A Brief History of the Waterfall Model: Past, Present, and Future
Antonios Saravanos

New York University, New York, NY, USA, saravanos@nyu.edu

The waterfall model, one of the earliest software development methodologies, has played a foundational role in shaping
contemporary software engineering practices. This paper provides a historical and critical overview of the model, tracing its
conceptual origins in software engineering, its formalization by Royce, and its evolution through decades of industry adoption
and critique. Although often criticized for its rigidity, shortcomings, and high failure rates, the waterfall model persists in specific
domains. Its principles continue to influence contemporary hybrid development frameworks that combine traditional and agile
methods. Drawing on a range of scholarly sources, this study synthesizes key developments in the perception and application
of the waterfall model. The analysis highlights how the model has shifted from a standalone framework to a component within
modern hybrid methodologies. By revisiting its origins, assessing its present utility, and examining its role in contemporary
development practices, this paper argues that the waterfall model remains relevant, not as a relic of the past but as part of
context-aware development strategies. The paper contends that the model’s enduring relevance lies in its adaptability. By
recognizing both its limitations and its strengths, and by understanding its integration within hybrid approaches, practitioners
can make more informed decisions about methodology selection and process design in diverse development environments.

CCS CONCEPTS « Software and its engineering * Software creation and management « Software development
process management * Software development methods

Additional Keywords and Phrases: Waterfall model, Systems development life cycle, Software development life
cycle, SDLC, Diverse development environments

1 INTRODUCTION AND ORIGINS

This paper offers a contemporary overview of the popular waterfall model. A structured formula for developing
systems is often credited to Royce [37] (available in the ACM Digital Library), though some argue that it builds
on earlier work by Benington [4]. Emerging during a period when the field was still in its formative stages, the
model offered a much-needed structured approach to managing the growing complexity of software systems.
It formalized a phase-driven development cycle that mirrored the logical progression of engineering projects,
beginning with requirements gathering and ending in deployment and maintenance. As such, it became the
blueprint for how software systems were conceptualized, designed, and built in the latter half of the twentieth
century. The model gets its name from its visual appearance: a sequence of steps flowing downward from one
phase to the next, resembling water flowing down a waterfall [40]. It is often categorized under the broader
systems development life cycle (SDLC) umbrella, sometimes used interchangeably with the term software
development life cycle [40]. Strictly speaking, one is part of the other [38]. As Ruparelia [38] explains, these
distinctions have largely blurred in modern practice, where integrated systems development increasingly treats
software as the central component. Consequently, the terms SDLC and waterfall model are frequently used

synonymously in both academic and professional discourse [38]. According to Ruparelia [38] “a lifecycle covers
all the stages of software from its inception with requirements definition through to fielding and maintenance”.

Royce’s 1970 formalization [37], reprinted in 1987, comprises seven phases: System requirements, software
requirements, analysis, program design, coding, testing, and operations, arranged so that each depends on the
deliverables of the preceding one. His paper presents a sequence of refinements. The second model (a linear
flow without feedback) and the third (with feedback to the prior phase) are the versions most commonly labeled
as “waterfall”. Notably, Royce recommended executing the development cycle at least twice, as illustrated in
Figure 1(b). The first pass, in his words, “provides an early simulation of the final product” [37], while the second
produces a more robust solution. His paper was explicitly critical of a rigid, one-pass approach for large systems.
Nevertheless, this guidance was often overlooked in early industry adoption, which favored the most linear
interpretation and in turn invited later critiques of inflexibility and project failure. Contrary to popular belief, Royce
did not advocate a strictly linear process; he prescribed repetition to accommodate learning and refinement. In
retrospect, this emphasis on iteration and feedback foreshadows the incremental practices later emphasized
by Agile methods.

