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Abstract

We study the impact of economic development on greenhouse gas emissions (GHG)

from agriculture. We document the environmental implications of two agricultural

transformations linked to economic development. First, a shift in consumer demand

to food products with higher GHG emissions. Second, the adoption of modern, input-

intensive technologies with high levels of GHG emissions. We incorporate these mech-

anisms in a quantitative, trade model by featuring different income elasticities of de-

mand across food products, and multiple agricultural technologies for production across

grid-cells covering the surface of the Earth, with food products and technologies be-

ing heterogeneous in their GHG emission intensity. Using the model’s open economy

structure, we prove that the income elasticities are identified without price data. We

conduct a host of policy counterfactuals related to economic growth, trade policies, and

sustainable diets. The GHG emissions from economic growth is understated by more

than one third if diet and technology changes are shut down, and overstated by one

hundred percent if global food supply readjustments are ignored. Compared to food

trade policies, dietary restrictions are both substantially more effective in reducing

GHG emissions, and more favorable when considering the welfare losses in developing

countries.
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1 Introduction

Food production is a critical factor in climate change, accounting for approximately one-third

of global greenhouse gas (GHG) emissions (Crippa et al., 2021; IPCC, 2022). Moreover, richer

nations contribute disproportionately to these emissions, notably due to their typically meat-

intensive diets and intensive use of farm machinery and fertilizers (McDermid et al., 2023;

Tilman et al., 2002, 2011). This raises concern that, as the rest of the world continues to

grow economically, their GHG emissions from food production will catch up to the emissions

from developed countries, exacerbating global climate change.

Several factors, however, contribute to higher agricultural emissions in richer countries.

Some of these factors might intensify the GHG emissions of poorer countries as they ex-

perience economic development, such as the shift in their diets from cereal dominance to

meats, fruits and vegetables—a process known as the nutrition transition (Subramanian and

Deaton, 1996; Deaton and Drèze, 2009)— or the intensification of the use of inputs such as

fertilizers and machinery—which is referred to as agricultural modernization (Johnston and

Mellor, 1961; Schultz et al., 1968; Gollin et al., 2007; Farrokhi and Pellegrina, 2023). Other

factors, such as dietary preferences, comparative advantage in certain crops, or a country’s

geographic location, may persist regardless of economic development. Understanding the

role of economic development on food emissions requires a framework that allows one to

account for the influence of these different factors.

This paper studies the relationship between diet and GHG emissions from agriculture, and

how this relationship is transformed by economic development. We develop a quantitative,

multi-country, general equilibrium model that incorporates the environmental implications

of agricultural modernization and nutritional transition. To quantify our model, we bring

together several data sources, resulting in a rich, cross-country dataset with information

on calorie intake and GHG emissions (in tons of CO2 equivalent) from food production.

Exploiting the open economy structure of the model, we prove that identification of the food

product income elasticities, which are key for the nutrition transition, does not require price

data. We use our quantified model to measure the contribution of economic development to

the observed agricultural emissions across countries, and to evaluate the impact on global

agricultural emissions of economic growth, dietary restrictions and food trade policies.

We start by documenting four empirical patterns about agricultural GHG emissions,

and economic development. First, GHG emissions vary considerably across countries due

to differences in their diet composition, suggesting significant implications for global GHG

emissions. For example, if the entire world adopted the US diet composition of food prod-

ucts while maintaining their same calorie intake, the share of global GHG emissions from
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agriculture would increase by 12 percentage points, an increase of 40 percent. Second, GHG

emissions per capita and per kcal from food consumption increase strongly with GDP per

capita. Third, food products with higher levels of GHG emissions per kcal have higher income

elasticities. This implies that as countries become wealthier, their diets shift towards envi-

ronmentally harmful products, highlighting the environmental implications of the nutrition

transition.1 Fourth, the share of emissions from fertilizers and energy use relative to total

emissions from food production rises with GDP per capita. This within product variation,

in contrast to the between product variation in pattern three, underscores the environmental

implications of agricultural modernization.

We construct our model motivated by these empirical patterns. On the demand side,

households have a nested, non-homothetic CES preference structure with many goods, which

allows for differences in income elasticities across food products. On the supply side, based

on Farrokhi and Pellegrina (2023), we feature highly granular grid-cells covering the entire

surface of the Earth. Each cell hosts an agricultural producer choosing which food product

to produce on a plot and whether to employ a modern or a traditional agricultural technol-

ogy. In the model, GHG emissions from agriculture comes from food production and food

transportation. In particular, differences in GHG emissions from food production across

countries arise from differences in the food-product composition and in the adoption of mod-

ern technologies. We provide a first order approximation result that highlights the different

mechanisms driving the relationship between country-level emissions from food production

and economic development.

We quantify the model as follows. We start by developing an estimation strategy of the

income elasticities that generalizes the method used in the literature (e.g., Comin et al. 2021)

to nested CES preferences and to an open-economy model. Notably, we prove that unlike

in the closed-economy version, the income elasticities are identified without without price

data. Specifically, trade shares can be used to construct a sufficient statistic for the prices

experienced by a representative consumer in that country. We then estimate the technological

parameters governing the GHG emissions by food product and agricultural technology using

product- and country-level data on GHG emissions. The rest of the parameters are calibrated

as in the literature. Reassuringly, our quantified model replicates key relationships between

GHG emissions, economic development and agricultural technology use in the data.

We first use our quantified model to understand the drivers of the observed, strongly

increasing relationship between food GHG emissions per capita and GDP per capita across

countries. We find that about two-thirds of the correlation is driven by intrinsic diet pref-

1In particular, we find that this relationship persists even if we do not consider meat consumption, as
vegetables and fruits tend to emit more per calories than staple foods like yam and potatoes.
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erences (reflecting for example culture or demographics), rather than GDP per capita. We

perform the same exercise for the relationship between GHG per kcal and GDP per capita

and find that diet preferences account for half of the slope observed in the data. This re-

veals that the effect of economic growth on GHG emissions would be less than the observed

correlations would suggest.

We second simulate the model to conduct a host of policy counterfactuals related to fu-

ture economic growth, dietary restrictions and food trade policies. For each counterfactual,

we perform decompositions to quantify the contribution the nutrition transition, agricultural

modernization, transportation and general equilibrium adjustments in supply. We find that

economic growth induced by a 10 percent increase in the overall productivity of an economy

generates a substantial increase in GHG emissions of 5.0 percent (or 0.2 Gt CO2). The nu-

trition transition and agricultural modernization are quantitatively important in the case of

economic growth, with the effect on emissions being understated by a bit more than one third

if we shut down these two channels. Emissions from transportation are not quantitatively

important as it accounts for only five percent of global emissions. We find that ignoring

the equilibrium responses in supply would overstate the impact of economic growth on GHG

emissions by approximately 100 percent, showing the importance of having a framework that

allows for supply and demand interactions.

Our results show that dietary policies can substantially reduce GHG emissions—though,

we find that back-of-the-envelope calculations, those that ignore the equilibrium responses

in supply, tend to substantially overstate their impact by about one third. If the entire

world adopted a no-beef diet, our model implies that global GHG emissions from agriculture

would drop by 20 percent, and if the entire world adopted a vegetarian diet, emissions

would drop by 20 percent. Global welfare losses tend to be limited up to 2.8%, with poorer

countries being impacted more. For instance, Argentina and Uruguay experience welfare

losses up to 5 percent in the case of no beef, given they are large meat producers and

consumers. Trade policies, conversely, generate large welfare losses across the world, with

even greater inequality across rich and poor countries, and with smaller benefits in terms of

GHG emissions. If there was no international trade in agricultural output, countries in the

bottom quartile of the GDP per capita distribution would experience a 41 percent reduction

in their welfare. Global GHG emissions would decline by 11.9 percent. Our results therefore

indicate that dietary policies can have much larger effects on GHG emissions than food trade

policies.

The outline of the paper is as follows. We first review the literature in the remainder

of this section. Section 2 describes our data and present the empirical patterns. Section 3

presents our quantitative model. Section 4 quantifies the model and present the methodology
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for the estimation of income elasticities without price data. Section 5 presents the results

from our quantitative exercises. Section 6 concludes.

Related Literature. This paper contributes to economic research on climate change, pri-

marily by evaluating the role of the nutrition transition and agricultural modernization on

GHG emissions, both of which we find to be quantitatively important. First, and most

closely, our work relates to papers focusing on the interaction between climate and the

agricultural sector, such as Conte et al. (2021), Gouel and Laborde (2021), Costinot et al.

(2016), Nath (2022), Dominguez-Iino (2021), Farrokhi et al. (2023), and Hsiao (2021). In

terms of modeling agricultural production, we build on Costinot et al. (2016), who devel-

oped a framework in which agricultural production comes from grid-cells across the world,

and from Farrokhi and Pellegrina (2023), who generalize Costinot et al. (2016) to allow for

multiple agricultural technologies. Furthermore, we incorporate non-homothetic preferences

across food products and provide a new identification result, so building on the expanding

literature utilizing these preferences (Comin et al., 2021; Sposi et al., 2021; Caron and Fally,

2022; Cruz, 2023).

Second, and more broadly, we contribute to growing research using quantitative spatial

models to study climate change (see Desmet and Rossi-Hansberg, 2024 and Shapiro and

Balboni, 2024 for recent surveys). This literature has studied the impact of climate change

on economic activity (Balboni, 2019; Bilal and Rossi-Hansberg, 2023; Burzyński et al., 2022;

Cruz and Rossi-Hansberg, 2024; Cruz, 2023; Desmet et al., 2018; Conte et al., 2021), the

impact of trade on CO2 emissions (Shapiro, 2016; Akerman et al., 2024), and the role of

trade policy and carbon taxes (Farrokhi and Lashkaripour, 2021; Conte et al., 2022). We

provide a host of new counterfactual results on the impact of economic development on GHG

emissions from agriculture, a critical sector for climate change and for welfare in developing

countries. To the best of our knowledge, we are the first to analyze the impact of dietary

restrictions and food trade policies on agricultural emissions within this broad literature.

By bringing in the role of diet to quantitative trade models, our paper also speaks to

the classic work on the relationship between nutrition and economic development. In the

seminal paper Subramanian and Deaton (1996), it is shown that the price of food per calorie

increases with income, which can be interpreted as a shift to food products with higher value

added, a form of nutrition transition (Drewnowski and Popkin, 1997; Du et al., 2004; Keyzer

et al., 2005; Bellemare et al., 2024). In addition, by incorporating technological choices in

our framework, our paper relates to classic research on the role of agricultural modernization

on economic development (Johnston and Mellor, 1961; Schultz et al., 1968; Gollin et al.,

2007). Here, we uncover the environmental implications of these two central phenomena in
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economic development by bringing them to a quantitative trade model.

Lastly, we complement an extensive and rich literature in environmental science eval-

uating the impact of agriculture on emissions (Wallén et al. 2004; Carlsson-Kanyama and

González 2009; Hoolohan et al. 2013; Perignon et al. 2017; see McCarl and Hertel, 2018 for

an overview of studies on this topic). Within this literature, several papers have studied

the environmental implications of the nutrition transition using food demand projections

(Hoolohan et al., 2013; Perignon et al., 2017; Hale et al., 2024).2 This line of research typ-

ically abstracts from general equilibrium adjustments in agricultural production costs and

price, which we account for in our framework. Notably, we find that supply side reactions

can substantially limit the impact of the food demand growth on GHG emissions.3

2 Data and Empirical Patterns

Our dataset contains 90 countries, plus a representative country for the rest of the world, and

47 food products for 2010. For each country, we construct information on calories intake by

food product, GHG emissions from food production and consumption, bilateral trade flows

and gross output by sector. For each food product, we gather grid-level data on potential

yields for more than 1 million grids across the Earth.4 For a subset of countries, we collect

household level data with information on consumption. In this section, we describe our data

and present four empirical patterns relating calories intake, GHG emissions, and economic

development.5

2.1 Data

GHG emissions. There are two major datasets used to study GHG emissions from food

production at a global scale, both of which we use in our analysis. The first dataset comes

from Poore and Nemecek (2018) (hereafter, PN18). This is the largest meta-analysis of food

systems to date and represents the state of the art in terms of the measurement of global

GHG emissions by food product. Specifically, the authors collect information from more

2Tilman et al. (2011) in particular project the demand for food to evaluate the impact on GHG emissions.
They consider scenarios in which different agricultural technologies are exogenously adopted across the world,
without endogenizing technological choices as we do.

3One exception is Chen et al. (2022), who incorporate such general equilibrium adjustments using a
computable general equilibrium (CGE) model that is designed for climate policy. Relative to our paper,
theirs consider a substantially smaller number of food items, limiting the scope of the nutrition transition,
and they do not feature multiple agricultural technologies.

4For the time being, for computational reasons, we are utilizing 100 fields per country. We will use the
entire set of fields in the next iteration of the paper.

5Appendix OA describes our data construction in detail.
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than 1500 studies to construct measures of GHG emissions for more than 80 food products,

representing 90% of the protein and calorie intake worldwide. From this dataset, we obtain

measures of the average global GHG emissions by food product. We build crosswalks to

match the food products from PN18 to the food products in our data on calories intake and

bilateral trade flows. These data shows large variation in the GHG emissions per kcal across

food products. For example, meat and coffee generates more than 35 kilos of CO2 per 1000

kcal, whereas wheat and rye produce less than 5 kilos of CO2 per 1000 kcal — see Appendix

Figure O.1.

The second dataset is the Emissions Database of Global Atmospheric Research (EDGAR-

FOOD), which is constructed by Crippa et al. (2021). This dataset provides cross country-

level information on CO2 emissions by stages of the agricultural supply chain — e.g., pro-

duction, processing, transportation, and packaging. These data are designed to be consistent

with Food and Agriculture Organization Corporate Statistical Database (FAO-STAT), which

we utilize for information on agricultural production, trade and consumption. Importantly,

these data allows us to measure, separately, the GHG emissions generated by the transporta-

tion of food from the GHG emissions produced in other stages of the food supply chain.6

Using these two datasets, we obtain three measures of GHG emissions. First, a measure

of emissions from food production by country and, second, a measure of global emissions

from food transportation, both of which come from EDGAR-FOOD. (In our data, about

95% percent of the GHG emissions from agriculture come from production, representing

16.5 Gt CO2, whereas emissions from food transport account for 5 percent of global GHG

emissions, representing 0.7 Gt CO2.) Third, we construct a measure of emissions from food

consumption by country-product, which is the caloric intake by food product multiplied by

the average global emissions by calories from that food product (PN18).7

Trade and production. Our data on calorie intake by country and food product come from

the Food and Agriculture Organization (FAO) Food Balance Sheets (FBS), which is a a

special annual report produced by FAO since the 1960s that focuses on calorie consumption

6Since both of these two datasets (EDGAR-FOOD and PN18) do not measure GHG emissions from
different agricultural technologies, we complement them with data from FAO-STAT on GHG emissions from
fertilizer and energy use, which we use in empirical pattern 4.

