in the box. Let E, Q, and W be the positions of the Sun at 
solar noon (seasonal hour 6) respectively on the summer solstice, the equinoxes, and the winter 
solstice. Hence we have

(2) 

This is also the radius of the mobile ruler revolving around C.
First of all, one aligns the ruler with the desired date. At a given moment, with the dial ori-

ented in the plane of the Sun, a solar ray enters by the orifice P and strikes the ruler at I. The 
seasonal hour is read at the intersection of the date line and the hour curve. Let us seek the co-
ordinates x and y of this intersection point.

Let h' be the noon altitude of the Sun:

(3)  

where f is the latitude of the locality and d the declination of the Sun. The altitude h of the Sun 
for a given hour angle H is: 

Figure 5. Diagram showing the principle of the "box" altitude dial: with it held vertically in the solar plane, the rays 
enter at P and strike the mobile ruler (which is very narrow); one reads off the hour at the intersection of the ruler 
and the drawing. The latter is contained within a triangular zone, with points E, Q, and W being the positions of 
the spot of light at solar noon (seasonal hour 6) respetively on the summer solstice, the equinoxes, and the winter 
solstice. The date lines converge on C, which is the mounting point of the ruler, while the hour arcs form a fan ex-
tending from the lowest arc (noon) to the center (sunrise/sunset).
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(4)  

H0 is the semidiurnal arc, which one obtains thus:

(5)  

The seasonal hour k indicated by the dial (such that 0 h corresponds to sunrise, 6 h to solar noon, 
and 12 h to sunset) is obtained thus: 

(6)  

from which we deduce H.
Next we have:

(7)  

(8) 

(9) 

(10) 

(11) 

(12) 

b here represents the angle between a date line and the vertical through O and the point of con-
vergence. The total opening of the angular sector equals |βsummer| + |βwinter|.

Numerical example: let there be a medallion dial with radius R = 7 cm, calculated for a lati-
tude f = 38°, obliquity e = 24°. One chooses a radius for the horary fan r = 8 cm, setting a = 50° . 
Let us calculate the coordinates for seasonal hour k = 8 on the summer solstice (d = +24°). We have 
H = 36.785° and consequently: 

(13) 

(14) 

(15) 

(16) 

(17) 
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Figure 6. Modern reconstruction of the "box" altitude dial for a latitude of 38°. The rays enter by the lateral notch 
and strike the ruler, which is calibrated according to the month (here δ = –11.47°, zodiacal signs Pisces/Scorpio). If 
one considers the time to be in the afternoon, it is seasonal 8 h. The red circular arc corresponds to solar noon; the 
red straight line in the middle corresponds to the equinoxes.

Figure 7. Bronze disk of diameter 10.4 cm, discovered in a Gallo-Roman villa at Berteaucourt-les-Dames, a locality in 
the north of France in Picardie, département de la Somme. The object dates from the 2nd century of our era.
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(18) 

(19) 

(20) 

(the superfluous decimals are given only for the sake of verification). 
The geometrical construction is very simple. Once the radius r of the angular sector is de-

fined, one obtains the intersection points of the hours on a date line while varying the solar 
altitude. Thus assumes that the maker has at his disposal a table giving the solar altitude as a 
function of the seasonal hour and the date. In fact, one can replace the orifice in the raised rim 
by a horizontal gnomon; the infinite shadow of the gnomon intersects the grid where one reads 
the hour according to the date (Fig. 6).

The grid that one obtains is quite harmonious. The hour curves are not excessively squeezed 
together as is the case if one draws the dial by true solar time.10 It goes without saying that in the 
case of the Vienna dial, the tininess of the dials (to say nothing of their very crude execution), 
combined with the fact that one has to balance them vertically (which perhaps implies that 
there existed a suspension thread) renders them pure objects of prestige rather than real dials 
to indicate the time.

10  Such dials using equinoctial hours are apparently are unknown.

1 cm

Figure 8. Drawing faithfully reproducing the inscriptions and drawing of the Berteaucourt-les-Dames disk. The 
upper part consists of a grid where one recognizes the names of the months; the rest of the disk is filled by a list of 
23 Roman provinces, and occasionally cities, accompanied by their increasing latitudes. This progressive list begins 
with ALEXAND(riae) [latitude] XXX and ends with BRITANN(iae) [latitude] LX. The disk is perforated by a hole at 
the center.
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Portable meridians, indicators of latitude.

The two bronze disks found in the archeological excavations in 1985 at Berteaucourt-les-Dames 
in Picardie (France)11 and in 1994 at Merida (Spain)12 date respectively from the ends of the 2nd 
and of the 3rd centuries of our era. The archeologists at the time, contemplating their purpose, 
classified them as portable sundials of a new variety, without pursuing the question further. A 
recent study,13 however, has made it possible to determine their functions more precisely and to 
bring new clarity to these little known objects.

As one can see in Fig. 7, which represents the dial of Berteaucourt-les-Dames, the object con-
sists of a disk of about 10 cm in diameter perforated at the center by a hole (the Merida dial has 
diameter 13 cm). One can divide the principal face (Fig. 8) in two parts:

– the “geographical” part, with 23 names of provinces or cities sorted according to increas-
ing latitude from Alexandriae (latitude 30°) to Britanniae (latitude 55°).14

– the strictly gnomonic part, which is a grid composed of four concentric curves, ascending 
from latitude 30° to 60° from outside to inside in steps of 10°. Seven other curves cross the 
latitude circles and bear labels for the twelve months of the Roman calendar, the two ex-
treme curves being those for the solstices15 with labels VIII K. IAN (VIII before the Kalends 
of January = winter solstice = December 25), et VIII K. IUL (VIII before the Kalends of July = 
summer solstice = June 24). The other dates doubtless correspond to the Sun’s entries into 
the zodiacal signs.16

On the object’s rear face is a straight line, whose significance we will see presently, which 
extends from the central hole to the periphery. A horizontal gnomon several centimeters long 
must have been lodged in this hole; it must have been long enough to cast a shadow on the disk 
and its diameter small enough to allow a sensitive reading.

11  J. L. Massy, Gallia, t. 43, fascicule 2, 1985, p. 481-482. This disk, discovered in a Gallo-Roman villa is preserved at 
the Musée de Picardie at Amiens. It is in much better condition than the Merida disk. See also C. Hoët-van Cauwen-
bergue, E. Binet, “Cadran solaire sur os à Amiens (Samarobriva),” Cahiers Glotz, XIX, 2008, p. 123-124.