Interestingly, the term “waterfall” does not appear in Royce’s [37] original paper. It was later popularized by
Bell and Thayer [3] in 1976. Over the following decades, the waterfall model became widely institutionalized in
both government and private-sector software development. It was often codified in official project management
standards, particularly in regulated industries such as defense, aerospace, and healthcare. Despite its historical
importance, the waterfall model has faced substantial criticism, especially since the 1990s. As the software
industry encountered growing challenges with project overruns, shifting customer requirements, and rapid
technological change, the model’s rigidity and limited adaptability came under scrutiny. Influential studies,
including the Standish Group’s CHAOS Report [44], reinforced these concerns by linking traditional approaches
such as waterfall to high rates of project failure. These critiques, combined with the rise of iterative and
incremental methods such as Agile, led many to question whether waterfall had outlived its usefulness.

Nonetheless, this paper argues that the waterfall model should not be dismissed as a relic of the past.
Although it is no longer dominant as a standalone methodology, it continues to influence contemporary software
engineering in important ways. First, it remains well suited to projects with stable requirements, clearly defined
scopes, and strong demands for traceability and documentation. Second, its structure and discipline have
gained renewed relevance in hybrid development methodologies that combine traditional and Agile practices.
In these approaches, the sequential logic of waterfall is often retained at the macro level, such as in planning
or compliance phases, while Agile methods are applied at the team or sprint level to enhance responsiveness
and flexibility.

Building on this historical foundation, the remainder of this paper is organized as follows. Section 2 surveys
the treatment of the waterfall model in mainstream software engineering literature, emphasizing how it has been
interpreted, adapted, and critiqued. Section 3 examines its contemporary relevance, particularly its continued
use both as a standalone method and as a component within hybrid methodologies. Section 4 presents a critical
discussion and conclusion, reflecting on the enduring legacy and evolving applications of the waterfall model in
modern software engineering.

Phase 1

Phase 1

Phase 2

Phase 3
Phase 3

iterate at least once
Phase 4
Phase 4

Phase 5
Phase 5

(b)

Phase 1

Phase 1

Phase 2
Phase 2

Phase 3
Phase 3

Phase 4
Phase 4

Phase 5
Phase 5

(d)

Figure 1: Four Structural Views of the Waterfall Model: (a) Linear, (b) Two-Pass, (c) Feedback Loops to Previous Phase, (d)
Feedback Loops to Any Previous Phase.

2 PERCEPTIONS OF WATERFALL

This section examines the evolving structure and perception of the waterfall model. First, we review how the
model has been described and adapted in software engineering literature. We then examine its historical
association with project failure.

2.1 Composition of Waterfall

As discussed in Section 1, the original waterfall model is often presented as a rigid, linear sequence of
development phases. The literature, however, reveals a range of adaptations and interpretations. This
subsection presents three representative snapshots from academic sources that illustrate how the model has
been described over time. Notably, each of these sources depicts the waterfall model as consisting of five

phases, rather than the seven originally described by Royce [37]. The first example is Petersen et al. [30],
whose highly cited 2009 paper The Waterfall Model in Large-Scale Development defines five phases. The first
is requirements engineering, in which “the needs of the customers are identified and documented on a high
abstraction level” and “the requirements are refined so that they can be used as input to the design and
implementation phase” [30]. The second is design and implementation, subdivided into two parts: the design,
where “the architecture of the system is created and documented”, and the implementation, where “the actual
development of the system takes place” [30]. The third phase is testing, in which “the system integration is
tested regarding quality and functional aspects” [30]. The fourth is release, defined as the point where “the
product is brought into a shippable state” [30]. The final phase is maintenance, where “after the product has
been released to the customer it has to be maintained” and “if customers discover problems in the product they
report them to the company and get support in solving them”.

The second example is Sommerville’s [42] ninth edition of Software Engineering (2011), which also presents
five stages of the waterfall model. The first is requirements analysis and definition, in which “the system’s
services, constraints, and goals are established by consultation with system users” and then “defined in detail
and serve as a system specification” [42]. The second is system and software design, where “the systems
design process allocates the requirements to either hardware or software systems by establishing an overall
system architecture”, and “software design involves identifying and describing the fundamental software system
abstractions and their relationships” [42]. The third stage is implementation and unit testing, during which “the
software design is realized as a set of programs or program units”, each verified to ensure “that each unit meets
its specification” [42]. The fourth stage is integration and system testing, in which “the individual program units
or programs are integrated and tested as a complete system to ensure that the software requirements have
been met”, after which “the software system is delivered to the customer” [42]. Finally, operation and
maintenance occurs when “the system is installed and put into practical use” and “maintenance involves
correcting errors which were not discovered in earlier stages of the life cycle, improving the implementation of
system units, and enhancing the system’s services as new requirements are discovered” [42]. The same model
appears in the tenth edition of the book, published in 2016 [43].

