AN ALTERNATIVE ACCOUNT OF IMPRECISION Stephanie Solt (solt@zas.gwz-berlin.de) // Centre for General Linguistics, Berlin // SALT 24, May 30-June 1, 2014

. Basic Facts

Round numbers allow approximate interpretations:

- (1) a. Mabel owns <u>one hundred</u> sheep.
 - b. The path is <u>fifty meters</u> long.
 - c. Sue arrived at three o'clock.
 - d. The meeting lasted forty-five minutes.
 - 'Roughly 100'; '50 +/- a couple meters'; 'about 3:00'; etc.

Non-round numbers are interpreted precisely:

- (2) a. Mabel owns <u>ninety-nine</u> sheep.
 - b. The path is <u>fifty-one meters</u> long.
 - c. Sue arrived at three-oh-one.
 - d. The meeting lasted forty-four minutes.

(Im)precision may be regulated overtly via approximators:

- (3) a. Mabel owns <u>about one hundred</u> sheep.
 - b. The path is roughly fifty meters long.
 - c. Sue arrived at approximately three o'clock.
 - d. The meeting lasted exactly forty-five minutes.

2. Theories of Imprecision

Pragmatic Halos (PH) – Lasersohn 1999

In addition to its denotation, each expression is associated with a contextually-determined set – its pragmatic halo – containing values that differ from the denotation in only pragmatically ignorable ways:

> 50 m $H_{C}(50 m)$

 $\llbracket fifty meters \rrbracket = 50 m$ $H_C(50 m) = \{..., 49m, 50m, 51m, ...\}$

- Imprecision as pragmatic loose talk (not true but 'close enough')
 - No immediate account of round/non-round distinction: if 3:01 in halo of 3:00, shouldn't 3:00 likewise be in halo of 3:01? Possibility: Asymmetry in similarity judgments (Tversky 1977).

Approximators operate on halos: *exactly* shrinks halo, while hedges such as *roughly* expand expression's denotation to include halo.

Scale Granularity (SG) – Krifka 2007

Results of measurement may be reported w.r.t. scales that differ in their level of granularity, conceptualized as density of representation points:

44m-45m-46m-47	m-48m-49m-50m-51m-52m-53m	n-54m-55m-56m		-60m
45m	50m	55m	•••	-60m
		50m		-60m

Imprecision = interpretation w.r.t. coarse-grained scale; round numbers occur on coarser scales.

Approximators determine scale choice (Sauerland & Stateva 2007): *exactly* specifies finest contextually available granularity level; *about*/ roughly/etc. specify coarsest level.

REFERENCES: Cummins, C., U. Sauerland, & S. Solt. 2012. Granularity and scalar implicature in numerical expressions. Linguistics and Philosophy 35:135–169. Davies, M. 2008-. The Corpus of Contemporary American English (COCA): 450 million words, 1990-present. Katzir, R. 2007. Structurally-defined alternatives. Linguistics and Philosophy 30: 669-690. Krifka, M. 2007. Approximate interpretations of number words: A case for strategic communication. In G. Bouma et al. (eds.), Cognitive foundations of interpretation, 111–126. Koninklijke Nederlandse Akademie van Wetenschappen. Lasersohn, P. 1999. Pragmatic halos. Language 75:522-551. Sauerland, U. & P. Stateva. 2007. Scalar vs. epistemic vagueness: evidence from approximators. Proceedings of SALT 17, 228-245. Tversky, A. 1977. Features of similarity. Psychological Review 84:327-352.

- (6) a. *more than 100* b. more than 110
- <u>Typical inferences</u>: 101 to 150 / 125 / 120 / 200 Typical inferences: 111 to 120 / 150

(Cummins et al. 2012)

Approximators in comparatives are NPIs.

Disallowed in positive sentences:

*Mabel owns more than about/roughly/approximately/exactly one hundred sheep. **Exception:** A: Mabel owns about 100 sheep B: No, she owns more than about 100.

But felicitous in negative sentences/downward-entailing contexts:

- (8) a. Mabel <u>doesn't</u> own <u>more than about one hundred</u> sheep.
 - no more than the **maximum** describable as *about one hundred* b. Mabel owns no more than about one hundred sheep.
 - c. John doubts that Mabel owns more than about one hundred sheep.
 - d. If Mabel owns more than about one hundred sheep, we'll run out of vaccine.
 - e. Every farmer who owns more than about one hundred sheep...
- (9) This station can accommodate <u>no more than exactly eight</u> trains per hour.

Supported via corpus data (COCA; Davies 2008-); exceptions mainly negative comparatives (*less than*) and specific domains (e.g. astronomy)

4. Issues for Existing Theories

For **PH**, precise interpretation of comparative is problematic for view that halos are compositionally derived:

- a. [[one hundred]] =100 b. $H_C(100) = \{..., 98, 99, 100, 101, 102, ...\}$
- a. [more than one hundred] = $\lambda D.max_n(D(n)) > 100$ (11)
 - b. $H_C(\lambda D.max_n(D(n)) > 100) = \{\dots, \lambda D.max_n(D(n)) > 98, \dots\}$
 - Incorrectly predicts (4) is assertable if 99 obtains; requires stipulation that comparative (like *exactly*) shrinks halo.

