
The Opaque Pointer Design Pattern in Python: Towards a
Pythonic PIMPL for Modularity, Encapsulation, and Stability

Antonios Saravanos∗
New York University
New York, NY, USA
saravanos@nyu.edu

John Pazarzis∗
Independent Researcher
New York, NY, USA

Stavros Zervoudakis
New York University
New York, NY, USA

Dongnanzi Zheng
New York University
New York, NY, USA

Abstract
Python libraries often need to maintain a stable public API even
as internal implementations evolve, gain new backends, or depend
on heavy optional libraries. In Python, where internal objects are
easy to inspect and import, users can come to rely on “reachable
internals” that were never intended to be public, making refactoring
risky and slowing long-term maintenance. This paper revisits the
pointer-to-implementation (PIMPL) idiom from C++ and reinter-
prets it as a Pythonic pattern of opaque delegation: a small public
object (or module) that delegates its behavior to a separate imple-
mentation object treated as internal. We situate this pattern within
a broader taxonomy of encapsulation techniques in Python, relate
it to existing practices such as module-level indirection, facade
objects, and backend dispatch, and identify PIMPL-like structures
already used in the standard library and the scientific Python ecosys-
tem. We then show how a Pythonic PIMPL can be used in existing
codebases to isolate heavy dependencies, support lazy imports, and
enable runtime selection of alternative backends without changing
the public API. Finally, we discuss the benefits and trade-offs of
the approach and offer practical guidance on when the pattern is
appropriate and how to apply it in large, long-lived Python libraries.

CCS Concepts
• Software and its engineering→ Design patterns; Software
development methods.

Keywords
Python, API stability, software design patterns, encapsulation, lazy
imports, scientific Python, Pimpl idiom, opaque pointer

1 Introduction
Modern large-scale Python libraries increasingly need to balance
rich functionality with long-term maintainability. As codebases
grow, it becomes important to hide complex internal logic behind
clean public interfaces, allowing internal components to evolve
without disrupting users. At the same time, Python’s culture of
openness and introspection, combined with its lack of enforced
∗The first and second authors contributed equally to this paper.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

access control, makes it easy for implementation details to leak
into what users perceive as the public API [37]. In the C++ world,
the opaque pointer design pattern, known more commonly as
the pointer to implementation (PIMPL) idiom [4, 5, 40], is a well-
established technique for separating a class’s stable public interface
from its changeable internals.

We should first clarify what we mean by a design pattern and
an idiom. Following the usual definition in the literature [1, 7], a
design pattern describes a recurring solution to a software-design
problem at a level above any particular language. Examples include
the facade, strategy, and bridge patterns. An idiom, by contrast,
is language specific. It captures a conventional way of realizing a
design idea using a particular language’s syntax, semantics, and
tooling. In this sense, the opaque pointer is a design pattern avail-
able in C and other languages with explicit pointers, whereas the
C++ PIMPL is widely described as an idiom [4], as it specializes
the opaque-pointer idea to C++ and the properties of that specific
language. The PIMPL idiom also appears under other labels; some
examples are listed in Table 1.

Although Python does not face the same compilation or binary-
compatibility constraints that originallymotivated PIMPL in C++ [12,
13], many of the idiom’s architectural benefits apply directly to large
Python systems. As Python has become foundational in scientific
computing, machine learning, and high-performance infrastruc-
ture, developers increasingly face challenges such as managing
heavy or optional dependencies, refactoring internal components
without breaking downstream code, coordinating multiple back-
end implementations, and preserving stable public APIs across
versions [2, 9, 16, 23].

This paper examines how the structural essence of the PIMPL
idiom can be adapted to Python, aligning with Pythonic conven-
tions and capabilities [22]. Rather than proposing a rigid design
pattern, we reinterpret PIMPL conceptually as a form of opaque del-
egation. A public-facing object delegates its behavior to an internal
implementation object, typically stored in a private attribute (e.g.,
self._impl) or hidden behind a module-level indirection layer.
This approach preserves the separation of interface and implemen-
tation found in classical PIMPL.

Structuring components in this way offers several practical ben-
efits. Heavy or optional dependencies can be isolated in the im-
plementation object and imported lazily [14, 17, 34, 43]. Multiple
backend implementations can be selected dynamically based on
configuration or runtime conditions and possibly complemented by

https://orcid.org/0000-0002-6745-810X
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0


Saravanos, et al.

Idiom Brief definition Origin/naming

Pointer to Implementation
(PIMPL) Pointer from an interface to a hidden implementation object. Coined by Jeff Sumner, idiom described by

Coplien [4] and later Sutter [39, 40, 42].
Opaque Pointer C-style technique hiding representation behind an incom-

plete type and function API.
Used as a systems term, particularly for C
abstract data types [11, 45].

Handle–Body Stable handle object separated from mutable body. Attributed to Coplien [4].
Envelope–Letter Thin envelope that carries an internal “letter” where data

and logic reside.
Introduced and named by Coplien [4].

Compiler Firewall Reduces dependencies by hiding private members behind an
opaque type.

Popularized by Sutter [39, 41, 42].

Cheshire Cat Visible class can outlive or change hidden implementation. Coined by Carolan, discussed by Meyers [3,
18].

D-pointer Qt-style technique using a dedicated d_ptr member. Credited to Gulbrandsen, documented in
Qt/KDE binary-compat notes [13, 31].

Table 1: Idioms for separating interface from implementation in C++.

the injection of control (IoC) pattern [26, 27]. Internal algorithms
and data structures can evolve behind a stable interface, reducing
the risk of breaking changes. These capabilities are especially rele-
vant for widely used, long-lived libraries that must evolve without
sacrificing stability, performance, or extensibility.

This papermakes three contributions. First, it articulates a Pythonic
PIMPL pattern that maps the classical PIMPL idiom onto Python’s
object and module systems, including both class-based and module-
level variants. Second, it relates this pattern to existing ecosystem
practices (e.g., facade objects, backend selection, module-level in-
direction) and shows how they can be viewed as instances of a
common opaque delegation structure. Third, it presents practical
guidance and examples that demonstrate how and when to intro-
duce a Pythonic PIMPL structure in real-world codebases, along
with the benefits and trade-offs.

The remainder of this paper is organized as follows. Section 2
reviews opaque pointers, opaque handles, and the classical C++
PIMPL idiom and contrasts them with Python’s approach to en-
capsulation, identifying similar structures already in use across
the Python ecosystem. Section 3 then explains why Python might
benefit from a PIMPL-style idiom, articulating the design pressures
and concrete problems that motivate our proposal. Section 4 for-
malizes this recurring structure as the Pythonic PIMPL, detailing
its intent, applicability, structure, and architectural consequences.
Section 5 surveys real-world examples of PIMPL-like structures
in the Python ecosystem and relates Pythonic PIMPL to existing
design patterns and library idioms. Section 6 discusses practical
considerations and trade-offs in applying Pythonic PIMPL in large,
long-lived Python codebases. Section 7 concludes the paper and
outlines the limitations of our work, along with directions for future
research.

2 Background
This section situates our proposed Pythonic PIMPL pattern within
existing language and ecosystem practices. We first review how

opaque pointers, opaque handles, and the classical PIMPL idiom
emerged in C and C++ to separate stable interfaces from volatile im-
plementations [3, 4, 11, 40, 45]. We then contrast this with Python’s
more informal approach to encapsulation and consider PIMPL-like
structures that already appear in the Python ecosystem.

At first glance, it may seem unnecessary, or even misleading, to
speak of a Pythonic PIMPL. Python does not have explicit pointers,
does not rely on header files, and does not face the compilation
and application binary interface (ABI) constraints that originally
motivated PIMPL in C++ [12, 13, 19, 31, 42]. However, the primary
architectural benefit of PIMPL is that it provides a deliberately
narrow, stable interface boundary to shield clients from a more
complex, volatile, or dependency-heavy implementation.