The third example is Andrei et al. [1], who in 2019 describe the model with reference to Davis [9] (2012) and
van Casteren [47] (2017). Their five stages are: Requirements, defined as “analyzing business needs and
extensive documentation of all features” [1]; design, described as “choosing all required technology and
planning the full software infrastructure and interaction” [1]; coding, defined as “solving all problems, optimizing
solutions and implementing each component described in the requirements phase, using the diagrams and
blueprints from the design phase” [1]; testing, described as “extensive testing of all implemented features and
components and solving any occurring issues” [1]; and finally operations, defined as “deployment to a
production environment” [1].

Table 1: Phases of the Waterfall Model as Presented by Different Sources

Phase Petersen et al. [30] Sommerville Andrei et al. [1]
(2009) [42] (2011); [43] (2016) (2019)

Phase 1 Requirements Requirements engineering Requirements

Phase 2 Design and implementation ~ System and software design Design

Phase 3 Testing Implementation and unit testing Coding

Phase 4 Release Integration and system testing Testing

Phase Petersen et al. [30] Sommerville Andrei et al. [1]
(2009) [42] (2011); [43] (2016) (2019)
Phase 5 Maintenance Operation and maintenance Operations

We can see these phases connected in various ways across the literature, as illustrated in Figure 1. The first
waterfall lifecycle (a) is linear, with a single pass from start to finish. This representation is common in popular
literature and is often associated with project failure, particularly in large projects. It reflects the second of the
models presented by Royce [37]. The second model (b) illustrates a two-pass waterfall, where the requirements
phase (Phase 1 in this example) is excluded from the second pass. This aligns with Andrei et al. [1], who note
that “the Waterfall model assumes that once the initial requirements are set and every goal has been cleared
of any ambiguities, there is an unobstructed road which the development team will follow towards finishing the
project”. It should be emphasized that Royce [37] proposed several variations in conjunction with the two-pass
idea, but since these are not commonly associated with the waterfall model, they fall outside the scope of this
paper. The third model (c) represents a more contemporary interpretation of waterfall, where failure in one
phase allows for feedback and repetition of the immediately preceding phase to correct mistakes. This
corresponds to one of the variations described by Royce [37]. Finally, the fourth model (d) permits feedback to
any earlier phase. This allows a team to revisit and repeat any previous stage in order to make corrections
before moving forward.

2.2 Reputation and Critique in Literature

The waterfall model is closely associated with the notion of failure, a reputation it shares with the broader
practice of software development [8, 23]. Before the emergence of rapid application development (RAD) in 1991
and Agile in 2001, the software development life cycle and the waterfall model were largely synonymous. The
idea of failure in software development was recognized early in the field’s history. Ebert [12] recalls that the
1968 conference, later recognized as the first on what became known as software engineering, identified “the
so-called software crisis” as a central problem. Saravanos and Curinga [39] survey literature that highlights
failure in the craft of software development. For example, Charette [34] observes that “few IT projects, in other
words, truly succeed”. Similarly, Bloch et al. [6] report that “on average, large IT projects run 45 percent over
budget and 7 percent over time, while delivering 56 percent less value than predicted”, based on a review of
more than 5,400 IT projects each costing over $15 million. Lauesen [27] notes that “we have known for decades
that IT projects often fail”. Charette [34] further states that “from 5 to 15 percent” of projects are “abandoned
before or shortly after delivery”. Gilb [14] critiques the model directly, calling it “unrealistic, and dangerous to
the primary objectives of any software project”. The most influential body of research linking software
development with failure is the Standish Group’s CHAOS Report. Eveleens and Verhoef [19] cite the 1994
report, which stated that “Standish reported a shocking 16% project success rate, another 53% of the projects
had overruns of costs or time or less functionality and 31% of the projects failed outright”. They emphasize the
report’s impact on perception, writing that “many authors have quoted the Standish figures to illustrate
information technology is in a troublesome state”, that “over the years their figures have had tremendous
attention”, and that “the figures indicate large problems with software engineering projects, and as such have
had an enormous impact on information technology”. However, Cerpa and Verner [8] point out that Jergensen
and Molgkken-Jstvold [20] questioned the methodology of the Standish Group, suggesting that “there are

