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Mathematical discourse in philosophical authors: Examples from
Theon of Smyrna and Cleomedes on mathematical astronomy

Nathan Sidoli

Introduction
Ancient philosophers and other intellectuals often mention the work of mathematicians, al-
though the latter rarely return the favor.1 The most obvious reason for this stems from the im-
personal nature of mathematical discourse, which tends to eschew any discussion of personal,
or lived, experience. There seems to be more at stake than this, however, because when math-
ematicians do mention names they almost always belong to the small group of people who are
known to us as mathematicians, or who are known to us through their mathematical works.2

In order to be accepted as a member of the group of mathematicians, one must not only have
mastered various technical concepts and methods, but must also have learned how to express
oneself in a stylized form of Greek prose that has often struck the uninitiated as peculiar.3 Be-
cause of the specialized nature of this type of intellectual activity, in order to gain real mastery
it was probably necessary to have studied it from youth, or to have had the time to apply oneself
uninterruptedly.4 Hence, the private nature of ancient education meant that there were many
educated individuals who had not mastered, or perhaps even been much exposed to, aspects of
ancient mathematical thought and practice that we would regard as rather elementary (Cribiore
2001; Sidoli 2015).

Starting from at least the late Hellenistic period, and especially during the Imperial and Late-
Ancient periods, some authors sought to address this situation in a variety of different ways—
such as discussing technical topics in more elementary modes, rewriting mathematical argu-
ments so as to be intelligible to a broader audience, or incorporating mathematical material di-
rectly into philosophical curricula. None of this resulted in the equivalent of a modern textbook,
but the results were works that were meant to have an educational, or at least introductory,

1 In this paper, I use the termmathematician to denote a practitioner of those disciplines that used mathematical
techniques or that investigated mathematical objects—actual or ideal—such as geometry, mechanics, optics, astron-
omy and astrology, number science (arithmetikē), harmonics, computational methods (logistikē), spherics (sfairikē),
sphere-making (sfairopoiïa), sundial theory (gnōmonikē), and so on. See Netz (1997, 6–9) for a list of the names of very
nearly all of themathematics andmathematical scholars who are known to us from the Greco-Roman period. In this
paper, I will argue that a number of the scholars in this list would not have been counted as mathematicians by their
peers.
2 A striking counterexample is Ptolemy, who at the beginning of his Almagest mentions, with praise, the name
of Aristotle, immediately following which he inverts the latter’s epistemological hierarchies and asserts that only
mathematics can produce real theoretical knowledge and that studies of nature and the divine stand to learn from
mathematics—not the other way around.
3 There is a large literature on mathematical Greek prose, for a quick overview of which see Sidoli (2014, 29).
4 Galen recounts that he studied the mathematical sciences from his father in his youth, and Theon of Smyrna
explicitly tells us that extensive study from youth was necessary for competence in mathematics; see Sidoli (2015,
395–396) and Jones (2016, 471).
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function. Examples of this type of treatise include Geminos’ Introduction to the Phenomena, which
guides the uninitiated through the basics of mathematical astronomy; Theon of Smyrna’s Math-
ematics Useful for Reading Plato, which introduces a medley of mathematical topics divided into
number science, geometry, harmonics and astronomy; Cleomedes’ On the Heavens, which shows
howmathematical approaches can be of service in the philosophy of nature and the cosmos; and
Proclus’ Commentary on Euclid’s Elements Book I, which expounds the details of deductive geometry
as part of a larger philosophical, indeed, spiritual project.

For historians and scholars of the ancient period, works such as these offer a rich source
of material for learning about mathematical methods and results that have not been preserved
in mathematical sources. They are also, however, fraught with interpretive difficulties because
the goals, educational backgrounds, philosophical outlooks, and technical competencies of the
authors of such sources are often different from that of the authors whose work they report.
In order to make a coherent attempt to read through our sources to the claims and practices
of the reported mathematicians, we must both separate the goals of our sources from those on
which they report, and also situate the reported work in a context of the methods and research
programs actually found in other ancient mathematical works. This must be done on a case-by-
case basis, and in many instances we will not be able to say much with real certainty.

In this paper, I will look at two short examples—taken fromCleomedes andTheon of Smyrna—
with the aim of articulating the context of ancient mathematical work from which this material
originates. Although I will not argue that a full reconstruction of the underlying mathematical
models and methods is possible, I hope to show that when we situate the ideas and methods
discussed in these sources within a context of ancient mathematical methods reported in other
sources, we can develop a clearer picture of both the ancient mathematics reported and of the
ways our sources handled this material.

Cleomedes, On the Heavens I.7
In his only known surviving work, On the Heavens, Cleomedes—a Stoic philosopher who lived
sometime between the middle of the 1st century BCE and the end of the 2nd century CE—seeks
to introduce cosmography to students of philosophy who he takes to have only the most rudi-
mentary knowledge of mathematics.5 Hence, he goes to some lengths to simplify geometrical
configurations to the extent that they can be followed from his oral exposition alone, and with
no mathematical procedures beyond the rule-of-three.

The passage below is his discussion of a computation of the terrestrial circumference, as
250,000 stades, which he attributes to Eratosthenes, Heavens I.7. Cleomedes tells us that Eratos-
thenes’ procedure was geometrical and difficult, so the striking simplicity of the configuration
and the computation that he goes on to describe may come as somewhat of a surprise.