7This is an implied measure of GHG emissions that does not take into account whether the food product
that was consumed in a given country was produced with or without a GHG-intensive technology. Since the
food products produced with different technologies are the same from the point of view of the consumer (and
especially in the data), we are unable to take the technology dimensions into account when constructing
the GHG emissions from food consumption. As such, by construction, differences in GHG emissions across
countries from food consumption are not affected by differences in the technology used for production. In
constructing these measures, we ensure that the total emissions from food consumption equals the the total
emissions from food production plus from food transportaion. As such, our measure of food emissions from
consumption capture the role of international trade in generating emissions from agriculture.
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Figure 1: Implied global GHG emissions from each countries’ diet
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Notes: We calculate the share of GHG emissions from food consumption relative to total GHG from all sectors by changing
the share of calories intake derived from each food product of all countries in the world to that of a particular country, while
holding fixed total calories consumed by country. Panel (a) shows results for selected countries and Panel (b) the distribution
of shares in GHG emissions for each considered diet. The grey bar in Panel (a) represents the baseline share of GHG emissions
from food consumption. Figures are based on data from 2010.

across the world. These are measures of apparent consumption of calories (i.e., production

minus exports plus imports plus adjustments for stock), available in terms of per capita

dietary energy supply (kcal/cap/day)—often referred to as DES in the literature. From the

FBS, we also obtain conversion factors to transform every quantity of food produced from

calories to weight (adjusted by edible portion of the food product), which we later employ

to compute the emissions from transportation.

Bilateral trade flows and revenues by food product come from FAO-STAT, value added

by sector (agriculture and non-agriculture) from the United Nations, consumption share in

agriculture from the World Bank, and GDP per capita from the Penn World Tables. We

bring in potential yield by food product and technology from FAO-GAEZ, which is available

for approximately 1.1 million fields across the world — see Appendix Figure O.2. The key

feature of these data is that it is constructed based solely on the agro-climatic conditions of

a region grid-cell, without incorporating any local market conditions.

Household expenditure. To bolster our results related to the patterns of food consumption

by income, we additionally collect household consumption data. Specifically, we use the

Brazilian Consumer Expenditure Survey, POF, which is a household expenditure survey

data conducted by the Brazilian census bureau, IBGE.
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2.2 Empirical Patterns

Empirical Pattern 1. GHG emissions from food consumption per capita vary considerably

across each country’s diet. We start with a back-of-the-envelope calculation that shows that

diet changes have the potential to considerably impact global GHG emissions. Holding fixed

each countries’ total number of calories intake, we change the composition of these calories

to that of another country (i.e. the same proportions of beef, rice, etc), and calculate the

new share of total emissions given by food across the world. Figure 1 reports results from

this exercise. The factual food share of total emissions across the world is approximately

30%. Whereas, if the whole world adopts the diet of the USA, while keeping total calories

unchanged, the food share of total emissions across the world rises to 42% — see Figure

1a. This can rise as high as 74% if the whole world adopts the Argentinian diet, and fall

as low as 12% if the Ethiopian diet is adopted. Figure 1b presents the distribution of these

counterfactual shares across all countries.

This exercise suggests that changing the composition of diet alone, without changing the

total amount of calories, has the potential to considerably impact global GHG emissions.

However, this exercise is effectively partial equilibrium, as it implicitly assumes there are

no changes in prices or incomes as a result of the changes in demand for food products due

to diet change. This is an unrealistic assumption, as presumably the food prices should

react across countries, and general equilibrium effects will shape aggregate outcomes. This

motivates the use of a quantitative model to account for these economic mechanisms.

Empirical Pattern 2. GHG emissions from food consumption per capita increases with

GDP per capita. Panel (a) in Figure 2 shows a strong positive correlation between GHG

emissions from food consumption per capita and GDP per capita: a 1 percent increase in

GDP per capita is associated with a 0.34 percent increase in emissions. This relationship

captures, at least in part, a scale effect: as countries get richer, they consume more food,

which mechanically increases the GHG emissions from food consumption — for example,

in the data the US has a dietary energy intake of 3745 kcal/cap/day and Tanzania of 2310

kcal/cap/day.8 Indeed, Panel (b) shows a strong positive correlation between calories con-

sumed per capita and GDP per capita, which is consistent with findings in the literature

(Tilman et al., 2011; Subramanian and Deaton, 1996). Specifically, a 1 percent increase in

GDP per capita is associated with a 0.11 percent increase in calories per capita. Thus, the

scale effect contributes about one third of the correlation in Panel (a). The remainder is due

8The estimated relationship is approximately log-linear across different levels of economic development.
One could hypothesize an inverse-U shape — the Environmental Kuznets Curve — reflecting a decline in
emissions as countries get very rich, perhaps due to the adoption of more sustainable diets or governmental
policies. We find, however, no evidence of this phenomenon, like much of the literature (Dinda, 2004).
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to a compositional effect: richer economies consume calories from food products associated

with higher GHG emissions per calorie. We see this in Panel (c), where we plot food GHG

emissions per calorie against GDP capita. A 1 percent increase in GDP per capita is associ-

ated with a 0.23 percent increase in the emissions per calorie consumed, which accounts for

the remaining two thirds of the correlation.

Figure 2: GHG Emissions from Food Consumption, Calories Intake, and GDP per capita

(a) Food GHG per capita
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(b) Calories per capita
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(c) Food GHG per kcal

AGO

ARG

AUS

AUT

AZE

BEL

BEN

BGD

BGR

BLR
BOL

BRA CAN
CHE

CHL

CHN

CMR

COL

CRI CZE
DEU

DNK

DOM

DZA

ECU

EGY

ESP

ETH

FIN

FRA

GBR

GHA

GRC

GTM

HRV

HUN

IDNIND

IRL

IRN

ISR

ITA

JPN

KAZ

KEN

KHM

KOR
LAO

LKA

LTU

LVA

MAR
MDG

MEX

MLI

MOZMWI

MYS

NER
NGA

NIC

NLD
NOR

NPL

NZL

PAK PER
PHL

POL

PRT

PRY

ROU

ROW

RUS

RWA

SLE

SRB

SWE

TCD

THA

TUN

TUR

TZA

UKR

URY
USA

VEN

VNM

ZAF

ZMB

ZWE

−
7

−
6
.5

−
6

−
5

.5
−

5
G

H
G

 p
e

r 
k
c
a
l 
(l
o
g
s
)

−4 −3 −2 −1 0
GDP pc relative to the US (logs)

slope: 0.276 (0.017) r2: 0.65

Notes: This figure shows the relationship between GHG emissions, calories and economic development. We construct GHG
from food consumption per day by multiplying calories intake by food product by the average emissions from that food product.
Best linear fit presented in red.

This decomposition reveals that the food products consumed in richer economies are

associated with greater GHG emissions. In the third empirical pattern, we provide evidence

suggesting that the nutrition transition help explain this relationship. In the fourth and last

empirical pattern, we turn to food production and show the environmental implications of

the agricultural modernization.

Empirical Pattern 3. Agricultural goods with higher levels of GHG emissions have higher

income elasticities. We next turn to the environmental implication of the nutrition transi-
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tion (Tilman et al., 2011; Subramanian and Deaton, 1996). This mechanism operates between

food products and arises in consumer demand: richer countries have preference for products

that happen to emit more GHG emissions. We investigate this here by providing reduced-

form estimates of the income elasticities for each food product, and correlating them with

the product’s GHG emission intensity. In Section 3.4, we revisit these estimates in light of

our quantitative model. We use both cross-country level data as well as household surveys,

and following the literature, alleviate endogeneity of income by using fixed effects to control

for prices and preference shifters (Aguiar and Bils, 2015; Comin et al., 2021).

Cross-country Estimates. We estimate:

Ej,k,t = δ̃ ·GHGpkk︸ ︷︷ ︸
≡δk

·GDPpcj,t + γk,t + κj,t + εj,k,t (1)

where Ej,k,t is country j log expenditure on product k from all countries (“absorption”) in

period t. The coefficient, δk, on log GDP per capita in country j, GDPpcj,t, is the income

elasticity of product k. We parameterize this as a function of CO2 emissions per kilo-calorie

of good k, δk = δ̃ ·GHGpkk, to directly test the relationship between the income elasticities

and emissions across products. δ̃ captures in a reduced-form way how income elasticities

interact with the levels of emissions per capita per product.

For δk to identify an income elasticity, we need to control for changes in price and other

demand factors that are correlated with GDPpc. The fixed effects go some way to ensuring

this. The product-time fixed effect γk,t captures any global factors, such as due to product-

specific technological progress or effects of climate change. The country-time fixed effect

captures any country-specific factors, such as due to regional technological change or diet

preference. There may be remaining factors of concern (such as product and region specific

technological change). Reassuringly, the results are similar to those from our structural

estimation in section 4.1.1, in which we use the functional form of our quantitative model to

control for all endogeneity arising through prices.

Table 1 reports our results for δ̃. Column (1) is the baseline, while column (2) excludes

meat products (“Beef”, “Lamb and Mutton”, “Pig meat”, “Poultry”). Our results are quan-

titatively similar in each case: a 1 percent increase in GHGpkk is associated with a highly

significant 0.25 percent increase in the income elasticity of good k. That indicates that much

of the focus on meat consumption misses the transition of diet towards vegetables and fruits

when countries experience economic growth, which also amplifies the GHG emissions from

food consumption. Figure 3 shows our results for δk (with k = Yam normalized to zero),

the estimates of the relative levels of the income elasticities across products, illustrating the
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Table 1: Income Elasticity and GHG Emissions per calorie

All crops No meat

(1) (2) (3) (4)
log (GHGpk) × log (GDPpc) 0.176∗∗∗ 0.175∗∗∗ 0.213∗∗∗ 0.214∗∗∗

(0.014) (0.015) (0.017) (0.018)
Observations 12532 12532 11440 11440
Adjusted R2 0.693 0.722 0.694 0.724
Country FE Y - Y -
Product FE Y - Y -
Year FE Y - Y -
Country-Year FE - Y - Y
Product-Year FE - Y - Y

Notes: * / ** / *** denotes significance at the 10 / 5 / 1 percent level. Regressions clustered at the country and food product
level. Table shows estimates of parameter δ̃ in equation (1). Columns (3) and (4) exclude meat products from the sample,
including beef, lamb and mutton, pig meat and poultry meat.. Data includes 2000, 2010 and 2020.

positive correlation between income elasticities and GHG emissions per capita.

Our model in Section 3 captures the influence of non-homothetic preferences on GHG

emissions.

Figure 3: Income Elasticities and GHG emissions per calorie
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Household Level Estimates. Appendix OB presents analogous estimates of the correlation

between income elasticities by food product and the CO2 emissions per product using house-
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Figure 4: GHG emissions from Energy and Fertilizers and GDP per capita
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hold level data from Brazil. Our qualitative findings are the similar there: Food products

with higher income elasticity are more harmful for the environment and the correlation per-

sists after controlling for a host of fixed effects, proxies for food prices or excluding meat

products.

Empirical Pattern 4. GHG emissions from the use of modern agricultural technologies in-

crease with GDP per capita. We now turn to the environmental implication of agricultural

modernization. This mechanism operates within food products and arises in agricultural

supply: richer countries have greater use of modern, input-intensive agricultural technolo-

gies (such as fertilizers and farm machinery) for a given crop, which are associated with

higher levels of GHG emissions.9 We provide evidence of this mechanism in Figure 4: GHG

emissions from fertilizer and energy use per unit of total emissions from agriculture increases

with GDP per capita.10 Our model incorporates the influence of technological choices on

GHG emissions.

9The process of intensification of agriculture is widely documented in the macro-development literature.
See, for example, Donovan (2021), Farrokhi and Pellegrina (2023), and Restuccia et al. (2008).

10This correlation may however be influenced by varying compositions of crops (each of which each have
different fertilizer intensities) produced as countries develop. Focusing on within-crop variation only, Ap-
pendix Figure O.3 shows that the amount of fertilizer use per unit of land is markedly increasing with GDP
per capita. This suggests that even for the same crop, richer countries use more fertilizer-intense technologies.
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3 Model

This section develops a global, quantitative general equilibrium that features a rich structure

in agricultural consumption and production. On the demand side, consumers have non-

homothetic CES preferences for different agricultural goods, which incorporates the process

of nutrition transition in the economy. On the supply side, agricultural producers can choose

whether to employ a traditional, labor intensive technology or a modern, labor saving one,

each with different intensities of GHG emissions, which allows for the process of agricultural

modernization in the economy. After presenting the model, we discuss the GHG emissions

in Section 3.3, the income elasticities in Section 3.4, and derive an analytical expression

for the impact of economic development on agricultural GHG emissions in Section 3.5. All

derivations are included in Appendix OC.

3.1 Model Environment

We consider a global economy consisting of many countries, indexed by i or j ∈ I, each of

which is endowed with labor Ni and land Li. The economy has many sectors s ∈ S. Each

sector has multiple goods, indexed by k ∈ Ks, where Ks is the set of goods that belong to

sector s and K ≡ {Ks}s∈S . For example, within the agricultural sector, s = A, each good

represents different food products, such as meat, corn, and rice. Each country i produces a

unique variety of good k.

Consumption and Trade. Each country i has a representative consumer who has nested

non-homothetic CES preferences with a three tier structure.11 In the upper tier, utility Ui

is composed of sectoral goods C̃i,s:

Ui =

[∑
s∈S

(ãi,s)
1
σ C̃

σ−1
σ

i,s

] σ
σ−1

. (2)

In the middle tier, sectoral goods C̃i,s are composed of multiple goods Ci,k:

C̃i,s =

[∑
k∈Ks

(ai,k)
1
ς (U ϵk

i )
1
ς (Ci,k)

ς−1
ς

] ς
ς−1

. (3)

11See Duernecker et al. (2024) and Hoelzlein (2023) for recent applications of the nested non-homothetic
CES preferences.
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In the agricultural sector, these goods correspond to food products. In the lower tier, goods

Ci,k are composed of multiple varieties of goods cji,k

Ci,k =

[∑
j∈I

(aji,k)
1
η (cji,k)

η−1
η

] η
η−1

. (4)

Each country j produces a different variety of the good. Here, ãi,s, ai,k and aji,k are intrinsic

preference shifters for the upper, the middle and the lower tiers respectively, σ is the elasticity

of substitution between sectors, ς is the elasticity of substitution between goods of each sector,

and η is the elasticity of substitution between varieties of each good.12 Non-homotheticity

arises at the sectoral s and good k level due to the endogenous preference weights for each

good, U ϵk
i , with the parameter ϵk controlling the income elasticity of good k. At the upper

tier, sectors inherit non-homotheticity from the goods, but at the lower-tier, varieties remain

homothetic.13

The representative consumer chooses consumption, cji,k, to maximize utility, Ui, subject

to the budget constraint ∑
s∈S

∑
k∈Ks

∑
j∈I

pji,kcji,k = Ei (5)

where Ei is total income. Appendix OC.1 shows that this preference structure implies that

for destination country i, the share of the expenditure on the variety of origin country j—i.e.,

the trade share—is

βji,k ≡
pji,kcji,k
pi,kCi,k

=
aji,kp

1−η
ji,k

p1−η
i,k

, (6)

that the share of on goods k from sector s (k) is

βi,k ≡
pi,kCi,k

p̃i,s(k)C̃i,s(k)

=
ai,kU

ϵk
i p1−ς

i,k

p̃1−ς
i,s(k)

(7)

and that the share of expenditure on sectoral goods s is

β̃i,s ≡
p̃i,sC̃i,s

Ei

=
ãi,sp̃

1−σ
i,s

P 1−σ
i

. (8)

Here, pji,k is the price of the variety of good k from country j sold in i. Price indexes are

12We could normalize ai,k and ãi,s to 1 w.l.o.g.. For the calibration and counterfactuals of the model,
however, it is useful to keep these preference shifters separate. Note that this implies a normalization of ai,k
and aji,k is then required in each nest.