serious problems with the way the Standish Group conducted their research and that the findings were biased
toward reports of failure because a random sample of top IT executives was asked to share failure stories when
mailed confidential surveys”. Consequently, it is possible that the reputation of failure was exaggerated, or at
least not as severe as the reports suggested.

3 1S THERE A PRESENT AND FUTURE FOR THE WATERFALL MODEL?

With the proliferation of Agile methodologies [13], it is reasonable to ask whether the waterfall model still has a
place in modern software engineering practice. Evidence shows that it continues to be used [18, 30]. A 2019
study by Andrei et al. [1] reported that software developers applied waterfall 28.1% of the time compared to
Agile methods. Similarly, a 2020 survey conducted by the Project Management Institute (PMI) [31], reported in
its annual Pulse of the Profession appendix [32], found that slightly more than half of organizations (56%)
continued to use traditional approaches, including waterfall and similar structured methods (e.g., parallel or V-
model).

Although Agile methods are gaining ground [28], the persistence of waterfall suggests that it will remain
relevant. Petersen et al. [30] note that “the model is still widely used in software industry”, citing Raccoon [35]
and adding that “some researchers are even convinced that it will be around for a much longer period of time”.
We agree and argue that waterfall remains relevant for two reasons: first, in projects where it aligns with project
characteristics, and second, as a foundational component within emerging hybrid methodologies that integrate
waterfall with other approaches (e.g., Agile, Scrum, iterative, and incremental).

Some projects continue to be well matched to the waterfall model. Mishra and Alzoubi [28] observe that
“many firms are still using the waterfall methodology since it simply works and has a successful track record”.
In other words, project suitability is critical. Dennis et al. [10] also caution that “choosing a methodology is not
simple, because no single methodology is always best”. Wallis [48] identifies three strengths of waterfall. First
is its clear structure, as “the model provides a well-defined and structured approach to software development”,
making it “suitable for projects with stable and clearly defined requirements, where a sequential and linear
development process is appropriate” [48]. Second is its focus on comprehensive documentation, an advantage
in contexts requiring “regulatory compliance, knowledge transfer, and future maintenance or enhancements”
[48]. Third is its affinity for project planning, as it demands “detailed project planning upfront”, which “can be
beneficial for managing resources, setting clear milestones, and estimating project timelines and costs” [48]. A
common explanation for waterfall’s high failure rate is its misapplication to projects poorly suited for it. For
example, some teams may use it simply because it is the only methodology they know. Wallis [48] warns that
“businesses should carefully consider whether the waterfall model aligns with their project requirements and
organizational context’, noting that “factors such as the stability of requirements, the need for flexibility,
stakeholder involvement, and the dynamic nature of the industry should be evaluated”. For projects with these
needs, Wallis [48] recommends Agile or iterative methodologies. Sommerville [42] similarly cautions that “the
waterfall model should only be used when the requirements are well understood and unlikely to change radically
during system development”.