Furthermore, there are issues involved in reconciling both the numerical value and the over-
all simplicity of Cleomedes’ account with Heron’s claim in Dioptra 35 that “Eratosthenes, having
worked rather more accurately than others, showed in his book entitled On theMeasurement of the
Earth” that the terrestrial circumference is 252,000 stades (Acerbi and Vitrac 2014, 104). If the
mathematical methods implied by Heron’s Dioptra 35 are any indication of what he means by a

5 See Bowen and Todd (2004, 1–17), for an introduction to this source.
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mathematician working carefully,6 then it is difficult to see how he could have been impressed
by something so trivial as the configuration described by Cleomedes.

Eratosthenes was a younger contemporary of Archimedes, to whom the latter chose to send
his Method. This, as well as Heron’s assessment, is an indication that Eratosthenes was a seri-
ous mathematician whose work developed the efforts of other early Hellenistic mathematicians.
Hence, we should regard Eratosthenes’ lost On the Measurement of the Earth as a treatise in the tra-
dition of Aristarchus’ On the Sizes and Distances of the Sun and the Moon, or Archimedes’ Sand Reck-
oner.7 That is, it probably made use of somewhat crude, observational hypotheses,8 extensive
geometrical modeling using lettered diagrams, proto-trigonometric inequalities between angles
and sides of right triangles, ratio manipulation, and some arithmetic operations.9 None of this,
however, is found in Cleomedes’ account.

We should consider the possibility that Cleomedes had never read the original source andwas
less interested in reporting what Eratosthenes actually did than in drawing out certain mathe-
matical principles so as tomakehis ownphilosophical points. Cleomedes compares Eratosthenes’
procedure with that of Posidonius, from whom he may well have taken both accounts. Although
Posidonius was probably interested in arguing against the claims of mathematicians to be able to
produce specialized knowledge about the physical world,10 Cleomedes seems to have had more
restricted goals. He was clearly interested in exhibiting a direct cognitive relationship between
assumptions and conclusions,11 and appears to have reworked Eratosthenes’ argument so as to
make it amenable to such an approach. The goal of Cleomedes’ procedure is to show how geo-
metrical assumptions can be combined with sense perceptions to make true assertions about the
physical world that go beyond what our senses alone can directly decide.

After describing Posidonius’ procedure, Cleomedes turns to Eratosthenes’, saying:12
[1] … That of Eratosthenes involves a geometric procedure (geōmetrikē efodos),13 and
it is thought to involve something more obscure. But, the assertions by him will be
made clear from the following prior suppositions (proüpothemenos) of ours.
[2.1] Let it here have been assumedbyus, first, that Soēnē andAlexandria are situated
under the same meridian, [2.2] and [second] that the distance between the cities is
5000 stades, [2.3] and third that the rays sent down from different parts of the sun
to different parts of the earth are parallel—just as the geometers assume holds. [2.4]

6 See Sidoli (2005) for a discussion of these mathematical methods. This should be compared against Acerbi and
Vitrac (2014, 103–115) for some textual corrections.
7 See Dijksterhuis (1987, 360–373), Berggren and Sidoli (2007), Van Brummelen (2009, 20–32), and Carman (2014)
for discussions of the mathematical methods of these sources and their use of hypotheses.
8 That is, claims about observational results thatmay ormay not have been the result of carefullymade, carefully
recorded observations, but which, in the structure of the mathematical argument, are taken simply as assumptions.
9 See CarmanandEvans (2015) for a discussion of the details ofwhat such a researchprogrammight have involved.
10 See Bowen (2007) for a discussion of these sorts of jurisdictional disputes in ancient authors, inwhich Posidonius
played a role.
11 See Bowen (2003) and Bowen and Todd (2004, 11–15) for discussions of Cleomedes’ interest in the structure of
demonstrations.
12 My translation can be compared with that of Gratwick (1995, 179–180) or Bowen and Todd (2004, 81–84). I have
tried to preserve those places where Cleomedes’ prose seems technically awkward.
13 Bowen (2003) gives a justification for translating efodos as procedure. See below for a discussion of Cleomedes’
characterization of Eratosthenes’ procedure as “geometrical.”
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Fourth, let it be further assumed—as is shown by the geometers—that straight lines
that fall on parallel [lines] make the alternate angles equal; [2.5] fifth, that arcs that
stand upon equal angles are similar; that is, they have the same proportion and the
same ratio to their own circle (oikeios kuklos)—which is also shown by the geometers,
for whenever arcs stand on equal angles, if any one of them is ten parts of its own
circle, all of the rest will be ten parts of their own circles. [2.6] Onewho hasmastered
these thingswouldhavenodifficulties understanding theprocedure of Eratosthenes,
which is as follows.
[3.1] He says that Soēnē and Alexandria are situated under the same meridian. So,
since meridians are great [circles] of those in the cosmos, those lying under them
will necessarily be great circles of the earth. [3.2] Hence, however much (hēlikos)
this procedure shows the circle reaching through Soēnē and Alexandria to be of the
earth, so much (tēlikoutos) is the great circle of the earth.
[4.1] He states—and it holds—that Soēnē lies under the circle of the summer tropic.
So, whenever the sun comes to be in Cancer and brings about the summer tropic,14
exactly at culmination the gnomons of sundials (hōrologion) are necessarily shadow-
less, because the sun is situatedperpendicularly above—and it is said that this is three
hundred stades in diameter. [4.2] But, in Alexandria, at the same hour, the gnomons
of sundials cast shadows, inasmuch as this city is situated further north than Soēnē.
[5.1] Now, since these cities are situated under a great circle meridian, if we produce
an arc from the tip of the shadow of the gnomon around to the base of the gnomon of
the sundial in Alexandria, this arc will be a part (tmēma) of the greatest of the circles
in the bowl [of the sundial],15 since the bowl of the sundial is situated under a great
circle. [5.2] So, if we next imagine (noeō) straight lines extended through the earth
from each of the gnomons, they will meet at the center of the earth. [5.3] So, since
the sundial in Soēnē is located perpendicularly under the sun, if we further imagine
a straight line from the sun reaching to the gnomon tip of the sundial, it will be one
straight line, reaching from the sun as far as the center of the earth. [5.4] So, if we
imagine another straight line from the tip of the shadow of the gnomon to the sun,
being produced from the bowl in Alexandria, this [straight line] and the aforesaid
straight line will be parallels—that is, they are extending from different parts of the
sun to different parts of the earth. [5.5] Now, a straight line reaching from the center
of the earth to the gnomon in Alexandria falls on these parallels, hence the alternate
angles are made equal—one of which is at the center of the earth, at the meeting of
the straight lines that were produced from the sundials to the center of the earth,
while the other is at the meeting of the tip of the gnomon in Alexandria and the
[straight line] produced from the tip of its shadow to the sun through the point of
contact. [5.6] And, upon this [angle] stands the arc produced from the tip of the
shadow of the gnomon to its base, while the [arc] produced from Soēnē to Alexandria
[stands] upon that at the center of the earth.

