Journal of Atrtificial Intelligence Research vol (year) page Submitted submission-date; published publication-date

Significance Testing against the Random Model for Scoring Maels on
Top k Predictions’

Sofus A. Macskassy SMACSKAS@STERN.NYU.EDU
Information, Operations and Management Sciences
NYU Stern School of Business, 44 W. 4th St, New York, NY 10012

Abstract

Performance at top predictions, where instances are ranked by a (learnedpgamodel, has
been used as an evaluation metric in machine learning fiwusareasons such as where the entire
corpus is unknowne.g, the web) or where the results are to be used by a person mitiedl time or
resourcesd.g.,ranking financial news stories where the investor only has to look at relatively
few stories per day). This evaluation metric is primarileddo report whether the performance
of a given method is significantly better than other (bag@lmethods. It has not, however, been
used to show whether the resultsignificantwhen compared to the simplest of baselines — the
random model. If no models outperform the random model atengionfidence interval, then the
results may not be worth reporting. This paper introduceshrtique to perform an analysis of the
expected performance of the tépredictions from the random model givérand ap-value on an
evaluation datasép. The technique is based on the realization that the distoibwf the number
of positives seen in the top predictions follows ehypergeometric distributignwhich has well-
defined statistical density functions. As this distribatie discrete, we show that using parametric
estimations based on a binomial distribution are almostgbdann complete agreement with the
discrete distribution and that, if they differ, an intergiddn of the discrete bounds gets very close
to the parametric estimations. The technique is demomstiai results from three prior published
works, in which it clearly shows that even though perfornsisgreatly increased (sometimes over
100%) with respect to the expected performance of the random hfate = 0.5), these results,
although qualitatively impressive, are not always as §iggmt (p = 0.1) as might be suggested
by the impressive qualitative improvements. The techniguesed to show, giver, both how
many positive instances are needed to achieve a specifificigrce threshold is as well as how
significant a given to: performance is. The technique when used in a more globatgéstable
to identify the crossover points, with respectiowvhen a method becomes significant for a given
p. Lastly, the technique is used to generate a complete cowfideurve, which shows a general
trend over allt and visually shows where a method is significantly betten th& random model
over all values ofk.

1. Introduction

Consider a web search engine or a personalized news parthle former case, searching the web
often results in thousands or millions page hits. In thetathse, the site would give you the news
stories that fit your profile best. In both cases, what are gdigdooked at, and hence of interest,
are the highest ranked instances. How would one evaluateeasumne the value of the information
presented by the search engine or portal? A common measpredssion at topk predictions,
where the most commonly used valuesiadre5, 10, 20, 30, 100 (Dumais & Nielsen, 1992; Mitra,
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Singhal, & Buckley, 1998; Cohen, Schapire, & Singer, 1998gBal, Abney, Bacchiani, Collins,
Hindle, & Pereira, 1999; Basu, Hirsh, Cohen, & Nevill-Mangj 2001).

More generally, for this paper, we assume a binary clasditaask, where the problem ad-
dressed is that of evaluating a (learned) scoring model:

f: X =R, 1)

where f(-) returns a score far which can then be used to rank instances. Higher scoresaiedic
thatz should be ranked higher than arwith a lower score because it is more likely to be of the
positive class. The task is to evalugte) based on its performance given its tbpredictions—
e.g, the k highest scoring instanceas in a given data seD. Often, the topk comparison metric
has been used to compare two learned models to see whichhettiee performer, where “better”
is defined as having more true positives in the topredictions—the topic of this paper. This
metric is generally converted into precision or accuradppt (PQk), which is what is generally
reported. However, the basic question that is rarely askedhéether the performance is better than
what would be expected from thiandom model-a model which returns a random orderingZ»f
assuming all orderings are equally likely. It might well batta given model is significantly better
than another, but if neither performs better than what cbel@&xpected from the random model,
then the relative performance of the models are not thatastiag.