12  J. Arce, “Viatoria pensilia. Un nuevo reloj portatil del s. III D. C. Procedente de Augusta Emerita  (Mérida, Espa-
na),” Merida Tardorromana (300-580 d. C.), 2002, p. 217-226. This disk is preserved at the National Museum of Roman 
Art of Merida (Estremadura). The latitude circles are effaced; six date arcs survive. 

13  See D. Savoie and M. Goutaudier, “Les disques de Berteaucourt-les-Dames et de Mérida : méridiennes portatives 
ou indicateurs de latitude?”, Revue du Nord, t. 94, n° 398, 2012, p. 115-119.

14  The Merida disk bears 19 names of provinces in contrast to 23 for that of Berteaucourt-les-Dames. On the latter, 
there are some exceptions to the increasing order of the latitudes. On the geographical labels inscribed on portable 
sundials, see C. Hoët-van Cauwenbergue, “Le disque de Berteaucourt-les-dames (cité des Ambiens) et les listes gra-
vées sur les cadrans solaires portatifs pour voyageurs dans le monde romain,” Revue du Nord, t. 94, n° 398, 2012, p. 
97-114.

15  See F. K. Ginzel, Handbuch der Mathematischen und Technischen Chronologie, vol. 2, Leipzig, 1911, p. 179-181 et p. 
282. The solstice dates given here are the classical dates in the Julian calendar that came into use in 45 BC; as for the 
equinoxes, they are fixed on March 25 (VIII before the Kalends of April) and September 24 (VIII before the Kalends 
of October). At the beginning of the 3rd century of our era, because of the shift of the Julian year relative to the 
tropical year, the astronomical seasons began on the following dates (see Table 5 below): vernal equinox on March 
21, summer solstice on June 23, autumnal equinox on September 24, and winter solstice on December 22. Hence the 
user of the instrument would commit a slight error in retaining the common dates.

16  See on this point P. Brind’Amour, Le calendrier romain,  Université d’Ottawa, 1983, p. 15-19.
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There is no horary graduation on the grid, and this allows us to conclude that the purpose of 
this instrument was not to show the hour throughout the day (though it could indicate noon). 
What the grid does clearly show is the existence of a relation between the locality’s latitude and 
the date; hence one deduces that this instrument could have two functions, possibly at the same 
time:

– to indicate the solar noon for the locality

– to indicate the latitude where one is

Let us recall that in altitude sundials, the principle is to determine the solar time as a function 
of the Sun’s altitude above the horizon, and that this requires knowledge of two constants: the 
latitude of the locality and the date. This results from the fact that this kind of dial is a practical 
and technical application of a formula of spherical trigonometry known in antiquity that relates 
the time H to the Sun’s altitude h: 

(21)  

where d is the Sun’s declination (effectively the date) and f is the latitude. This formula shows 
very clearly that the Sun’s altitude depends on three components: the place, the date, and the 
time. Hence an altitude sundial intended to work throughout the Roman Empire, say over a 
range of 30° of latitude (about 3300 km) like the disks of Berteaucourt-les-Dames and Merida, 
would need either a network of curves so dense as to become illegible, or a mechanism to make 
it easy to use, such as for example the armillary.

But in the present case, since there is no question of showing the time throughout the day 
but only solar noon, one can take advantage of a simplification of formula (21), observing that at 

Figure 9. Photo of the rear face of the Berteaucourt-les-Dames disk. A gnomon was likely inserted in the hole to cast 
a shadow on the grid figuring on the other face of the disk. On the rear face shown here, a groove along the radius 
of the disk enables one to adjust it in the direction of the zenith.
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solar noon (H = 0°), the Sun’s altitude becomes:

(22)  

hence

(23) 

The Sun’s declination is obtained by the likewise classical formula:

(24) 

where l is the Sun’s ecliptic longitude, which is made to range from 0° to 360° in steps of 30°, so 
that one obtains the declination of the Sun at its entry into each zodiacal sign. 

The grid under investigation here is a clever application of formula (23), in which one makes 
the Sun’s declination vary as the “abscissa” and the latitude as the “ordinate.” The read-off, 
whether of noon, or of latitude, takes place at the intersection of the shadow of a horizontal 
gnomon and a declination arc, while the instrument is suspended vertically and aligned with the 
plane of the Sun. This is corroborated by the straight line on the back of the instrument, which 
is perfectly aligned with respect to the grid, and which serves to orient the disk to the zenith, 
doubtless with the help of a suspension thread (Fig. 9). The graduated face is the one that is di-
rected to the east.

The calculation of such an instrument is quite simple. One sets, starting from the hole, radius 
Rmax, which corresponds to the minimum latitude (here 30°) and radius Rmin, which corresponds 
to the maximum latitude (here 60°). Radius R for an intermediate latitude is thus obtained by a 
simple rule of three:

(25)  

June

March

Sept

Dec

zenith

30°

40°

50°

60°
gnomon

Rmin

Rmax

2ε

Figure 10. Modern representation of the grid. It comprises four concentric circles indicating the latitude (from 30° 
to 60°), crossed by seven date curves.
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Making a system of axes pass through the disk’s center, with x tending northward and y towards 
the zenith, one draws a declination arc or a circle of latitude thus:

(26)  

(27) 

If one treats the latitude as variable for a given solar declination, one gets a declination arc. If 
one treats the declination as variable for a given latitude, one gets a latitude circle. The declina-
tion should range from –e to +e where e is the obliquity of the ecliptic; in antiquity one generally 
uses e = 24°. In any case one can verify on the Berteaucourt-les-Dames disk that the angle at 
the vertex (Fig. 10) is indeed equal to 2 e, which corresponds to the difference in solar altitude 
between the winter and summer solstice at latitude 60°; the same angle is found again for the 
circle for latitude 30°. 

In practice, such a grid does not require recourse to trigonometrical calculation; pure geom-
etry allows one to draw it. One starts by establishing, with the help of the elementary formula 
(2), the values of the Sun’s noon altitude for different latitudes. After drawing two concentric 
circles with a compass (Fig. 11), one uses a protractor centered on the center P of the circles, 
which is also where the gnomon will be, to trace the Sun’s altitude in winter for the maximum 
latitude (point E) and then the altitude in summer for this same latitude (E'). One carries out the 
same operation for the outermost latitude circle, obtaining points A and A'. To obtain the date 
curves between the extremal circles, one must of course generate the altitude points for the in-
termediate latitudes and then join up the points by a curve.