14 Literally, “makes (poieōn) the summer turn.”
15 That is, it will be one of the great circles of the bowl. This expression is not usual in Greek mathematical texts,
so I have tried to preserve the literal expression.
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[6.1] Now, the arcs are similar to one another—that is, they stand on equal angles.
Therefore (ara), the ratio which the [arc] in the bowl has to its own circle, is also
that ratio which the [arc] reaching from Soēnē to Alexandria has [to its own circle].
[6.2] But, the [arc] in the bowl is found to be, indeed, a fiftieth proper part (meros) of
its own circle. So, the distance from Soēnē to Alexandria must also necessarily be a
fiftieth proper part of the great circle of the earth—and this [distance] is 5000 stades.
[6.3] Therefore (ara), the whole circle comes to 25 myriads. Such is the procedure of
Eratosthenes.

(Todd 1990, 35–37)
Once again, this passage exhibits a number of striking features, when read from the per-

spective of Greek mathematical sources. The first is the absence of a diagram and letter-names,
despite Cleomedes’ characterization of the procedure as geometrical. Since diagrams and letter-
names are oneof thedefining characteristics of Greek geometrical prose, it is clear that Cleomedes
means something quite specific by calling this procedure geōmetrikē. As discussed above, he prob-
ably means that the grounds for accepting the claim as true depend on certain hypotheses or
knowledge claims that are geometrical, as opposed to physical, or based in sense perception.

Although the deductive language of the passage is fairly standard for philosophical writings,
there are peculiarities from a mathematical perspective. For example, the assumptions are set
out using impersonal imperatives, while the constructions are imagined using personal verbs,
geometrical terminology is used in unusual ways, and there are a number of peculiar expressions
that will be discussed in detail below.

Finally, although Cleomedes deliberately structures his account, there is little or no trace of
the usual mathematical structure, such as we find in Aristarchus’ On Sizes, or, less concretely, in
Archimedes’ Sand Reckoner.16 There is no enunciation of the computational result to be obtained,
no exposition of the actual configuration through a lettered diagram, no geometrical construc-
tions, nor any real mathematical argumentation. Instead, Cleomedes has carefully laid out all
of the starting points of the reasoning in the beginning, as hypotheses, so that the result can be
seen to follow almost immediately from a description of the spatial arrangement of the objects
in question. That is, he shows that if certain geometrical propositions are true, they allow us to
infer true claims about the world that we cannot perceive, based on the local world that we can
perceive, or potentially measure. In order to appreciate Cleomedes procedure, it will be useful
to follow his argument in detail.

He begins, in [1], by asserting that the procedure of Eratosthenes is geometrical and difficult,
but that he will simplify it, by clearly stating all of its starting points. Bowen and Todd (2004,
78, n. 1), following a suggestion of Gratwick (1995, 178, n. 1), argue that here geōmetrikos must
be understood as geodesic, since Posidonius’ procedure also employs geometry. Indeed, modern
reconstructions of Posidonius’ method often formulate it as parallel to that of Eratosthenes.17
But these are reconstructions. Cleomedes’ account of Posidonius’ procedure makes no use of

16 It is well known that Greek propositions rely on structure to convey certain aspects of their deductive force.
For discussions of the structure of propositions in the Elements, see Mueller (1981, 11–12) and Netz (1999b). Acerbi
(2011a, 1–117) bases his discussion of structure on the Elements as well, but also treats other Greek mathematical
works.
17 For example, Taisbak (1974, 257–259) formulates the two arguments as structurally similar, and provides similar
diagrams for each, in which he is followed by Bowen and Todd (2004, 78–85, 181–183).
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geometry18 and it is possible to explicate the argument with a single analemma diagram and no
use of the geometrical assumptions that Cleomedes posits for Eratosthenes’ procedure.19

Whatever our opinion of Posidonius’ method, however, it is clear that Cleomedes himself in-
tends us to understand Eratosthenes’ procedure as more geometrical than it, because he will go
on to preface the latter by discussing five assumptions, three of which he explicitly attributes
to “the geometers.” Hence, in Cleomedes’ opinion, Eratosthenes’ procedure relies on a series of
assertions and knowledge claims made by a group of specialists—and it is the use of this special-
ized knowledge, and presumably the use of a specializedway of writing, thatmarks Eratosthenes’
procedure as geometrical. Moreover, it is clear from his presentation that Cleomedes intends to
simplify this procedure, making it more intelligible to the non-specialist.