13Not having endogenous weights at the sectoral is w.l.o.g., and is equivalent to a normalization (see
Appendix OC.3).
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given by

p1−η
i,k ≡

∑
j∈I

aji,kp
1−η
ji,k , p̃1−ς

i,s ≡
∑
k∈Ks

ai,kU
ϵk
i p1−ς

i,k , and P 1−σ
i ≡

∑
s∈S

ãi,sp̃
1−σ
i,s , (9)

where pji,k is the price of variety from country j sold in country i of good k.

With this preference structure, the indirect utility per capita of the representative con-

sumer is solved implicitly by14

Ui =
Ei/Ni

Pi

(10)

where Ni is the population of country i.

Agricultural Production. The land endowment Li in each country is split into multiple

fields Lf
i , such that

∑
f∈Fi

Lf
i = Li, where Fi is the set of fields that belong to country i.

Each field has a continuum of plots ℓ. In each plot, agricultural producers choose which crop

k ∈ KA to produce, and with which technology τ to produce that crop. The production

technology is

qfi,kτ (ℓ) =
(
zfi,kτ (ℓ)

)γL
kτ
(
N f

i,kτ (ℓ)
)γN

kτ

(∏
k′∈K

(Mi,k′kτ (ℓ))
λk′k

)γM
kτ

,

where qfi,kτ (ℓ) is output in units of calories, zfi,kτ (ℓ) is an idiosyncratic productivity shock,

N f
i,kτ (ℓ) is use of labor, and Mi,k′kτ (ℓ) is the use of the composite good k′ as an input for

production in k. The cost share of land, labor and intermediate inputs are γL
kτ , γ

N
kτ , and γM

kτ

and satisfy γL
kτ + γN

kτ + γM
kτ = 1 and γL

kτ , γ
N
kτ , γ

M
kτ ≥ 0. There are two technologies available

for production: (i) a modern, input intensive (τ = 1 and γM
k1 > 0) and (ii) a traditional,

labor intensive (τ = 0 and γM
k0 = 0). λk′k is the share of inputs from sector k′ used in the

production of k.

Agricultural producers select the crop-technology pair that maximizes the return to land

in each plot ℓ, max zfi,kτ (ℓ)h
f
i,kτ for all (k, τ), where hi,kτ is the return to an efficiency unit

of land

hi,kτ = pFi,k

(
wi

pFi,k

)− γNkτ
γL
kτ

(∏
k′∈K p

λk′k
i,k′

pFi,k

)− γMkτ
γL
kτ

, (11)

and wi is the wage of workers.

Following Farrokhi and Pellegrina (2023), we assume that zfi,kτ (ℓ) is drawn from a gener-

alized Fréchet distribution with productivity shifters T f
i,kτ and dispersion parameters θ1 for

14Implicit because Pi is a function of Ui through equation (9).
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the draws of crop productivity and θ2 for the draws of technology. With this assumption,

the fraction of the land in field f allocated to crop k is

αf
i,k =

(
Hf

i,k

)θ1
∑

k∈KA

(
Hf

i,k

)θ1 , (12)

and the share of crop k allocated to technology τ in that field is

αf
i,kτ =

(
T f
i,kτhi,kτ

)θ2
(
Hf

i,k

)θ2 , (13)

where Hf
i,k is the average return of land in crop k

Hf
i,k =

 ∑
τ∈{0,1}

(
T f
i,kτhi,kτ

)θ2 1
θ2

. (14)

One can show that the total quantity (in units of calories) of crop k in field f and technology

τ is

Qf
i,kτ = Lf

i

(
γL
kτ

)−1 hi,kτ

pFi,k
T f
i,kτ

(
αf
i,k

) θ1−1
θ1

(
αf
i,kτ

) θ2−1
θ2 . (15)

Total sales at the field level is given by

Y f
i,kτ = pFi,kQ

f
i,kτ , (16)

aggregate revenues of country i using technology τ by

Yi,kτ =
∑
f∈Fi

Y f
i,kτ , (17)

and aggregate revenues of a country in agricultural good k is

Yi,k =
∑

τ∈{0,1}

Yi,kτ . (18)

Non-Agricultural Production. Non-agricultural firms produce goods with labor. Perfect

competition ensures that

pFi,k =
wi

Ti,k

for k ∈ {Ks}s ̸=A , (19)
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where Ti,k is the total factor productivity.

Geography. To move goods from location i to j, there is an iceberg trade cost dji,k that

satisfies dji,k > 1 for j ̸= i and dji,k = 1 for j = i. Let pFi,k be the producer price at location

i, i.e., the farm-gate price for agricultural producers. pji,k is therefore

pji,k = dji,kp
F
i,k. (20)

3.2 General Equilibrium

We now establish the equations to define the general equilibrium of the model. First, total

expenditure of the representative household reflects earnings from land and labor

Ei = wiNi +
∑
k∈KA

∑
τ∈{0,1}

γL
kτYi,kτ . (21)

Second, expenditure of country i on goods k ∈ K from country j is

Xji,k = βji,k

β̃i,kβi,s(k)Ei +
∑

τ∈{0,1}

∑
k′∈KA

λkk′γ
M
k′τYi,k′τ

 . (22)

Third, total revenues equal total sales

Yi,k =
∑
j∈I

Xij,k for all k ∈ K. (23)

Fourth, trade must balance ∑
k∈K

∑
j∈I

Xji,k =
∑
k∈K

∑
j∈I

Xij,k. (24)

Fifth, labor market clears

wiNi =
∑

k∈KNA

Yi,k +
∑
k∈KA

∑
τ∈{0,1}

γN
i,kτYi,kτ . (25)

Definition 1. (General Equilibrium) Given supply side parameters ΓS ≡ {λi,k′k, γ
L
kτ , γ

N
kτ , γ

M
kτ ,

Ti,k, T
f
i,kτ , L

f
i , Ni}, demand side parameters ΓD ≡ {aij,k, ai,k , η , ς , σ , ϵk}, and geography

{dij,k}, a general equilibrium is a set of wages and producer prices {wi, p
F
i,k} such that: (i)

consumers choices satisfy (6)-(9), (ii) agricultural producers choices satisfy (11)-(15), (iii)
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non-agricultural producers satisfy (19), (iii) non-arbitrage across locations holds (20), (iv)

total sales and expenditure satisfy (18) and (21)-(23), (v) trade must balance (24) and (vi)

labor markets clear (25).

3.3 Agricultural GHG Emissions

We break down the GHG emissions from agriculture into (i) the emissions from food pro-

duction and (ii) the emissions from food transportation, akin to Shapiro (2016). First,

production in country i generates GHG emissions, GP
i , as follows

GP
i =

∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ (26)

where Qi,kτ ≡
∑

f∈Fi
Qf

i,kτ is the total calories of good k produced using technology τ in

country i. φP
kτ is the GHG emission rate by kcal from the production of agricultural good

k using technology τ . We model emissions this way due to its simplicity and versatility.

The parameter φP
kτ is a reduced-form measure capturing all sources of emissions tied to the

production of a single calorie. These emissions can stem from input use that we explicitly

model, such as the fertilizers and machines, or from inputs we do not model, such as energy

usage and land use change. Also, our formulation allows GHG emissions to come from the

production process itself, such as the release of methane from cattle ranching. With this

formulation, our model captures the GHG emissions due to relocations between crops with

different emission rates, as well as due to relocations within product related to technology

adoption.15

Second, food transportation generates global GHG emissions as follows

GT = φT
∑
i∈I

∑
j∈I

∑
k∈KA

distij · weightk · cij,k, (27)

where cij,k is the calories consumed of good k, weightk is a term that converts calories to

weight, distij is the distance between countries i and j , and φT is the GHG emissions (in

kg of CO2 equivalent) per km-kg of food transported. This equation captures the role of

long-distance transportation between countries in generating GHG emissions. Moreover, it

15Our approach assumes the contribution to emissions of each source per unit produced is constant, for a
given product and technology. An alternative is to model the usage of each of these components explicitly,
and directly associate the emissions to each source. The trade-off is that this requires taking a stance on the
relative importance of emissions from the use of specific intermediate inputs versus the emissions that are
independent from the use of such inputs, as well as building a modelling structure and collecting data on
these different sources of emissions.
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captures differences in GHG emissions across food products by unit of calorie, since different

food products have different weights per calorie.

3.4 Income Elasticities in Nested Non-Homothetic CES

In the model presented in the preceding section, the elasticity of the expenditure share of

good k within the sector s (k), βi,k, with respect to income, Ei (holding all variety prices

fixed), is
∂ ln βi,k

∂ lnEi

=
1− ς

1− ς + ϵi
·
(
ϵk − ϵ̃i,s(k)

)
(28)

where ϵ̃i,s ≡
∑

k∈Ks
βi,kϵk and ϵi ≡

∑
s∈S β̃i,sϵ̃i,s are country i expenditure-weighted average of

the income elasticity parameters, ϵk, at the sectoral and aggregate levels, respectively. Notice

that the income elasticities in non-homothetic CES models are not structural parameters,

rather they depend on consumption shares through the averages ϵ̃i,s and ϵi, which themselves

depend on prices and utility. However, the ranking of the income elasticity magnitudes

within a sector are still controlled by the parameters ϵk, independent of the elasticities of

substitution, which makes these preferences appealing. Specifically, assuming 1−ς
1−ς+ϵi

> 0, for

any two products k, k′ in the same sector, equation (28) implies

ϵk ≥ ϵk′ ⇐⇒ ∂ ln βi,k

∂ lnEi

≥ ∂ ln βi,k′

∂ lnEi

with the left inequality strict if the right inequality is strict. Products with a greater value

of ϵk have a greater income elasticity, for products in the same sector and country, i. The

right inequality is reversed if 1−ς
1−ς+ϵi

< 0. Insight into the dependence in equation (28) of

the income elasticity on the remaining parameters of the model can be had by looking at its

derivation. Using equation (7),

∂ ln βi,k

∂ lnEi

= ϵk

(
1− ∂ lnPi

∂ lnEi

)
︸ ︷︷ ︸

=
∂ lnUi
∂ lnEi

, using eq (10)

− (1− ς)
∂ ln p̃i,s(k)
∂ lnEi

(29)

A change in expenditure causes utility to change, which affects the consumption expenditure

share of product k via two channels. The first is the direct effect of the change in utility,

which causes the preference weight given to product k to change due to preferences being

non-homothetic. This is modulated by the parameter ϵk and is the first term in equation

(29). Utility is equal to real expenditure, Ui = (Ei/Ni) /Pi, thus this channel incorporates

the resulting change in the overall price index Pi due to the non-homothetic adjustment
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of the overall consumption basket as utility changes. The second channel, reflected by the

second term in equation (29), arises due to the non-homothetic adjustment of the sectoral

consumption basket, causing the sectoral price index, p̃i,s(k), to change. The change in

these price indices induces a substitution effect, which is modulated by the elasticities of

substitution, ς and σ. Hence, the dependence of the income elasticity on these parameters.

Similarly to the good-level case, the elasticity of the expenditure share of sector s, β̃i,s,

with respect to income, Ei, for households in country i, is given by

∂ ln β̃i,s

∂ lnEi

=
1− σ

1− ς + ϵi
· (ϵ̃i,s − ϵi) (30)

The ranking of these sectoral income elasticities are determined by the average of the income

elasticities across the sector’s constituent products, ϵ̃is. Specifically, assuming 1−σ
1−ς+ϵi

> 0, for

any two sectors s, s′

ϵ̃i,s ≥ ϵ̃i,s′ ⇐⇒ ∂ ln β̃i,s

∂ lnEi

≥ ∂ ln β̃i,s′

∂ lnEi

with the left inequality strict if the right inequality is strict. The right inequality is reversed

if 1−σ
1−ς+ϵi

< 0. That is, the sectors inherit their non-homotheticity from the product-level

income elasticity parameters, ϵk.

The elasticity of expenditure on a product, k, with respect to income in country i is

∂ ln (pi,kCi,k)

∂ lnEi

=
∂ ln βi,k

∂ lnEi︸ ︷︷ ︸
Reallocation between k within s (k)

+
∂ ln β̃i,s(k)

∂ lnEi︸ ︷︷ ︸
Reallocation between s

+ 1︸︷︷︸
Scale

(31)

using pi,kCi,k = βi,kβ̃i,s(k)Ei. This elasticity captures both reallocation in expenditure across

products k within the sector s (k),
∂ lnβi,k

∂ lnEi
, reallocation between sectors,

∂ ln β̃i,s(k)

∂ lnEi
, and the

overall scale effect from having greater income, given by the last term, 1.

The reduced form income elasticities by product, δk, estimated in equation (1) correspond

to

δk = Ei|k

[
∂ ln (pi,kCi,k)

∂ lnEi

]
(32)

The expectation over i (with k fixed), Ei|k, is present due to the regression taking an

expenditure-weighted average of the income elasticities across countries. δk is the effect

of an increase in income, Ei on the total expenditure on product k, pi,kCi,k, averaged across

countries.

The reduced form estimation permits one to identify Ks − 2 of the income elasticity

parameters ϵk for each sector (as observed in Comin et al., 2021 for non-nested NHCES).
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This can be seen by inserting equations (28) and (31) into equation (32), giving

δk − δk′

δk − δk′′
=

ϵk − ϵk′

ϵk − ϵk′′
(33)

for products k, k′, k′′ all in the same sector.

3.5 Economic Development and GHG Emissions from Food Production

To gain intuition on the model mechanisms relating the change in GHG emissions from food

production to economic development, we provide an analytical decomposition up to first

order in this section. Modeling economic development as an increase in domestic TFP in the

non-agricultural sector, Ti,NA, the effect on domestic agricultural emissions from production,

GP
i , is

d lnGP
i

d lnTi,NA

=
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

GP
i

·
∂ ln

Qi,kτ

Qi,k

∂ lnwi

· d lnwi

d lnTi,NA

Agricultural modernization

+
∑
j∈I

∑
k∈KA

Xij,k

Yi,k

·
∑

τ∈{0,1} φ
P
kτQi,kτ

GP
i

· ∂ ln βj,k

∂ lnEj

· d lnEj

d lnTi,NA

Nutrition transition

+
∑
j∈I

∑
k∈KA

Xij,k

Yi,k

∑
τ∈{0,1} φ

P
kτQi,kτ

GP
i

·
∂ ln

(
p̃j,AC̃j,A

)
∂ lnEj

· d lnEj

d lnTi,NA

Scale effect

+
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

GP
i

· ∂ lnQi,kτ

∂ lnp′ · d lnp

d lnTi,NA

Price effect (34)

where Qi,k ≡
∑

τ∈{0,1}Qi,kτ is total calories from production of crop k in country i. Following

the TFP shock, economic development occurs in location i if the wage wi and income Ei rise,
d lnwi

d lnTi,NA
> 0,

d lnEj

d lnTi,NA
> 0, which is the typical case and what we will assume for exposition.