Python already has mechanisms that play the same architec-
tural role, even if they do not involve raw pointers. For example,
many libraries rely on module-level indirection, in which a public
module reexports or lazily resolves names while the real implemen-
tation lives in private submodules (for instance, socket/_socket,
pickle/_pickle, or SciPy’s lazy-loading machinery) [2, 15, 17, 28–
30, 34, 36, 43]. Small public classes often act as wrappers that hold an
internal implementation object (often in self._impl) and forward
behavior to it [22, 37]. In other cases, frameworks organize their
functionality through backend or plugin dispatch layers, where a
stable public API routes operations to interchangeable backends
(e.g., pure Python versus accelerated, local versus remote) selected
at runtime or by configuration [9, 21, 23, 26, 27, 35].

Taken together, these practices form a recurring structural pat-
tern: Python developers use indirection to keep internal structure
malleable while presenting a clean, stable, well-curated public in-
terface. What Python lacks in pointer syntax, it compensates for
with flexible module boundaries, dynamic dispatch, descriptors,
attribute-resolution hooks, and language boundaries to native ex-
tensions. In this sense, a Pythonic PIMPL is not a transliteration of
C++ PIMPL, but a language-appropriate idiom capturing a design
that already exists in the ecosystem [1, 7, 18, 24, 37].



Towards a Pythonic PIMPL

2.1 Definitions and Relationships of Opaque
Pointers, Handles, and PIMPL

Software systems have long relied on indirection to separate in-
terface from implementation. Two related low-level mechanisms,
opaque pointers and opaque handles, and the higher-level C++
PIMPL idiom embody this strategy at different levels. They share
the motivation of hiding the implementation and reducing coupling,
but they arise in different historical contexts and are shaped by
language features.

2.1.1 Opaque Pointers. An opaque pointer is a pointer to an incom-
plete type whose internal representation is intentionally hidden
from clients [11, 45]. In C, this pattern is achieved by forward-
declaring a struct in a header (for example, typedef struct
my_struct my_struct;) while defining the struct’s fields only in
a private source file. Client code manipulates such objects exclu-
sively through pointers and API functions that accept or return
them, never through direct access to their fields. Opaque pointers
enable strict encapsulation, representation independence, reduced
compile-time dependencies, and stable ABIs because client code
does not depend on the structure’s layout [11].

2.1.2 Opaque Handles. Opaque handles generalize the opaque-
pointer concept by abstracting the reference mechanism itself [45].
A handle may be a pointer, an integer, an index into an internal
table, or some other token. Operating systems and GPU APIs make
extensive use of such handles to reference resources that must
be managed behind a protection boundary: process identifiers, file
descriptors, synchronization primitives, GPU buffers, pipelines, and
devices. In these contexts, the term handle expresses the ideas of
resource ownership, capability control, and lifetime management.
Internally, the systemmaintains tables that map handles to concrete
resources, and clients invoke operations that consume or produce
handles rather than inspecting representations directly. Opaque
pointers and opaque handles thus form a family of indirection-based
encapsulation mechanisms in C and systems-level APIs, supporting
resource isolation and hidden representation. The C++ PIMPL idiom,
discussed in Section 2.2, specializes the same idea for classes and
library interfaces [4, 5, 40].

2.2 The PIMPL Idiom in C++
The PIMPL idiom is a C++ technique for separating a class’s stable
public interface (in a header) from its changeable private repre-
sentation (in a source file). It is used to limit dependency prop-
agation (a “compiler firewall”) and, in compiled library settings,
to help preserve ABI stability by keeping the header-visible class
layout fixed [4, 5, 40, 42]. The header forward-declares a private
Impl type and stores only an opaque pointer to it (commonly
std::unique_ptr<Impl>); the full Impl definition lives in the .cpp
file. With unique_ptr, the public destructor is typically defined out-
of-line so that Impl is complete at the deletion point [5]. Listing 1
shows the canonical structure: a header-visible Widget that owns
only impl_, while all state and behavior live in Widget::Impl in
widget.cpp.

1 /* widget.h */
2

3 #ifndef WIDGET_H

4 #define WIDGET_H
5

6 enum State {
7 STATE_IDLE = 0,
8 STATE_RUNNING = 1
9 };
10

11 class WidgetImpl;
12

13 class Widget final {
14 public:
15 Widget();
16 ~Widget();
17

18 void start();
19 void stop();
20 State get_state() const;
21

22 private:
23 Widget(const Widget&);
24 Widget& operator=(const Widget&);
25 Widget(Widget&&);
26

27 private:
28 WidgetImpl* m_pImpl;
29 };
30

31 #endif // WIDGET_H
32

33 /* widget.cpp */
34

35 #include "widget.h"
36 #include <stdexcept>
37

38 class WidgetImpl {
39 public:
40 WidgetImpl() : _state(STATE_IDLE) {
41 }
42

43 void start() {
44 if (_state == STATE_IDLE) {
45 _state = STATE_RUNNING;
46 }
47 else {
48 // Already running
49 throw std::runtime_error("Widget␣is␣already␣

running");
50 }
51 }
52

53 void stop() {
54 if (_state == STATE_RUNNING) {
55 _state = STATE_IDLE;
56 }
57 else {
58 throw std::runtime_error("Widget␣is␣already␣

stopped");
59 }
60 }
61

62 State get_state() const {
63 return _state;



Saravanos, et al.

64 }
65

66 private:
67 State _state;
68 };
69

70 Widget::Widget() : m_pImpl(new WidgetImpl) {
71

72 }
73

74 Widget::~Widget() {
75 if (m_pImpl != nullptr) {
76 delete m_pImpl;
77 m_pImpl = nullptr;
78 }
79 }
80

81 void Widget::start() {
82 m_pImpl->start();
83 }
84

85 void Widget::stop() {
86 m_pImpl->stop();
87 }
88

89 State Widget::get_state() const {
90 return m_pImpl->get_state();
91 }

Listing 1: Minimal PIMPL structure in C++ (header + source)

Because client code sees only the pointer member, implementa-
tion headers and the private data layout are hidden; changing Impl
often avoids downstream rebuilds and can help keep an exported
class’s size and layout stable across library versions [12, 13, 31].
The trade-offs are extra indirection and usually one heap allocation
per object (plus potential loss of inlining and less direct debug-
ging) [12, 40]. PIMPL is not a universal ABI shield: changes to
exported signatures, inline definitions, or virtual interfaces can still
break ABI even if private data are hidden [5].

2.3 Encapsulation in Python
Python approaches encapsulation differently from statically typed
or compiled languages such as C++ or Java. It favors readability,
simplicity, and developer freedom over rigid enforcement of access
control. The interpreter does not support private fields or access
modifiers in the traditional sense; any attribute can, in principle,
be accessed or mutated from outside the class or module. Instead,
intent is communicated through naming conventions and social
norms, often summarized by the phrase “we are all consenting
adults here”.

A single leading underscore (e.g., _helper) signals that a func-
tion, variable, or attribute is intended for internal use. This af-
fects wildcard imports (i.e., from module import *) by excluding
such names, but it imposes no actual restrictions on access. As a
stronger form of encapsulation, Python supports name mangling
via double underscores.When a class attribute or method is prefixed
with two leading underscores (e.g., __internal), the interpreter
rewrites the attribute name to include the class name internally

(e.g., _MyClass__internal). This makes it harder to access the at-
tribute directly from outside the class and reduces the chance of
accidental name clashes in subclasses.

In effect, name mangling provides a lightweight mechanism for
discouraging external access, but it does not offer true privacy or
enforcement. Developers can still access mangled names deliber-
ately if they know the internal naming convention, and tools like
dir() or reflection APIs make such attributes visible. Nonetheless,
this mechanism can reduce the likelihood of accidental access and
reinforces the notion that certain components are internal imple-
mentation details.