Comparatives raise further issue for analysis of approximators via **PH**:

- (12) $[about one hundred] = H_C(100) = \{..., 98, 99, 100, 101, 102, ...\}$
- Type mismatch (not discussed by Lasersohn); potentially resolved via choice function. Mabel owns about one hundred sheep. $\exists f$ [Mabel owns $f(H_C(100))$ sheep].
- But to yield correct interpretation, must stipulate maximally wide scope for \exists . $\neg \exists f[max_n(\text{Mabel owns } n \text{ sheep}) > f(H_C(100))] \times$ (8a,b):
 - $\exists f[\neg (max_n(\text{Mabel owns } n \text{ sheep}) > f(H_C(100)))] \checkmark$
- $\exists f [\text{John doubts} (max_n(\text{Mabel owns } n \text{ sheep}) > f(H_C(100)))] ?$ (8c):

SG avoids generating incorrect low readings; (*about*) one hundred denotes scalar region as a single unit.

• But existing SG theories do not account for: i) selection of fine scale granularity by comparative; ii) restricted distribution of approximators in comparatives; iii) implicatures with comparatives (2 granularities active at once).

5. Proposal - Part I: Granularity as Alternatives

a) Granularity as sets of alternatives

<u>Ruler metaphor</u>: continuous scale on which discrete hierarchical structure is imposed, allowing expression of measurements at various precision levels $ALT_{10m}(50 m) = \{..., 30 m, 40 m, 50 m, 60 m, ...\}$ $ALT_{1m}(50 m) = \{..., 48 m, 49 m, 50 m, 51 m, ...\}$

Per Krifka (2007), typical granularity levels based on:

- Powers of 10 and result of halving/doubling these
- Conventional measurement systems e.g. $ALT_{15 \min}(45 \min) = \{..., 30 \min, 45 \min, 60 \min, ...\}$

b) Truth relative to granularity level

Granularity level gran contextually determined via assignment function g.

Measure expressions have underlying precise denotation.

Truth relative to granularity assignment defined as: For a proposition φ containing a measure expression M and a degree *n* such that $\llbracket M \rrbracket^g = n$, $\llbracket \varphi \rrbracket^g = 1$ iff

 $\forall n' \in ALT_{gran}(n) \text{ and } M' \text{ such that } \llbracket M' \rrbracket^g = n',$

 $\llbracket \varphi \rrbracket^{g[gran=0]} = 1$ requires a smaller displacement of the actual measure than $\llbracket \varphi[M/M'] \rrbracket^{g[gran=0]} = 1;$

 $\llbracket \varphi \rrbracket^g = 0$ otherwise.

> Roughly: *M* is the best choice at granularity gran

c) Approximators introduce granularity functions

Truth definition in (b) associates measure expression with scalar segment. This is lexicalized by approximators, which map points to segments that <u>have</u> semantic status of (coarse-grained) degrees.

 $\llbracket approximator M \rrbracket^g = (n - gran'/2, n + gran'/2)$ for some gran'

- *exactly*: *gran'* is finest contextually possible choice for *gran*.
- *about, roughly,* etc.: *gran'* is coarsest contextually possible choice for *gran*.

6. Proposal - Part II: Approximators and Inferences

Mabel owns more than 100 sheep. Alternative: M. owns more than 150 sheep informativity + Scalar implicature: speaker not in position to assert more than 150.

Mabel owns more than about 100 sheep. Alternative: *M*. owns more than 100 sheep informativity = simplicity + assertable 🗸

Blocked: better alternative always assertable. Mabel owns no more than about 100 sheep. Alternative: M. owns no more than 100 sheep. informativity = simplicity + assertable ?

Ignorance implicature: speaker not in position to assert *no more than 100*.

more than about 100 **Y**no more than 100no more than about100 more than 100

Starting point: Alternatives defined structurally via deletion and substitution (Katzir 2007).

Communicative principle: Do not assert φ if there is an alternative φ' such that: *i*) φ' is 'better than' φ ii) φ' is weakly assertable

'Better than' defined in terms of **simplicity** and informativity. For Katzir, informativity equated with entailment. I extend this to also take into consideration (lack of) vagueness.

Crucial case: more than about 100 vs. more than 100 • More than about 100 unidirectionally entails more than 100. • More than 100 less vague; has sharp lower bound.

Proposal: these two factors cancel; neither of these alternatives ranked above the other in informativity. > Simplicity + entailment reversal in DE contexts \rightarrow NPI status of *more than about 100*

<u>Example</u>: g: gran $\rightarrow 5$ m

55 m 60 m

The rope is <u>fifty meters</u> long.

Situation a: TRUE (no closer alternative at 5 *m* level) **Situation b**: FALSE (45 m is closer than 50 m)

The rope is more than fifty meters long.

Situation a: TRUE (true at gran=0 with no displacement of the true value)

Situation b: FALSE (substituting *forty-five meters* for *fifty meters* yields expression true at *gran=0* with no displacement)

[[fifty meters]]^g

[about fifty meters]^g

cf. **about 0 people* but about 0 deg C

• Measure expressions: substitution constrained by gran; gives rise to granularity-based scalar implicatures