The negative environmental consequences of agricultural modernization manifest in the

first term: if, as the wage rises, production shifts to technologies with a greater share of

emissions. That is,
∂ ln

Qi,kτ
Qi,k

∂ lnwi
is positive for the technology with greater emissions,

φkτQ
C
i,kτ

Gi
.

This is the empirically relevant case in the model because the modern technology has greater

emissions and is labor saving,
γN
k1

γL
k1

<
γN
k0

γL
k0

(i.e. labor per unit of land), so producers switch to

this technology as wages rise. This implication can be seen cleanly in the case where there

is only a single field in country i, |Fi| = 1, in the model

∂ ln
Qi,kτ

Qi,k

∂ lnwi

= θ2
Qi,k,1−τ

Qi,k

(
γN
k,1−τ

γL
k,1−τ

− γN
kτ

γL
kτ

)
(35)
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which is positive for the modern technology, τ = 1, and negative for the traditional, τ = 0.

The negative environmental consequences of the nutrition transition manifest in the sec-

ond term: if, as income rises, consumption shifts to products with a greater share of emis-

sions. That is,
Xii,k

Yi,k

∂ lnβi,k

∂ lnEi
is positive for the goods with greater emissions (combined across

traditional and modern),
∑

τ∈{0,1} φP
kτQi,kτ

Gi
. Ignoring the effect of the domestic trade share,

Xii,k

Yi,k
, for the moment, this is the empirically relevant case because goods with greater val-

ues of ϵk, and therefore greater income elasticities,
∂ lnβj,k

∂ lnEj
, by equation (28), have greater

emissions. The presence of the domestic trade share can attenuate the nutrition transition

if high emission products have have low domestic trade shares, meaning these products are

sourced from abroad. Moreover, incomes in other countries j ̸= i may not necessarily rise

following the domestic TFP increase,
d lnEj

d lnTi,NA
≷ 0; any fall in foreign incomes will further

attenuate the nutrition transition as the composition of foreign consumption shifts to less

emitting products.

The third term reflects a scale effect: if global expenditure on the domestic agricultural

sector rises following the TFP shock, then domestic agricultural emissions increase mechani-

cally, simply because more agricultural products are being produced. The income elasticity of

the agricultural sector as a whole is positive in the empirically relevant case,
∂ ln(p̃j,AC̃j,A)

∂ lnEj
> 0,

so the scale effect is positive assuming any fall in foreign income following the domestic TFP

shock is not too great.

The final term reflects the effect of the endogenous price response on agricultural output

following the TFP shock. We use the notation p =
{
pFi,k
}
i∈I,k∈K, with an inner product

between the two derivatives involving the price. Agricultural modernization and the nutrition

transition are income effect phenomena. Therefore, any effect on emissions through a change

in prices is a distinct mechanism.

4 Quantifying the Model

We present our quantification in Section 4.1 and results, including model fit, in Section 4.2.

Table 2 offers a summary of our calibrated and estimated parameters.

4.1 Quantification

The quantification of our model follows a three step procedure. First, we estimate the income

elasticity parameters by food product ({ϵk}k∈KA
) and set the elasticities of substitution in

consumption (η, ς, σ) equal to values in the literature. Second, we calibrate the productivity

shifters (Tik and T f
ikτ ), the cost share parameters (γL

kτ , γ
N
kτ , γ

M
kτ , and λk′k), and the preference
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Table 2: Summary of Parameter Values and Sources

Parameter Description Source Value

Demand-side
η Elasticity of subst. between varieties Simonovska and Waugh (2014) 4
ς Elasticity of subst. between goods Sotelo (2020) and Farrokhi and Pellegrina (2023) 3
σ Elasticities of subst. between sectors Comin et al. (2021) 0.5
ϵk Income elasticities for each goods Methology in Section 3.4 -

aji,kd
1−η
ji,k Demand shifters and trade costs Residuals from gravity equations -

ai,k and ãi,s Demand shifters of goods and sectors Good- and sector-level expenditure shares -

Supply-side
θ1 Productivity dispersion between crops Farrokhi and Pellegrina (2023) 1.5
θ2 Productivity dispersion between tech. Farrokhi and Pellegrina (2023) 4.5
γN
kτ , γ

L
kτ , γ

M
k ,λkk′ Factor and intermediate input shares USDA & Cross-country input cost share -

T f
i,kτ Productivity shifter for food products Potential yields from FAO-GAEZ -

Ti,k Productivity shifter of non-agriculture Origin FE from gravity equations -

GHG emissions from food production φP
kτ

φk Emissions by food product Poore and Nemecek (2018) -
φ0 Global emissions from food production EDGAR-FOOD 2.2
φ1 Emissions of rich and poor countries EDGAR-FOOD 6.8

GHG emissions from food transport φT

φT Global emissions from food transport EDGAR-FOOD 0.08

shifters (ãi,s, ai,k, and aij,k), while picking values for the crop-technology elasticities (θ1

and θ2) from the literature. Third, with the baseline model calibrated and simulated, we

estimate the GHG emissions from food production per crop and technology, φP
kτ , and from

food transport, φT.

4.1.1 Step 1: Income and Substitution Elasticities

Our method to estimate the income elasticity parameters generalizes Comin et al. (2021) to

nested non-homothetic CES preferences and to an open-economy. As in their case, we utilize

the implicit Marshallian demand for identification.16 Specifically, the explicit Marshallian

demand under non-homothetic CES preferences cannot be written in closed-form because

of the dependence of the middle tier price indices, p̃i,s on utility, Ui. However, one can still

derive a closed-form demand equation that depends on expenditure on a base good in place

of these price indices, becoming what is referred to as the implicit Marshallian demand.

Here, we show that one can use trade data to further substitute out the unobservable variety

price indices, pi,k, resulting in a specification that does not require any price data, while still

being exact.17 We briefly explain the estimation steps below, providing a full derivation in

16Alternatively, Caron and Fally (2022); Duernecker et al. (2024) use the Hicksian demand, equation (7),
and the budget constraint, equation (5), or utility function, equation (2), simultaneously for identification.
Estimation based on that method necessitates a constrained, non-linear least squares regression, whereas the
implicit Marshallian demand permits a linear regression.

17Comin et al. (2021) and Caron and Fally (2022) provide approximate methods for the non-nested non-
homothetic CES that do not require price data: they impose additional assumptions that are only approxi-
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Appendix Section OD.1.

The first step is to use a base good k∗ ∈ K, which will be non-agriculture in our setting,

to substitute out the upper and middle level price indices, Pi and p̃i,s. To substitute out the

overall price index, Pi, rearrange demand for the sector of the base good, equation (8), to

give

P 1−σ
i =

ãi,s(k∗)p̃
1−σ
i,s(k∗)

β̃i,s(k∗)

=
ãi,s(k∗)

(
ai,k∗U

ϵk∗
i p1−ς

i,k∗

) 1−σ
1−ς

β̃i,s(k∗)

=
ãi,s(k∗)a

1−σ
1−ς

i,k∗ p
1−σ
i,k∗

β̃i,s(k∗)

(36)

The second line used equation (9) and the fact that the non-agricultural sector s (k∗) has

only a single product in our model,
∣∣Ks(k∗)

∣∣ = 1 (a sole non-agricultural composite). The

third line utilized the normalization ϵk∗ ≡ 0 (see proposition 1 in Appendix Section OC.3).

Next, to substitute out the sectoral price indices of the other sectors, ∀s ∈ S\s (k∗) : pi,s,

rearrange demand for those sectors, equation (8),

p̃1−σ
i,s =

β̃i,sP
1−σ
i

ãi,s
(37)

Equations (36) and (37) provide expressions for Pi and p̃i,s that, conditional the expenditure

shares, β̃i,s, and variety price indices, pi,k∗ , do not directly depend on utility.

The second step is to use the demand for varieties, equation (6), to substitute out the

variety price index, that, while not directly depending on utility, is unobservable.18 Rear-

ranging equation (6), inserting pji,k = pFj,kdji,k from equation (20), taking logs, and summing

mately true in reality. Comin et al. (2021) assume prices do not vary across different groups of consumers;
Caron and Fally (2022) require proxies for crop-specific trade costs (they use standard gravity variables such
as physical distance and shared language). Our method, in contrast, is exact, requiring no such additional
assumptions.

18Costinot et al. (2016) identify variety price indices using data on production prices, combined with
estimates of aji,kτ

1−η
ji,k from residuals in their regressions. Our method, on the other hand, for our purposes,

does not need production price data.
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over country i’s import partners j ∈ I¬0
i,k , gives

(1− η) ln pi,k = − 1

NI¬0
i,k

∑
j∈I¬0

i,k

ln βji,k

︸ ︷︷ ︸
≡ln β̂i,k

+(1− η)
1

NI¬0
i,k

∑
j∈I¬0

i,k

ln pFj,k︸ ︷︷ ︸
≡ln p̂F

I¬0
i,k

,k

+
1

NI¬0
i,k

∑
j∈I¬0

i,k

ln
(
aji,kd

1−η
ji,k

)
︸ ︷︷ ︸

≡0

(38)

I¬0
i,k is the set of non-zero trade flows into location i for industry k, i.e. I¬0

i,k ≡ {j ∈ I : βji,k ̸= 0}
and NI¬0

i,k
≡
∣∣I¬0

i,k

∣∣ is the number of elements in this set (i.e. the number of importing part-

ners). Summing over this set is required to avoid log of zero in the summand.

β̂i,k and p̂FI¬0
i,k ,k

are geometric averages of variety expenditure shares, βji,k, and production

prices, pFj,k, across location i’s import partners for product k. The third term in equation

(38) is normalized to zero, without loss of generality.19

The final step is to use equations (36), (37) and (38) to substitute out p̃i,s, Pi and pi,k,

respectively, in demand for good k ̸= k∗, equation (7)

ln βi,k = ϵk ln
Ei

Ni

−
(
1− ς

1− σ

)
ln β̃i,s(k) −

1− ς

1− η
ln β̂i,k +

ϵk + 1− ς

1− σ
ln β̃i,s(k∗) +

ϵk + 1− ς

1− η
ln β̂i,k∗

+ (1− ς) ln p̂FI¬0
i,k ,k︸ ︷︷ ︸

{I¬0
i,k ,k} FE

+(ς − 1− ϵk) ln p̂
F
I¬0
i,k∗ ,k

∗︸ ︷︷ ︸
{I¬0

i,k∗ ,k} FE

+ ln

 ai,kã
1−ς
1−σ

i,s(k)

a
ϵk+(1−ς)

1−ς

i,k∗ ã
ϵk+(1−ς)

1−σ

i,s(k∗)


︸ ︷︷ ︸

residual

(39)

Equation (39) is the implicit Marshallian demand for products and form the basis of our

estimation of ϵk for k ̸= k∗. The dependent variable and regressors are constructed using

observable per capita expenditure, Ei/Ni, and expenditure shares, βi,k, β̃i,s(k), β̃i,s(k∗), β̂i,k,

and β̂i,k∗ . Importantly, because the estimation equation only depends on averages of the

production prices, p̂FI¬0
i,k ,k

and p̂FI¬0
i,k∗ ,k

∗ , these terms can be controlled for using appropriate

fixed effects. For instance, the
{
I¬0
i,k , k

}
fixed effect has a dummy for the set of county-

product, i, k, observations that share the same set of import partners for product k, I¬0
i,k ,

and share the same product, k. Thus, no price data is needed for estimation.

Not needing price data is a powerful feature of our method. This arises because the model

is open-economy. Multiple countries purchase a given product from the same set of countries

at the same production prices. By utilizing variation across different countries purchasing the

same products, one can difference out the production price in the estimation equation. The

presence of β̂i,k arises because one must still adjust by the amount each country is exposed

19The level of aji,k in each nest can be normalized — see footnote 12. This is for the same reasons as in
Costinot et al., 2016, equation 12.
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to each price via its imports.

The unobservable preference shifters of the middle and upper tiers of utility, ai,k and

ãi,s, constitute the residual. Variation in income and expenditure shares that is orthogonal

with respect to these preference shifters is therefore needed for identification. We follow

the precedent in the literature that assumes the fixed effects are sufficient to account for

endogeneity (Aguiar and Bils, 2015; Comin et al., 2021).

Equation (39) in principle identify all the parameters
{
{ϵk}k∈K\k∗ , η, ς, σ

}
, which can be

estimated by non-linear methods. Since η, ς, and σ are often estimated in the literature,

we calibrate these parameters instead, which allows us to use a simple linear regression to

estimate {ϵk}k∈K\k∗ . That is, for k ∈ K\k∗,

ln

(
βi,kβ̃

1−ς
1−σ

i,s(k)β̂
1−ς
1−η

i,k β̃
− 1−ς

1−σ

i,s(k∗)β̂
− 1−ς

1−η

i,k∗

)
= ϵk ln

(
Ei

Ni

β̃
1

1−σ

i,s(k∗)β̂
1

1−η

i,k∗

)
+ (1− ς) ln p̂FI¬0

i,k ,k︸ ︷︷ ︸
{I¬0

i,k ,k} FE

+ (ς − 1− ϵk) ln p̂
F
I¬0
i,k∗ ,k

∗︸ ︷︷ ︸
{I¬0

i,k∗ ,k} FE

+ ln

 ai,kã
1−ς
1−σ

i,s(k)

a
ϵk+(1−ς)

1−ς

i,k∗ ã
ϵk+(1−ς)

1−σ

i,s(k∗)


︸ ︷︷ ︸

residual

(40)

We set the trade elasticity to η = 4 (Simonovska and Waugh, 2014), the elasticity of sub-

stitution between crops to ς = 3, which is in between the values found in Sotelo (2020)

using household-level variations and Farrokhi and Pellegrina (2023) country-level variations,

and the elasticity of substitution between agriculture and non-agricultural goods to σ = 0.5

(Comin et al., 2021).

4.1.2 Step 2: Technology Parameters, Productivity Shifters and Preference Shifters

Because we follow closely the literature, this section provides a brief summary of our pro-

cedure, leaving details to Appendix OD. We set the technology and crop supply elasticities

to be equal to θ1 = 1.5 and θ2 = 4, and adjust the productivity shifters for the agricultural

sector (T f
i,kτ ) based on the FAO-GAEZ data, as in Farrokhi and Pellegrina (2023). Specif-

ically, the relative values of T f
i,kτ/T

f ′

i′,kτ for each technology across the world comes directly

from the information provided by FAO-GAEZ. The level of T f
i,kτ in traditional technology is

adjusted to match the total calories produced by each food product at the global level, and

the modern technology is adjusted to match exactly the share of land employed in modern

technology in the United States.

We recover the amalgamation of lower tier preference shifters, aji,k, with international
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trade costs, dij,k, from the residuals of the variety gravity equations — i.e. aij,kd
1−η
ij,k .

20 We

also recover the origin fixed effects from these gravity equations for the non-agricultural good

and each intermediate input (fertilizers, machinery and pesticide), which we use to calibrate

Ti,k (up-to-normalization within each good). Middle tier preference shifters, ai,k, match the

share of calories each country consumes from each food product, and upper tier preference

shifter, ãi,s, match the expenditure share in agricultural goods by each country (both up to

a separate normalization within country).