 Let us say at once that one should not look for precision instruments in these two disks: 
their dimensions are in the first place too slight and in the second place one should regard them 
more as objects of curiosity or prestige, or maybe astronomical amusement, even if they are 

Figure 11. Geometrical drawing of the grid. Arcs EE' and AA' are respectively the arcs for latitude 60° and 30°. Arcs 
EA (the curve for the winter solstice) and E'A' (for the summer solstice) are in red.



58 Savoie

scientifically quite sophisticated. In fact, what one has here are instruments that give orders of 
magnitude and that assume a nontrivial level of knowledge on the part of the user.

 Consider first of all the case of a traveler who wants to use this indicator to determine 
solar noon, thus as a portable meridian. He absolutely has to know the date and the place where 
he is. Let us imagine that the date is the 8th day before the Kalends of July, that is, the summer 
solstice, and that the traveler as at Rome at a latitude of 42° as the disk indicates (Fig. 12). After 
a preliminary identification of the latitude circle for 42°, the traveler has to estimate grosso modo 
the moment when the gnomon’s shadow cuts the latitude circle and the declination curve. One 
can imagine that to find such a circle a thread was provided, attached to the disk’s center and 
furnished with a sliding bead.

It is appropriate here to note that the Sun’s altitude around its culmination has little varia-
tion, especially around the solstices, so that one could easily be wrong by ±15 minutes or more, 
and that is without taking account of the fact that the shadow of a horizontal gnomon has a 
certain width. In any event it is an inconvenience that one has to underline and that affects all 
altitude sundials: their accuracy is mediocre at noon.

Now let us put ourselves in the hypothetical situation of a traveler who uses the disk to have 
an idea of the region where he is. Again he knows the date, but he also has to find a means of de-
termining solar noon, for example by means of a gnomon, waiting for its shadow to be shortest 
(Fig. 13). Let us go back to the preceding example of a Roman traveler; at solar noon he has to 
find the intersection of the shadow with the date curve so that he can then read off the latitude. 
Here again, one can imagine that a thread furnished with a bead allows one better to estimate 
the place, or rather the region. But one should add right away that the instrument does not 
yield the longitude of the region or place. Hence one has to have already an idea of the place 
where one is, without which one might, for example, establish a latitude of 42° without knowing 

30°

40°

50°

60°

gnomon

Figure 12. The gnomon's shadow (red) cuts the summer solstice curve at latitude 42° (broken circle).
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whether one is in Spain or in Italy!

An attempt at a universal portable dial.

Among all the ancient portable sundials, the most numerous at present are the eleven Greek and 
Roman exemplars, constructed between the 1st and the end of the 6th century, of a very particu-
lar type that has tripped up many authors with regard to its functioning and hence to its theory, 
a bit like the case of another portable dial, in this case medieval, the Navicula de Venetiis.17 These 
two sundials additionally have points in common, such as that of being usable at practically all 
latitudes and that of not being rigorously exact except on certain dates while being theoretically 
very accurate throughout the year. One of these dials, lost today, was discovered in France in the 
19th century, at a place called Crêt-Chatelard (département de la Loire).18

The first to understand the working of these sundials, which had been known since the 18th 
century and which exhibit great variations among themselves, was the German gnomonist J. 

17  See C. Eagleton, Monks, Manuscripts and Sundials, The Navicula in Medieval England, Brill, Boston, 2010. The calcu-
lation of the error in read-off on the Navicula was made by J. Kragten, The Little Ship of Venise – Navicula de Venetiis, 
Eindhoven, 1989.

18  This dial was described by V. Durand, followed by a restoration and—erroneous—instructions for use by gene-
ral De La Noë : “Cadran solaire portatif trouvé au Crêt-Chatelard,” Bulletin et Mémoire de la Société Nationale des Anti-
quaires de France, t. 7, mémoires 1896, Paris, 1897, p. 1–38. De La Noë, who does not hesitate to characterize as “crude” 
an earlier attempt at explication by Baldini (cf. infra), had absolutely no understanding of this dial, which he placed 
horizontally.

Figure 13. Method of use of the Berteaucourt-les-Dames disk. The disk is suspended in the plane of the Sun. One 
can here see that the horizontal gnomon casts a shadow upon the grid, cutting the curve for latitude 50° at the 
equinoxes (red).
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Figure 14. Roman exemplar found near Bratislava, dating from the 3rd century. The instrument is complete. Clearly 
visible are the mobile and curved read-off scale with its hour strokes, at the end of which is the gnomon. At the 
extremities of the date scale are the inscriptions VIII K. IAN and VIII K. IVL, which correspond to December 25 and 
June 24, the dates considered to be the winter and summer solstices in the Julian calendar.

Figure 15. Byzantine exemplar dating from the 5th-6th century, diameter 110 mm. On the gnomonic face can be 
seen the cursor, which enables the dial to be set according to the latitude, and the pendant ring for keeping the 
instrument vertical in a chosen direction. On the angular sectors appear abbreviations in Greek letters of the Latin 
names of the months for each half year, January to June on the upper part, July to December on the lower. The read-
off scale is lost. On the back are the latitudes of 36 cities and provinces. [credit: Trustees of the British Museum].
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Drecker at the beginning of the 20th century.19 Several studies have been published since on the 
subject, the most thorough to date being that of M. T. Wright in 2000.20

These dials are quite simple in appearance (Fig. 14 and 15). They are disks of between 5 and 
12 cm diameter. On one face names of cities or provinces are inscribed with their latitudes. On 
the other face are engraved labels pertaining to months (notably equinoxes and solstices). The 
mobile scale for reading off the time is not inscribed with numbers; it is curved, and the gnomon 
is at its extremity. On the disk’s periphery, a sliding rail assemblage, under which the latitudes 
to which the instrument can be set are marked, allows a cursor or pendant ring to be slid to cal-
ibrate the dial for the place where it is to be used.

19  J. Drecker, Die Theorie der Sonnenuhren, op. cit., p. 64-66. Drecker was also the first to estimate the error in the 
read-off of the time as a function of the date and latitude. Two earlier authors (Baldini and Woepcke) had already 
studied this dial but they were completely misguided about its operation: G. Baldini, “Sopra un’antica piastra di 
bronzo che si suppone un orologio da sole,” Saggi di dissertazioni accademiche publicamente lette nella nobile Academia 
Etrusca di Cortona , vol. III, Rome, 1741, p. 185-194 ; F. Woepcke, Disquisitiones archaeologio-mathematicae circa solaria 
vetrum, (Diss. Inaug.), Berlin, 1842, p. 14-19. In their defense, one should note that the model of dial on which they 
based their arguments was incomplete, the gnomon situated at the end of the read-off scale having been lost.