The main contribution of this paper is the introduction ofedficient technigue for generating
a confidence bound based brin O(k?) time. An extra boon as that it generates all the bounds
for 1,...,k in the process. Given p-value and an evaluation data $etwhere the labels are
known, the confidence bound will define how many positivesre@ded in the tog predictions
in order to outperform a random ranking with a confidencélof p). The technique needs only
two data characteristic parameters, sample si2eand the number of positivesV("), to generate
a confidence bound for a given' In the case oD, these parameters would be:

N = [D| (2)
Nt = |D¥|, Q)

where
Dt = {z;|x; € D,labelx;) = +}. (4)

Knowing N (and N ~) makes it possible to know exactly how many positives andatiegs are
left after seeing the top predictions (and observing how many of those were posilivesis fact

is a key in how the algorithm is derived and allows the boundset tailored to the characteristics
of the given data set as opposed to the more general caseniteirfata.

One straightforward way to calculate this bound is by coeréd) all possible orderings, or
rankings, ofD and picking the number of positives in témeeded such thgt —p) of all possible
rankings have at most that number of positives in their ko@nking. For example, to get the
random bound at = 5 with p = 0.05, you would need to compute the number of positives needed
in the top5 predictions in order to have at least as many positives asdlmiseen ir95% of all
rankings. Although it is trivial to examine all rankings BfwhenD is small, it quickly becomes
intractable to do examine th€! possible rankings &8 grows. The technique used here overcomes

1. We will later show how the requirement of knowifigycan be loosened to work in the infinite case as long as the
class distribution is known.
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this obstacle by first showing how the bounds can be calalfateall & in O(N?3) time, and then
gives an efficient algorithm which calculates the positinesded at tog, for k = 1,..., N in
O(N™T - N™)time andO(N) space.

The rest of this paper is outlined as follows: Section 2 dbssrthe technique for generating
the topk confidence bounds, Section 3 demonstrates the use of thisigee on published prior
results, and is followed by final remarks.

2. Top k Confidence Bounds for the Random Model

This section first describes the theory behind generatinonfidence bound for the expected per-
formance of the random model at tbpredictions, then describes &{N* - N ) implementation
to generate the confidence bound forka# 1, ..., N.

2.1 Generating the Topk Confidence Bound

Let R denote the set of all rankings ©fand letg;, € qx be the number of positives seen in the top
k instances of?; € R. Givenp andk, we can compute(k, p), the value which is the" largest

in qx, wherei = p||qx||. That is the value which represents the number of positieesied in the
top k& predictions in order to dominaté —p) of all the rankingsk; € R. However, computing this
number would require sorting,, which containgV! values and is therefore not tractable for large
data sets.

If we knew the distribution of values fay;, then we could use the distribution directly to com-
puten(k, p) by using the cumulative density function (cdf). Specifigall(k, p) would be the value
of ¢ at which the cdf equal&l —p). We observe thaijy, is ahypergeometric distributiof\Weisstein,
2002) with parameterd’ for population size Nt for success population size ahdor the sample
size. The distribution has the following statistical prdjses:

N+\ (N~
0 fori < max(0,k+ NT — N),
]
cdf(i, k) = > P(qr = j) for0<i<min(k, N¥), (6)
j=max(0,k+N+—N)
1 fori > min(k, NT)

where cdfi, k) is the cumulative density function representifigy;, < i|qx). Using these, calcu-
lating n(k, p) is straightforward:

n(k,p) = argmiin [cdf(i, k) > 1 — p] 7

Note that the hypergeometric distribution is a discretérithstion. Therefore,P(qr = i) is
defined only over discrete values ofindn(k, p) will necessarily be an integer. This creates a
possible problem when evaluating a given model. Often tepaesults are based on averaged runs
and are therefore not discrete but continuous. Furtt{éf,p) can be the same for a rangepst-for
example whert = 1, thenn(k, p) = 1 for anyp-value less thaé\]f\,;. A large range makes it harder
to generate fine-grained confidence bounds. In such casewauid have to either (1) truncate the
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Figure 1: Example cdf curves fa¥ = 200, Nt = 40 atk = 20. The horizontal line represents
p=0.5.

averaged resuli, (as seen in Equation 6) when computin@, p) equivalently report the smallest
p’-value,p’ > p, such that(k,p’) is defined, (2) interpolate between the two discrete valoat t
straddlen, or (3) use parametric estimationsrdfk, p) andp.