Modules may also use the __all__ variable to define a curated
public API, even though all contents of the module remain techni-
cally importable. This flexibility underpins common Python idioms,
such asmonkey patching, runtime substitution of components, deep
introspection, and ad hoc dependency injection. It also simplifies
testing, since internal objects remain accessible. As a result, Python
rarely requires or uses formal dependency injection frameworks as
seen in languages with stricter encapsulation.

However, as Python projects scale, the absence of hard bound-
aries can create fragility and maintenance pressure. Users may
come to rely on undocumented or “semi-private” attributes (i.e.,
names, attributes, or constructs that are intended to be private
but are not actually enforced by the language runtime) that were
never intended to be part of the public interface. This makes refac-
toring internals risky, as it can inadvertently break downstream
code. Major scientific libraries now explicitly warn that internal
submodules and names may change without notice and should
not be relied upon [23]. NumPy’s work toward its 2.0 release, for
example, includes efforts to clarify public versus private APIs and
reduce ambiguous “reachable internals” [9].

This tension between openness and stability is central to the
architecture of large Python codebases. On one hand, Python’s
dynamic nature and introspection-friendly culture provide power-
ful tools for rapid development and experimentation. On the other
hand, long-lived libraries increasingly require structural boundaries
to separate stable public APIs from internal implementations. In
this architectural space, patterns that approximate encapsulation
through indirection, such as Pythonic PIMPL, offer a disciplined
yet flexible compromise.

Although Python lacks strict enforcement of access control, a
range of idioms and mechanisms have evolved to provide practical
encapsulation. These strategies differ in their reliance on naming
conventions, module structure, runtime delegation, or execution
boundaries (i.e., runtime or interpreter-level barriers that naturally
hide data, even if Python’s syntax does not). We organize them into
four broad categories.

The first category, which we call stylistic encapsulation, relies on
social conventions rather than any enforced mechanism. A leading
single underscore in an attribute or module name (e.g., _helper)
signals to users that the name is internal. This affects wildcard
imports but imposes no restriction on access. Double underscores
(e.g., __name) trigger name mangling, which makes accidental ac-
cess less likely by rewriting names internally (e.g., __x becomes
_ClassName__x), but this too is bypassable. Some developers may
at times mark modules or subpackages as private by naming them
with a leading underscore (e.g., package._internal), signaling



Towards a Pythonic PIMPL

non-public status without preventing imports. These conventions
are lightweight and developer-friendly but provide no actual hiding:
the implementation remains accessible and mutable.

The second category centers on namespace and module bound-
ary encapsulation. In this strategy, modules define a curated public
API using the __all__ variable to specify which symbols are in-
tended for export. Implementation code may be placed in private
submodules, such as _core or _impl, from which a top-level pack-
age or module reexports selected names to define a stable interface.
This allows large packages to expose a clean and hierarchical API
surface. Although this approach provides structural clarity and im-
proves documentation, it does not prevent direct access to internal
modules or names, as everything remains importable given the
correct path.

The third category is encapsulation by indirection, which in-
cludes design patterns that explicitly separate interface from im-
plementation using delegation. This includes public facade classes
that forward behavior to internal helper classes, typically stored
in attributes such as self._impl. The indirection may also take
the form of proxies or wrappers that encapsulate behavior and
restrict direct access to internal state. This is the category in which
the Pythonic PIMPL pattern naturally resides. By maintaining an
internal implementation object that is not exposed as part of the
public API, Python developers can achieve a meaningful separation
of concerns and reduce the surface area exposed to users. Although
this strategy is not enforced by the language runtime and can be
bypassed via introspection, it is typically sufficient in practice and
helps maintain modular and testable code.

The fourth and final category involves encapsulation by execu-
tion environment or language boundary. This is most commonly
seen in mixed-language systems that hold internal state in C exten-
sions or other native code not directly accessible from Python. Mod-
ules like socket and pickle exemplify this strategy: they expose
a public Python interface that forwards to a private C implemen-
tation (e.g., _socket, _pickle). Mechanisms such as PyCapsule
allow opaque C pointers to be passed through Python without
exposing their structure.

2.4 Implicit PIMPL-Like Patterns in Python
Although the term “PIMPL” is not commonly used in the Python
community, a number of established practices closely resemble its
intent of hiding volatile or heavy implementation details behind a
small, stable interface [2, 27, 30].

Early community discussions explicitly asked whether PIMPL
makes sense in Python. For example, Ottinger [22] experimented
with a facade object that delegates all work to a hidden implemen-
tation, primarily to enable easy swapping of implementations in
tests. Follow-up threads on community forums and news aggrega-
tors have argued that Python’s dynamic nature already provides
most of PIMPL’s benefits without additional ceremony, and some
contributors concluded that a dedicated PIMPL pattern has limited
real-world value beyond ordinary composition and delegation [10].
These explorations reveal both recurring interest in an opaque im-
plementation surface and a degree of skepticism about whether it
deserves to be named as a separate pattern. Part of this skepticism
reflects broader differences in how language communities approach

design patterns. Developers coming from dynamic, mixed-paradigm
languages often rely on ad hoc composition and runtime flexibil-
ity, whereas communities rooted in more strictly object-oriented
ecosystems tend to think in terms of named patterns and explicit
interface–implementation separations.

At the same time, several widely used libraries employ struc-
tures that are like PIMPL in everything but name. Widely used
patterns echo the same intent. Delegating PIMPL objects route
calls to backend implementations, public modules act as proxies or
frontends to hidden C extensions [2], and module-level indirection
enables lazy loading and namespace control [14, 17, 34, 43]. In the
scientific Python ecosystem, such indirection has been adopted to
reduce import time and decouple public APIs from internal package
structure [9, 23], even when it is not described explicitly in PIMPL
terms.

3 Why Python Might Need a PIMPL Pattern
Large Python projects often contain components with complex
logic, optional accelerators, or platform-specific behavior [2, 30]. If
public interfaces and internal machinery are intermixed, implemen-
tation details tend to leak into the visible API, making evolution
risky and refactoring harder. Consider a data processing library
that exposes a public class DataProcessor. Internally, different im-
plementations may exist, such as a pure Python version, a NumPy-
based accelerator, or a platform-specific backend. A PIMPL-style
arrangement lets the public DataProcessor select an appropriate
implementation, store it in self._impl, and delegate all user-facing
methods to that object. Users see only the stable interface, while
maintainers can update or replace the implementation without
changing call sites, in the spirit of the C++ PIMPL idiom [5, 22].

Even though Python does not enforce strict privacy and relies
instead on naming conventions for public vs. non-public names [33,
44], this separation still provides concrete benefits. It keeps heavy
dependencies and complex logic in dedicated classes or modules,
enables lazy imports, and keeps the public API concise and pre-
dictable [15, 32, 43].

This separation offers several practical benefits for large or long-
lived Python libraries:

(1) Stable public APIs. A small public interface isolates users
from internal churn, clarifies what is supported as part of
the public surface, and matches community guidance to
distinguish public and internal names explicitly in modules
and packages [32, 33, 44].

(2) Substitute implementations and testing. Backend swap-
ping becomes an explicit design choice via a delegating
layer, rather than ad hoc globals or monkey patching. This
is similar in spirit to plugin architectures that load imple-
mentations through entry points or dynamic discovery
mechanisms [26, 27].

(3) Performance (startup and memory). Lazy imports in
the implementation layer reduce import time and memory
footprint, for example, through module-level indirection,
PEP 562-style attribute loading, and library patterns for lazy
submodule exposure [15, 43]. Interpreter-level lazy-import
experiments have quantified potential improvements in
startup times and memory usage, while demonstrating the



Saravanos, et al.

importance of carefully managing side effects and seman-
tics [14, 17].

(4) Cross-language mindshare. Naming the idiom Pythonic
PIMPL gives mixed C++ and Python teams a shared term for
a stable interface with an opaque implementation, echoing
the established PIMPL pattern in C++ and similar delegation
tricks already used in Python [5, 22].