20  M. T. Wright, “Greek and Roman Portable Sundials – An Ancient Essay in Approximation,” Archive for History of 
Exact Sciences, vol. 55, 2000, p. 177-187. Wright, who curiously does not cite Drecker, employs a Vitruvian analemma 
in his trigonometrical demonstrations, which is admirable. We may also cite the brief study by F. A. Stebbins, “A 
Roman Sundial,” Journal of the Royal Astronomical Society of Canada, vol. 52, 1958, p. 250-254, who has the merit of ha-
ving explained clearly how one used these portable dials. See also the classic and very good article by D. J. de Solla 
Price, “Portable Sundials in Antiquity, including an Account of a New Example from Aphrodisias,” Centaurus, 1969, 
vol. 14, p. 242-266. Many authors, more specialized in archeology, have concentrated on the geographical lists that 
appear on the backs of the dials, which in some cases give as many as 36 places. Attention should also be drawn to 
an inscribed marble slab found at Aquincum, Hungary, and sometimes miscalled tabula gromatici, which appears to 
have been a set of templates for constructing this type of dial; see P. Albèri-Auber, “The Aquincum fragment,” The 
Compendium: Journal of the North American Sundial Society 25 (2), 2018, 13–24.

Figure 16. Astronomical indications of the gnomonic face of the portable dial, required for setting it.
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Let us describe with greater precision the “gnomonic” face of this dial, which, let us specify 
at the outset, is always used in a vertical position (Fig. 16). Its layout is in the first instance an 
instantiation of the celestial equator; this makes an angle with the zenith equal to the latitude of 
the locality. This explains why a sliding rail assemblage makes it possible to calibrate the dial in 
accordance with the latitude f. On each side of the equator, one traces the Sun’s position right to 
the solstices. That is, the angle between the equator and the positions specified by the calendar 
corresponds to the declination d of the Sun, whose absolute value is equal to the obliquity at the 
two solstices.

In antiquity one uses e = 24° (cf. infra); one gets the Sun’s declination as a function of the date, 
which is represented by the ecliptic longitude l, varying by steps of 30°:

(28) 

The dial can be reduced initially (Fig. 17) to an equinoctial straight line drawn on a vertical plane 
exactly oriented towards the east, being mobile around its gnomon, and having the points for 
the hours drawn on it at intervals of 15° (tangent law: the distance of an hour point to the foot of 
a gnomon of length a is obtained as (a/tan H), where H is the Sun’s hour angle). This equinoctial 
line likewise makes an angle y with the vertical passing through the gnomon which is precisely 
equal, on the equinoxes, to the locality’s latitude. As it is drawn for the moment, the dial resem-
bles an oriental vertical sundial with gnomonic declination21 D = –90°, functioning only on the 
equinoxes.

Let us remark at once that to draw such a dial, an ancient gnomonist in possession of Pto-
lemy’s Treatise on the Analemma22 would have noted that the horary angle H of the Sun is the 

21  The gnomonic declination D is the azimuth of the line perpendicular to the plane. 

22  The edition of Heiberg de 1907 is the revised edition of the Latin text and the Greek fragments that he had 
already published in 1895 : Claudii Ptolemaei Opera quae exstant omnia, Vol. II, Opera Astronomica Minora, ed. J. L. Hei-
berg, Leipzig, Teubner, 1907, p. 187-223 et Praefatio, p. XI-XII. This edition is the standard at present. One can find 

Figure 17. The portable dial is here reduced to a vertical plane oriented due east and furnished with a horizontal 
gnomon casting a shadow on a graduated equinoctial scale.
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complementary angle of the hectemoros, which last is the angle between the direction to the Sun 
and the cardinal east (or west) point. This hectemoros is independent of the latitude, since it is 
calculated as:

(29) 

It is interesting to make a tabular comparison of the equinoctial horary angle H, the Sun’s sea-
sonal hour angle H' (as in all ancient sundials, this portable dial shows the seasonal hour), and 
the complement of the hectemoros, since one observes a certain similarity, in fact a strict equiv-
alence that—perhaps—was the origin of this portable sundial’s mode of operation. On the equi-
noxes, the equivalence is perfect (Table 2).

Let us recall that H' is obtained thus:

(30)  

Where H0 is the semidiurnal arc obtained as:

(31)  

The seasonal hour23 k indicated by the dial (with 0 h corresponding to sunrise, 12 h to sunset) is: 

(32)  

or

(33)  

a modern Italian translation facing the Latin in R. Sinisgalli, S. Vastola, L’analemma di Tolomeo, Edizioni Cadmo, Fi-
renze, 1992. See O. Neugebauer, HAMA, Springer-Verlag, Berlin-Heidelberg-New York, 1975, t. II, p. 840-841 and D. 
Savoie, Recherches sur les cadrans solaires,  Brépols, Turnhout, 2014, chap. IV.

23  If one keeps to the classical definition, the seasonal hour has no meaning beyond the polar circles (latitude 90· 
± obliquity) at certain times of year because the Sun can be circumpolar.

H H' 90° – hecte

–90° –90° –90°
–75° –75° –75°
–60° –60° –60°
–45° –45° –45°
–30° –30° –30°
–15° –15° –15°
    0°     0°     0°

Table 2. Comparison of equinoctial and seasonal horary angles with the complement of the hectemoros for equi-
noxes.
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On the equinoxes, at our latitudes, the dial at sunrise has its gnomon pointing exactly eastward; 
then the shadow shifts progressively during the morning along the equinoctial line until noon, 
when the Sun, now in the direction of geographic south, produces an infinite gnomon shadow. 
Throughout the morning, the plane of the sundial has stayed perfectly fixed, with the gnomon 
always having a gnomonic declination of 90°. But for the dial to continue to work in the after-
noon, one has to pivot its vertical plane around an axis passing through the zenith. Otherwise 
put, the gnomon will now point towards the south-east horizon, then the south-west horizon, 
finally pointing exactly westward at the moment of sunset. The plane of the dial will thus have 
turned 180°.

One could imagine a turning about of the dial, such that the east face becomes, after solar 
noon, the west face. But this operation would call for a rotation equal to 2y of the scale and the 
gnomon and hence a new calibration according to the date and latitude. Now none of the dials 
known at present bears a double graduation in latitude and in the scale of dates that would make 
this kind of setting possible. Moreover the user does not know a priori which part of the day—
morning or afternoon—he is in. 