Fortunately, it is possible to estimat€¢andn) by taking advantage of the fact that the hypergeo-
metric distribution is very similar to the binomial distution. In fact, the two distributions converge
asN — oco. Therefore, it is possible to estimaiék, p) for any continuoug as well agp for any
given continuous using the following parametric estimation of the binomidf:c

B(z;i+1,N —1)

cdfpin(i, k) = L.(i + 1, N — i) = BGELN—1) (8)

wherez = NT+ andB(z;a,b) is the incomplete beta function:
B(z;a,b) = /u(a_l)(l —u)" Dy 9)
0

andB(a, b) is the complete beta functio®(a, b) = B(1;a, b), which for our domain always equals
1 and can therefore be ignored.) EstimatiB@p;a,b) is obviously much more computationally
intensive than using the discrete distribution. Not onlif immore efficient to use the discrete values
but, as we shall see, using interpolation gets very clos@dgtarametric estimations and ought
therefore to be used for efficiency reasons. Figure 1 shosvthtiee cdfs under consideration and
where they cross thg-value line at(1 — p) = 0.5.2 The figure clearly shows the problem when

2. We use gnuplot’s bet a function to compute the parametric cdf and the parametnimbs in the examples below.
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x is real, where the discrete cdf would always round up (it eessthe line at = 4). Second,
we see that the interpolated and parametric curves bottw@hch other very closely although the
parametric curve is not always in agreement even at thealéspoints. AsV increases, however,
these do converge and the parametric cdf ends up beinglyirtha same as the discrete cdf at the
discrete points. In the figure, the interpolated cdf intetsthe giverp-value line atr = 3.43 where
the parametric curve crossesmat 3.40. We also see that the interpolated curve does not always
fall above or below the parametric curve due to the parametnive being off at the discrete points.
Therefore, for small data sets, we cannot generally sayhehéte interpolated bound will be larger
or smaller than the parametric bound.

Computing the discrete version ofk, p) for a givenk is relatively inexpensive as computing

(%) can be done i (k) time. Therefore, calculating®,') - () fori = 0, ..., k takes, for each
k:
k
> 0(i) + Ok — i) = O(k?) (10)
=0
However, as we would need this for &llwe need to compute(k,p) fork =1,..., N:
N
> _O(k?) = O(N?) (11)
k=1

This can be optimized to run i@(N " - N7) as the next section will show.

2.2 An Efficient Implementation to Calculaten(k, p) for all k&

The efficient implementation works by calculatingk, p), onek at a time, fork = 1,..., N. Let
xf be the set of rankings which havepositives in their topt predictions. The implementation

is based on the following observation: the ratio of rankiimg? which also belong tmgfjll)) is

exactly (%) the ratio of positives that are left in the remainifg— & instances. The same

holds for the negative instances. The key additional oladienv is thakgfill)) contains not only

the rankings inc¥ which have a positive in thei + 15 prediction, but also the rankings kfi-q—l)
which donot have a positive in theik + 15t prediction. Both would result in rankings which have
i + 1 positives in theirk + 1 top-ranked instances.

=] _

For pragmatic reasons, the implementation uses the fresti$ = ~r = P(xp = 1), rather
than manipulate the large values [af:|. The above observations hold fof as well, and are
expressed more formally by the following:

Nt —4
P(+rt) = T (2
N~ —(k—1
P("’Vk) - NEk ! (13)
o= 1 (14)
ke j o ke .
P +|7‘Ei_11)) . rgi_ll)) +P (—|T‘Ei) 1)) . TEi) 1) 0<i<k
rf = P —|7‘Ef)_1) . rgf)_l) 1=0 , (15)
P(+r Y)Y i=k

1) ) T
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input: N*,N,p

begin:

1 N~ (N-N7)

2 NP |

3 t[0][0] « 1

4 fork=1,...,N

5 nP «— 0

6 min, <« max0,k—N")

7 max, < min(N*, k)

8 for n = min,, ..., max,

o varent— (%) Ak—1[n—1  n>0
0 else

10 parent = { SN]:IYZ%U -tk=1][n])  p<k

else

11 t[k][n] < parent+ parent
12 n? — nP + t[k|[n]
13 if (n? > p) and (N?[k] =) then
14 NPk] =n
15 endif
16 endfor
17 endfor

end

output: NP

Table 1: Pseudo code to generd¥é = {n(k,p)|k =1,...,N}.