(5) Reducing user error. Clear boundaries between the public
interface and internal implementation discourage acciden-
tal reliance on internals and make documentation easier
to align with reality, in accordance with guidance to keep
non-public names and implementation details out of the
documented API surface [32, 33, 44].

Not every project needs this separation, and small libraries may
prefer simpler approaches. For widely used, long-lived components,
however, a thin indirection layer can unlock safer evolution without
sacrificing Python’s flexibility, much as lazy-loading schemes are
recommended primarily for large libraries where import overhead
is a real concern [43].

4 The Pythonic PIMPL Pattern
The Pythonic PIMPL pattern adapts the core idea behind opaque
pointers and the C++ PIMPL idiom, encapsulation through indi-
rection, to Python’s object model. Although Python lacks pointers
and does not enforce visibility constraints, it supports dynamic
features that make it possible to create a disciplined separation be-
tween interface and implementation. A Pythonic PIMPL formalizes
this separation using a lightweight delegation structure: a stable
public object whose behavior is implemented by a hidden internal
object. In this model, the public object is conceptually analogous
to the “handle” or “frontend,” and the private object serves as the
“implementation.”

This pattern is motivated by a desire to improve modularity,
encapsulation, and API stability in large or evolving codebases.
Isolating implementation details behind a private indirection layer
helps reduce coupling and simplifies long-termmaintenance. Encap-
sulation is achieved through structural conventions that discourage
reliance on internal components.Most importantly, Pythonic PIMPL
makes it easier to refactor, optimize, or even replace entire backends
without breaking user-facing code. It achieves these goals while
remaining faithful to Python’s emphasis on clarity, runtime flexibil-
ity, and maintainable design. Table 2 provides a concise summary
of the pattern in a catalog style.

4.1 Name and Also Known As
We call this pattern the Pythonic PIMPL. The name reflects its origin
in the classical PIMPL idiom reviewed in Section 2.2, but emphasizes
a formulation that fits Python’s object and module systems. In
analogy with the C++ literature, it can also be viewed as a Python-
specialized form of the handle–body or envelope–letter idioms.

4.2 Intent
The intent of the Pythonic PIMPL pattern is to separate a module
or class interface from its internal implementation in order to re-
duce coupling, hide details that are likely to change, and minimize
dependencies visible to users. Whereas C++ uses PIMPL primarily

Table 2: Pattern Summary: Pythonic PIMPL

Name Pythonic PIMPL

Also Known As Python Private Implementation Idiom;
Envelope–Letter Idiom (Python); Handle–
Body Idiom (Python)

Intent To decouple a stable public interface from
a volatile or complex implementation, en-
abling internal evolution while preserving
API stability in Python libraries.

Motivation Large Python frameworks require long-
lived, stable APIs while allowing inter-
nal refactoring, alternative backends, lazy
imports, and heavy-dependency isolation.
Pythonic PIMPL encapsulates volatility be-
hind a lightweight interface object.

Applicability Use when: (1) the implementation is likely
to change; (2) optional or heavy dependen-
cies should be hidden; (3) multiple back-
end implementations exist; (4) a stable API
must be preserved for external users; (5)
you want to avoid dependency on third-
parties (i.e., vendor lock-in).

Structure A public Interface Object contains a private
reference (typically _impl) to an Imple-
mentation Object. All public methods dele-
gate to the implementation. This may be
class-based or module-level (via PEP 562
or hidden backend modules).

Participants Client: consumes the public API.
Interface: exposes stable public methods.
Implementation: contains hidden logic,
heavy imports, or backend-specific code.

Consequences
(Benefits)

Improves modularity; isolates internal
churn; supports multiple backends; re-
duces import cost via lazy loading; pro-
vides a clean API boundary; enhances
testability.

Consequences
(Liabilities)

Adds delegation overhead; increases boil-
erplate; may introduce debugging indirec-
tion; risks over-engineering if used for
small components.

Known Uses Python stdlib (e.g., socket/_socket,
pickle/_pickle); scientific libraries; GUI
toolkits; plugin-based frameworks.

Related Pat-
terns

C++ PIMPL; Bridge; Proxy; Facade; Strat-
egy; Abstract Factory (for implementation
selection).

to address compilation and binary compatibility constraints, the



Towards a Pythonic PIMPL

same structural idea can be applied in Python to achieve clarity,
modularity, and insulation from internal changes.

Concretely, a lightweight interface object forwards operations
to an internal implementation object stored in an attribute such
as self._impl or hidden behind a module-level indirection layer.
This preserves the outward shape of the API while permitting the
internal logic, data structures, and dependencies to evolve freely.

4.3 Motivation
The full motivation for why Python benefits from a PIMPL-style
idiom is presented in Section 3. This subsection serves only as a
brief summary within the pattern catalog, mirroring the “Motiva-
tion” entry found in classical pattern descriptions. In short, large
Python libraries frequently need to preserve stable public APIs
while allowing their internal logic, data structures, and dependen-
cies to evolve. Implementations may involve optional accelerators,
platform-specific backends, or heavy imports that should not ap-
pear at the top-level public interface. A Pythonic PIMPL structure
protects the public API from these internal details and enables safe
evolution over time.

4.4 Applicability
A Pythonic PIMPL structure is useful in several recurring situations.
It is a natural fit for large or complex components whose imple-
mentation details would otherwise clutter the public API, and for
externally visible APIs whose internals are expected to change as
algorithms, data structures, or dependencies evolve. It also helps
when the implementation depends on optional or heavy libraries
that should not be imported eagerly. Those imports and related
logic are moved into an internal implementation object. The same
structure works well when multiple interchangeable implementa-
tions exist, such as accelerated variants and pure-Python fallbacks,
or platform-specific versions, since the public interface can select
and construct the appropriate backend while preserving a single,
stable interface. In larger organizations, the interface/implementa-
tion split can also support separation of concerns, with one team
owning the public interface and another maintaining backend im-
plementations behind it.

For small, self-contained classes used only within a single mod-
ule, this extra layer is usually unnecessary and may constitute ov-
erengineering. The pattern is most valuable in long-lived libraries
and frameworks, which are common in scientific computing, ma-
chine learning, data processing, and networked systems, where
APIs must remain stable even as internal structures and dependen-
cies change over time.

4.5 Canonical Example
Listings 2 and 3 illustrate a complete Pythonic PIMPL arrangement
using a public module and a private implementation module:

1 """widget.py -- Public API module"""
2

3 import impl._widget as _widget
4

5 _WidgetImpl = _widget._WidgetImpl
6

7 class Widget:

8 def __init__(self, config):
9 self._impl = _WidgetImpl(config)
10

11 def start(self):
12 return self._impl.start()
13

14 def stop(self):
15 return self._impl.stop()
16

17 def status(self):
18 return self._impl.status()

Listing 2: Public WidgetAPI module delegating to an internal
implementation

1 """impl._widget.py -- Private implementation module"""
2

3 class _WidgetImpl:
4 def __init__(self, config):
5 self._state = "initialized"
6 self._config = config
7

8 def start(self):
9 self._state = "running"
10

11 def stop(self):
12 self._state = "stopped"
13

14 def status(self):
15 return {
16 "state": self._state,
17 "config": dict(self._config),
18 }

Listing 3: Private _WidgetImpl class used internally by Widget

In this example, the _WidgetImpl class remains entirely private.
It is never re-exported by the public module and does not appear
directly in the documented API. Users of Widget interact only with
its stable interface methods start, stop, and status. Internally,
these methods simply delegate to the implementation object stored
in self._impl.

Because callers never depend on the layout or existence of the
_WidgetImpl, the implementation can be extensively rewritten,
data structures changed, algorithms replaced, helper functions re-
organized, without breaking user code, provided that the public
Widget methods preserve their semantics. The structure is directly
analogous to the C++ PIMPL idiom. Specifically, a stable handle ob-
ject owning an opaque implementation object behind an indirection
barrier.