For the cost share of inputs γL
kτ , γ

N
kτ , and γM

kτ , for simplicity, we assume that the tech-

nology parameters are the same across food products. Moreover, based on the FAO-GAEZ

assumptions when generating the potential yield data, we set the use of agricultural inputs

in traditional technology to zero, γM
k1 = 0. We then use data on the observed cost share of

labor, land and intermediate inputs from the USA, which is a weighted average of the cost

share of each input across modern and traditional technologies, together with information

on total revenues from modern technologies to recover the remaining shares. Lastly, the

cost share of intermediate inputs, λk,k′ , comes from the USDA productivity and cost share

dataset.

4.1.3 Step 3: Calibrating GHG Emissions

In this final step, after calibrating the model, we estimate the GHG emission parameters

from production, φP
kτ , using the minimum distance estimator and calibrate the parameter

related to food transportation, φT , using data on global GHG emissions from transportation.

To reduce data requirements, we assume that the GHG emissions from food production is

a combination of a crop-specific component and a technology-specific component as follows,

φP
kτ = φkφτ . We calibrate the value of φk so that the relative average emission across food

products in the model matches the corresponding statistics in PN18. We then estimate

φ0 and φ1 based on two additional statistics from EDGAR-FOOD. First, the total GHG

emissions from food production in the data—which equals 4.6 Gt CO2 in 2010. Second,

the ratio of total GHG emissions from food production between countries above the 75

percentile of the distribution of GDP per capita versus the emissions from countries below

the 25 percentile—that ratio equals 15 percent. This second statistic provides information

about the unobserved use of modern technologies across countries, which is consistent with

the higher emissions from fertilizers and energy use in richer economies presented in Empirical

20We recall that we are only identified up-to-normalization here so we assume
1

NI¬0
i,k

∑
j∈I¬0

i,k
ln
(
aji,kd

1−η
ji,k

)
= 0 . See 12 for details.
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Pattern 4.21

Formally, let m̄ = [mavg,m25,75] be the vector that stacks these two statistics in the data

in logs, Σ ≡ {φ0, φ1} be the vector of parameters to be estimated, and φ̄k be the average

emissions from food product k in the data relative to the average (unweighted) emissions

across food products. We search for Σ̂ that satisfies

Σ̂ = argmin [m (Σ)−m]′ [m (Σ)−m] s.t. φ̄k = φk (Σ)

where m (Σ) are the model-implied values of m̄ with parameters Σ, and φk (Σ) are the

model-implied values of φ̄k.

Finally, using equation (27), we calibrate φT to match the global emissions from the

transportation of food in the data.

We find that the ratio of φ1 to φ0, which provides the additional GHG emissions from

using modern technologies, equals 2.92 (= 6.66/2.28). Additionally, we find φT = 0.08,

which means that transporting 1 kg of a good for 1 km produces 0.08 gCO2 emissions. For

comparison, according to the International Maritime Organization Greenhouse Gas Study

(IMO, 2020), the gCO2 emissions per kg-km is 0.01 via maritime routes in 2008. For other

modes of transportation, such as road and air transportation, these numbers are about 10

and 100 times higher, respectively, which can explain our larger values.

4.2 Income Elasticity Estimates and Fit of the Model

4.2.1 Income Elasticities

Figure 5a presents the estimated values of the income elasticity parameters, along with 95%

confidence intervals. Recall that these are not equal to the income elasticities, but they

have the same ranking within sector—recall also that non-agriculture is normalized to zero.

Figure 5a presents the implied income elasticity (averaged across all countries), calculated

using equation (31). The ranking looks as one would expect: potatoes and rice have some

of the lowest values, while berries and asparagus are on the highest ends. Meats tend to be

towards the middle.

Figure 5c plots the structural income elasticity values against the corresponding reduced

form in Equation (1) from Empirical Pattern 3. There is a strong relationship between the

two, with slope of 0.77 and R2 of 0.93: the structural estimation yields similar values to

21Notice that, if we assume that emissions between technologies are the same (φ1 = φ0), then the model-
implied differences in GHG emissions across poor and rich countries are understated relative to the data,
because these differences can only arise from differences in total food production and differences in food-
product composition.
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the reduced-form coefficients. This is reassuring: both methods make different identifying

assumptions; similar results from both suggest that our results are therefore robust to both

sets of assumptions.22

Figure 5d plots the structural income elasticities against the GHG per calorie of each

product, to verify if Empirical Pattern 3 is replicated by the model. Indeed it is, with a

significant positive slope.

Figure 5: Estimation of Income Elasticities and Parameters
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(b) Structural Income Elast., Ei|k
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(c) Structural vs RF Inc. Elast.
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(d) Structural Inc. Elast. and GHG emissions/kcal
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Notes: Panel (a) shows the estimated values (with 95% confidence intervals) of ϵk by product. Panel (b) shows the implied
income elasticities from equation (31). Panel (c) shows the relationship between the structural values of the income elasticities
and the reduced form values — Equation (1). Panel (d) shows the relationship between the structural income elasticities and
GHG emissions per calorie.

The income elasticity of the agricultural sector as a whole implied by our model is 0.39,

22The two methods assume different data-generating processes: the reduced form method assumes that
any endogeneity is sufficiently controlled for using the fixed effect specification in equation (1), while the
structural method correctly accounts for endogeneity assuming the residual is governed by the model of
section 3.
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which is in line with the results from the literature. Comin et al. (2021), for example, find

an elasticity of 0.37 using cross-country data.

4.2.2 Fit of the Model

Figure 6 shows that the model replicates a host of key patterns in the data related to

agricultural production, GHG emissions, and economic development, even though none of

these empirical patterns were directly targeted in our quantification procedure.23 Panel (a)

shows that the model generates a declining share of workers in agriculture with economic

development, a well-known empirical regularity from the literature (Comin et al., 2021;

Herrendorf et al., 2014). In our model, this relationship is partly driven by the higher ratio

of wages to intermediate input prices in richer economies, which incentivizes the adoption of

modern, labor-saving agricultural technologies. Panel (b) presents an increasing cost share of

inputs with economic development, a regularity emphasized in Donovan (2021), Farrokhi and

Pellegrina (2023), and Restuccia et al. (2008). This pattern is a consequence of the higher use

of modern technology in richer economies. (We notice that we only directly target the share

of modern technology in the US; the distribution of modern technology shares across other

countries is model-implied and not calibrated explicitly.) Panel (c) evaluates the model’s fit

regarding the share of land in modern technology. Due to limited data—few countries report

detailed information on land use by technology type—the model’s outcomes, nonetheless,

remain consistent with observed data. Figure 6 d), e) and f) show that the model replicates

the relationships observed in empirical pattern 2 between economic development and GHG

emissions: food GHG emissions from food consumption increases, both in per capita and per

calorie terms, and calories increase.

23While our focus is on these relationships in the data, we notice that the model fits well aggregate
production by country and food product. A regression of the log of quantities in the data against the log of
quantities in the model gives a slope of 0.75 and a R2 of 0.38 — see Appendix Figure O.4. That indicates
that the model generates systematically more variation in specialization than in the data, particularly by
producing low amounts of production for certain crops relative to the data.
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Figure 6: Fit of the Model: relationships between GHG emissions from food production,
agricultural modernization and GDP per capita
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(c) Share of Land in Modern Technology
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(f) Food GHG per calorie
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5 Quantitative Exercises

In this section, we simulate our model to study the impact of economic development, dietary

restrictions and food trade policies on GHG emissions from agriculture (section 5.2). Before

doing so, we offer a decomposition of the role of different factors driving the relationships

between GHG emissions and GDP per capita presented in Empirical Pattern 2 (section 5.1).

5.1 Decomposing the Relationship between Emissions and Income

Empirical Pattern 2 shows that GHG emissions from food is strongly increasing with GDP per

capita in the data. Decomposing the drivers of this relationship is key for understanding the

implications of economic development for GHG emissions. Part of the differences in emissions

between rich and poor countries might stem from differences in the features of countries that

would remain unaffected by economic growth in our framework. These confounding factors

may include dietary preferences, comparative advantage in certain crops, or a country’s

geographic location.

In this section, we run counterfactuals to calculate the contribution of these factors

through the lens of our model. Specifically, we remove the effect of a factor by equalizing

across countries the parameters in the model that capture these factors, and simulate the

new model-implied GHG emissions and GDP across countries. Table 3 presents our results.

The regression coefficient on log GDP per capita is reported. In panel (a), the dependent

variable is log GHG emissions from food consumption per capita, and panel (b) log GHG

emissions from food consumption per kcal. Column (1) reports the coefficient estimate in our

baseline calibration, which closely replicates Empirical Pattern 2 (Figure 2). The remaining

columns present the coefficient estimate when the aforementioned features of the model are

removed.

Column (2) removes the effect of intrinsic diet preferences, such as due to differences in

demographics and culture. We set ai,k and ai,A, which capture these preferences, equal across

countries within each agricultural product, specifically equal to the population-weighted

average,
∑

j∈I aj,k ·
Nj∑
j′ Nj

and
∑

j∈I aj,A ·
Nj∑
j′ Nj

. The coefficient becomes about three-quarters

smaller in size in Panel (a) and one-half smaller in Panel (b). That is, a large reason why

food emissions is increasing with income in the cross-section is due to intrinsic preferences for

diet: rich countries tend to consume emission-intense products not because they are richer,

but because of dietary preferences that happen to be correlated with income. In Appendix

Table O.2, we provide evidence of religion being one factor driving these preferences. In

countries where Islam is dominant, the preference shifters, ai,k, for pork relative to other

types of meat are substantially lower; in countries where Hinduism is dominant, preferences
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for lamb, mutton and poultry, are stronger relative to other sources of meat.

Column (3) removes the effect of comparative advantage in agricultural production, by

setting the productivity T f
i,kτ to be the same across countries within each product and tech-

nology, specifically to the population-weighted average. Column (4) removes the effect of

agricultural trade costs, by setting the domestic trade costs equal across countries within each

agricultural, also based on the population-weighted average. In both cases, point-estimates

remain similar or larger, suggesting that comparative advantage or geographic location are

not driving these relationships.

Lastly, Column (5) removes all three features together. This means the resulting rela-

tionship between food emissions and income is only being driven by cross-country differences

in the non-agricultural sectors. Intuitively, we can roughly understand this as exogenous

variation in income being driven by differing productivities in the non-agricultural sectors.

The coefficient is two-thirds smaller in Panel (a) and about a half in Panel (b), similar to

the cases of column (2), which is expected given the other columns give little difference.

Summarizing, removing the confounding variation reveals a substantially attenuated re-

lationship between food emissions and income. However, the effect of economic growth, such

as originating in the non-agricultural sectors, still gives a meaningful contribution.

Table 3: Decomposing the Relationship between GHG Emissions from Food Consumption
and Income

Counterfactual
Baseline Demand Supply Geography All

(1) (2) (3) (4) (5)
a. Dependent variable: Food GHG per capita
Log of GDP pc 0.416*** 0.080*** 0.368*** 0.398*** 0.146***

(0.043) (0.031) (0.043) (0.067) (0.025)

b. Dependent variable: Food GHG per calorie
Log of GDP pc 0.198*** 0.082*** 0.238*** 0.299*** 0.118***

(0.018) (0.009) (0.020) (0.030) (0.004)

Notes: * / ** / *** denotes significance at the 10 / 5 / 1 percent level. Each panel shows the coefficient from a different
regression, with the dependent variable shown in the associated panel heading. Column (1) is under the baseline calibration of
the model, column (2) under the counterfactual of equalized agricultural preferences, column (3) under equalized agricultural
productivities, column (4) under equalized agricultural trade costs, and column (5) imposes the previous three simultaneously.

5.2 Effects of Economic Development, Dietary Restrictions and Food Trade

Policies

We analyze the effect of various counterfactual policies, of academic and policy interest,

on global GHG emissions from food and welfare, and offer a number of decompositions to

quantify the important mechanisms of the model. Table 4 reports our results. Each row
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corresponds to a different counterfactual and each entry represents the percentage change

relative to the baseline. Column (1) shows the effect on global welfare, which we measure

as the average across countries, and column (2) the percentage point difference on the ratio

of welfare between the top quartile (Q4) of countries in terms of GDP per capita and the

bottom quartile (Q1). Column (3) shows the effects on global GHG emissions from food,

including emissions from production and transportation, while column (4) shows the effect

on emissions from transportation only.

To quantify the relevance of the nutrition transition, in column (5) we present the change

in total emissions when this mechanism is shut down in the model. We implement this by

re-calibrating the model and setting all income elasticity parameters, ϵk, in the agricultural

sector equal, so that consumption of products within agriculture is homothetic, while still

preserving non-homotheticity at the sectoral level.24 In column (6), we shut down agricultural

modernization by setting the within crop technology share by field, αf
i,kτ , to be exogenously

fixed.25 In column (7), we shut down both simultaneously. To quantify the relevance of

supply-side equilibrium adjustments in price, we calculate the change in emissions assuming

supply is perfectly elastic in column (8). In column (9) we calculate the change in emissions

using a benchmark, back-of-the-envelope method for each counterfactual.

Now, turning to the results.

Economic growth. The first row shows the impact of raising TFP of modern producers in

agriculture, of non-agricultural producers, and of agricultural input producers, across the

globe by 10 percent. This approach follows Gollin et al. (2007), who assume that traditional

agriculture is not subject to innovation. In this counterfactual, global welfare increases by

14.9 percent, column (1), with the inequality between Q4 and Q1 increasing slightly by

0.4 percentage points, column (2). Global GHG emissions increase by 5.0 percent). The

emissions from transportation increases by 2.2 percent. Since transportation represents only

5 percent of total emissions, its aggregate effect on GHG emissions is limited. Specifically,

in levels, GHG emissions from production increases by 0.6 Gt CO2 and from transportation

by 0.004 Gt CO2.

Column (5) shows that if we remove the nutrition transition, then the effect of emissions

falls by 28 percent (1.4 percentage points). Column (6) shows that removing agricultural

modernization reduces emissions by 16 percent (0.8 percentage points), and column (7) shows

24We set ∀k: ϵk = ϵA, where ϵA is chosen so that the income elasticity, equation (30), of every country
is at most the value in the baseline calibration of 0.39-1. Under this calibration, the initial equilibrium is
equivalent to that under the baseline calibration. The only difference is in the post-shock equilibrium.

25This is analogous to the fixed-crop counterfactual exercise in Costinot et al. (2016), who do not have
technology choice.
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Table 4: Aggregate Effects of Alternative Policies

Welfare Global GHG Emissions
Global Q4/Q1 Total Transp. ¬NT ¬AM ¬NT/AM Demand Mech.