where P(+|rF) (P (—|rF)) is the probability of having thé + 1" prediction be positive (negative).
The two boundary cases; andr§ clearly depend only oné,ﬁjg andr((]k_l), respectively. It is now

possible to reformulate Equation 6 by replaciigr, = j) with rf:

0 fori < max(0,k+ N*T — N),
4]
cdf(i, k) = 3 i for0 <i < min(k, NT), (16)
j=max0,k+N+—N)
1 for i > min(k, NT)

Table 1 shows a®(N* - N7) algorithm based on these observations. Note that since the
computation ofr[k][-] only requires the values of[k — 1][:], we only need to keep[k][-] and
r[k—1][-] in memory at any given time thereby keeping space usagk 19).
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Finally, note that the algorithm can easily be extended tallethe infinite data case by redefin-
ing P(+|rF) and P(—|r¥):

Poo (—Hrf)

Poo (—IrF) = (1=P(+)). (18)

P(+) 17)

In this case the algorithm would only need to know the clasgyinals and then be told the maxi-
mumk to generate its bounds for. As observed earlier, this willegate the binomial distribution.

3. Demonstration

This section demonstrates the use of topenfidence bounds to evaluate whether a model is per-
forming better than what would be expected from the randordeho

3.1 Data and Prior Results

The demonstration uses results from 3 prior studies thatrteg enough information (data set size,
number of positives and an evaluation using fops a measure) to make it possible to assess
significance. While there is much research in informatianieeal and text retrieval, such as at
the Text REtrieval Conference (TREG)where this technique could be useful, oftB(+-) is not
known or the class skew is so large {00 out of 1 million) that seeing even one positive in the top
10 is significant ap = 0.001.

The first data set comes from the “Stock Movement” problemunprior work (Macskassy,
Hirsh, Provost, Sankaranarayanan, & Dhar, 2001). The dataists of31,406 news stories col-
lected from newswires between January 5, 1999 and Septeiib&p99. The data contai6g22
positive stories, where a positive story was identified as

A news story is positive (interesting) if the stock price af@npany mentioned in the
story moves significantly in the hour following the story,

where a “significant movement” of a stock was defined as mae tine standard deviation from
the normal one-hour movement of that stock. This test sétdiec 16, 769 stories,3123 of which
were labeled as positive (interestind)(+) = 0.186]. The evaluation measure used in this work
was the number of positives at t6p10, 20, 100 and their relative improvements over the expected
performance (where the number of positives are expecteeé to-°(+).) This is equivalent to
calculating the significance boundat= 0.5. Results were reported for three commonly used text
classification systems: Rocchio (Joachims, 1997; Schapirger, & Singhal, 1998; Sebastiani,
2002), Naive Bayes (Domingos & Pazzani, 1996; Joachims7189&chell, 1997) and Maximum
Entropy (McCallum & Nigam, 1998; Nigam, Lafferty, & McCatw, 1999)! The performance
reported in the paper ranged fraito 4 positives in the to (versusl positive expectedy to 5
positives in the tof 0 (versus2 expected)f to 9 in top 20 (versest expected), and2 to 45 in the

top 100 predictions (versus an expecte@lpositives). The improvements are clearly impressive, but
are they significant?

3.http://trec. nist.gov
4. Using the RINBOW text-classification system versi@i020213 (McCallum, 1996).
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The second set of results are based on the task of assigringtsad papers to reviewers (Du-
mais & Nielsen, 1992). The technique used was Latent Sembrttéxing (LSI) (Deerwester, Du-
mais, Landauer, Furnas, & Harshman, 1990), using varicdisceri dimension sizes. The relevant
evaluation measure reported was precision atitopP@10). We consider the data set consisting
of 117 papers submitted to the ACM Hypertext 1991 conference. Hta dontains full feedback
on relevance from5 reviewers, where the ratings ranged from not relevant @oréiviewer’s ex-
pertise) to very relevant. The mean number of relevant papes47 (giving P@Q10 = 0.40).5
The reported result on this data wB€210 = 0.57. This is equivalent to having.7 positives in
the top10 predictions. The second result reported in this paper wasat) benchmark data sets,
which had a total number &629 documents. The performance reported Wasl0 = 0.59, or 5.9
positives in the tod 0 predictions, again with an expectétf10 = 0.40.