In real Python libraries, this idea is often applied in three steps.
First, the public module shows only a small set of supported names.
Second, a public class acts like a thin wrapper and forwards calls to
a hidden object (for example, self._impl). Third, heavy or optional
dependencies are kept inside the hidden code and imported only
when needed. This keeps the public API stable while the internal
code can change safely.



Saravanos, et al.

4.6 Participants and Responsibilities
This subsection describes the conceptual roles that recur in a Pythonic
PIMPL arrangement and clarifies the responsibilities associated
with each role. Although Python does not enforce interface bound-
aries in the same way as C++, the same architectural separation
applies. Client code should depend on a small, stable public sur-
face, while the underlying implementation remains free to evolve.
Figure 1 illustrates this separation, and Listings 4 and 5 provide a
concrete example in which a public PIMPL delegates to a runtime-
selected backend.

4.6.1 Interface. The interface defines the contract that all concrete
implementations must satisfy. It should remain small and stable: it
declares method signatures and documents semantics, but does not
contain operational logic. To preserve encapsulation, the interface
should avoid dependencies on concrete implementation classes, and
its public signatures should use either built-in types or types that
are themselves part of the documented public API. In our example,
IMessenger plays this role, as illustrated in Listing 4.

4.6.2 Classes derived from the interface. Concrete classes imple-
ment the interface contract and provide the actual behavior. These
implementations may depend on lower-level helpers and backend-
specific code, and they should encapsulate the operational logic
that is not intended to be exposed at the public layer. Heavy or
optional dependencies are best isolated here (or in private imple-
mentation modules imported by these classes), so that importing
the public API does not implicitly pull in expensive dependencies.
In Listing 5, the email and SMS backends are examples of such
concrete implementers that remain opaque to clients.

4.6.3 Object factory. The factory [8] is responsible for selecting
and creating the appropriate concrete implementation before re-
turning an instance that is treated as the interface type. It typi-
cally accepts configuration parameters that influence the selection
(e.g., platform, resource availability, user preferences). In Python
this factory role may appear as an explicit factory function (e.g.,
create_messenger(...)). The bind(...) method in Listing 5 il-
lustrates this selection step by choosing a backend at runtime while
keeping the public API stable.

4.6.4 Client code. Client code obtains an instance through the
factory and interacts with it exclusively via the interface meth-
ods. This keeps callers insulated from implementation details and
allows implementations to be swapped or refactored without re-
quiring changes at call sites. In the example of Listing 5, clients call
send_message(...) on the interface that is exposed by PIMPL,
while the concrete backend remains hidden, matching the separa-
tion depicted in Figure 1.

As an example, consider a Messenger (sender) class that imple-
ments a generic interface like IMessenger and allows the user to
send messages by email or SMS without exposing the implementa-
tion details.

1 """The interface definition for a messenger service."""
2

3 import abc
4

5 class IMessenger(abc.ABC):
6 """The interface for a messenger service."""
7

8 @abc.abstractmethod
9 def send_message(self, recipient, message):
10 """Send a message to a recipient."""

Listing 4: Interface definition for a messenger service

1 """A simple messenger service implementation."""
2

3 import messenger_interface
4 import impl.email_messenger as email_messenger
5 import impl.SMSMessenger as sms_messenger
6

7 class Messenger(messenger_interface.IMessenger):
8 """Implements IMessenger for Email and SMS"""
9

10 _pimpl = None
11

12 def bind(self, messenger_type):
13 """Bind the private implementation instance."""
14 self._pimpl = None
15 if messenger_type.lower() == "email":
16 self._pimpl = email_messenger.EmailMessenger()
17 elif messenger_type.lower() == "sms":
18 self._pimpl = sms_messenger.SMSMessenger()
19 else:
20 raise RuntimeError
21

22 def send_message(self, recipient, message):
23 """Send a message to a recipient."""
24 if not self._pimpl:
25 raise RuntimeError
26 if self._pimpl:
27 self._pimpl.send_message(recipient, message)

Listing 5: Delegating Messenger class with runtime backend
binding

In summary, Pythonic PIMPL is an interface–implementation
split using explicit indirection. Clients call the stable interface, the
wrapper selects a backend, and the wrapper forwards calls to a
hidden implementation that can evolve without changes to the
public API.

4.7 Benefits and Trade-Offs
The main benefits of the Pythonic PIMPL idiom are that it improves
modularity, helps preserve API stability, supports backend flexi-
bility, gives finer control over performance, and enhances testabil-
ity [2, 9, 12, 23, 40]. By grouping implementation code into focused
implementation classes or modules, the idiom keeps public inter-
faces smaller and easier to understand. Because internal changes
occur behind the same hidden implementation layer [25], main-
tainers can often refactor or extend the implementation without
altering the public interface [18, 40]. Multiple implementations can
coexist behind the same frontend while presenting a single stable
API to users. Isolating heavy or optional dependencies inside the
implementation layer also allows them to be imported lazily and
kept off the public module import path [14, 17, 34, 43]. Finally, tests
can inject mock or simplified implementations while exercising the



Towards a Pythonic PIMPL

Figure 1: Interface–implementation separation in the Pythonic PIMPL pattern.

same public interface, making it easier to test edge cases and failure
modes [22]. Keeping in mind that object-oriented programming
purists may object to exposing or mocking private details to the
user.

The pattern also has some drawbacks. Each call passes through
a delegating layer, introducing a small amount of runtime overhead
and additional indirection that can complicate debugging [12, 40].
Naive applications of the pattern can add boilerplate, since many
public methods may simply forward to similarly named methods on
the implementation object unless helper utilities or metaprogram-
ming are used [6, 41]. For simple components, this additional layer
may amount to over-engineering, adding structure without deliver-
ing clear benefits. Moreover, because Python cannot truly prevent
users from accessing attributes such as _impl, the encapsulation
boundary is partly conventional rather than enforced [15, 33, 44].

5 Known Uses and Related Patterns
Several widely used libraries already employ PIMPL-like structures.
The Python standard library often exposes a high-level Python
module backed by a private C extension (e.g., socket/_socket,
pickle/_pickle). Scientific libraries and plugin-based frameworks
use PIMPL-like objects and module proxies to hide backend selec-
tion, heavy dependencies, and evolving internal package layouts.

Structurally, the Pythonic PIMPL idiom is closely related to the
classical C++ PIMPL idiom, as well as the bridge, proxy, and facade
patterns. Compared with these, its defining feature is the explicit
use of an opaque implementation handle (often _impl) in a Python
context, with an emphasis on API stability, lazy loading, and back-
end swapping in large libraries.

Although the term Pythonic PIMPL is not widely used, several
prominent libraries have independently converged on structures
that closely match the pattern described in Section 4. In each case,
a small, stable public interface delegates to an opaque implementa-
tion that can evolve more freely. This section briefly surveys three
representative families of examples.

5.1 Pythonic PIMPL Implementations Over
Private C Extensions

A long-standing idiom in the Python standard library is to expose
a Python module as the public API while placing performance-
critical logic in a private C extension module. For example, the
socket module is documented as a “wrapper module for _socket,
providing some additional facilities implemented in Python”. The
public module reexports selected classes, functions, and constants
from _socket and augments them with higher-level helpers, while
the C extension remains an internal detail of the CPython imple-
mentation. Similar arrangements exist for pickle and _pickle
(formerly cPickle), json and _json, and several other libraries.

Structurally, these modules implement a Pythonic PIMPL at the
module level. The public module plays the role of the interface
object, with a stable, documented surface. The private C extension
is the implementation object, hidden behind the module boundary
and free to change as long as it preserves the exported contract.
Users write against socket.socket or pickle.dump and remain
insulated from changes to the internal C data structures or helper
functions.