Counterfactual (1) (2) (3) (4) (5) (6) (7) (8) (9)
TFP growth 14.9 0.4 5.0 2.2 3.6 4.2 2.9 10.0 15.3
No beef -0.6 1.0 -20.0 -1.2 -19.9 -20.5 -20.4 -23.7 -28.9
Vegetarian -2.8 6.0 -30.0 -4.0 -29.7 -30.8 -30.6 -37.3 -48.2
Eat local -17.8 4.9 -11.9 -74.9 -9.3 -12.1 -9.3 -12.4 -4.6

Notes: This table shows the impact of different counterfactuals on global welfare and CO2 emissions. Each cell is a percentage
change relative to the baseline. Column (1) is the change in aggregate welfare. Column (2) is the change in the ratio of the
average welfare in the first quartile of the GDP per capita distribution versus the bottom quartile. Column (3) is the change
in global GHG emissions. Column (4) is the change in global GHG emissions from food transportation — which represents
4.6 percent of total emissions in the baseline. Column (5) shows the change in global GHG emissions when we shut down the
nutrition transition channel (NT), by simulating the model assuming no differences in income elasticities across food products,
while fixing the income elasticity for the agricultural sector as a whole. Column (6) shows the change in global GHG emissions
when we shut down the agricultural modernization channel (AM), by fixing the share of land used in modern versus traditional
technologies in the counterfactual. Column (7) shuts down both NT and AM channel. Column (8) shows the impact when we
assume that supply is perfectly elastic — i.e., when producer prices are fixed —, with the exception of the no beef and vegetarian
counterfactuals, in which we increase the price of these food products to infinity. Column (9) is counterfactual specific: It shows
a mechanical, back-of-the-envelope calculation of the impact of each counterfactual; see main text for details.

that removing both reduces emissions by 42 percent (2.1 percentage points). That is, both

these mechanisms are quantitatively relevant.

Column (8) shows that if we ignore the equilibrium change in prices due to economic

growth, then we would overstate the increase in emissions by 100 percent. Intuitively, the

increase in demand for agricultural products induced by economic growth causes production

prices to rise, due to upward-sloping agricultural supply. This attenuates the resulting in-

crease in agricultural consumption and therefore emissions. Column (9) shows that if we

were to assume a one-for-one increase in food demand with income, we would overstate the

increase in emissions by three times. These exercises show that ignoring the reaction coming

from the supply side of the economy, or ignoring the non-homotheticity of demand, severely

overstates the effect of economic growth on global emissions.

Diet Restrictions. Rows two and three show counterfactuals in which the government bans

production of specific types of food products: in row two, we consider a world where no-one

can consume beef, and, in row three, a world where everyone is vegetarian. We implement this

by setting TFPs in these sectors to virtually zero, essentially mimicking a sufficiently large

tax (there will be no tax revenue because production goes to zero). Global welfare declines

in both cases, by 0.6 and 2.8 percent, respectively. This welfare loss stems in part from love-

for-variety in preferences across food products, and in part from changes in incomes—for

example, important meat producers, such as Argentina and Uruguay, experience a welfare

decrease of 3 and 4 percent, respectively, when meat is banned. This in part underlines the
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worse effect of the policies on the poorest nations, as shown in column (2). Total emissions,

column (3), in both cases decline substantially, with the decline being especially greater in

the vegetarian case. This is expected given meat products typically have greater emissions

than non-meat products, and the vegetarian counterfactual reduces the consumption of more

meat products than just no beef.

Removing the nutrition transition, agricultural modernization, or both, columns (5) to

(7), marginally attenuates the reduction in emissions, suggesting that these mechanisms

are not quantitatively relevant for these policies. This is intuitive given these mechanisms

operate through changes in income, while these policies only have second order effects on

income.

To gauge the importance of general equilibrium effects, in column (9) we measure the

change in total GHG emissions that one would get from a back-of-the-envelope calculation,

in which we simply remove from agriculture the emissions coming from these particular

food products. The emission reductions are substantially attenuated when accounting for

general equilibrium effects, column (3) vs column (9), by 32 and 38 percent, for no beef and

vegetarian respectively. Column (8) offers an intermediate step which holds production prices

fixed (except for beef and meat products which go to infinity due to the policy), but allows

consumers to substitute to other products given now they do spend some of their income

on beef or meat. The emissions reduction is slightly attenuated, as one would expect given

they reduce beef or meat consumption, but increase consumption of other food products.

These numbers show that back-of-the-envelope calculations would substantially overstate the

benefits of adopting these dietary policies.

Food Trade Policy. Row four shows the counterfactual in which we raise agricultural trade

costs to reduce emissions from food transportation by 75 percent. Eating locally substantially

reduces global welfare, by 18 percent. The effect is particularly unequal across countries,

with the loss greater in the poorest countries as shown in column (2). This is mostly because

of the large share of income spent on food in poorer countries. The reductions in GHG

emissions from food production amplify the reductions associated with transportation, since

total agricultural production drops at the global level, leading to a total GHG emission

reduction of 11.9 percent. Here, if we simply remove the emissions from transportation,

which is equivalent to 4.6 percent of total emissions—the mechanical effect in column (9)—,

we understate the overall impact of the policy.
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6 Conclusion

Agriculture is a major source of global GHG emissions. Understanding the mechanisms un-

derlying this is paramount for forecasting emissions as economies develop and for determining

the appropriate policy response. In this paper, we study two key agricultural transforma-

tions — the nutrition transition and agricultural modernization — and build a quantitative,

multi-country, general equilibrium model to measure their environmental implications.

We find that both mechanisms are important drivers of the increase in GHG emissions

from agriculture as countries develop, contributing to about one third of the increase in

emissions. We use the model to quantify the environmental, welfare and inequality effects of

diet and food trade policies, which have a lot of interest to both academics and policymakers.

We find that diet policies are superior to trade policies. In all cases, we find that accounting

for equilibrium adjustments in food supply are key, with emissions significantly overstated if

they are ignored. These findings highlight the value of using a quantitative model, such as

the one we develop.

In pursuing this research, we build a comprehensive, global dataset on GHG emissions,

food consumption, production, and trade. We document empirical patterns demonstrating

relevance of diet and agricultural technology to climate change. And, methodologically, we

prove a new identification result, permitting the estimation of income elasticities without

price data, which is not typically available.
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OA Data Details

Trade, Consumption and Production. Bilateral trade data at the food product level is provided by

FAO-STAT — these data is constructed based on COMTRADE data. We combine the information on

bilateral flows with data on total revenues by food product, also available from FAO-STAT, to measure

the apparent consumption of every country in each food product, that is ACi,k = Ri,k −Xi,k +Mi,k. To

do so, we construct a crosswalk between the food products in the bilateral trade data with the revenue

data. By combining these two datasets, we can construct all the trade flows between countries for each

food category, including the sales of a country to itself.

Dietary Energy Supply. Dietary energy supply (DES) in terms of calories per capita and day come

from the Food Balance Sheets (FBS) from FAO, which are designed to provide a complete picture of the

sources of calories intake for each country in the world. These are measures of apparent consumption of

calories (i.e., production minus exports plus imports plus adjustments for stock), and they are constructed

by combining information on trade, production and national surveys. Specifically, FAOSTAT converts

the quantities of food available in every country to the dietary energy content of the edible portion of each

food product, available for human consumption — from these data, we obtain measures of conversion

between calories and raw physical quantities produced, which we use in our analysis to compute the

emissions from transportation, which is based on a weight and kilometer base. This value is then divided

by the population size and by 365 days to calculate the per capita daily dietary energy available. The

FBS contains information on DES for 121 food categories. With that information, we can compute the

share of calories that each country source from each food product. In some cases, the categories were

broader than the final list of food products that we use, for example for vegetables. In these cases,

we take the expenditure share on that food product (relative to that broad food category) to construct

the share of calories coming from that food product, as such, our data construction respects the total

calories coming from that food category in the data. From this dataset, we also obtain the total calories

consumed by each country. We multiply the total calories consumed by each country by the share of

calories coming from each food category to recover the total calories intake from each food product for

each country.

GHG emissions. Data on GHG emissions by food product comes from Poore and Nemecek (2018),

PN18. The original data constructed contain information from each study. We employ here the com-

pilation provided by the authors containing the average GHG emissions by calorie across the world for

each food product. Specifically, they provide information for 38 food products. We construct a crosswalk

between their food products and our final set of products, which contains 47 food products. Appendix

Figure O.1 shows the final distribution of GHG emissions by food product in our data.

We also bring in country-level data from EDGAR-FOOD on emissions from food production (Crippa

et al., 2021). A key feature of these data is that the authors break down the GHG emissions into the
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different stages of agricultural production, such as production, packaging, land use change, and transport.

We combine the data from PN18 with EDGAR-FOOD to construct three measures of GHG emissions

from food production. First, we construct a measure of emissions from food consumption. To do so, we

multiply the calories each country consume of each food product by the average emission associated with

that food product, according to data from PN18. To ensure internal consistency of the data. We adjust

the global level of emissions from that measure to match the global level reported in EDGAR-FOOD.

Second, we construct measures of GHG emissions from food production and transport, which come

directly from EDGAR-FOOD. We include in food production all stages of production except transport.

In these data, production accounts for 95% of the emissions from agriculture and transport for 5% .

Potential Yield. We gather potential yield data by food product and technology from FAO-GAEZ.

The data is available for two types of technology, low- and high-input use. According to the definitions

provided by FAO-GAEZ, the low-input technology corresponds to traditional methods of production

associated with no use of inputs such as chemical fertilizers and pesticides, and the high-input use

related to modern methods of production associated with the use of machinery. Importantly, potential

yields are constructed based solely on the geological characteristics of a region, and not on the market

conditions. See Farrokhi and Pellegrina (2023) and Costinot et al. (2016) for a more detailed discussion

of these datasets.

The data from FAO-GAEZ is available for 30 crops. For 17 food products, data on potential yields

is not available. In those cases, we combine the data on potential yields with realized yields data at the

grid-level from Earthstat to generate the potential yield data for all the food products in our final dataset.

Specifically, for each technology, we project the realized yield data from FAO-GAEZ using information

on the potential yield for the 30 crops with information for that technology. If the grid has no potential

yield in any of the 30 crops, we assume that the grid has zero potential yield in any crop.

OB Complementary Empirical Pattern

This section estimates the correlation between income elasticities and the intensity of CO2 emissions

using household level data. In that case, we estimate the following equation:

XHH
j,k = αHH · CO2pk k · IncomeHH

j + γHH
j + φHH

k + ιHH
r(j),k + ϵHH

j,k , (O.1)

where γHH
j and φHH

k are household and good fixed effects. In addition, we include a ιHH
r(j),k, which is a

municipality-good fixed effect, which aims at capturing the influence of common prices. As before, here

a positive αHH would indicate a higher income elasticity of agricultural products with a higher CO2

emissions per kilo-calorie. Appendix Table O.1 shows that, in the household data, our point estimates

are smaller. However, the qualitative results hold across specifications, with and without excluding meat

products.
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OC Details about the Model

OC.1 Expenditure shares with nested non-homothetic CES

We can solve this problem in steps. We start with the choice of cij,k,

min
cji,k

pji,kcji,k − λi,k

Ci,k −

∑
j∈I

(aji,k)
1

η (cji,k)
η−1

η


η

η−1


This minimization problem gives the equation for the share that country i buys of varieties from j (πji,k)

βji,k ≡
aji,kp

1−η
ji,k

p1−η
i,k

,

where the price index is given by the Lagrangian λi,k

pi,k ≡ λi,k =

∑
j∈I

(pji,k)
1−η

 1

1−η

.

We now solve the choice of Ci,k in the middle tier

min
Ci,k

pi,kCi,k + λ̃i,s

C̃i,s −

[∑
k∈Ks

(
ai,kU

ϵk−1
i

) 1

κ (Ci,k)
κ−1

κ

] κ

κ−1

 .

The share of expenditure on good k from sector s is

βi,k ≡
ai,kU

ϵk−1
i p1−κ

i,k

p1−κ
i,s(k)

,

where the price index is, again, given by the Lagrangian

p̃i,s(k) ≡ λ̃i,s(k) =

 ∑
k′∈Ks(k)

ai,k′U ϵk′−1
i p1−κ

i,k′

 1

1−κ

.

Lastly, in the upper tier, agents choose their consumption of Ci,s

min
C̃i,s

p̃i,sC̃i,k + λ̄i

Ci −

[∑
s∈S

(
ai,sU

ϵs−1
i

) 1

σ

(
C̃i,s

)σ−1

σ

] σ

σ−1

 .
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The share of expenditure on sectoral composite good C̃i,s is

β̄i,s ≡
ai,sU

ϵs−1
i p̃1−σ

i,s

P 1−σ
i

,

where

Pi ≡ λ̄i =

[∑
s∈S

ai,sU
ϵs−1
i p̃1−σ

i,s

] 1

1−σ

.

Collecting the results above, we get the sales of country j to country i, Xji,k, in the main body of the

paper.

OC.2 Income Elasticities Derivation

OC.2.1 Product and Sector Income Elasticities, equations (28) and (30)

Elasticity of βi,k:

∂ lnβi,k
∂ lnEi

=
∂

∂ lnEi
ln

[
ai,kU

ϵk
i p1−ς

i,k

p̃1−ς
i,s(k)

]

= ϵk

(
1− ∂ lnPi

∂ lnEi

)
− (1− ς)

∂ ln p̃i,s(k)

∂ lnEi
, using eq (10)

= ϵk

(
1− ϵi

1− ς + ϵi

)
− (1− ς)

ϵ̃is
1− ς + ϵi

, using eq (O.5), (O.7)

= (ϵk − ϵ̃is)
1− ς

1− ς + ϵi
(O.2)

Elasticity of β̃i,s:

∂ ln β̃i,s
∂ lnEi

=
∂

∂ lnEi
ln

[
ãi,sp̃

1−σ
i,s

P 1−σ
i

.

]

= (1− σ)
∂ ln p̃i,s
∂ lnEi

− (1− σ)
∂ lnPi

∂ lnEi

= (1− σ)
ϵ̃is

1− ς + ϵi
− (1− σ)

ϵi
1− ς + ϵi

, using eq (O.5), (O.7)

=
1− σ

1− ς + ϵi
(ϵ̃is − ϵi) (O.3)
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Elasticity of overall price index, Pi:

P 1−σ
i =

∑
s∈S

ãi,sp̃
1−σ
i,s , using eq (9)

(1− σ)
∂ lnPi

∂ lnEi
=
∑
s∈S

ãi,sp̃
1−σ
i,s

P 1−σ
i︸ ︷︷ ︸

=β̃i,s

∂

∂ lnEi
ln
[
ãi,sp̃

1−σ
i,s

]
, using eq (8)

=
∑
s∈S

β̃i,s (1− σ)
∂ ln p̃i,s
∂ lnEi

=
∑
s∈S

β̃i,s (1− σ)

(
1− ∂ lnPi

∂ lnEi

)
ϵ̃is

1− ς
, using eq (O.6) (O.4)

=

(
1− ∂ lnPi

∂ lnEi

)
1− σ

1− ς
ϵi, ϵi ≡

∑
s∈S

β̃i,sϵ̃is(
1− σ +

1− σ

1− ς
ϵi

)
∂ lnPi

∂ lnEi
=

1− σ

1− ς
ϵi

∂ lnPi

∂ lnEi
=

ϵi
1− ς + ϵi

(O.5)

Elasticity of sectoral price index, p̃i,s:

p̃1−ς
i,s ≡

∑
k∈Ks

ai,kU
ϵk
i p1−ς

i,k , using eq (9)

∂ ln p̃1−ς
i,s

∂ lnEi
=
∑
k∈Ks

ai,kp
1−ς
i,k

p̃1−ς
i,s︸ ︷︷ ︸

=βi,k

∂ lnU ϵk
i

∂ lnEi
, using eq (7)

(1− ς)
∂ ln p̃i,s
∂ lnEi

=

(
1− ∂ lnPi

∂ lnEi

) ∑
k∈Ks

βi,kϵk, using eq (10)

=

(
1− ∂ lnPi

∂ lnEi

)
ϵ̃i,s, ϵ̃i,s ≡

∑
k∈Ks

βi,kϵk

∂ ln p̃i,s
∂ lnEi

=

(
1− ∂ lnPi

∂ lnEi

)
ϵ̃i,s
1− ς

(O.6)

=

(
1− ϵi

1− ς + ϵi

)
ϵ̃i,s
1− ς

, using eq (O.5)

=
ϵ̃i,s

1− ς + ϵi
(O.7)
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OC.2.2 Relationship between Structural and Reduced Form, equation (33)

For k, k′, k′′ all in the same sector, s,

δk − δk′

δk − δk′′
=
Ei|k

[
∂ lnβi,k

∂ lnEi
+ ∂ ln β̃i,s

∂ lnEi
+ 1
]
− Ei|k′

[
∂ lnβi,k′

∂ lnEi
+ ∂ ln β̃i,s

∂ lnEi
+ 1
]

Ei|k

[
∂ lnβi,k

∂ lnEi
+ ∂ ln β̃i,s

∂ lnEi
+ 1
]
− Ei|k′′

[
∂ lnβi,k′′

∂ lnEi
+ ∂ ln β̃i,s

∂ lnEi
+ 1
]

=
Ei|k

∂ lnβi,k

∂ lnEi
− Ei|k′

∂ lnβi,k′

∂ lnEi

Ei|k
∂ lnβi,k

∂ lnEi
− Ei|k′′

∂ lnβi,k′′

∂ lnEi

=
Ei|k

1−ς
1−ς+ϵi

· (ϵk − ϵ̃i,s)− Ei|k′
1−ς

1−ς+ϵi
· (ϵk′ − ϵ̃i,s)

Ei|k
1−ς

1−ς+ϵi
· (ϵk − ϵ̃i,s)− Ei|k′′

1−ς
1−ς+ϵi

· (ϵk′′ − ϵ̃i,s)

=
ϵk − ϵk′

ϵk − ϵk′′

Where the first equality used equation (31) and that all products are in the same sector, s (k) = s (k′) =

s (k′′) = s; the third equality used equation (28).