The five assumptions that Cleomedes proposes are given in the next paragraph, [2]. The fact
that Cleomedes claims these hypotheses as his own is a good indication that he has rearranged
the argument. Although some of them, such as [2.3] concerning the rays of the sun,maywell have
been asserted by Eratosthenes, others, such as [2.4] and [2.5] were most likely assumed without
comment, as obvious—just as they would have been by Aristarchus or Archimedes.

The first two hypotheses, [2.1, 2.2], namely that Soēnē and Alexandria are assumed to lie
below a great circle through the celestial poles, and that they should be taken as 5000 stades
apart, are essentially the same as those assumed by Posidonius, and Cleomedes apparently did
not regard themas geometrical. He presumably thought that theywere decidable using empirical
methods or were idealizations of empirical claims.20

The next three hypotheses are those which Cleomedes claims are either assumed or demon-
strated by the geometers. The first of these, [2.3], is that the lines joining different parts of the
sun with different parts of the earth must all be taken to be parallel—that is, the lines drawn
from any point on the earth to any point on the sun are all parallel. Gratwick (1995, 187–188)
argued that this hypothesis must have been muddled by Cleomedes because it does not agree
with our understanding of the composite nature of shadows. Furthermore, if the sun is taken to
be a body at some definite distance, and of some definite magnitude, as was generally held to be
the case, then it would be strictly false that these lines would be parallel. Nevertheless, consid-
eration of Aristarchus’ hypotheses in his On Sizes,21 shows that mathematicians did, in fact, make
assumptions that they knew to be strictly false, in order to see where the reasoningwould lead. If
Eratosthenes’ approach was anything like that found in Aristarchus’ On Sizes or Archimedes’ Sand
Reckoner, he would have used observational hypotheses as means to constructing an idealized

18 That is, unless any spatial reasoning must be counted as geometry.
19 For example, we can draw both horizons in the same analemma figure, so that the arc between Canopus on the
northern horizon of Rhodes and the southern horizon of Alexandria represents at once the difference in the celestial
and the terrestrial latitudes.
20 Bowen (2003, 63—64) claims that Cleomedes took Eratosthenes’ value of 250,000 to be better than Posidonius’
value of 240,000 because he also asserts it in On Heavens I.5 and II.1. This then involves us in having to decide why
Posidonius’ 5000 stades between Rhodes and Alexandria is a weaker assumption than Eratosthenes’ 5000 stades be-
tween Alexandria and Soēnē. Another possibility is that Cleomedes took these values to be essentially the same and
just asserted the round figure. Since, in either case, a difference of about 200 stades (4%) would give the same value,
Cleomedes may well have accepted that, given the crudeness of the procedure, this difference was undecidable—
especially since, in [4.1], he seems to say that Soēnē lies in a region of 300 stades that can be assumed to lie directly
below the summer tropic, so that 200 stades would be well within the margin of error of the hypothesis.
21 See Berggren and Sidoli (2007, 231–234) and Carman (2014, 55–58) for discussions of Aristarchus’ use of hy-
potheses.
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geometric model, which would then have become the sole object of his reasoning and computa-
tion. Moreover, as Carman and Evans (2015) have argued, the assumption of a sun at an infinite
distance may have been used to compute a lower bound for the size of the earth, which could
then be compared with an upper bound computed under the equally idealized but contrary as-
sumption of a point-sun at a given, or at least bounded, distance. At any rate, in his presentation,
Cleomedes calls on this hypothesis in precisely the way that he states it—as involving the lines
joining any point of the earth to any point of the sun.

The next assumption, [2.4], is simply Elements I.29—“a straight line falling on parallel straight
lines makes the alternate angles equal to one another, the external equal to the opposite and
internal, and those on the same side equal to two right angles” (Heiberg 1969–1977, 41). Eratos-
thenes, however, certainly would not have taken this as a hypothesis in the sense that Cleomedes
intends. If Eratosthenes assumed that this were true, he did so because it was the subject of
geometrical demonstration and could be assumed without further comment. Whether or not
Eratosthenes was thinking of Euclid’s text, he certainly would have known that this proposition
had been demonstrated. Cleomedes acknowledges asmuch by pointing out that “the geometers”
prove this proposition, but still asserts that he will use it as an explicit assumption of his philo-
sophical argument. That is, he avoids the question of a toolbox of mathematical knowledge and
techniques that usually forms the background of any mathematical argument.22

The final geometrical assumption, [2.5], is the claim that arcs that subtend equal angles are
similar—that is, they compose the same part of, or have the same ratio with, their respective
circles. The expression that Cleomedes uses for the circle to which an arc belongs, oikeios kuklos,
although common in On the Heavens, is not standard in Greek mathematical prose. Furthermore,
a repetition of the “same proportion” and the “same ratio” is not usual in mathematical authors,
and would be strange from a mathematical point of view. Both of these expressions mark this
passage as something that a mathematician was unlikely to have actually said. Indeed, I am not
aware of any proof of this claim in the elementary geometrical texts, although Elements III.def.11
mentions similarity of segments. Nevertheless, this is assumed by Aristarchus in his On Sizes—for
example in Prop. 7—and, of course, lies at the core of later chord-table trigonometry. The fact
that Cleomedes gives a numerical example is an indication that he is thinking of computational
work such as we find in On Sizes. Eratosthenes may have argued explicitly for this proposition, as
part of his development of the proto-trigonometric tradition of Aristarchus and Archimedes, or
Cleomedes may simply be using the idea of showing loosely.