5.2 Lazy Public Namespaces in Scientific Python
Scientific Python projects have adopted a related idiom to manage
import-time cost and evolving package structure. Scientific Python
SPEC 1 and associated tooling such as lazy_loader recommend
presenting a flat, curated public namespace while lazily importing
heavy submodules on first use, often via PEP 562’s module-level
__getattr__ hook [15]. Libraries such as SciPy, scikit-image, and
NetworkX, have adopted variants of this pattern. A simplified ex-
ample illustrates the structure:

1 """public module: mylib/__init__.py"""
2

3 import importlib
4

5 __all__ = ["array", "read_image"]



Saravanos, et al.

6

7 def __getattr__(name):
8 if name == "array":
9 from ._core import array
10 return array
11 if name == "read_image":
12 from ._io import read_image
13 return read_image
14 raise AttributeError(name)

Listing 6: Lazy public namespace using module-level
__getattr__

From the user’s perspective, mylib.array and mylib.read_image
are stable, top-level entry points. Internally, those names are re-
solved at runtime to functions defined in private submodules such
as mylib._core and mylib._io. The public module acts as an in-
terface object. It defines the set of supported names and their se-
mantics, while the implementation modules can be reorganized,
split, or lazily imported without breaking callers.

This design matches the Pythonic PIMPL template, with the
module itself holding an implicit pointer to its implementation: the
logic for each public name lives elsewhere and is only revealed
through the indirection layer.

5.3 Hidden Cores and Accelerators in Large
Libraries

Some large third-party libraries also distinguish between a stable
public surface and more volatile internal cores. NumPy’s work to-
ward its 2.0 release, for example, includes renaming the internal
numpy.core package to numpy._core and clarifying that it is not
part of the public API contract [9, 38]. The public numpy names-
pace exposes a relatively small set of documented functions and
subpackages, while numpy._core provides the implementation of
arrays and ufuncs (which is a term specific to NumPy; see [20]) and
is allowed to change more aggressively. Pandas follows a similar
pattern. High-level classes such as DataFrame and Series form
the documented interface, whereas performance-critical operations
are implemented in internal Cython/C extension modules under
pandas._libs. These extensions are tightly coupled to the library’s
internals but are not intended as public extension points [23]. In
both cases, the public Python objects form a stable interface that
owns an opaque, non-API implementation. The precise location,
shape, and language of the implementation can change (e.g., reorga-
nizing _core, adding or removing C accelerators) without altering
the public signatures or import paths that users rely on [9, 23].

5.4 The Pythonic PIMPL Idiom in Practice
These examples suggest that a Pythonic analogue of PIMPL has
emerged organically across Python’s ecosystem. Standard library
modules wrap private C extensions; scientific libraries use module-
level indirection to hide and lazily load internal submodules; and
large projects such as NumPy and pandas maintain a clear distinc-
tion between public APIs and internal cores. Although these designs
are typically described in ad hoc terms (e.g., “wrapper modules”,
“lazy imports”, “internal cores”) they share a common structure: a
stable interface object that delegates to an opaque implementation.

The Pythonic PIMPL pattern gives this recurring structure a unified
name and vocabulary.

6 Discussion and Practical Considerations
Adapting the PIMPL idiom to Python raises several practical con-
siderations. Although Python does not enforce strict separation
between public and private components, the structural idea of keep-
ing a small and stable interface while delegating to an internal
implementation proves valuable in many contexts. A practitioner-
oriented mapping from common design pressures to recommended
Pythonic PIMPL strategies (and common pitfalls) is summarized in
Table 3.

One key consideration is establishing a clear boundary between
the interface and the implementation classes. The interface should
not contain substantial business logic, since mixing public and in-
ternal functionality reduces the benefits of the idiom. Instead, the
interface should primarily forward method calls to the implementa-
tion, possibly performing light validation, argument normalization,
or error handling. The implementation class, in turn, contains the
actual operations, manages heavy dependencies, and encapsulates
internal state.

Circular imports can arise when the interface and implemen-
tation classes are placed in separate modules. A not so common
strategy is to import the implementation module inside the ini-
tializer of the interface-derived class or inside a factory function,
instead of at the top of the file. This delays the import until it is
needed and avoids module-level cycles.

A PIMPL-style structure can significantly simplify internal evo-
lution. For example, in one of our projects, an image processing
component initially relied on pure Python loops. The implemen-
tation was later replaced with a NumPy-based vectorized version
without altering the public interface. Because the public class dele-
gated all work to an internal implementation stored in self._impl,
the switch required no changes to user code. Later, additional imple-
mentations were introduced, including a GPU-accelerated backend
selected dynamically according to input size or hardware availabil-
ity.

Compared with other structural approaches, PIMPL-style compo-
sition offers advantages over inheritance. Using inheritance to sepa-
rate interface from implementation often exposes internal methods
in the public class and ties the two parts together more rigidly.
Composition via an internal implementation object avoids these
issues and keeps the public interface stable and uncluttered. Sim-
ilarly, although Python permits monkey patching, using a clear
interface–implementation separation leads to more maintainable
and predictable codebases.

The idiom is not without limitations. Because Python lacks true
private attributes, users can still access the internal implementation
via attributes such as obj._impl if they choose to do so. The idiom
therefore relies partly on convention and documentation. In addi-
tion, delegating calls through multiple layers introduces a small
amount of overhead, although this is typically negligible compared
with the cost of the computation being performed. For small or
simple classes, introducing an implementation object may repre-
sent unnecessary complexity, and direct implementation within the
public class may suffice.



Towards a Pythonic PIMPL

Table 3: Practitioner cheat sheet: goals, Pythonic PIMPL strategies, and pitfalls.

Goal/pressure What to do Pitfall and mitigation
API stability under internal churn Keep a small stable interface; delegate behavior to _impl Users may rely on _impl; mitigate via docs,

avoid reexporting internals, and tests that pin
the public API

Dependency isolation/lazy imports Move heavy/optional dependencies into implementation/pri-
vate modules; import lazily (method scope or module
__getattr__)

Circular imports or surprising side effects; mit-
igate with deferred imports and clear import
boundaries

Backend flexibility Select backend in constructor (i.e., __init__)/factory; keep
one public API

Non-obvious behavior changes; mitigate with
explicit configuration and documented selection
rules

Reduced reachable internals Curate exports (__all__); keep implementations in private
modules

No true privacy; mitigate with conventions and
tooling/linting

Testability Allow injecting/monkey patching/swapping implementa-
tions behind the interface; test the public contract

Over-mocking internals; mitigate by focusing
tests on public behavior

Despite these limitations, many large Python systems stand to
benefit from the PIMPL idiom. It provides a clear structure for man-
aging internal change, reduces visible dependencies, and supports
multiple implementations behind a consistent public API. These
qualities make it a practical tool for improving the modularity and
maintainability of evolving Python codebases. The key benefits and
limitations of the idiom are summarized in Table 4.

7 Conclusion
This paper has examined how the classical PIMPL idiom can be
applied effectively in Python. This technique uses opaque delega-
tion to implement a stable public interface backed by a changeable,
hidden implementation. Although the idiom originated in C++ to
address compilation dependencies and binary compatibility, its
structural idea of separating a stable public interface from a change-
able internal implementation maps naturally onto Python’s object
model. A Python class that stores an internal implementation ob-
ject in an attribute such as self._impl can preserve a clear and
consistent public API while allowing internal logic, dependencies,
and performance strategies to evolve freely.

The use of PIMPL-style delegation in Python provides several
practical advantages for large or long-lived libraries. Heavy or
optional dependencies can be isolated inside the implementation
object and imported only when needed. Multiple backend imple-
mentations can be selected at runtime without affecting the visi-
ble structure of the interface. Internal algorithms and data struc-
tures can be refactored or replaced without requiring changes to
user code. These capabilities are increasingly important as Python
becomes a foundation for scientific computing, data processing
pipelines, and high-performance applications.