OC.3 Normalization of the Income Elasticity Parameters

In proposition 1, we show that one of the income elasticity parameters at the product level, {ϵk}k∈K, (i.e.
across all sectors, not per sector) is not identifiable and must be normalized. We prove that proposition

here.

Proposition 1. (Product Income Elasticity Parameter Normalization) Under equations (2), (3) and (4),

utility maximization is invariant up to

k ∈ K : ϵk → ϵk − δ

1− δ
ς

(O.8)

for an arbitrary δ. Thus, for a single k ∈ K, we can normalize ϵk ≡ 0 without loss of generality.

Proof. Starting with the middle tier of utility, equation (3)

C̃i,s =

[∑
k∈Ks

(ai,kU
ϵk
i )

1

ς (Ci,k)
ς−1

ς

] ς

ς−1

C̃∗
i,s ≡ U

− δ

ς

i C̃i,s =

[∑
k∈Ks

(
ai,kU

ϵk−δ
i

) 1

ς

(Ci,k)
ς−1

ς

] ς

ς−1

(O.9)
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Rewriting the upper tier, equation (2), in terms of C̃∗
i,s

Ui =

[∑
s∈S

(ãi,s)
1

σ C̃
σ−1

σ

i,s

] σ

σ−1

=

[∑
s∈S

(ãi,s)
1

σ

(
U

δ

ς

i C̃
∗
i,s

)σ−1

σ

] σ

σ−1

U∗
i ≡ U

1− δ

ς

i =

[∑
s∈S

(ãi,s)
1

σ

(
C̃∗
i,s

)σ−1

σ

] σ

σ−1

(O.10)

Writing the middle tier, equation (O.9), in terms of U∗
i ,

C̃∗
i,s =

[∑
k∈Ks

(
ai,kU

ϵk−δ
i

) 1

ς

(Ci,k)
ς−1

ς

] ς

ς−1

=

[∑
k∈Ks

(
ai,k (U

∗
i )

ϵk−δ

1− δ
ς

) 1

ς

(Ci,k)
ς−1

ς

] ς

ς−1

(O.11)

With U∗
i relabelled to Ui, and C̃∗

i,s relabelled to C̃i,s, specifying the upper and middle tiers of utility using

equations (O.10) and (O.11) instead of equations (2) and (3) gives identical behavior, as all operations

applied are equivalences. Yet, the system has product income elasticity parameters ϵk−δ
1− δ

ς

in place of ϵk,

Thus, the system is invariant to transform in equation (O.8).

In particular, for a single k ∈ K, we can normalize ϵk ≡ 0 by choosing δ so that ϵk−δ
1− δ

ς

= 0.

In proposition 2, we show that homothetic preference weights in the upper tier of utility, equation

(2), is without loss of generality. To show this, consider a version of the upper tier with non-homothetic

preference weights

Ui =

[∑
s∈S

(
ãi,sU

ϵ̃s
i

) 1

σ

C̃
σ−1

σ

i,s

] σ

σ−1

(O.12)

with sectoral income elasticity parameters, ϵ̃s, that are analogous to the ϵk at the product level. In

proposition 2, we show that all the sectoral income elasticity parameters can be normalized to zero,

∀s ∈ S : ϵ̃s ≡ 0.

Proposition 2. (Sectoral Income Elasticity Parameter Normalization) Under equations (O.12), (3) and

(4), utility maximization is invariant up to

∀k ∈ K : ϵk → ϵk − δs(k) (O.13)

∀s ∈ S : ϵ̃s → ϵ̃s + δs
σ − 1

ς
(O.14)

for arbitrary {δs}s∈S . Thus, without loss of generality, we can normalize ∀s ∈ S : ϵ̃s ≡ 0.
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Proof. Starting with the middle tier of utility, equation (3)

C̃i,s =

[∑
k∈Ks

(ai,kU
ϵk
i )

1

ς (Ci,k)
ς−1

ς

] ς

ς−1

C̃∗
i,s ≡ C̃i,sU

− δs
ς

i =

[∑
k∈Ks

(
ai,kU

ϵk−δs
i

) 1

ς

(Ci,k)
ς−1

ς

] ς

ς−1

(O.15)

Rewriting the upper tier, equation (O.12), in terms of C̃∗
i,s

Ui =

[∑
s∈S

(
ãi,sU

ϵ̃s
i

) 1

σ

C̃
σ−1

σ

i,s

] σ

σ−1

=

[∑
s∈S

(
ãi,sU

ϵ̃s
i

) 1

σ

(
C̃∗
i,sU

δs
ς

i

)σ−1

σ

] σ

σ−1

=

[∑
s∈S

(
ãi,sU

ϵ̃s+δs
σ−1

ς

i

) 1

σ
(
C̃∗
i,s

)σ−1

σ

] σ

σ−1

(O.16)

With C̃∗
i,s relabelled to C̃i,s, specifying the upper and middle tiers of utility using equations (O.16)

and (O.15) instead of equations (O.12) and (3) gives identical behavior, as all operations applied are

equivalences. Yet, the system has sectoral income elasticity parameters ϵ̃s + δs
σ−1
ς in place of ϵ̃s, and

product income elasticity parameters as ϵk − δs in place of ϵk. Thus, the system is invariant to transform

in equations (O.13) and (O.14).

In particular, we can normalize ϵ̃s ≡ 0 by choosing δs so that ϵ̃s + δs
σ−1
ς = 0.

OC.4 Analytic Counterfactual Derivation

Proving equation (34):

Proof. Totally differentiating equation (26),

d lnGP
i

d lnTi,NA
=
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

Gi
·
d lnQi,kτ

d lnTi,NA

=
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

Gi
·

∂ lnQi,kτ

∂ ln (wi,E
′)
′ ·

d ln (wi,E)

d lnTi,NA

+
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

Gi
·
∂ lnQi,kτ

∂ lnp′ · d lnp

d lnTi,NA︸ ︷︷ ︸
Price Effect

(O.17)

in the second equality we used the chain rule. The second term is the price effect. Looking at the first
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term, we can rewrite this using

∂ lnQi,kτ

∂ ln (wi,E
′)
′ =

∂ ln Qi,kτ

Qi,k

∂ ln (wi,E
′)
′ +

∂ lnQi,k

∂ ln (wi,E
′)
′

=
∂ ln Qi,kτ

Qi,k

∂ lnwi
+

∂ ln
(∑

j∈I dij,kcij,k

)
∂ lnE′ (O.18)

where in the second inequality, we used market clearing Qi,k =
∑

j∈I dij,kcij,k from equation (23), and

that, conditional on prices, Qi,kτ

Qi,k
is only a function of the wage, wi, (from equation 15) and demand is

only a function of income in each country, E ≡ {Ei}i∈I (from equations 6, 7, 8). Inserting equation

(O.18) into equation (O.17) gives

d lnGP
i

d lnTi,NA
=

Agricultural Modernization︷ ︸︸ ︷∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

GP
i

·
∂ ln Qi,kτ

Qi,k

∂ lnwi
· d lnwi

d lnTi,NA

+
∑
k∈KA

∑
τ∈{0,1} φ

P
kτQi,kτ

GP
i

·
∂ ln

(∑
j∈I dij,kcij,k

)
∂ lnE′ · d lnE

d lnTi,NA

+
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

GP
i

·
∂ lnQi,kτ

∂ lnp′ · d lnp

d lnTi,NA︸ ︷︷ ︸
Price Effect

(O.19)

The first term is agricultural modernization. Looking at the second term in equation (O.19), we can

rewrite this using

∂ ln
(∑

j∈I dij,kcij,k

)
∂ lnE′ =

∑
j∈I

dij,kcij,k
Qi,k

∂ ln

(
aij,kp

1−η
ij,k

p1−η
j,k

βj,kp̃j,AC̃j,A

)
∂ lnE′

=
∑
j∈I

Xij,k

Yi,k

∂ lnβj,k
∂ lnEj

+
∑
j

Xij,k

Yi,k

∂ ln
(
p̃j,AC̃j,A

)
∂ lnE′ (O.20)

where in the first line we used equations (6) and (7), and in the second line we used that dij,kcij,k
Qi,k

=
pF
i dij,kcij,k
pF
i Qi,k

= Xij,k

Yi,k
, and that βj,kp̃j,AC̃j,A, conditional on prices, only depends on Ej (by equations 6, 7).
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Inserting equation (O.20) into equation (O.19) gives

d lnGP
i

d lnTi,NA
=

Agricultural Modernization︷ ︸︸ ︷∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

GP
i

·
∂ ln Qi,kτ

Qi,k

∂ lnwi
· d lnwi

d lnTi,NA
+

Nutrition Transition︷ ︸︸ ︷∑
j∈I

∑
k∈KA

Xij,k

Yi,k

∑
τ∈{0,1} φ

P
kτQi,kτ

GP
i

·
∂ lnβj,k
∂ lnEj

· d lnEj

d lnTi,NA

+
∑
j∈I

∑
k∈KA

Xij,k

Yi,k

∑
τ∈{0,1} φ

P
kτQi,kτ

GP
i

·
∂ ln

(
p̃j,AC̃j,A

)
∂ lnE′ · d lnEj

d lnTi,NA︸ ︷︷ ︸
Scale Effect

+
∑
k∈KA

∑
τ∈{0,1}

φP
kτQi,kτ

GP
i

·
∂ lnQi,kτ

∂ lnp′ · d lnp

d lnTi,NA︸ ︷︷ ︸
Price Effect

(O.21)

which is the decomposition given in equation (34).

Proving equation (35):

Taking the derivative,

∂ ln Qi,kτ

Qi,k

∂ lnwi
=

∑
τ ′∈{0,1}

(
Iτ,τ ′ −

Qi,kτ ′

Qi,k

)
∂ lnQi,kτ ′

∂ lnwi

=
∑

τ ′∈{0,1}

(
Iτ,τ ′ −

Qi,kτ ′

Qi,k

)∑
f

Qf
i,kτ ′

Qi,kτ ′

{
∂ lnhfi,kτ ′

∂ lnwi
+

θ2 − 1

θ2

∂ lnαf
i,kτ ′

∂ lnwi
+

θ1 − 1

θ1

∂ lnαf
i,k

∂ lnwi

}

|Fi|=1
=

∑
τ ′∈{0,1}

(
Iτ,τ ′ −

Qi,kτ ′

Qi,k

){
∂ lnhfi,kτ ′

∂ lnwi
+

θ2 − 1

θ2

∂ lnαf
i,kτ ′

∂ lnwi

}
(O.22)

where the first line used Qi,k =
∑

τ ′∈{0,1}Qi,kτ ′ and the second line used equation (15). The third line

used the assumption of one field in country i, |Fi| = 1, which implies
Qf

i,kτ′

Qi,kτ′
= 1, and note that the third

term goes to zero because θ1−1
θ1

∂ lnαf
i,k

∂ lnwi
doesn’t depend on τ . The first term in equation (O.22) can be

rewritten using

∑
τ ′

(
Iτ,τ ′ −

Qi,kτ ′

Qi,k

)
∂ lnhfi,kτ ′

∂ lnwi
=

=
Qi,k,1−τ

Qi,k︷ ︸︸ ︷(
1−

Qi,kτ

Qi,k

)
∂ lnhfi,kτ
∂ lnwi

−
Qi,k,1−τ

Qi,k

∂ lnhfi,k,1−τ

∂ lnwi

=
Qi,k,1−τ

Qi,k

(
∂ lnhfi,kτ
∂ lnwi

−
∂ lnhfi,k,1−τ

∂ lnwi

)

= −
Qi,k,1−τ

Qi,k

(
γNkτ
γLkτ

−
γNk,1−τ

γLk,1−τ

)
(O.23)

where the third equality used that
∂ lnhf

i,kτ

∂ lnwi
= −γN

kτ

γL
kτ
, by equation (11). The second term in equation

12



(O.22) can be rewritten using

∑
τ ′∈{0,1}

(
Iτ,τ ′ −

Qi,kτ ′

Qi,k

)
∂ lnαf

i,kτ ′

∂ lnwi
=

=
Qi,k,1−τ

Qi,k︷ ︸︸ ︷(
1−

Qi,kτ

Qi,k

)
∂ lnαf

i,kτ

∂ lnwi
−

Qi,k,1−τ

Qi,k

∂ lnαf
i,k,1−τ

∂ lnwi

=
Qi,k,1−τ

Qi,k

(
∂ lnαf

i,kτ

∂ lnwi
−

∂ lnαf
i,k,1−τ

∂ lnwi

)

=
Qi,k,1−τ

Qi,k

1

1− αf
i,kτ

∂ lnαf
i,kτ

∂ lnwi

= −θ2
Qi,k,1−τ

Qi,k

(
γNkτ
γLkτ

−
γNk,1−τ

γLk,1−τ

)

where the third equality used d lnαf
i,k,1−τ = − αf

i,kτ

1−αf
i,kτ

d lnαf
i,kτ . The last equality used

∂ lnαf
i,kτ

∂ lnwi
= θ2

(
∂ lnhfi,kτ
∂ lnwi

−
∂ lnHf

i,k

∂ lnwi

)

= θ2

∂ lnhfi,kτ
∂ lnwi

−
∑

τ ′∈{0,1}

αf
i,kτ ′

∂ lnhi,kτ ′

∂ lnwi


= θ2α

f
i,k,1−τ

(
∂ lnhfi,kτ
∂ lnwi

−
∂ lnhi,k,1−τ

∂ lnwi

)

= −θ2α
f
i,k,1−τ

(
γNkτ
γLkτ

−
γNk,1−τ

γLk,1−τ

)
(O.24)

where the first equality used equation (13), the second equality used equation (14), and the last equality

used
∂ lnhf

i,kτ

∂ lnwi
= −γN

kτ

γL
kτ
. Inserting equations (O.23) and (O.24) into equation (O.22) gives

∂ ln Qi,kτ

Qi,k

∂ lnwi
= −

Qi,k,1−τ

Qi,k

(
γNkτ
γLkτ

−
γNk,1−τ

γLk,1−τ

)
− θ2 − 1

θ2
θ2

Qi,k,1−τ

Qi,k

1

1− αf
i,kτ

(
γNkτ
γLkτ

−
γNk,1−τ

γLk,1−τ

)

= θ2
Qi,k,1−τ

Qi,k

(
γNk,1−τ

γLk,1−τ

−
γNkτ
γLkτ

)

which is the desired expression, equation (35)

OD Quantifying the Model

This section provides details about the quantification of the model. We first show a complete derivation

of the estimating equations for the income elasticity—Section 4.1 in the main body of the paper. We

then provide a full description of our calibration procedure—Section 4.1.2 in the main body of the paper
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OD.1 Step 1: Estimation of Income Elasticities

Here, we provide a complete derivation of the equations that we use to estimate income elasticities in

the paper.