It is well to emphasize here that right from the moment that one makes the plane of the dial 
pivot, thus changing its gnomonic declination, the angle between the direction to the Sun and 
the direction in which the gnomon points is no longer the hectemoros but another angle that we 
will call z: this is the angle that one reads on the dial. This angle z can be shown to be calculated 
thus (Fig. 18 and 19): 

(34)  

where h is the Sun’s altitude. Since we are at the equinoxes, one has:

Figure 18. Representation by spherical trigonometry (viewed from the zenith) of the portable dial in use on the 
equinoxes. P is the north celestial pole, Z the zenith, K the tip of the gnomon.
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(35)  

from which it follows that z = H. 
To sum up, on the equinoxes the operation of the dial can be divided into two phases: in the 

morning it is a dial with fixed horary angle is if it was a classical sundial drawn on a wall facing 
due east. After the Sun crosses the meridian, the user “forces” the dial by turning it in such a way 
that the gnomon’s shadow lines up with the equinoctial line.

The relation established previously between the equinoctial hour and the hectemoros is only 
one hypothesis among others for explaining the principle of this portable dial; one could also 

Figure 19. Representation in the celestial sphere of the dial in use in the morning on the equinoxes. The Sun S, sit-
uated on the celestial equator, illuminates the portable dial, which remains immobile. On the dial, the shadow falls 
upon the graduation for seasonal hour 4.

H H' 90° – hecte

–105° –84.422° –61.935°
–90° –72.362° –66.0°
–75° –60.302° –61.935°
–60° –48.241° –52.293°
–45° –36.181° –40.239°
–30° –24.121° –27.179°
–15° –12.060° –13.677°
    0°     0°     0°

Table 3. Comparison of horary angles with the complement of the hectemoros for summer solstice.
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Figure 20. Representation by spherical trigonometry of the principle of the portable dial. The dial measures angle ζ 
whereas it is set as a function of angle ψ.

Figure 21. Representation in the celestial sphere of the portable dial in use in the morning on the winter solstice. 
The dial measures angle ζ which approximates a division by 6 of the semidiurnal arc described by the Sun. The Sun 
(at S) illuminates the dial, which is oriented to the southwest. The gnomon's shadow falls upon the graduation for 
seasonal hour 3.5.
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imagine a purely empirical approach. For that matter, we will see that a recognition in antiquity 
of the intrinsic error in the principle of this dial is not very probable.

If we resume the analogy between the angles but for an arbitrary date, for example for the 
summer solstice, for a latitude of 40° and a solar declination of +24°, we see that there is no lon-
ger an equivalence among the three aforesaid angles. One gets the following quantities for the 
morning, keeping in mind that cos hecte = sin H cos d  (Table 3).

Additionally, the gnomon’s shadow no longer falls on the equinoctial line, but below it. The 
inventor who conceived of this dial imagined that one should modify the inclination of the equi-
noctial line, and that this inclination, for a given day, was equal to the noon altitude of the Sun, 
namely 90° – f + d. This implies that angle y which the equinoctial line makes with the vertical 
passing through the gnomon equals (f – d). The purpose of this constraint is to indicate on the 
dial, to the extent that this is possible, the seasonal horary angle H'. Now we have seen that the 
dial measures the angle z, and in the general case where the Sun’s declination is not zero, it can 
be shown (Fig. 20) that: 

H H' 90° – hecte

–105° –84.422° –85.207°
–90° –72.362° –74.218°
–75° –60.302° –62.587°
–60° –48.241° –50.506°
–45° –36.181° –38.115°
–30° –24.121° –25.516°
–15° –12.060° –12.789°
    0°     0°     0°

Table 4. Comparison of horary angles with the angle measured on the universal portable dial.

Figure 22. Error in reading the time for latitude 40°.
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(36) 

or, expressed in terms of the primary parameters:

(37) 

such that z has the same sign as H.
The whole principle of this dial thus rests on the relationship between z and H', using as its 

starting hypothesis the assumption that the deviation between these two angles (expressed on 
hours) would be acceptable in civil use (cf. infra). Let us observe that the principle of its operation 
is not transferable to a sundial that is supposed to show the equinoctial hour (Fig. 21). In other 
words, this dial is only useful in a society in which the civil practice is seasonal hours. This could 
explain why it fell into desuetude, unlike the other kinds of portable sundials which can indicate 
the seasonal or the equinoctial hour indifferently, such as the cylinder or the armillary, which 
continued to be used right through the Middle Ages and the Renaissance, and even beyond in 
the case of the cylinder. This fundamental point seems not to have been noticed: while the ma-
jority of ancient sundial types could have survived through the centuries despite the change in 
usage of hours, the portable dial studied here experienced an abrupt halt because it could not be 
adapted to equal hours.24

24  An example of a truly universal portable dial is that of Regiomontanus.
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Resuming the preceding table (for the summer solstice), we can see that the deviation be-
tween H' and z is minimized by the solution tabulated in Table 4. The greatest deviation here be-
tween H' and z (for latitude 40°) reaches a little more than 9 minutes of a seasonal hour (Fig. 22).

One should underline the great subtlety of this portable sundial, which achieves the feat of 
showing, with a very acceptable error, the seasonal hour, measuring it on a scale graduated in 
equal angles of 15°, that is, an equinoctial scale. The considerable deviation between the equi-
noctial horary angle H and angle z is particularly apparent in this table; for example for H = –75° 
(7h), the deviation almost reaches 50 equinoctial minutes. 

When one plots the deviations (H' – z) as a function of latitude and as a function of declina-
tion (Fig. 23), one finds on the one hand that the greatest deviations are at the summer solstice, 
and on the other hand, that the deviation increases with higher latitudes.25 But rather curiously, 
the deviation always seems to reach its maximum for the same seasonal horary angle in absolute 
value.

To highlight this feature, it is necessary to study the derivative d(H'–ζ')/dh and set it equal to 
zero to obtain the precise seasonal horary angle corresponding to the maximum deviation. We 
obtain a rather long expression that nevertheless depends only on the semidiurnal arc:

(38) 

In all rigor, H' undergoes a gentle fluctuation of a few minutes as a function of the Sun’s decli-
nation and the latitude, but always remains very close to a seasonal horary angle of ±55° (except 

25  Around the polar circles, the dial becomes unusable for the most part because of the huge error caused by the 
latitude. 