The subsequent paragraphs develop the logical argument that Cleomedes presents, calling
on and applying each of the hypotheses in very nearly the same order as they were presented.
Since the procedure itself calls on two further empirical claims, there must be some difference
between these and those discussed above for the first two hypotheses, [2.1, 2.2]. As will be dis-
cussed below, the two empirical claims presented in the course of the argument are, at least in
principle, verifiable with direct sense perception, whereas the distance between the two cities
and their location on a single meridian can only be apprehended through a variety of sense per-
ceptions and logical inferences.23 It is also possible that [2.1] and [2.2] are taken as hypotheses
because they are being acknowledged as not strictly true.

After reiterating the first hypothesis, in [3.1], and pointing out that this implies that the two
cities lie on a single great circle of the earth, Cleomedes gives a sort of summary of the whole

22 The mathematical toolbox is discussed by Netz (1999a, 216–235), who bases this idea on a research project by
Saito (1997, 1998).
23 See the discussion by Bowen (2003), for the distinction between these types of propositions in Cleomedes’ work.
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procedure, in [3.2]. Namely, if we can determinewhat part of the great circle of the earth joins the
two cities, then we can determine the size of the whole great circle. Cleomedes’ way of putting
this is vague on two counts. The first is that he does not use the usual language of ratios, or
parts, but more general expressions for relating amounts, or quantities (hēlikos, tēlikoutos)—here
intended to imply a use of the computational rule-of-three.24 The second is that he uses the
word kuklos in a non-standard way, as a synonym for perifereia, denoting both an arc and a whole
circumference.

The next paragraph, [4], introduces the first set of empirical considerations that were not
assumed from the start. Namely, the claim that around the summer solstice, each day at midday,
a gnomon at Soēnē casts no shadow, in [4.1],25 while one at Alexandria does, in [4.2]. It also
asserts that shadows are said to disappear at midday around the solstice “three hundred stades
in diameter” (Todd 1990, 36). This ambiguous expression is repeated in two other places in the
treatise, neither ofwhichhelps usmuch inunderstanding itsmeaning (Todd1990, 51, 53). Theuse
of diametros implies that we are talking about a circle, or a rectangle, but it is unclear how either
of these would be defined. Perhaps we are discussing a region defined by midday at around the
same time and noon shadowlessness around the summer solstice.26 Another possibility is that
Cleomedes is referring to a band of midday shadowlessness around the latitude of Soēnē. The
width of such a region, however, would be measured by the arc of a great circle through the
poles, which he elsewhere calls a distance, diastēma. At any rate, Cleomedes gives no indication
of where in this region he takes Soēnē to be, which is further indication that the starting points
of the argument are meant to be understood as loose idealizations of reality.

The bulk of the argument, [5], consists of a description of the spatial arrangement of the
various elements of the model, which attempts to do away with the need for a diagram. The first
sentence, [5.1], is a way of expressing the idea of passing a cutting plane through the celestial
meridian above the two cities, such that it passes through the sundial and gnomon in Alexandria,
producing a great circle in the sundial’s bowl—which is implicitly taken to be spherical. Hence,
an arc from the tip of the shadow to the base of the gnomon—that is, along the shadow—will be a
great circle of the dial’s face. All of this follows from the fact that a great circle is concentric with
its sphere—as shown in Theodosius’ Spherics I.6, and assumed implicitly in the texts on spherics
by Autolycus and Euclid. The next stage of the argument involves a solid configuration, which is
signaled by Cleomedes’ use of the word noeō—a standard term in Greek mathematical prose used
to indicate that we are dealing with something that is three dimensional, or not contained in the
diagram.27 Cleomedes, however, uses the term with a personal expression—“we imagine.” We
imagine lines extended through idealized gnomons in the two cities meeting in the center of the
earth, [5.2]. Hence, that of the gnomon in Soēnēwill be produced continuously as a ray of the sun,
[5.3], and will be parallel to a ray of the sun through the tip of the gnomon at Alexandria, [5.4],
so that the continuation of this gnomon falls on these two parallel rays, making equal alternate

24 A passage in Galen’s Art of Medicine directly relates these expressions to proportion: “For, the spinal [cord] is,
in this way, proportional to the many, and just as (tēlikoutos) the size of the vertebrae, so much (hēlikos) is the spinal
cord, and so the whole backbone” (Kühn 1821, 132).
25 Gratwick (1995, 192) claims that Eratosthenes must be referring to the exact moment of midday on the summer
solstice, but this is not necessitated by the text, nor was anyone likely to have been able to determine the precise
day of summer solstice simply by observing the noon shadow of a gnomon.
26 That is, a region in which we cannot perceive any difference of latitude or longitude.
27 See Netz (1999a, 52–56), Sidoli and Saito (2009, 592, n. 41), and Netz (2009) for discussions of this terminology.
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angles, [5.5]. Hence, the angle of the shadow at Alexandria is the same as that at the center of
the earth, [5.6]. These passages present the core of the geometric model, and almost all of the
mathematical reasoning involved in the procedure that Cleomedes describes.