The third set of results is also based on assigning techpigadrs to reviewers (Basu et al.,
2001). This data set consists 256 papers submitted to AAAI-1998, again with feedback on
relevance from the reviewers. The technique used was an Rb8ptem called WHIRL (Cohen,
1998), which has the added functionality of being able toalnsj based on text similarity rather
than exact matching. The methodology used here was to derefaody of text that profiles a
reviewer and to match it against a body of text representipgpeer to see if there is a good fit. On
average, reviewers founid papers to be relevanP(+) = 0.07). The relevant evaluation measure
used wasP@10 and P@30. Various profiling representations were used such as whethese a
reviewer's home page, published papers or both. To prediethver to assign a paper to a reviewer,
this profile was either matched to the paper’s abstraat, tyword or any possible combination
thereof. The values dP@10 ranged fronD.210 to 308 and the values oP@30 ranged fronD.169
t0 0.217.

3.2 Comparison to Random Confidence Bounds for Specific

While the performances for the stock movement problem aarigl well above the expected per-
formance using the random modelat 0.5, are theysignificantlyabove what could be expected
from the random model? Using the “stock-movement” tests#t@data set from which to generate
the random confidence bounds result@ironsisting of N = 16, 769 instances withV ™ = 3123

of those being positive.

Freezingk and p to particular values, it is now possible to ask whether tipored results
are indeed significant. Specifically, the study reportedieglfork € {5,10,20,100}. We will
considerp € {0.100,0.001}. To evaluate the significance of the reported results, twmthneed
be considered:

1. Givenp andk, how many positives would be expected? To answer this, vezéeandk,
and solve forj in Equation 7.

2. How significant would it be to seg¢ positives in topk predictions? This is answered by
freezingi andk, and computing = 1 —cdf(k, 7) using the cdf function given in Equation 16.

The algorithm shown in Table 1 can easily be modified eithgtqaeturn the number of ex-
pected positives, giveh andp, or (b) to return thep-value for a giverk andn™, the number of
observed positives in those tép Table 2 shows. ™, the number of positive instances in each of the

5. One global threshold on the reviewer relevance ratingusasd to define 'relevant.
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Prior n(xg, p) Rocchio Maximum Entropy Naive Bayes
k p=0.100 p=0.001 n+ P n+ P n+ P
5| 093] 2/ 1.72/ 1.58| 4/ 3.84/ 3.57| 2 0.048/ 0.048| 0 0.643/ 0.643| 4 2.2e7%/2.2e7*
10| 1.86| 3/ 2.99/ 2.98| 6/ 5.88/ 5.73| 5 0.004/ 0.004| 3 0.098/ 0.098| 4 0.025/ 0.025
20| 3.72| 6/ 5.59/ 5.50|10/ 9.40/ 9.25| 8 0.006/ 0.006| 9 0.001/ 0.001| 6 0.063/ 0.063
100{18.62|24/23.18/23.17(31/30.91/30.92 |32 4.1e*/4.3e™* |45 3.3¢719/3.8¢710|39 5.1e77/5.5¢~"

Table 2: Evaluation of performance on the “stock-movematdta fork = {5,10,20,100}.
Shown are the tog bounds. The first column shows the expected performance at
p = 0.5 (the prior). The next two groupings show the expected perémice (dis-
crete/interpolated/parametric) at= 0.100 andp = 0.001. The next three groupings
show the reported number of positives for edcfor each method:(*) along with the
computedp-value (discrete/parametric).

top k£ brackets, fork € {5,10,20,100}. Three possible bounds were generated for gachlue,
either the discrete bound (finding the smallest integer wlwo$ is larger tharl—p)), interpolation
between the discrete bounds straddling- p), and finally the parametric bound. Two things are
apparent from the numbers in the table. The first is that athadhe methods generally were able
to outperform the random modelzat= 0.5, often by a large margin, the improvements were not as
significant as they qualitatively look uniéil becomes large. The second noteworthy observation is
that the computeg-values for the discrete and parametric bounds are almeal/alequal as seen