Figure 24. Principle of the calculation of error in latitude, represented in spherical trigonometry. A bad setting of 
the read-off arm of the dial introduces a false angle ψ', so that instead of measuring angle ζ, the dial measures ζ'.
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for high latitudes, where one observes a drop starting at f = 62°). For a latitude of 40°, this corre-
sponds to seasonal times of 2 h 19 m and 9 h 40 m in the summer, supposing one could read the 
time with such precision.

When the user decides to read the time on this dial, he first has to set it in latitude by posi-
tioning the cursor on the circular scale; then he must calibrate the mobile arm according to the 
date (this presupposes a clamp to keep the arm fixed). The user then causes the dial to turn until 
the shadow of the gnomon falls upon the read-off scale. If the user is uncertain about whether 
it is before or after solar noon, he has to make a first reading of the time and then wait before 
making a second reading; if the shadow shifts away from the gnomon, it is morning, while if it 
shifts towards the gnomon, it is afternoon.

In addition to the intrinsic error of this dial (cf. supra), many causes can perturb the accuracy 
of the indicated time and even make it impossible to read off. The first cause of error is incor-
rect setting of the latitude: on all the portable dials that have been found, the latitudes of cities 
or provinces appear on the back. If broadly speaking the latitudes correspond to reality for the 
cities, the same does not go for the provinces, for which the latitudinal extension can be consid-
erable.26

26  There are additionally errors in the latitudes of cities, and one can find variants between the exemplars. 
Constantinople, for example, is places at 41° de latitude in the Aphrodisias exemplar but at 43° in the Samos, 
Memphis, and Rockford exemplars. See the table provided by J. V. Field and M. T. Wright, “Gears from the Byzan-
tines : A Portable Sundial with Calendrical Gearing,” Annals of Science, 42, 1985, p. 109-110.
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Getting the latitude wrong amounts to getting angle y wrong, hence to inclining the mobile 
arm at an incorrect angle y' such that y' = (f' – d), where f' is the supposed latitude and f the 
correct latitude. In Fig. 24 we see that the incorrect inclination brings with it a displacement of 
the direction in which the gnomon points from K to K'. As a result one will read off a false angle 
z' on the read-off scale, and this angle has to be compared to the Sun’s seasonal horary angle H' 
for the locality f. This angle is:

(39) 

In this formula, the denominator corresponds to the part set manually by the user. There are 
two kinds of configuration for latitude error: either the supposed latitude f' is greater than the 
correct latitude f, or it is less.

(1) f > f'. It is in the neighborhood of the meridian that the error is most important—in 
fact considerable—and the maximum maximorum takes place on the winter solstice (graph 3). 
Right at the meridian the false angle z' becomes:

(40) 

Fig. 25 displays the error H' – z' for the afternoon (the error for the morning is symmetrical 
but with opposite sign) when one is off by 1° in latitude (in this case the user is at 40° latitude 
but sets his dial for 39°). One can clearly see that between seasonal 6 h and 7 h (and hence also 
between 5 h and 6 h) the error is huge but decreases very quickly in such a way that one soon 
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is within the zone where the error is in the neighborhood of –10 minutes. One should note that 
the user can never observe seasonal 6 h (solar noon) on the dial, even by placing it in the plane 
of the Sun; at this moment, instead of pointing due east (D = –90°), the gnomon is off by several 
degrees (in summer the deviation can significantly exceed 20°). But since the shadow covers the 
read-off scale completely, the user cannot realize that he is committing an error in believing that 
he is before or after seasonal 6 h.

(2) f < f'. In the case where the latitude to which the sundial is set is greater than the correct 
latitude, there results a zone of hiatus in the readability of the time since it becomes impos-
sible to use the dial in the neighborhood of seasonal 6 h (graph 4). In fact, if the mobile arm 
of the dial is set such that its inclination is less than the actual noon altitude, one cannot read 
off the time when the Sun has an altitude greater than (90° – y'), that is, when (cos z' > 1). 
 In practice, this means that at a certain moment during the day, the user, no matter what 
how he turns his dial about, will never be able to bring the gnomon’s shadow upon the read-
off scale. This impossibility of making a reading, unlike the preceding case, allows him to 
grasp that there is a problem with the setting of the mobile arm.
 Here again (see Fig. 26, where the error in latitude is 1°), it is at the winter solstice that 
the greatest deviations result between H' et z', and one notes that the error decreases more 
slowly than in the case where f > f'. Moreover, the dial is unusable for more than two sea-
sonal hours during the day for a latitude around 40°.

One can take consideration of the error that one commits by using an incorrect orientation of 
the dial; but since the user is required to orient his dial so that the gnomon’s shadow falls on 
the scale of hours—otherwise one cannot read off the time—the orientation is not a significant 
cause of error.

On the other hand, there is another source of error that has to be taken into account, namely 
the error in the date. The majority of examplars of the universal portable sundial bear a scale 
of dates, bounded by the two solstices, with the intermediate graduations corresponding to the 
entries of the Sun into the zodiacal signs.27 Let us note in passing that the sole function of the 
symmetrical scale of dates that one finds on the exemplars is to refine the setting by means of a 
point situated at the tip of the read-off scale.

The solstices are generally placed on the 8th days before the Kalends of January and July, that 
is, respectively December 25 and June 24.28 The indicated solstice dates are the classical dates ac-
cording to the Julian calendar, which came into use in 45 BC. As for the equinoxes, they are set on 

27  On this point see P. Brind’Amour, Le calendrier romain,  Université d’Ottawa, 1983, p. 15-19.

28  F. K. Ginzel, Handbuch der Mathematischen und Technischen Chronologie, op. cit., p. 179-181 et p. 282.

Mean dates 1st century 2nd century 3rd century 4th century 5th century 6th century

Vernal equinox March 22 March 21 March 21 March 20 March 19 March 18

Summer solstice June 24 June 23 June 22 June 22 June 21 June 20

Autumnal equinox Sept. 25 Sept. 24 Sept. 23 Sept. 22 Sept. 22 Sept. 21

Winter solstice Dec. 22 Dec. 22 Dec. 21 Dec. 20 Dec. 19 Dec. 19

Table 5. Shift of dates of solstices and equinoxes in the Julian calendar.
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March 25 (8th day before the Kalends of April) and September 24 (8th day before the Kalends of 
October). But because of the drift of the Julian year relative to the tropical year, the astronomical 
seasons underwent a shift as tabulated in Table 5 for the period from the 1st century through the 
end of the 6th century29