The second explanation for waterfall’s persistence is its incorporation into hybrid approaches. Kuhrmann et
al. [24] define a hybrid approach as “any combination of agile and traditional (plan-driven or rich) approaches
that an organizational unit adopts and customizes to its own context needs”. Prenner et al. [33] similarly write
that “to benefit from the strengths of both approaches, software companies often use a combination of agile

and plan-based methods, known as hybrid development approaches”. Tell et al. [45] provide a comparable
definition: “any combination of agile and traditional approaches that an organizational unit adopts and
customizes to its own context needs”. The origins of hybrid practice can, according to Kirpitsas and Pachidis
[21], be traced to the work of Glass [16], whose 2003 paper in IEEE Software is often cited as an early reference.
Kipper et al. [26], drawing on the work of West et al. [50], argue that “hybrid software and systems development
has become standard in practice”. The benefits of hybrid approaches are highlighted by Kuhrmann et al. [25],
who note that “hybrid development provides a practical balance, combining the structure and predictability of
traditional methods with the flexibility and responsiveness of agile approaches”. They further explain that “these
combinations are often not the result of deliberate planning but instead evolve organically based on practical
experience, project needs, client demands, and regulatory requirements” [25]. This observation is echoed by
Kipper et al. [26], who reference the HELENA study [24] in stating that “hybrid development approaches are
barely planned or defined in advance”. Klinder et al. [22] similarly report that hybrid practices tend to emerge
from a bottom-up rather than a top-down approach.

We can obtain an overview of the hybrid landscape as it relates to the waterfall model by examining a few
key studies. Within the scope of this paper, we focus only on hybrid models that explicitly incorporate waterfall.
The first is a systematic review conducted in 2020 by Prenner et al. [33], who investigated how companies
organize software development processes to combine Agile and plan-driven methods. Reviewing 24 papers,
the authors concluded that all hybrid approaches fundamentally rely on the waterfall model, stating that “all
hybrid approaches are using in some way the phases described in Royce’s waterfall model” [33]. Prenner et al.
[33] identified three organizational patterns: The waterfall-Agile approach (WAA), also called Agilefall, in which
Agile methods are integrated into a waterfall structure; the waterfall-iterative approach (WIA), also called
Waterative, where smaller waterfall cycles occur within iterations; and the pipeline approach (PA). Among these,
WAA is the most widely used, followed by WIA and then PA. Combinations of approaches were also observed,
such as WAA in conjunction with WIA.

A later study in 2022, a systematic literature review by Reiff and Schlegel [36], provides “a structured
overview of the current state of research regarding the topic”. They identify two definitions of hybrid: first, “a
combination/mix of agile and traditional project management methodologies”, and second, “the integration of
an agile approach into existing traditional project management methodologies” [36]. The authors highlight four
main hybrid models, two of which incorporate waterfall (water-scrum-fall and waterfall-Agile). They argue that
hybrid approaches “maximize project success” and stress their value in allowing companies to “use certain agile
practices, even if there are constraints that impede the adoption of a pure agile approach” [36]. Reiff and
Schlegel [36] conclude that “hybrid systems that enable iteration and continuous evolution represent the future”
and call for further research to establish structured frameworks and more robust evaluations of hybrid project
management methodologies. This reinforces the view that the waterfall model will persist, not as a standalone
methodology, but as a component within hybrid approaches.

4 DISCUSSION AND CONCLUSION

As this paper has shown, the waterfall model holds a significant place in the evolution of software and systems
development. From its conceptual roots in Benington’s [4] early process work to Royce’s [37] formalization,
often misunderstood and oversimplified, the waterfall model shaped how developers and organizations
approached complex projects. Although widely criticized for its rigidity and limited ability to accommodate

changing requirements [49], the sequential structure of the model continues to offer value in specific contexts,
particularly where requirements are stable and well defined [10, 11, 42]. While the model has been closely
linked to project problems and failures [15], many of these outcomes can be attributed to misapplication. In
particular, difficulties arise when waterfall is used in situations where requirements are unknown at the outset
or subject to rapid change. This supports the pragmatic view expressed by Sommerville [41, 42], who advocates
for context-sensitive methodology selection rather than adherence to a single universal model.

Despite the emergence [29], rise [17, 51], and dominance of Agile (iterative and incremental) methodologies
[7, 13], the waterfall model maintains a foothold in industry [1, 13, 30, 31]. Recent shifts in software engineering
show the model finding renewed purpose in hybrid approaches that blend waterfall with Agile, combining the
strengths of both traditional practices (structure and rigor) and Agile practices (flexibility) [45]. Notable examples
include Water-Scrum-Fall [46, 50] and Scrumbanfall [5], which demonstrate how waterfall principles have been
selectively retained and integrated into modern development workflows. These developments suggest that the
story of the waterfall model is not one of obsolescence but of evolution.