The final paragraph, [6], asserts the conclusion of the procedure—hence the use of ara. Since
the arcs stand on equal angles, they are the same part of the circles in which they stand, [6.1].
This is stated, here for the first time, as a ratio, but the expression, although not unknown in
general usage, is not common among mathematical authors, who usually assert proportionality
as a sameness of ratio. We are then told that the shadow in the dial at Alexandria is actually
found to be 501 of the great circle, expressed in the Egypto-Greek fractions that would have been
familiar to any educated reader—that is, a unit fraction, or proper part (meros).28 This is another
empirical datum, but Cleomedes does not assert it as a hypothesis. Hence, unlike the distance
between the two cities, he seems to take it as something directly verifiable, and hence true—just
as the location of Soēnē below the summer tropic. Thus, the two given values—one assumed and
the other found—can be subjected to the rule-of-three to give the value of the circumference of
the earth, 250,000, which is stated as the conclusion of the whole procedure, [6.3].

In this way, Cleomedes rearranged Eratosthenes’ claims and arguments so as to present them
as part of his overall project of demonstrating Stoic procedures to his audience. Hence, it is dif-
ficult to reconstruct Eratosthenes’ approach directly from Cleomedes’ account. To form a sound
idea of Eratosthenes’ thought, we need to reconstruct his work in the context of authors such as
Aristarchus and Archimedes, in order to see how it could have been sufficiently mathematical as
to have struck Heron as having been carefully undertaken.29 Such a project will, however, have
been different both in presentation and conception from that of Cleomedes.

Theon of Smyrna,Mathematics Useful for Reading Plato
Theon of Smyrna, a middle Platonist, who can probably be dated to the early part of the 2nd
century CE, based on a portrait bust from Smyrna,30 was a philosopher writing for students of
philosophywhowanted to understand Plato, butwhohad not hadmuch training inmathematics.
He only hoped that they should have at least advanced through the “first geometrical elements”
(Hiller 1878, 16). Whatever the nature of Theon’s own training, he seems never to have developed
much understanding of either mathematics or the standard usage of Greek mathematical prose.

Theon took much his material from the philosopher Adrastus, but the technical passages are
generally presumed to have originated in the work of a mathematician, such as Hipparchus. In
going through Adrastus’ discussion of the eccentric and epicyclic solar models, Theon demon-
strates that, in the eccentric model, the solar orbit is given in position and in magnitude. The prop-
erty of being given was fundamental in theoretical Greek mathematics, and Euclid devoted his
Data to developing theories of different modes of being given. In broad strokes, an object was
said to be given if it were present at the beginning of the mathematical discourse, introduced by
the mathematician, or produced from either of these in a determinate way.31

28 See Bernard, Proust and Ross (2014, 38–51) and Sidoli (2015) for discussions of mathematics education in the
Greco-Roman world. Here and below, I use n1 for 1/n, as is standard in scholarship on Greek mathematical sources.
In scholarship on Egyptian sources such parts are usually denoted n̄.
29 See Carman and Evans (2015) for an investigation along such lines.
30 Musei Capitolini inv. 529; see Richter (1965, vol. 3, 285).
31 See Acerbi (2011b) for an overview of the way the term is used in Greek mathematical texts and Sidoli (2018)
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Theon’s argument proceeds by taking the degree position of the solar apogee and the ratio
of solar eccentricity as given—but it does not do so in a straightforward way. The solar apogee is
taken to be Gem 5,21°—that is, 65;30°. Theon does not say how this value is derived but it is the
same as that in the solar model attributed to Hipparchus by Ptolemy.32 The ratio of the distance
from the earth to the center of the sun’s orbit compared to the radius of the sun’s orbit is taken
to be 1 : 24, as was apparently known “through the treatise On Sizes and Distances,” probably by
Hipparchus (Hiller 1878, 158).

In Ptolemy’s account of Hipparchus’ procedure, these two values are derived through chord-
table trigonometric computation on the basis of assumed observations of season lengths. The
following passage of Theon’s presentation appears instead to argue that we can use the derived
parameters of the model to show that the position and size of the solar orbit is given—that is,
determined in place and in size. In fact, however, this passage also includes numbers relating to
season length—the sums of the length of spring plus summer and of autumn plus winter. These
numbers alone, however, are not sufficient to determine the parameters thatHipparchus derived.
The passage we are interested in reads as follows:
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Figure 1. Reconstructed diagram for Theon’s eccentric solar model, followingMartin (1849, Descriptio III).