in the last three groupings. This is due to having discrelgegforn™, where the parametric and
discrete cdfs generally should be the closest as observedjime 1. For large data sets as this,
the binomial estimation of(%, p) will be slightly lower than that of the discrete bound, bugkr
than the interpolated bound. This is due to the curvaturbettf at the p-values we generally are
interested in. Figure 2 highlights the bounds generateth&yparametric and interpolated methods
for p = 0.1 andp = 0.01, as well as the curves used to generate these bounds. As veieealy
see, the interpolated curve only touches the parametricecatr the discrete points and is other-
wise below it® Therefore, it will cross the-value line for any givem later (with respect ta*)
than the parametric curve. This fact should lead one to colecihat using parametric bounds will
yield better bounds when the values whgsealues are to be estimated are real. However, since
the interpolated bounds are very close to the parametriod®and generally are slightly more
conservative, then you should consider using them as tleega@anputed more efficiently than the
parametric bounds. Further, the parametric bounds areraoisg for smaller data sets as we shall
see below.

Looking at the numbers from the discrete distribution, we #®&t only Naive Bayes is sig-
nificantly better than the random model/at= 5. However, it then becomes less significant at
k = 10,20 until starting to improve again. Rocchio, on the other haadyetter atc = 10 with
p = 0.025, but it has a slower rate of improvementfasincreases than that of Maximum Entropy,
which is the best a = 20 with p = 0.006. All of them do perform significantly bettep(< 0.001)
than the random model &t= 100.

6. This is always the case for larger data sets, althouglei dot happen for smaller data stes as shown in Figure 1 and
as we will see below.
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Interpolation vs. Parametric
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Figure 2: Figure showing why parametric bounds will gergréle smaller than interpolated
bounds.

Size| Prior n(x10,p) Reported = Computed

(p=0.5)| p=0.100 | p=0.001 | PQ@10 p-value

Submitted Abstracts 117| 4.0 6/5.09/5.50 | 8/7.88/8.22 5.7 0.166/0.088/0.079
All Datasets 8269 4.0 6/5.59/5.50 | 9/8.42/8.22 5.9 0.166/0.066/0.062

Table 3: Result for review assignments on Hypertext'91 aedchmark datasets (Dumais &
Nielsen, 1992). The table shows the topounds, based on prior, expected performance
with p = 0.100 andp = 0.001 (discrete/interpolated/parametric), a”R@10 results as re-
ported in the prior study with their computgevalues (discrete/interpolated/parametric).

10
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Evaluation Size| Prior n(xg,p) Reported Computed

Measure (p=0.5)| p=0.100 | p=0.001 | num+ p-value
Worst (h+A)| PQ10 256| 0.70 [2/1.40/1.28|4/3.69/3.54| 2.10 |0.026/0.023/0.024
Worst (h+A)| P@30 256| 2.10 |4/3.45/3.45|7/6.56/6.89| 5.07 |0.011/0.010/0.015
Best (h+KT) PQ@10 | 256| 0.70 |[2/1.40/1.28|4/3.69/3.54| 3.08 |0.003/0.003/0.003
Best (h+K) P@30 256| 2.10 |4/3.45/3.45|7/6.56/6.89| 6.51 |0.002/0.001/0.002

Table 4: Results for paper assignment prediction for AAAB8 submissions (Basu et al., 2001).
It shows the number of positives in tdg based on prior, expected performance (dis-
crete/interpolated/parametric) with= 0.100 andp = 0.001, and results as reported in
the prior study along with the computgevalues (discrete/interpolation/parametric).

We next analyze the reported performance of the LSI tecleniquthe Hypertext'91 data and
on the 10 benchmark data sets. Table 3 shows the results ah#igsis. Although the reported
results show an increase of the relevant documents in thédt@pedictions fromd to 5.9 (which
is truncated ta for the discrete case as is called for in Equation 6), thisrawpment is not as
significant as one might have expected with= 0.081 andp = 0.059 for the two interpolated
bounds. The table shows clearly that it is possible to get ¢krse to the parametric bound by
using interpolation, whereas using the discrete boundsfaby a large margin. This argues that if
one were to use the discrete bounds, then interpolationsmakee sense than truncating the values.
We again see that the parametric bound, when computing, p) for a given value op, contains
is on the order 06.5 fewer positives in the top than using the discrete bound.