In addition to this shift of the seasons there is a slow diminution of the obliquity of the 
ecliptic, which changed from 23° 41' in the 1st century to 23° 37' in the 6th century. This has the 
effect of significantly modifying the inclination of the mobile arm at the solstices, and given that 
the dials were engraved with an obliquity of 24°, the error ends up being a little over 0° 20' in 
the 6th century. Making a bad estimate of the date (or of the obliquity) on this type of portable 
dial amounts to applying an erroneous solar declination, and it is easy to see that this reduces 
to the same kind of error as introducing a bad latitude: the angle y' here becomes (f – d') where 
d' is the incorrect solar declination. Since the declination varies very little around the solstices, 
getting the date wrong by several days is inconsequential, in particular since the graduations of 
the dials do not allow a setting to the precise day! For example, a 6th century user who thinks 
that the summer solstice falls always on June 24 is committing an error of 0° 3', which is not 

29  D. Savoie, “Les dates des quatre saisons,” Observations et Travaux, n° 19, 1989, p. 3-6. The mean dates (largest nu-
mber of occurrences of the date by century) in the present table were calculated in UT according to the algorithms 
given by J. Meeus, Astronomical Algorithms, Willmann-Bell, Richmond, USA, 1998.

Figure 27. Illustration of the quadrans vetus from Orontius Finnaeus, De solaribus horologiis et quadrantibus, Paris, 
1560, Book II, p. 143. On this ancient quadrant can be seen the sighting system consisting of pinnules, and the limb 
graduated in 90° with a dentate scale. Below the limb, the author has added a zodiacal calendar establishing the 
correspondence between the days of the year and the degrees of the zodiac occupied by the Sun on each day. Six 
circular arcs meeting at the top represent the hour curves.
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perceptible. On the contrary, the same user, if he thinks that the vernal equinox falls on March 
25 rather than March 18, commits an error of close to 2° 30' in the declination, and this does 
become perceptible.

As has already been said, the dial is perfectly correct only on the equinoxes, and its error is 
absolutely imperceptible for at least a month before and after the equinox. Once again, our mod-
ern conception of the idea of precision for such a dial needs to be put in perspective. It would 
appear logical to compare the seasonal time indicated by the portable dial to that which would 
be indicated on an ancient dial that has been perfectly drawn and is in a functioning state, which 
plays the role of a kind of control-clock. In reality this appears unrealistic for many reasons. The 
first is tied to the physical difficulty of making such an error apparent, since ancient Greco-Ro-
man sundials, with rare exceptions, lack any subdivision of the hour. This means that to know 
the time when the gnomon’s shadow falls between two hour lines on the control-clock, one has 
to make an estimation that one cannot guarantee to be accurate to within 5 or 10 minutes. Hence 
unless the maximum error of the portable dial falls, by a felicitous stroke of luck, on a round 
hour number, it is practically certain that an error of 7 or 9 minutes is impossible to make visible. 
What is more, how can one be certain that the error does not arise from a bad setting in latitude 
or date rather than from the conceptual basis of the dial? In fact it is legitimate to ask whether 
the inventor or inventors of this portable dial were conscious that it was, in an ideal sense, false.

We should thus seriously consider the possibility that this dial was considered in antiquity 
to be perfectly exact. For lack of documents, one cannot know whether its invention resulted 
from a theoretical investigation or by chance or from a combination of the two. But if one recalls 
that it is not a precise instrument for time measurement, one has to conclude that it is doubtless 
the best candidate for being the famous πρὸς πᾶν κλίμα of which Vitruvius speaks,30 and that it 
fulfilled in a very satisfactory way its mission of giving a good notion of the time while traveling 
over a vast extent of latitude. It constitutes one of the very are examples of sundials that sank 
into obvlivion when unequal hours progressively gave way to equinoctial hours.

The dial can be compared—without presuming a priori a line of descent—to another later in-
strument of Arabic or rather Persian origin,31 the “ancient quadrant” (quadrans vetus), one of the 
earliest references to which goes back to Hermann le Boiteux (1013-1054),32 and which was dif-
fused in Europe especially thanks to Master Robert Anglès (Robertus Anglicus)33 and Sacrobosco34 
(Fig. 27). This consists simply of an adaptation of a diagram of unequal hours—a grid that was in 

30  Vitruvius, De Architectura, Book IX, chap. VIII, 1, gives a description of sundials, attributing them to inventors, 
and speaks of a dial “for all latitudes” (in Greek in the text). See the translation by J. Soubiran, Les Belles Lettres, 
Paris, 1969, p. 30.

31  See D. King, “A Vetustissimus Arabic treatise on the Quadrans vetus,” Journal for the History of Astronomy, xxxiii, 
2002, p. 237-255 et F. Charette, Mathematical instrumentation in fourteenth-century Egypt and Syria, Brill, Leiden-Boston, 
2003, p. 211-215.

32  Study of the texts of this period, including the one allegedly by Hermann le Boiteux, enabled J.–M. Millas Valli-
crosa to demonstrate that there actually existed two types of quadrans : the vetustissimus, which was older than the 
vetus. See the important study by J.–M. Millas Vallicrosa, “La introduccion del cuadrante con cursor en Europa,” Isis, 
t. XVII, 1932, p. 218-258.

33  The Latin and Greek text were edited by P. Tannery, Le Quadrant de Maître Robert Anglès, (Montpellier, XIIIè 
siècle), Notices et extraits des manuscrits de la Bibliothèque Nationale, Paris, t. 35, 1897, 2è partie, p. 561-640. See, however, 
the remarks and criticisms by W. R. Knorr (cf. infra).

34  One should consult the fundamental study by W. R. Knorr, “The Latin Sources of Quadrans vetus and What They 
Imply for Its Authorship and Date,” Texts and Contexts in Ancient and Medieval Science : studies on the occasion of John E. 
Murdoch’s seventieth birthday,  E. Sylla and M. McVaugh, Leiden, New York, Köln, Brill, 1997, p. 23-67.
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wide use notably on the backs of planispheric astrolabes—to a sighting system complemented 
by a weighted thread. Otherwise put, the ancient quadrant is a “universal” altitude sundial since 
from observation of the altitude of the Sun one deduces the unequal hour, no matter what date 
and latitude of the locality.

This quadrans vetus presents remarkable properties which call to mind those of the ancient 
universal portable dial: it is not rigorously exact except at the equinoxes,35 it has to be adjusted 
to the noon altitude of the day, its equinoctial path is valid at (nearly) all latitudes, and it in-
dicates the seasonal hour subject to exactly the same approximation as the ancient universal 
portable dial.