[1] The circle EZHK is found given in position and in magnitude. [2] For through M let
parallels to AG, BD be produced perpendicular to one another, OP, RS; and let ZM,ME
be joined. [3] Then, it is clear that, the circle EZHK being divided into 365,41 days, arc
EZH is 187 of such days, and HKE is 178,41 days. [4] So (ara), each one of the pairs EO,
PH and RZ, SK are equal, but the original arcs SP, PR, RO, and OS are equal to 91,41,161

of such [days]. [5] So (ara), the given angle OMN will be equal to QMT, and likewise,

for a discussion of the concept of given in Greek mathematics.
32 Ptolemy’s presentation of Hipparchus’ solar model, with which this passage should be compared, is found in
Almagest III.4.
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angle RMN is equal to angle UMQ.33 [6] So (ara), the ratioMT toMQ, or rather (toutesti)
MT to TQ, will be [given]. [7] So (ara), triangleMTQ is given in form.34 [8] And the center
of the cosmos, Q, to each of the points N and X is given, for one defines the greatest
distance, and the other the least; and QM is between the center of the cosmos and
[the center] of the solar circle. [9] So (ara), the circle EZHK is given in position and
magnitude, since it is found through the treatise On Sizes and Distances that the ratio
QM toMN is nearly one to 24.

(Hiller 1878, 157–158)
There are a number of conspicuous features of this passage that give us pause in categorizing

it as normal mathematical prose. The first arises only when we look at the manuscript source for
this passage,Marc. gr. 303. The diagram for this passage, like many of the diagrams for this text in
the manuscript, appears to have been drawn as a sort of afterthought (folio 12r, Figure 2). It was
squeezed into the bottom margin, where it was later partially trimmed off. It is so poorly drawn
that it is unlikely that the text could have been understood on the basis of this diagram alone.
Diagrams inmathematical texts are sometimes poorly drawn,35 but those accompanying Theon’s
treatise in Marc. gr. 303 are particularly inept. Nevertheless, the use of letter-names in the text
makes it clear that it wasmeant to be read with a diagram, andwemay presume that the diagram
that Theon originally produced was correct. Hence, it seems that the copyists and readers of this
treatise thought of it as part of a philosophical tradition and were not much concerned with
mathematical details, and the corruption of the diagram was probably due to the accidents of
transmission.
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Figure 2. Diagram for Theon’s eccentric solar model inMarc. gr. 303, f. 12r.

The next conspicuous feature of this passage is its peculiar use of mathematical prose. The
passage appears to have been written by someone who was uninterested in following common

33 Elements I.15.
34 Data def.3.
35 See Saito and Sidoli (2012) for an overview discussion of the diagrams in themanuscripts of Greekmathematics.
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mathematical usage and perhaps did not fully understand the direction and force of the original
argument. While each of his statements is valid, why this is so is often not clear from Theon’s
exposition. For example, the particle ara usually denotes strict deductive force from the forgoing
argument and is translated with therefore.36 For Theon, however, it introduces nearly every state-
ment and rarely indicates strict logical dependence; hence, I have translated with so, indicating
a merely temporal transition. Another example is Theon’s use of toutesti, which I have trans-
lated with or rather in sentence [6]. This expression usually indicates strict equality, or sameness.
Theon, however, uses it to indicate a given ratio which is not the same, but which is given for the
same reason.

The final feature that marks this passage as non-mathematical is its overall lack of structure.
Structure is one of the most conspicuous features of Greek mathematical prose—it is structure
that tells us what we are given and what we wish to show or to do, where we are in course of
the argument, what we have done and what remains to do.37 The lack of structure in Theon’s
account makes it difficult to understand what he thinks he is doing and how he intends to do
it. In order to understand Theon’s passage, we must read it in the context of coherent works of
Greek mathematics, such as Euclid’s Data and Ptolemy’s Almagest. These works give us a sense of
the meaning of given with which Theon is working, and the underlying computational practice,
which he ignores.

The opening sentence, [1], states the claim to be shown—namely, that a certain circle is fixed
inplace and in size. Then, Theonbegins his treatment of theproblem, in [2], by assuming, without
comment, that the center of the sun’s eccentric orbit is located atM and producing lines through
this point parallel to the lines joining the earth with the cardinal points of the ecliptic. In these
sentences, he uses the usual expressions of geometric constructions.

In [3], Theon divides a solar year of 365,41d into two parts such that ArcpEZHq “ 187d and
ArcpHKEq “ 178,41d.38 Theon seems to imply that these latter numbers follow as a matter of
course from the year length. In fact, however, they come from season lengths that Hipparchus
claims to have observed. According to Ptolemy, in Almagest III.4, Hipparchus derived the param-
eters for his solar model, e : R “ QM : MN and λA “ AngpOMNq “ AngpAQNq, under the
assumption that the interval from the spring equinox to the summer solstice is 94,21d while that
from the summer solstice to the autumnal equinox is 92,21d. Theon quotes these season lengths
a few pages earlier in his treatise (Hiller 1878, 152–154), but the fact that he does not give the
spring and summer separately here indicates that he may have been unaware that a division of
the year into 187d and 178,41d is insufficient for the determination of the model. Moreover, it is
not clear from Theon’s presentation how he intends the double season lengths that he asserts to
be related to the rest of the argument.

In [4], the geometry of the figure is used to infer that ArcpEOq “ ArcpPHq, so ArcpRZq “

ArcpSKq, and that ArcpSPq “ ArcpPRq “ ArcpROq “ ArcpOSq are each 365, 41d ˜ 4 “ 91, 41, 161d,
which is again written in the usual form for Egypto-Greek fractions, proper parts. Theon’s use
of ara, however, indicates that he took all this to be implied, somehow, from the double season
lengths—which is not the case.