Although Python does not enforce strict separation between pub-
lic and private components, adopting a PIMPL-inspired structure
can help developers maintain cleaner boundaries, reduce clutter in
public APIs, and limit unintended coupling between modules. By
routing interactions through a small, stable interface and hiding
volatile details in an internal implementation, the pattern encour-
ages clients to depend on higher-level abstractions. In practice, this
widens the dependency graph, localizes the impact of changes, and
allows subsystems to evolve semi-independently behind a closed,

implementation-specific namespace. The same separation also sup-
ports practical testing strategies in which implementations are
swapped or mocked behind the interface.

Although the PIMPL idiom is already used informally in various
parts of the Python ecosystem, articulating how and why it applies
to Python offers value to practitioners seeking better modularity
and maintainability. The Pythonic PIMPL terminology provides a
useful conceptual framework for thinking about stable interfaces
and flexible internal structure in Python software.

7.1 Limitations and Future Work
This work is primarily conceptual and illustrative. We have not yet
conducted a systematic empirical study of how Python projects
adopt PIMPL-like structures over time, nor measured the impact
of explicit interface–implementation separation on maintenance
costs, import-time performance, or defect rates. Such studies would
require sampling a large corpus of real-world repositories, classify-
ing their architectural patterns, and tracking their evolution across
versions.

Another limitation is that Python’s lack of enforced privacy
means that the pattern relies on social conventions and documen-
tation. Practitioners may still reach into internal attributes such as
_impl when debugging or experimenting, potentially undermin-
ing the intended encapsulation. Tooling support (e.g., linters that
flag access to attributes documented as internal or that check im-
ports against a declared public API surface) could help reinforce
the intended boundary.

Future work could proceed in several directions. One avenue is
to carry out empirical studies of PIMPL-like structures in major
Python packages, quantifying how often they arise and how they
affect long-term evolution in practice. A second direction is the
design and evaluation of library templates, refactoring assistants,
or code generators that reduce the boilerplate associated with in-
terface/implementation delegation and make a Pythonic PIMPL
structure easier to adopt consistently. A third direction involves
integration with type checkers and IDEs, so that tools can provide
stronger support for distinguishing public and private APIs, for
navigating between interfaces and their implementations in large
codebases, and for warning when clients depend on undocumented
internals.



Saravanos, et al.

Table 4: Pythonic PIMPL: practitioner summary of benefits and limitations.

Category Item

Benefits

API stability under internal churn: Refactor algorithms/data structures while preserving public entry points.
Dependency isolation and lazy imports: Keep optional or heavy dependencies out of the import path until needed.
Backend flexibility: Support multiple interchangeable implementations behind a single interface.
Reduced “reachable internals” risk: Discourage users from depending on accidental internals by routing access
through a curated interface.
Testability: Swap implementations or inject mocks while testing the same public contract.

Limitations
No true privacy: _impl remains accessible via introspection; the boundary is partly social or organizational.
Indirection overhead and debugging friction: Stack traces and performance profiling may span delegation layers.
Over-engineering risk: For small, internal-only components, the extra structure can reduce clarity rather than improve
it.

References
[1] Jan Bosch. 1998. Design Patterns as Language Constructs. J. Object-Oriented

Program. 11, 2 (May 1998), 18–32.
[2] Brett Cannon. 2011. PEP 399 – Pure Python/C Accelerator Module Compatibility

Requirements. https://peps.python.org/pep-0399/. Accessed December 3, 2025.
[3] John Carolan. 1989. Constructing Bullet-Proof Classes. In Proceedings of C++ at

Work ’89. SIGS Publications.
[4] James O. Coplien. 1992. Advanced C++ Programming Styles and Idioms. Addison–

Wesley, Reading, MA.
[5] cppreference.com contributors. 2024. PImpl. https://en.cppreference.com/w/cpp/

language/pimpl. Accessed December 3, 2025.
[6] Bartlomiej Filipek. 2018. The Pimpl Pattern – What You Should Know. https:

//dzone.com/articles/the-pimpl-pattern-what-you-should-know. Accessed De-
cember 29, 2025.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software (1st ed.). Addison-Wesley,
Boston, MA, USA.

[8] GeeksforGeeks. 2025. Gang of Four (GOF) Design Patterns. https://www.
geeksforgeeks.org/system-design/gang-of-four-gof-design-patterns/. Accessed
December 29, 2025.

[9] Ralf Gommers, Stéfan van der Walt, Nathan Goldbaum, and Mateusz Sokół. 2023.
NEP 52 — Python API Cleanup for NumPy 2.0. https://numpy.org/neps/nep-0052-
python-api-cleanup.html. NumPy Enhancement Proposal. Accessed December
29, 2025.

[10] Hacker News users. 2024. Discussion of the PIMPL idiom in the context of C++ build
times. https://news.ycombinator.com/item?id=40192673. Accessed December
29, 2025.

[11] David R. Hanson. 1997. C Interfaces and Implementations: Techniques for Creating
Reusable Software. Addison-Wesley Professional, Reading, MA.

[12] Marcus D. Hanwell. 2023. PIMPL, Stability and C++ Libraries. https://cryos.
net/2023/04/pimpl-stability-and-c-libraries/. Blog post. Accessed December 11,
2025.

[13] KDE Community. 2025. Binary Compatibility Issues With C++. https://
community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B Sec-
tion “Using a d-Pointer”. Last edited November 5, 2025. Accessed December 3,
2025.

[14] Noah Kim. 2025. Inside HRT’s Python Fork: Leveraging PEP 690 for Faster Im-
ports. https://www.hudsonrivertrading.com/hrtbeat/inside-hrts-python-fork/.
Accessed December 3, 2025.

[15] Ivan Levkivskyi. 2017. PEP 562 – Module __getattr__ and __dir__. https:
//peps.python.org/pep-0562/. Accessed December 3, 2025.

[16] Bradley C. Lowekamp, David T. Chen, Luis Ibáñez, and Daniel Blezek. 2013. The
Design of SimpleITK. Front. Neuroinform. 7 (2013), Article 45. doi:10.3389/fninf.
2013.00045. Accessed January 15, 2026.

[17] Germán Méndez Bravo and Carl Meyer. 2022. PEP 690 – Lazy Imports. https:
//peps.python.org/pep-0690/. Status: Rejected. Accessed December 3, 2025.

[18] Scott Meyers. 1998. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs (2nd ed.). Addison-Wesley Professional, Boston, MA.

[19] Microsoft Corporation. 2025. Pimpl for Compile-Time Encapsulation (Mod-
ern C++). https://learn.microsoft.com/en-us/cpp/cpp/pimpl-for-compile-time-
encapsulation-modern-cpp?view=msvc-170. Accessed December 11, 2025.

[20] NumPy Developers. [n. d.]. Universal functions (ufunc) — NumPy Documenta-
tion. https://numpy.org/devdocs/reference/ufuncs.html. Accessed December 29,
2025.

[21] NumPy Developers. 2025. Writing custom array containers. https://numpy.org/
doc/stable/user/basics.dispatch.html. Accessed December 3, 2025.

[22] Tim Ottinger. 2008. Python Pimpl Pattern. https://agileotter.blogspot.com/2008/
11/python-pimpl-pattern.html. Blog post. Accessed December 3, 2025.

[23] pandas Development Team. [n. d.]. Internal API and implementation details.
https://pandas.pydata.org/docs/development/. Accessed January 15, 2026.

[24] Tim Peters. 2004. PEP 20 – The Zen of Python. https://peps.python.org/pep-0020/.
Accessed December 3, 2025.

[25] PyCA Cryptography Contributors. 2025. pyca/cryptography: src/cryptog-
raphy/hazmat/primitives/ciphers/base.py (main). https://github.com/pyca/
cryptography/blob/main/src/cryptography/hazmat/primitives/ciphers/base.py
Accessed December 29, 2025.

[26] Python Packaging Authority. 2017. Entry Points Specification. https://packaging.
python.org/specifications/entry-points/. Accessed December 3, 2025.

[27] Python Packaging Authority. 2025. Creating and Discovering Plugins. https:
//packaging.python.org/guides/creating-and-discovering-plugins/. Accessed
December 3, 2025.