Let us briefly describe this sundial. It is a quadrant of a circle bearing a sighting system 
(pinnules on one of its sides, a plumb line fixed to the point of convergence of the hour lines, 
graduation of the limb in 90°), six circular arcs meeting at the instrument’s top and constituting 
hour lines that divide the limb into six sectors of 15°. In the 12th century, a zodiacal calendar was 
added in the form of a mobile circular sector along the limb, allowing the solar noon altitude to 
be obtained as a function of the date; this is what was named the cursor. It served as a kind of 
table of solar declination.

On the day of observation, one calculates the altitude of the Sun’s culmination at the place 
of observation, which one finds (for example by means of a bead sliding along the plumb line) 
on the line for seasonal hour VI; then one sights the Sun by holding the quadrant vertically. The 
entire dial is tilted, except of course for the plumb line. The sliding bead will now show the sea-
sonal hour (Fig. 28).

35  This point did not escape J.–B. Delambre, Histoire de l’Astronomie du Moyen Age, Paris, 1819, p. 243-247. J. Drecker 
approaches the problem but in a more obscure manner in Die Theorie der Sonnenuhren, op. cit., p. 86-89.  See also R. 
D’Hollander, L’Astrolabe, Histoire, Théorie, Pratique, op. cit., p. 213-216.

Figure 28. Principle of setting and use of the quadrans vetus. Knowing the latitude of the locality and the Sun's dec-
lination, one calculates the Sun's noon altitude (90° – latitude + declination), which one locates on the graduated 
limb. One now extends the plumb line, which cuts the circle for unequal hour VI at a point that one finds by means 
of a sliding bead. When this setting is complete, one sights the Sun; the position of the bead enables one to read off 
the unequal hour on the network of curves.
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It is easy to show by plane trigonometry that the angle that one reads off on the dial is not the 
seasonal horary angle T but a different angle—let us call it T'—whose formula is:

(41) 

where h is the Sun’s altitude and hm is its noon altitude, that is, 90° – f + d.  Hence we have: 

(42) 

or, again,

(43) 

One sees at once that the expression for T' is the same as that for z in the ancient universal por-
table sundial. If for example one calculates the error committed on the summer solstice (d = +23° 
26') on a quadrans vetus calculated for the University of Puget Sound (f = 47° 15' 44'') one obtains 
the data tabulated in Table 6.

It goes without saying that, by way of contrast, the difference (H – T'), that is, the equinoctial 
hour angle minus the “hour angle” of the dial yields considerable deviations: one cannot read 
off the equinoctial hour on such a sundial. Here one meets again one of the particularities of the 
ancient universal portable dial, with the difference that one could have adapted the quadrans 
vetus to equinoctial hours, but at the cost of suppressing its “universality,” since such a sundial 
depends on the locality’s latitude;36 the hour lines remain circular arcs but they do not converge 
at the angle of the quadrant. Moreover, the cursor no longer has real meaning since its purpose 
is to render the dial usable universally.

36  The procedure for constructing a quadrant for equal hours is given, for example, by Jean Fusoris (1365-1436) : 
see E. Poulle, Un constructeur d’instruments astronomiques au XVè siècle : Jean Fusoris, H. Champion, Paris, 1963, p. 71-73. 
A good example of a quadrant for equal hours (and unequal hours) may be found in Orontius Finnaeus, De solaribus 
horologiis et quadrantibus, Paris, 1560, Book II, p. 151.

H T T' Error in minutes T – T'

    0°   0°   0°   0

  15° 11.443° 12.364°   3.7

  30° 22.886° 24.659°   7.1

  45° 34.329° 36.810°   9.9

  60° 45.773° 48.727° 11.8

  75° 57.216° 60.299° 12.3

  90° 68.659° 71.379° 10.9

105° 80.102° 81.771°   6.7

Table 6. Calculation of error of time determinations on the quadrans vetus on the summer solstice, latitude 47° 15'.
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While we wait for future archeological excavations to provide us with new portable sundials 
from antiquity—perhaps of a new type—we should recall the intent of these “universal” porta-
ble dials. They are witnesses first of all of remarkable originality and imagination in gnomonics, 
even if the principle on which they are based is relatively simple: to determine the time from 
the Sun’s altitude. There are few scientific instruments that made it possible to deploy so many 
clever devices, for which there was need of a collaboratoin of applied technology, trigonometry, 
and geometry. The Middle Ages and the Renaissance would continue along this route opened 
by the gnomonists of antiquity, with dials in which esthetics assumed a major role, as in the 
Navicula, the Capucin, and the “Universal” of Regiomontanus. More surprisingly, one finds again 
even in the Age of Enlightenment this tendency to conceive of new universal portable sundials; 
it suffices to consult the Supplément à l’Encyclopédie [of Diderot and D’Alembert] and its superb 
plates,37 where the author describes unpublished portable dials38 some of which were due to the 
German mathematician Johann Heinrich Lambert (1728-1777).

Did these ancient universal dials serve in the “real world” to determine the time? Emmanuel 
Poulle, connoisseur of medieval astronomy, concluded bluntly that astronomical instruments 
(astrolabes, quadrans vetus, …) constituted a pedagogical resource and incidentally a tool for cal-
culation, but in no way a resource for observation. I absolutely share this view and I think that 
the same applies to the majority of ancient portable dials: they are objects of prestige and curi-
osity. As I have said above, their small dimensions make the read-off of the hour very difficult, 
not to say impossible; the crudeness of the drawing in the case of some of them, and in the case 
of others the uncertainness or inexactness of the locality where they were used and the shift in 
the dates of the seasons in the Julian calendar—all this makes highly improbable any precise de-
termination of the time. Doubtless there would be much to say about this concept of “precision” 
in antiquity and even in the Middle Ages, and it is a safe bet that we impose modern concepts 
on these portable sundials that are totally anachronistic so far as concern the results that the 
ancients expected to obtain.39

37  Supplément à l’Encyclopédie ou Dictionnaire Raisonné des Sciences, des Arts et des Métiers, t. 2, Amsterdam, 1776, p. 
97-106.

38  See Y. Massé, De l’analemme aux cadrans de hauteur, 2009, available from the author: 2 ruelle de la Ravine 95300 
Pontoise, France.

39  Having executed an exemplar of the ancient universal sundial of 19 cm diameter in wood, I can confirm that it 
would yield the unequal hour with very good accuracy. However, none of the dials that have come down to us reach 
these dimensions; of the eleven known examples, half are 6 cm in diameter and the other half 11 cm.