The last reported results we analyze is that of predictingeveer assignment fitness 256 of
the papers submitted to AAAI-1998 (Basu et al., 2001). Tdbtébows the significance of the best
and worst results reported, where the worst reported sefaitboth PQ10 and P@30 used the
homepage as a profile for a reviewer and matched it againstat$teact of the paper. For the best
results, both again used the homepage as the profile of tlesvawvhich was then matched against
either the keywords and title of the papé&t@10) or only the keywords #@30). The table shows
that even the worst results f6t@Q10 were fairly significant withp = 0.023, where the worst results
for P@Q30 were even more significant at= 0.010. The best results were highly significant for both
values ofk, again with a higher significance &sincreased. Again, we see very close agreement
between the bounds found using the parametric functionhanidterpolated method. Interestingly,
we see that for the tw&@30 results, they values were slightly lower for the discrete distribution
over that of the parametric method. Performing the interfpmh made this difference even larger.
We plotted the two cdf curves as before to investigate thigbier. Figure 3 highlights the relevant
part of the P@Q30 curves. Two noteworthy things happen. First, we see thaintiegration falls
apart in two places for small values of. Second, we see that the interpolated curve actually is
partly above the parametric curve, as opposed to what wers#we ifirst case study. This accounts
for why we see the difference jmvalues. This pattern is consistent for smaller data sets.

To summarize, we found in all three studies that the repossdlts were significant at least at
p < 0.1. In doing so, we found that using interpolation to estimatetvalues is generally a very
good approximation to the parametric values and shoul@fber be used due to its computational
efficiency. For generating the bounds, this was not alwag#se where the interpolated bounds
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Figure 3: When the parametric function fails.

were shown to be slightly larger than the parametric bountiereas the discrete bounds were the
most restrictive of them all. We further found that the pastic bounds were questionable for
smaller data set sizes and should generally not be usedswdeshave large data sets and need
the extra precision. Qualitatively, the difference betwéee discrete and parametric bounds were
generally< 0.5, with the interpolated bounds generally being in between.

3.3 Finding Crossover Points

In this section we take advantage of the fact that we havesad¢oghe complete set of scores for the
evaluation data set. We use these to perform a more globlgksésaver the complete set of scores.
Specifically, we can investigate for which valuesiahe methods started to become significant for
any givenp. The topk bounds can be depicted in any kind of evaluation curve wtsgfenerated
by varying the threshold of the moded.§, precision-recall curves, DET curves, lift-curves, etc.)
ROC graphs plot false-positive (FP) ratésgqpecificity) on ther-axis and true-positive (TP) rates
(recall) on they-axis. ROC curves are generated in a fashion similar to gi@orecall curves, by
varying a threshold across the output range of a scoring lmadd observing the corresponding
classification performancéskor this study, we use the ROC curves.

Figure 4 shows the ROC curves for the three learning meth®dsperted in the original study.
The diagonal line, untitled, is the expected performanseta@n the random model at the= 0.5
confidence level. The figure shows that all methods are gi@arforming better than the random
model.

As all methods showed decreasing valuesg@sk increased, we wanted to investigate their
performances in terms of how they compare against the cod@eound ap = 0.001 for larger
values ofk. Figure 5 shows the ROC curves from the original study, foxuen the target area

7. For a good introduction on the use of ROC curves in Machigarhing, see (Fawcett, 2003).
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Figure 4: ROC curves for financial 'Stock Movement’ problem
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Figure 5: ROC curves for financial 'Stock Movement’ probleimowing top{100, 20, 10, 5} lines.

wherek < 100. It depicts, fork = {5, 10, 20, 100}, where the curves intersect the topredictions.
The figure showd isolines, one for each value &f where the isoline shows where all points for
a givenk would lie in ROC spacé. The figure clearly shows that the methods quickly outpace the

ROC Curves for 'Stock Movement’ Problem (top-100) shown

top-100

e
[.:

7

et

Rocchio
Naive Bayes

Maximum Entropy -

Random (p = 0.001)

top-5

0.005

0.01

0.015

False Positives

0.02

bound aip = 0.001 and are all quickly above that curve by a large margin.

We therefore generated the most significant bound we cowgnpatically compute on our
computers ¢ = 10~'7) without using slow arbitrary precision math libraries.eTduestion we now
investigate is whether any of the methods will ever becomeificant at such an extreme level.