This historical and critical reflection underscores that the value of the waterfall model is not confined to the
past. Its adaptability, whether through selective application or hybridization, points to an enduring relevance.
The model continues to coexist alongside modern methodologies, with its core principles offering value in
appropriate contexts. Future research should further examine contemporary uses of the waterfall model across
projects of varying scales to extract lessons learned; refine simulation techniques to support evidence-based
decisions around its use (see, for example, Bassil [2] and Saravanos and Curinga [39]); and contribute to the
development of structured hybrid frameworks.

REFERENCES

[1] Bogdan-Alexandru Andrei, Andrei-Cosmin Casu-Pop, Sorin-Catalin Gheorghe, and Costin-Anton Boiangiu. 2019. A study on using
waterfall and agile methods in software project management. Journal of Information Systems & Operations Management (2019),

125-135.

[2] Youssef Bassil. 2012. A simulation model for the waterfall software development life cycle. arXiv preprint arXiv:1205.6904 (2012).

[3] Thomas E. Bell and Thomas A. Thayer. 1976. Software requirements: Are they really a problem? In Proceedings of the 2nd
International Conference on Software Engineering, 1976. 61-68.

[4] H. D. Benington. 1987. Production of Large Computer Programs. In Proceedings of the 9th International Conference on Software
Engineering (ICSE '87), 1987. IEEE Computer Society Press, Washington, DC, USA, 299-310.

[5] Krunal Bhavsar, Vrutik Shah, and Samir Gopalan. 2020. Scrumbanfall: An agile integration of scrum and kanban with waterfall in
software engineering. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 9, 4 (2020), 2075-2084.

[6] Michael Bloch, Sven Blumberg, and Jiirgen Laartz. 2012. Delivering large-scale IT projects on time, on budget, and on value.

McKinsey on Business Technology 27 (2012), 2-7.

[7] Colin Bryar and Bill Carr. 2021. Have we taken agile too far? Harvard Business Review. April 9, 2021. Retrieved October 4, 2025
from https://hbr.org/2021/04/have-we-taken-agile-too-far.

[8] Narciso Cerpa and June M. Verner. 2009. Why did your project fail? Commun. ACM 52, 12 (December 2009), 130-134.
https://doi.org/10.1145/1610252.1610286

[9] Barbee Davis. 2012. Agile Practices for Waterfall Projects: Shifting Processes for Competitive Advantage. J. Ross Publishing.

[10] Alan Dennis, Barbara Haley Wixom, and Roberta M. Roth. 2012. Systems Analysis and Design (5th ed.). John Wiley & Sons.

[11] Alan Dennis, Barbara Wixom, and David Tegarden. 2015. Systems Analysis and Design: An Object-Oriented Approach with UML
(5th ed.). John Wiley & Sons.

[12] Christof Ebert. 2018. 50 years of software engineering: Progress and perils. IEEE Software 35, 5 (2018), 94-101.

[13] C. Fagarasan, O. Popa, A. Pisla, and C. Cristea. 2021. Agile, waterfall and iterative approach in information technology projects. IOP
Conf. Ser.: Mater. Sci. Eng. 1169, 1 (2021), 012025. https://doi.org/10.1088/1757-899X/1169/1/012025

[14] Tom Gilb. 1985. Evolutionary delivery versus the “waterfall model”. SIGSOFT Softw. Eng. Notes 10, 3 (July 1985), 49-61.
https://doi.org/10.1145/1012483.1012490

[15] G. R. Gladden. 1982. Stop the life-cycle, | want to get off. ACM SIGSOFT Softw. Eng. Notes 7, 2 (1982), 35-39.

[16] Robert L. Glass. 2003. The state of the practice of software engineering. IEEE Software 20, 6 (2003), 20-21.