Derivation of equation (38): starting from equation (6)

βji,k =
aji,kp

1−η
ji,k

p1−η
i,k

=⇒ p1−η
i,k =

aji,kp
1−η
ji,k

βji,k

(1− η) ln pi,k = − lnβji,k + (1− η) ln
(
pFj,kdji,k

)
+ ln aji,k, using eq (20)

= − lnβji,k + (1− η) ln pFj,k + ln
(
aji,kd

1−η
ji,k

)
(1− η) ln pi,k = − 1

NI¬0
i,k

∑
j∈I¬0

i,k

lnβji,k + (1− η)
1

NI¬0
i,k

∑
j∈I¬0

i,k

ln pFj,k +
1

NI¬0
i,k

∑
j∈I¬0

i,k

ln
(
aji,kd

1−η
ji,k

)

Derivation of equation (39): starting from equation (7) for k ̸= k∗

βi,k =
ai,kU

ϵk
i p1−ς

i,k

p̃1−ς
i,s(k)

=
ai,k (Ei/Pi)

ϵk p1−ς
i,k

p̃1−ς
i,s(k)

, using eq (10)

lnβi,k = ϵk lnEi − ϵk lnPi + (1− ς) ln pi,k − (1− ς) ln p̃i,s(k) + ln ai,k

= ϵk lnEi − ϵk lnPi + (1− ς) ln pi,k −
(
1− ς

1− σ

)
ln

(
β̃i,s(k)P

1−σ
i

ãi,s(k)

)
+ ln ai,k, using eq (37)

= ϵk lnEi −
(
1− ς

1− σ

)
ln β̃i,s(k) +

ϵk + (1− ς)

1− σ
ln β̃i,s(k∗) − [ϵk + (1− ς)]

[
− 1

1− η
ln β̂i,k∗ + ln p̂FI¬0

i,k∗ ,k∗

]
+ · · ·

= ϵk lnEi −
(
1− ς

1− σ

)
ln β̃i,s(k) − [ϵk + (1− ς)] lnPi + (1− ς) ln pi,k + ln

(
ai,kã

1−ς
1−σ

i,s(k)

)

= ϵk lnEi −
(
1− ς

1− σ

)
ln β̃i,s(k) −

ϵk + (1− ς)

1− σ
ln

 ãi,s(k∗)a
1−σ
1−ς

i,k∗ p
1−σ
i,k∗

β̃i,s(k∗)

+ (1− ς) ln pi,k + · · ·

· · ·+ ln

(
ai,kã

1−ς
1−σ

i,s(k)

)
, using eq (36)

= ϵk lnEi −
(
1− ς

1− σ

)
ln β̃i,s(k) +

ϵk + (1− ς)

1− σ
ln β̃i,s(k∗) − [ϵk + (1− ς)] ln pi,k∗ + (1− ς) ln pi,k + · · ·

· · ·+ ln

 ai,kã
1−ς
1−σ

i,s(k)

ã
ϵk+(1−ς)

1−σ

i,s(k∗) a
ϵk+(1−ς)

1−ς

i,k∗


︸ ︷︷ ︸

≡fi,k(a)

= ϵk lnEi −
(
1− ς

1− σ

)
ln β̃i,s(k) +

ϵk + (1− ς)

1− σ
ln β̃i,s(k∗) − [ϵk + (1− ς)]

[
− 1

1− η
ln β̂i,k∗ + ln p̂FI¬0

i,k∗ ,k∗

]
+ · · ·
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· · ·+ (1− ς)

[
− 1

1− η
ln β̂i,k + ln p̂FI¬0

i,k,k

]
+ fi,k (a) , using eq (38)

= ϵk lnEi −
(
1− ς

1− σ

)
ln β̃i,s(k) +

ϵk + 1− ς

1− σ
ln β̃i,s(k∗) +

ϵk + 1− ς

1− η
ln β̂i,k∗ − 1− ς

1− η
ln β̂i,k + · · ·

· · ·+− [ϵk + (1− ς)]︸ ︷︷ ︸
=[ς−1−ϵk]

ln p̂FI¬0
i,k∗ ,k∗ + (1− ς) ln p̂FI¬0

i,k,k
+ fi,k (a)

OD.2 Step 2: Technology Parameters, Productivity Shifters and Preference

Shifters

This section describes the calibration of the model, once with income elasticities estimated in step 1.

Production Technologies.

We pick technological parameters from the literature, specifically, θ1, θ2. For the factors and intermediate

input shares, γLkτ , γ
N
kτ , γ

M
kτ and λkk′ . We proceed as follows. First, we obtain cost share data, γ̄Lk , γ̄

N
k ,

and γ̄Mk , for the United States, which is a weighted average by total sales of the cost share of each input

across modern and traditional technologies. The land share in modern technologies is approximately 95

percent in the US, we use that share as a proxy for the share of sales, and denote that share as ω1 and

ω0 for modern and traditional technologies respectively. Lastly, we pick the ratio of γ̃ = γLk1/γ
L
k0 = 2.67

, which is calibrated in Farrokhi and Pellegrina (2023). With these statistics, we can calibrate factor

shares using the following equations

γLk0 =
(
γ̄Lk − γLk0ω0

)
/ω1

γLk1 = γ̃γLk0

γNk0 = 1− γLk0

γNk1 = 1− γLk1 − γMk1

γMk0 = 0

γMk1 = γ̄Mk /ω1

We get {γLk0, γNk0, γMk0γLk1, γNk1, γMk1} = {0.503, 0.497, 0, 0.189, 0.189, 0.622} and {λkF , λkP , λkC} = {0.256, 0.158, 0.586}.

Trade Costs.

We start by running, for every good in the economy, a gravity equation

logXji,k = FEj,k︸ ︷︷ ︸
(1−η) log(pF

j,k)

+ FEi,k︸ ︷︷ ︸
log(β̃j,kβj,s(k)Ej)

+ ϵij,k︸︷︷︸
log(aji,kd

1−η
ji,k)

,

we recover the predicted values from the origin fixed effect FEj,k, which we call FEdata
j,k , and the residuals

ϵij,k. We construct the trade cost matrix directly from the residuals from the regression, by taking its

15



exponential.

Land Productivity.

For the grid-level TFPs, we proceed as follows. First, we define total yields in FAO-GAEZ as

yf,GAEZ
i,kτ = h̄GAEZ

kτ T f
i,kτ

where h̄GAEZ
kτ captures the implicit market and technological assumptions used by FAO-GAEZ in the

construction of the data. Importantly, notice that this variable is independent of the country i and grid

f . Therefore, the ratio of grid-level TFPs can be recovered directly from the data

yf,GAEZ
i,kτ

yf
′,GAEZ

i,kτ

=
T f
i,kτ

T f ′

i,kτ

.

The global level of TFP from FAO-GAEZ, since it depends on unobserved market assumptions h̄GAEZ
kτ ,

is not separately identified T f
i,kτ only from the FAO-GAEZ data—even though the relative values are.

Having that in mind, we write our measure of grid-level TFP as

T̂ f
i,kτ = Tkτy

f,GAEZ
i,kτ ,

and calibrate the global level of TFP, Tkτ , within our algorithm.

Calibration Algorithm.

Turning now to the calibration.

1. Guess (Tk0)
g, (Tk1)

g (ãi,s)
g, (ai,k)

g, (Ti,k)
g

2. Construct model-implied FEmodel
j,k for every k ∈ {NA,F, P,M}

(a) Compute diff (FEj,k) = |FEmodel
j,k − FEdata

j,k |

(b) Update (Tkτ )
g+1 based on diff (FEj,k)

3. Construct model-implied βmodel
j,s

(a) Compute diff (βj,s) = |βmodel
j,s − βdata

j,s |

(b) Update (ãi,s)
g+1 based on diff (βj,s)

4. Construct model-implied βC,model
j,k , the share of calories that country j source from food product k

(a) Compute diff (βj,k) = |βC,model
j,k − βC,data

j,k |

(b) Update (ai,k)
g+1 based on diff (βj,k)

16



5. Construct model-implied ᾱUSA,k, the share of land in the US employed in modern agriculture

(a) Compute diff (ᾱUSA,k) = |ᾱmodel
USA,k − ᾱdata

USA,k|

(b) Update (Tk1)
g+1 based on diff (ᾱUSA,k)

6. Construct model-implied Qmodel
k =

∑
i

∑
τ Qi,kτ , total quantities produced of good k

(a) Compute diff (Qk) = |Qmodel
k −Qdata

k |

(b) Update (Tk0)
g+1 based on diff (Qk)

7. Check diff =max{diff(FEj,k),diff (βj,s) ,diff (ᾱUSA,k) ,diff (Qk)}

(a) if diff > ϵ then take (Tk0)
g+1 , (Tk1)

g+1 (ãi,s)
g+1 , (ai,k)

g+1 , (Ti,k)
g+1 and return to step 2

(b) if diff < ϵ then finish the algorithm
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OE Online Appendix Tables and Figures

Table O.1: Income Elasticity and GHG Emissions per calorie

Specification
(1) (2) (3)

a. All products
log(HHINCOME)i × log(GHGPK)k 0.043*** 0.025*** 0.016***

(0.001) (0.002) (0.003)
R2 0.483 0.654 0.800
Obs 264928 264928 264928

b. Excluding meat products
log(HHINCOME)i × log(GHGPK)k 0.020*** 0.030*** 0.010***

(0.001) (0.002) (0.003)
R2 0.462 0.594 0.777
Obs 212768 212768 212768
Controls
- Household FE Y Y Y
- Good FE - Y Y
- Municipality-Good FE - - Y

Notes: * / ** / *** denotes significance at the 10 / 5 / 1 percent level. Robust standard errors clustered at the household level reported
in parenthesis. Panel (b) exludes beef, lamb and mutton, pig meat and poultry meat.

Table O.2: Preferences for different types of Meat by Religion

(1) (2)
Pig meat Lamb, Mutton, and Poultry

Dominant Muslim -1.467∗∗∗

(0.481)

Dominant Hindu 0.415∗

(0.213)
Observations 91 91
Adjusted R2 0.080 0.029

Notes: * / ** / *** denotes significance at the 10 / 5 / 1 percent level. Robust standard errors clustered. This table shows
the relationship between model-implied preference shifters for different types of meat products and observables related to religion.
“Dominant Muslim” equals to 1 if a country has more than 75 percent of its population who is considered Muslim and zero otherwise.
“Dominant Hindu” is the analogous variable for Hindu. The dependent variable in column (1) is the preference shifter for pork relative
to four meat categories: (1) bovine meat, (2) lamb and mutton, (3) chicken, and (4) pork.
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Table O.3: Welfare Impact across Quartiles of GDP per capita

q1 q2 q3 q4
Counterfactual (1) (2) (3) (4)
TFP growth 14.5 14.6 14.7 15.0
No beef -1.4 -1.3 -0.9 -0.4
Vegetarian -7.7 -4.3 -3.6 -2.2
Eat local -20.5 -45.9 -13.3 -16.6

Notes: This table shows the impact of GHG emissions in different counterfactuals across the quartiles of GDP per capita in the baseline.
q1 represents the bottom quartile in terms of GDP per capita and q4 the upper quartile. Every entry represents the change in average
welfare within that quartile relative to the baseline.

Table O.4: GHG Emissions from Food Production Impact across Quartiles of GDP per capita

q1 q2 q3 q4
Counterfactual (1) (2) (3) (4)
TFP growth 7.8 6.3 6.4 3.8
No beef -15.9 -13.3 -31.1 -18.6
Vegetarian -28.2 -15.6 -37.3 -32.3
Eat local -41.1 5.1 -21.5 0.4

Notes: This table shows the impact on GHG emissions in different counterfactuals across the quartiles of GDP per capita in the
baseline. q1 represents the bottom quartile in terms of GDP per capita and q4 the upper quartile. Every entry represents the change
in total emissions within that quartile relative to the baseline.

19



Figure O.1: GHG emissions per kilocalorie across food products
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Notes: This figure shows the average global GHG emissions in CO2 equivalent of each food product in our data. We gather these
measures based on information on GHG emissions by food product from Poore and Nemecek (2018), and build a crosswalk between
the food products available in their dataset and our final data.
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Figure O.2: Potential Yield Data (FAO-GAEZ)

(a) Wheat - Low Yield

(b) Wheat - High Yield

Notes: This figure shows distribution of potential yields across grid-cells. Panel (a) shows the potential yield for the low-input
technology, which corresponds to traditional methods of production with minimal use of intermediate inputs. Panel (b) shows the
potential yield for high-input technology, which corresponds to modern methods of production.
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Figure O.3: Fertilizer use per hectare (within crop variation)
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Notes: Logged fertilizer use per hectare in each crop and country against logged country GDP, after residualizing the values based on
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Figure O.4: Fit of the model: production quantities
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Figure O.5: Welfare Impact across Countries of TFP Growth
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Notes: This figure shows the full distribution of the changes in welfare in each counterfactual in which the entire world’s productivity
increases by 10 percent in modern agriculture, non-agriculture and agricultural inputs.
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Figure O.6: Welfare Impact across Countries in Diet Counterfactuals
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Notes: This figure shows the full distribution of the changes in welfare in each counterfactual in which we restrict the consumption of
meat products. Panel (a) shows the impact of banning the consumption of bovine meat. Panel (b) shows the impact of banning the
consumption of bovine meat, lamb, chicken, and pork.
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Figure O.7: Welfare Impact across Countries of Eating Locally
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Notes: This figure shows the full distribution of the changes in welfare in each counterfactual in which we restrict agricultural trade.
Specifically, we increase agricultural trade costs by 30 percent, which is consistent with the reductions in global trade costs in recent
decades. We drop Nepal, which is an outlier in the figure.
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