Vagueness in the English progressive

- Diana Nyad is swimming from Cuba to Florida.
- Clarence was wiping out the Roman army. (2)
- (3) ...

The proposal:

- (1) is vague in the same way that an adjective like *healthy* is vague.
- In both cases, vagueness arises as a result of comparing multiple alternatives
- along multiple criteria.

Vagueness effects: sorites paradox

- Premise 1. (At the reference time in the world of evaluation, Nyad has swum half the distance on a path from Cuba to Florida.) Nyad is swimming from Cuba to Florida.
- Premise 2. Any event of swimming from Cuba to Florida in which 1m less is swum is still an event of swimming from Cuba to Florida.
- Conclusion. (At the reference time in the world of evaluation, Nyad has swum 3 meters.) ?? Nyad is swimming from Cuba to Florida.

Vagueness effects: borderline cases

- (4) Diana Nyad is swimming from Cuba to Florida.
- If Nyad has swum half the distance, speakers are disposed to treat (4) as true.
- If Nyad has swum only a few meters, speakers are disposed to treat (4) as false (or infelicitous).
- What if Nyad has swum 1/8 of the distance? 1/16?

Not all progressives display vagueness effects

- Ruth is drawing a circle. (5)
- Sorites failure

Premise 2. # Any event of drawing a circle in which 1 degree less (of an arc) is drawn is an event of drawing a circle.

Borderline cases failure

(5) is true if Ruth has drawn 1/8, $1/16 \dots$ of a circle.

The proposal

A modal theory of the progressive +a gradable theory of modality Landman 1992, Portner 1998 Lassiter 2010, Klecha 2011

- A gradable theory of modality (Lassiter 2010:212)
 - real numbers between 0 and 1 such that
 - \blacktriangleright prob(W) = 1 and
 - ▶ $prob(\phi \cup \psi) = prob(\phi) \cup prob(\psi)$
 - b. $[[likely(\phi)]] = 1$ iff $prob(\phi) > s$ determined standard s on the scale of possibility"
- A modal theory of the progressive (Portner 1998:16)
 - (7)which includes *i* as a non-final subinterval, such that ϕ is true at < i', w' >.

pprox "The progressive ϕ is true if, in the normal course of uninterrupted events, ϕ would have reached completion."

A gradable modal theory of the progressive

- subinterval.
- (9) $[[\operatorname{Prog}(\phi)]] = \lambda \phi_{\langle \iota, t \rangle} \lambda i . \exists i' [i \subset_{nf} i' \land \operatorname{prob}(\phi)(i') > s]$

Explaining vagueness effects, take 1

Both (relative) gradable adjectives (10a) and the progressive (10b) are interpreted with respect to a contextually determined standard.

- (10) a. $[[pos tall]] = \lambda x.tall(x) > s$
 - b. $[[\operatorname{Prog}(\phi)]] = \lambda \phi_{\langle \iota, t \rangle} \lambda i \exists i' [i \subset_{nf} i' \land \operatorname{prob}(\phi)(i') > s]$

Problems

- But this wrongly predicts that (5) is vague. (5) Ruth is drawing a circle.
- The proposal in (10b) does not explain the progressive's description sensitivity.
- (11) Clarence was crossing the street.
- (12) Clarence was walking into the path of an oncoming bus.

Unlikely Imperfectives

Timothy W. Grinsell

University of Chicago, Chicago, IL

(6) a. A probability space is a pair $\langle W, prob \rangle$, where W is a set of possible worlds and prob : $\mathcal{P}(W) \rightarrow [0, 1]$ is a function from subsets of W to

" ϕ is likely is true if ϕ 's probability is greater than a contextually

PROG(ϕ) is true at an interval-world pair < i, w > iff there is an event ein w such that i is e's event time and for all worlds w' in a modal base ordered by a non-interrupting ordering source, there is an interval i'

(8) PROG(ϕ) is true at a pair of an interval and world < i, w > iff there is an event e in w such that i is e's event time, ϕ is likely is true, and there is an interval i' such that $\langle i', w' \in \phi \rangle$ and i' includes i as a non-final

Explaining vagueness effects, take 2

- probability space.
- $prob(\cdot)$.

prob _i	prob
, y W ₁	, W ₃
∠ prob _i	∧ prob _k
W ₂	W ₁
∠ prob _j	<pre></pre>
W ₃	W ₂

Vagueness is an aggregation problem

Single-peaked orderings

The aggregation of multipeaked orderings leads to an intransitive aggregated ordering, and this intransitivity is responsible for vagueness effects.

Explaining the data

- wildly.
- to agree.
 - \Rightarrow

The key is in how the standard is set.

Let the standard-setting function s be a choice function defined over the

(13) s(W, prob) returns, for every nonempty subset S of W, the "best world" w of S with respect to $prob(\cdot)$ such that $\forall v | v \in S \rightarrow prob(w) \geq prob(v)$]. Allow multiple different orderings $prob_i(\cdot)$, which are aggregated into a final

Sen's (1970) Condition of Value Restriction: no multi-peaked orderings:

Multipeaked orderings

Unlikely imperfectives are just those in which judgments of likelihood may vary

The available orderings disobey Sen's Condition of Value Restriction, resulting in an intransitive ordering: vagueness effects Run-of-the-mill progressives are those in which judgements of likelihood are apt

> The available orderings obey Sen's Condition of Value Restriction, resulting in a transitive ordering: no vagueness effects