Theon next states, in [5], that AngpOMNq is given. This is so because, in the previous dis-
cussion, he has remarked that the solar apogee is Gem 5, 21°, so that AngpAQNq “ AngpOMNq “

36 See discussions of ara by Mugler (1958, 82–83) and Acerbi (2012, 173–174).
37 For discussions of the importance of structure in Greek prose see Netz (1999a, chaps. 4 and 5) and Acerbi (2011a).
38 I use the following abbreviations: Arcpaq for arc a, Angpbq for angle b, and Tpcq for triangle c.
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65; 30°. Hence, all three angles of TpMTQq are given in degrees. Again, the lack of structuremakes
it difficult to see that this is being taken as a given in the argument.

Theon then claims, in [6], thatMT : MQ andMT : TQ are both given. From a purely geometric
perspective, these would follow as a result of Data 40, which shows that a triangle which has three
given angles, is given in form, and the definition of given in form, Data def.3, which states that a
figure that is given in form has its angles given, and the ratios of its sides given. Theon will go on,
however, in [7], to state that TpMTQq is given in form, so it is unclear, again, how he understands
the progression of the deduction.

Whatever the intended order of the reasoning, Data 40 is a purely geometric argument that
relies on constructing a similar triangle and gives us no means of stating the ratio of the sides
of a triangle as a pair of numbers. That is, Data 40 provides no way of treating the ratios of a
triangle given in form other than by laying out a set of line segments. What is required here, how-
ever, is some method, presumably by means of a chord table, of using the values of the angles
in TpMTQq to derive the ratios of the sides as values, or relations between values. When Theon
states, in [7], thatTpMTQq is given in formhemeans the same thing that Ptolemywould havemeant
if he had used that expression—that is, its angles and the ratios of its sides are both geometri-
cally contractable and are also expressible by determinate numerical values for the purposes of
calculation.39

The rest of the passage is again muddled but the overall sense is clear. Sentence [8] asserts
that NQ : XQ is given because, as [9] states, MQ : MN “ e : R “ 1 : 24. We can flesh this out by
noting that if MQ : MN is given, then Data 5 implies that QX : MN is given, while Data 6 implies
that NQ : MN is given. Finally, by Data 8, NQ : XQ is given.40

Again, 1 : 24 is one of the parameters of the Hipparchus’ solar model, and Theon is assuming
it as given. The position andmagnitude of circle EZHK is then given in relation toQ by the fact that
the two ratios MT : TQ and MQ : MN are both given.41 Because the fact that the ratio MQ : MN
is given involves expressing it as a relation of two values, we should understand the fact that
MT : TQ is given in the same way.

It is difficult to reconstruct the meaning or purpose of this argument because we do not have
any sources that provide us with examples of the pre-Ptolemaic chord-table trigonometric prac-
tice that would have been found in Adrastus’ sources.42 In order to understand this passage, it is
necessary to read it in the context of the extant work of mathematicians like Euclid and Ptolemy.
It is possible that Theon is trying to construct an argument of his own to the effect that taking
the numerical parameters of themodel as fixed implies that the geometrical model is given—that
is, determinate and knowable. Or, more likely, he may be attempting to familiarize students of
philosophy with the language of givens used by mathematicians.

39 See Sidoli (2018, 387–391) and Sidoli (2020) for discussions of arguments by givens in Ptolemy’s Almagest and
Analemma.
40 That is, NQ : XQ “ 25 : 23, although these values are not mentioned by either Theon or Ptolemy.
41 Strictly speaking we would probably say that the relative magnitude of the circle is given, but such expressions
are not found in ancient sources.
42 The overall incoherence of this passage is further evidence that Theon of Smyrna cannot have been the man
that Ptolemy refers to as “Theon themathematician.” This point has already been argued byMartin (1849, 8–10) and
Jones (2015, 2016, 468, n. 11; 76, n. 2).
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Conclusion
As this reading of these two texts has confirmed, neither Cleomedes’ On the Heavens nor Theon’s
Mathematics Useful for Reading Plato are treatises of mathematics, although they contain math-
ematical topics. Neither of these authors had the inclination, or perhaps the competence, to
express himself in the manner adopted by the mathematicians. Nevertheless, as treatises about
mathematical subjects they are valuable to us in giving evidence for mathematical traditions for
which we might otherwise have had little evidence.

Cleomedes’ discussion of Eratosthenes’ mathematical approach makes it clear that the latter
continued the traditions of Aristarchus and Archimedes in his investigations of the size of the
earth. That is, he started with hypotheses that involved idealizations of observational claims,
some of which gave rise to a geometric model and others of which produced numerical start-
ing points, then he applied elementary geometry, ratio manipulations and computations to pro-
duce numerical values, and probably bounds, for something beyond the purview of our senses—
namely, the size of the earth. Thiswas probably one of thefinal chapters in the proto-trigonomet-
ric work of the early Hellenistic period.

Theon’s discussion of Hipparchus’ solar model gives us further evidence for the blending
of computational procedures and justificatory practices that we find in the work of Heron and
Ptolemy, in the Imperial period. The fact that this language is associated with Hipparchus gives
us reason to believe that these kinds of arguments were already being made by Hipparchus and
the mathematicians who followed him. Hence, we can take this as one of the opening episodes
in the development of the chord-table trigonometry of the late Hellenistic period.

Medieval Manuscripts
Marc. gr. 303: MarcianusGraecus 303, BibliotecaNazionaleMarciana, Venice,minuscule, a number

of different hands, 14th century.
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