[17] Rashina Hoda, Norsaremah Salleh, and John Grundy. 2018. The rise and evolution of agile software development. IEEE Software
35, 5(2018), 58-63.

[18] Watts S. Humphrey and Marc I. Kellner. 1989. Software process modeling: Principles of entity process models. In Proceedings of the
11th International Conference on Software Engineering, 1989. 331-342.

(9]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]
[36]

[37]

[38]
[39]

[40]
[41]
[42]
[43]

[44]
[49]

[46]

[47]
[48]
[49]

[50]

J. Eveleens and C. Verhoef. 2010. The rise and fall of the Chaos report figures. IEEE Software 27, 1 (February 2010), 30-36.
https://doi.org/10.1109/MS.2009.154

Magne Jgrgensen and Kjetil Molgkken-@stvold. 2006. How large are software cost overruns? A review of the 1994 CHAOS report.
Information and Software Technology 48, 4 (April 2006), 297-301. https://doi.org/10.1016/j.infsof.2005.07.002

loannis K. Kirpitsas and Theodore P. Pachidis. 2022. Evolution towards hybrid software development methods and information
systems audit challenges. Software 1, 3 (2022), 316-363. https://doi.org/10.3390/software 1030015

Jil Klinder, Philipp Hohl, Masud Fazal-Baqgaie, Stephan Krusche, Steffen Kiipper, Oliver Linssen, and Christian R. Prause. 2017.
HELENA study: Reasons for combining agile and traditional software development approaches in German companies. In Product-
Focused Software Process Improvement: 18th International Conference (PROFES 2017), Innsbruck, Austria, November 29-
December 1, 2017. Springer, 428-434.

Mohammad Yasir Kotowaroo and Roopesh Kevin Sungkur. 2022. Success and Failure factors affecting software development
projects from IT professionals’ perspective. In Soft Computing for Security Applications: Proceedings of ICSCS 2022. Springer, 757-
772.

Marco Kuhrmann, Philipp Diebold, Jirgen Miinch, Paolo Tell, Vahid Garousi, Michael Felderer, Kitija Trektere, Fergal McCaffery,
Oliver Linssen, and Eckhart Hanser. 2017. Hybrid software and system development in practice: Waterfall, scrum, and beyond. In
Proceedings of the 2017 International Conference on Software and System Processes (ICSSP ’17). Association for Computing
Machinery, New York, NY, USA, 30-39.

Marco Kuhrmann, Philipp Diebold, Jirgen Miinch, Paolo Tell, Kitija Trektere, Fergal McCaffery, Vahid Garousi, Michael Felderer,
Oliver Linssen, and Eckhart Hanser. 2018. Hybrid software development approaches in practice: A European perspective. IEEE
Software 36, 4 (2018), 20-31.

Steffen Kipper, Andreas Rausch, and Urs Andelfinger. 2018. Towards the systematic development of hybrid software development
processes. In Proceedings of the 2018 International Conference on Software and System Processes (ICSSP '18), 2018. Association
for Computing Machinery, New York, NY, USA, 157-161. https://doi.org/10.1145/3202710.3203158

Soren Lauesen. 2020. IT project failures, causes and cures. IEEE Access 8 (2020), 72059-72067.

Alok Mishra and Yehia Ibrahim Alzoubi. 2023. Structured software development versus agile software development: A comparative
analysis. International Journal of System Assurance Engineering and Management 14, 4 (August 2023), 1504-1522.
https://doi.org/10.1007/s13198-023-01958-5

Subhas Misra, Vinod Kumar, Uma Kumar, Kamel Fantazy, and Mahmud Akhter. 2012. Agile software development practices:
Evolution, principles, and criticisms. International Journal of Quality & Reliability Management 29, 9 (January 2012), 972-980.
https://doi.org/10.1108/02656711211272863

Kai Petersen, Claes Wohlin, and Dejan Baca. 2009. The waterfall model in large-scale development. In Product-Focused Software
Process Improvement, 2009. Springer Berlin Heidelberg, Berlin, Heidelberg, 386-400.