[28] Python Software Foundation. 2025. pickle — Python object serialization. https:
//docs.python.org/3/library/pickle.html. Accessed December 3, 2025.

[29] Python Software Foundation. 2025. socket — Low-level networking interface.
https://docs.python.org/3/library/socket.html. Accessed December 3, 2025.

[30] Python Software Foundation. 2025. xml.etree.ElementTree — The Element-
Tree XML API. https://docs.python.org/3/library/xml.etree.elementtree.html.
Accessed December 3, 2025.

[31] Qt Project. 2024. D-Pointer. https://wiki.qt.io/D-Pointer Last edited August 28,
2024. Accessed December 3, 2025.

[32] Leodanis Pozo Ramos. 2025. Python’s __all__: Packages, Modules, andWildcard
Imports. https://realpython.com/python-all-attribute/. Accessed December 3,
2025.

[33] Leodanis Pozo Ramos. 2025. Single and Double Underscores in Python Names.
https://realpython.com/python-double-underscore/. Accessed December 3, 2025.

[34] Scientific Python Developers. 2024. lazy_loader: Populate Library Namespaces
Without Incurring Immediate Import Costs. https://github.com/scientific-python/
lazy_loader Accessed December 11, 2025.

[35] SciPy community. 2024. scipy.fft.set_backend — Set FFT back-
end. https://docs.scipy.org/doc/scipy-1.14.0/reference/generated/scipy.fft.set_
backend.html. Accessed December 3, 2025.

[36] SciPy community. 2025. SciPy API. https://docs.scipy.org/doc/scipy/reference/.
Accessed December 3, 2025.

[37] Brett Slatkin. 2015. Effective Python: 59 Specific Ways to Write Better Python.
Addison-Wesley Professional.

[38] Mateusz Sokół. 2023. Refining NumPy’s Python API for its 2.0 release. https:
//labs.quansight.org/blog/numpy-python-api-cleanup. Accessed December 3,
2025.

[39] Herb Sutter. 1998. The Joy of Pimpls (or, More About the Compiler-Firewall
Idiom). C++ Rep. 10, 7 (July/August 1998). Reprinted at http://www.gotw.ca/
publications/mill05.htm. Accessed December 29, 2025.

[40] Herb Sutter. 1998. Pimpls – Beauty Marks You Can Depend On. C++ Rep. 10, 5
(May 1998). Reprinted at http://www.gotw.ca/publications/mill04.htm. Accessed
January 15, 2026.

[41] Herb Sutter. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley Professional, Reading, MA.

[42] Herb Sutter. 2011. GotW #100: Compilation Firewalls. https://herbsutter.com/
2011/11/04/gotw-100-compilation-firewalls/. Accessed December 3, 2025.

[43] Stéfan van der Walt, Jon Crall, Dan Schult, and Jarrod Millman. 2021. SPEC 1 –
Lazy Loading of Submodules and Functions. https://scientific-python.org/specs/
spec-0001/. Accessed December 3, 2025.

[44] Guido van Rossum, Barry Warsaw, and Nick Coghlan. 2001. PEP 8 – Style Guide
for Python Code. https://peps.python.org/pep-0008/. Accessed December 3,

https://peps.python.org/pep-0399/
https://en.cppreference.com/w/cpp/language/pimpl
https://en.cppreference.com/w/cpp/language/pimpl
https://dzone.com/articles/the-pimpl-pattern-what-you-should-know.
https://dzone.com/articles/the-pimpl-pattern-what-you-should-know.
https://www.geeksforgeeks.org/system-design/gang-of-four-gof-design-patterns/.
https://www.geeksforgeeks.org/system-design/gang-of-four-gof-design-patterns/.
https://numpy.org/neps/nep-0052-python-api-cleanup.html
https://numpy.org/neps/nep-0052-python-api-cleanup.html
https://news.ycombinator.com/item?id=40192673.
https://cryos.net/2023/04/pimpl-stability-and-c-libraries/.
https://cryos.net/2023/04/pimpl-stability-and-c-libraries/.
https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B
https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B
https://www.hudsonrivertrading.com/hrtbeat/inside-hrts-python-fork/
https://peps.python.org/pep-0562/
https://peps.python.org/pep-0562/
https://doi.org/10.3389/fninf.2013.00045.
https://doi.org/10.3389/fninf.2013.00045.
https://peps.python.org/pep-0690/
https://peps.python.org/pep-0690/
https://learn.microsoft.com/en-us/cpp/cpp/pimpl-for-compile-time-encapsulation-modern-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/pimpl-for-compile-time-encapsulation-modern-cpp?view=msvc-170
https://numpy.org/devdocs/reference/ufuncs.html.
https://numpy.org/doc/stable/user/basics.dispatch.html
https://numpy.org/doc/stable/user/basics.dispatch.html
https://agileotter.blogspot.com/2008/11/python-pimpl-pattern.html
https://agileotter.blogspot.com/2008/11/python-pimpl-pattern.html
https://pandas.pydata.org/docs/development/
https://peps.python.org/pep-0020/
https://github.com/pyca/cryptography/blob/main/src/cryptography/hazmat/primitives/ciphers/base.py
https://github.com/pyca/cryptography/blob/main/src/cryptography/hazmat/primitives/ciphers/base.py
https://packaging.python.org/specifications/entry-points/
https://packaging.python.org/specifications/entry-points/
https://packaging.python.org/guides/creating-and-discovering-plugins/
https://packaging.python.org/guides/creating-and-discovering-plugins/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://wiki.qt.io/D-Pointer
https://realpython.com/python-all-attribute/
https://realpython.com/python-double-underscore/
https://github.com/scientific-python/lazy_loader
https://github.com/scientific-python/lazy_loader
https://docs.scipy.org/doc/scipy-1.14.0/reference/generated/scipy.fft.set_backend.html
https://docs.scipy.org/doc/scipy-1.14.0/reference/generated/scipy.fft.set_backend.html
https://docs.scipy.org/doc/scipy/reference/
https://labs.quansight.org/blog/numpy-python-api-cleanup
https://labs.quansight.org/blog/numpy-python-api-cleanup
http://www.gotw.ca/publications/mill05.htm
http://www.gotw.ca/publications/mill05.htm
http://www.gotw.ca/publications/mill04.htm
https://herbsutter.com/2011/11/04/gotw-100-compilation-firewalls/.
https://herbsutter.com/2011/11/04/gotw-100-compilation-firewalls/.
https://scientific-python.org/specs/spec-0001/
https://scientific-python.org/specs/spec-0001/
https://peps.python.org/pep-0008/


Towards a Pythonic PIMPL

2025. [45] Wikipedia contributors. 2008. Opaque pointer. https://en.wikipedia.org/wiki/
Opaque_pointer. Accessed December 3, 2025.

https://en.wikipedia.org/wiki/Opaque_pointer
https://en.wikipedia.org/wiki/Opaque_pointer

	Abstract
	1 Introduction
	2 Background
	2.1 Definitions and Relationships of Opaque Pointers, Handles, and PIMPL
	2.2 The PIMPL Idiom in C++
	2.3 Encapsulation in Python
	2.4 Implicit PIMPL-Like Patterns in Python

	3 Why Python Might Need a PIMPL Pattern
	4 The Pythonic PIMPL Pattern
	4.1 Name and Also Known As
	4.2 Intent
	4.3 Motivation
	4.4 Applicability
	4.5 Canonical Example
	4.6 Participants and Responsibilities
	4.7 Benefits and Trade-Offs

	5 Known Uses and Related Patterns
	5.1 Pythonic PIMPL Implementations Over Private C Extensions
	5.2 Lazy Public Namespaces in Scientific Python
	5.3 Hidden Cores and Accelerators in Large Libraries
	5.4 The Pythonic PIMPL Idiom in Practice

	6 Discussion and Practical Considerations
	7 Conclusion
	7.1 Limitations and Future Work

	References