8. Detailed explanations of these, and other, ROC isonsetdr machine learning metrics can be found elsewhere
(Provost & Fawcett, 2001; Flach, 2003).
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ROC Curves for 'Stock Movement’ Problem - intersections highlighted
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Figure 6: ROC curves for financial 'Stock Movement’ problemowing where methods cross over
to outperformn(k, p) for p = 0.001 andp = 1077,

One question that can be answered by the technique usedshatrevhichk does the perfor-
mance of a method become significant. ket be the number of positives methedhas in its top
k predictions. Giverp and a modeln, find k such thatn;, < n(k,p):

cdf(my, k) < (1 —p) < cdf(my, + 1, k) (19)

It may be that the method crosse§:, p) more than once or follows(k, p) very closely, as is the
case with Rocchio around= 100 (see Figure 5). In such a case, it might make sense to stemgth
the crossover criteria and specify that the method musbperés well as:(k, p) over two or more
contiguousk’s. In this demonstration, we specify that the method mustha(k, p) for at least

2 contiguousk’s. Figure 6 highlights, givep = 0.001 and[= 10!, where the methods started
outperforming each of the twa(k, p) confidence bounds. Not shown in the graph is Rocchio’s
crossover ofi(k,p) atp = 10717, This happens dt = 486 with m;, = 170.

Finally, we can look at the bounds for &lland plot them in the same space as the evaluation
curve—ROC space in this case. Performing such a visual cosmpacan give a more global and
gualitative understanding of the performance of a systewedlsas quickly show where the systems
perform significantly better than what would otherwise bpexted. Figure 7 plots the same curves
as before and adds the two random confidence bands, eackigehiey joining the bounds across
allk =1,..., N into one curve. While it was clear from the previous analjfsa the models were
not significant fork < 20, this figure clearly shows that all three learned models wezi above
the random confidence bounds for mb'st, even at the extreme level pf= 10717,
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Figure 7: ROC curves for financial 'Stock Movement’ problemhwandom confidence bands

4. Final Remarks

This paper introduced a new technique to efficiently geeecahfidence bounds for evaluation at
top k£ predictions. It generates the bounds for a giveand p-value by finding the number of
positives needed to dominate—p) of all possible rankings for a given evaluation data #et,

The technique was demonstrated on three bodies of prior,woskhich it was clearly shown
that although the performances were generally greatlyargat over the random modelat= 0.5,
these improvements were not always as significant as mighinpked by the increase in raw
performance. Three important insights came out of thisystid) it is hard to beat the random
model at small values df unless there is a large class skew, (2) interpolation opthalues from
the discrete bounds generally results in the samralues as the more computationally intensive
method of using parametric estimations, and (3) the par&r®iunds fall apart for small data set
sizes although they have slightly higher precision for dardata set sizes. Therefore, use of the
interpolated bounds should be used unless higher predssimeeded, in which case the parametric
bounds should be used.

With regard to outperforming the random model at small valofe:, we saw the obvious—that
the more even the distribution, the more likely it is to sesifdees in the topt predictions. This
has the effect seen in the analysis of the Hypertext'O1 tesuhere seeing positives in the top
10 was only significant ap = 0.100. Such a situation makes it extremely difficult to outperform
the random model at any significance level even though thbtaginge improvements might seem
impressive. This extreme density of positives lessenseasl#iss skew becomes larger as is seen in
the AAAI-1998 dataset where even seeihgositives in the tod0 is significant ap = 0.026.

Next, the technique was used to identify crossover pointe-pbint where a method starts be-
coming significant for a givep. This was shown on the one data set where the full set of pgredic
scores were available. With this technique, it was posgiblshow that all three methods under
consideration were able to outperform the random modgel-at0.001 relatively quickly and even
for p = 107'7 ask increased. This was shown even more strikingly when piptie complete set
of confidence bounds across all valueg:of
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The use of techniques such as the one described in this papgartant to verify that systems
perform better than what would be expected from the randomefmorhe demonstration clearly
showed that even though the performances at first glancedbivhpressive, the differences were
not necessarily as significant as the qualitative perfoomamdicated.

Finally, the source code to compute the discrete boundsitale on the author’'s web-site. It
is open source and requires Java 1.5.
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