PMI. 2020. Ahead of the curve: Forging a future-focused culture. Pulse of the Profession. Retrieved April 23, 2025 from
https://www.pmi.org/learning/library/forging-future-focused-culture-11908

PMI. 2020. Appendix. Pulse of the Profession. Retrieved April 23, 2025 from https://www.pmi.org/-
/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pmi-pulse-2020-appendix.pdf

Nils Prenner, Carolin Unger-Windeler, and Kurt Schneider. 2020. How are hybrid development approaches organized? A systematic
literature review. In Proceedings of the International Conference on Software and System Processes (ICSSP '20). Association for
Computing Machinery, New York, NY, USA, 145-154.

R. N. Charette. 2005. Why software fails [software failure]. IEEE Spectrum 42, 9 (September 2005), 42-49.
https://doi.org/10.1109/MSPEC.2005.1502528

L. B. S. Raccoon. 1997. Fifty years of progress in software engineering. ACM SIGSOFT Softw. Eng. Notes 22, 1 (1997), 88-104.
Janine Reiff and Dennis Schlegel. 2022. Hybrid project management-A systematic literature review. International Journal of
Information Systems and Project Management 10, 2 (2022), 45-63.

W. W. Royce. 1987. Managing the development of large software systems: Concepts and techniques. In Proceedings of the 9th
International Conference on Software Engineering, 1987. IEEE Computer Society Press, Monterey, California, USA, 328-338.
Nayan B. Ruparelia. 2010. Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes 35, 3 (2010), 8-13.

Antonios Saravanos and Matthew X. Curinga. 2023. Simulating the software development lifecycle: The waterfall model. Applied
System Innovation 6, 6 (2023). https://doi.org/10.3390/asi6060108

Igbal H. Sarker, Faisal Faruque, Ujjal Hossen, and Atikur Rahman. 2015. A survey of software development process models in
software engineering. International Journal of Software Engineering and Its Applications 9, 11 (2015), 55-70.

lan Sommerville. 1996. Software process models. ACM Computing Surveys (CSUR) 28, 1 (1996), 269-271.

lan Sommerville. 2011. Software Engineering (9th ed.). Addison-Wesley, Boston, MA, USA.

lan Sommerville. 2016. Software Engineering (10th ed.). Pearson Education Limited, Harlow, United Kingdom.

Standish Group International, Inc. 1995. The CHAOS report. Standish Group International, Inc.

Paolo Tell, Jil Klinder, Steffen Kupper, David Raffo, Stephen G. MacDonell, Jirgen Miinch, Dietmar Pfahl, Oliver Linssen, and Marco
Kuhrmann. 2019. What are hybrid development methods made of? An evidence-based characterization. In 2019 IEEE/ACM
International Conference on Software and System Processes (ICSSP), 2019. IEEE, 105-114.

Georgios Theocharis, Marco Kuhrmann, Jirgen Miinch, and Philipp Diebold. 2015. Is water-scrum-fall reality? On the use of agile
and traditional development practices. In Product-Focused Software Process Improvement, 2015. Springer International Publishing,
Cham, 149-166.

Wilfred van Casteren. 2017. The waterfall model and the agile methodologies: A comparison by project characteristics.
ResearchGate preprint. Retrieved October 4, 2025 from https://www.researchgate.net/publication/317225452

Julian Wallis. 2023. What is the waterfall model in software development? Retrieved April 27, 2025 from https://intuji.com/what-is-the-
waterfall-model-in-development/

Conrad Weisert. 2003. Waterfall methodology: There’s no such thing! Retrieved December 17, 2021 from
https://www.idinews.com/waterfall.html

Dave West, Mike Gilpin, Tom Grant, and Alissa Anderson. 2011. Water-Scrum-Fall is the reality of agile for most organizations today.
Forrester Research. July 26, 2011. Retrieved October 4, 2025 from https://www.forrester.com/report/water-scrum-fal/RES58861

[51] Andrew Whiteley, Julien Pollack, and Petr Matous. 2021. The origins of agile and iterative methods. The Journal of Modern Project
Management 8, 3 (2021).

10

