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Abstract

We analyze a revenue management problem in which a seller facing a Poisson arriving stream of
customers operates an online multiunit auction. Customers have an alternative list price channel
where to get the product from. We consider two variants of this problem: In the first one, the
list price is an external channel run by another firm. In the second variant, the seller manages
simultaneously both the auction and the list price channels.

Each consumer, trying to maximize his own surplus, must decide either to buy at the posted
price and get the item at no risk, or to join the auction and wait until its end, where the winners
are revealed and the auction price is disclosed.

Our approach consists of two parts. First, we study structural properties of the problem, and
show that the equilibrium strategy for both versions of this game is of the threshold type, meaning
that a consumer will join the auction only if his arrival time is above a function of his own valuation.
This consumer’s strategy can be computed using an iterative algorithm in a function space, provably
convergent under some conditions. Unfortunately, this procedure is computationally intensive.

To overcome this, we formulate an asymptotic version of the problem, in which the demand
rate and the initial number of units grow proportionally large. We get a simple closed form for
the equilibrium strategy in this regime, which is then used as an approximated solution for the
original problem. Numerical computations show that this heuristic is very accurate. The asymptotic
solution culminates then in simple and precise recipes for how bidders should behave, and how the
seller should structure the auction, and price the product in the dual channel case.

Key words: revenue management, online auction, dual channel, strategic behavior, asymptotic
analysis
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1 Introduction

Revenue management (RM) is viewed by many as one of the most important management sciences
and operations research practices (see Bell [2]). Traditionally, it has involved setting list prices and
controlling a fixed capacity to maximize revenues, achieving a high impact in revenue performance
of the airline, hospitality, railway and car rental industries. RM has then extended its domain to
the broader area of dynamic pricing, with applications in the retail industry. (See Talluri and van
Ryzin [32] for a description of RM methods and applications, or the survey by Bitran and Caldentey [5]
for an overview of dynamic pricing models).

In the last few years though, RM has widened its focus to alternative mechanisms for pricing
proposed by electronic commerce, such as guaranteed purchase contracts, group purchasing, online
negotiations and auctions. (See Boyd and Bilegan [6]) for a survey of revenue management and e-
commerce, mainly oriented to the airline industry.) Although list pricing is probably still the most
familiar and used pricing mechanism, online auctions are an increasing phenomenon, easy to verify
in a quick Internet navigation. Klein [16] and Klein and O’Keefe [17] mention the expansion to more
participants, the reduced transaction costs for both buyers and sellers, and the ability to conduct
complex auctions as the main factors that has determined the dramatic impact that Internet has had
on auctions. In a recent and complete survey about online auctions, Pinker et al. [28] add two more
factors in this direction: easy collection of data about auctions, and the possibility for participants to
join at any time.

Nowadays, the same product is sold simultaneously through posted price and auction channels.
For example, airline and cruise companies sell tickets through their own websites at posted prices, but
also through auctions run by Priceline.com; IBM and Sun Microsystems sell their products at their
own website, but also offer some selected new and refurbished products through eBay.com auctions.
Sony and Hewlett Packard use uBid.com auctions to dispose excess inventory. SharperImage.com sells
electronics and home appliances at posted prices, but also offer new, refurbished and less-than-new
products through auctions at the own site and at eBay. OnSale.com also hosts the auction channel of
many firms, offering a huge variety of products.

These trends raise some new important theoretical and practical questions. In particular, this
paper focuses on analyzing the strategic behavior of the consumers, and on how the seller should
manage online auctions, and parallel online auction and list price channels with the objective of
maximizing revenues. A simple observation is that any person with an Internet connection becomes a
potential buyer and is just a click away of a commercial transaction. Therefore, the consumer’s ability
of checking prices and bid states in different channels reinforces his strategic behavior at the time of
deciding whether to buy at a posted price or to join an auction. The dependence between the two
channels becomes clear, and should not be ignored by the seller when designing a business to globally
maximize revenues. On top of that, particularly in the business-to-consumer (B2C) market, the seller
faces an additional challenge in the dual channel case: She does not want to offer a business model
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that cannibalizes by itself. When offering a high posted price, she narrows the list price channel,
and middle-to-high value customers are tempted to join the auction, which could eventually decrease
revenues. On the other hand, if she posts a low price, she widens the list price channel by attracting
high value customers who leave money on the table.

Our purpose is shading some light on this tradeoff. We analyze a single period model in which a
seller operates an online auction, offering multiple units of an homogeneous good. The seller announces
the initial capacity Q0, the auction duration T , and the auction reservation price vR. The type of
auction that the seller conducts in both cases is a multiunit second-price auction. Buyers with single
unit demand arrive according to a Poisson process. They have a private value for the product. These
values are independent and identically distributed, following a continuous distribution that is common
knowledge. They must decide whether to bid and wait for the auction outcome, or buy at the posted
price and get the unit instantaneously. We consider two variations of this problem:

• In the single auction channel case, the external fixed price is run by another firm, which we
assume has unlimited capacity. If a bidder is not among the winners, he can buy the item at the
posted price at later time T , though his utility is discounted.

• In the dual auction and list price channels, the seller is a monopolist that also announces the
posted price P̂ . Here, joining the auction from the bidders’ perspective means running the risk
of no auction occurring at time T , provided all the items were cleared through the fixed price
channel. We assume that the arriving customers are informed about the initial number of units
offered, even though this quantity has already been depleted during the elapsed time through
the list price channel.

The buyer’s strategy consists of two dimensions: deciding whether to join the auction or not, and in
case of joining, what to bid. The supply size under both scenarios produces different bidding behaviors.
The infinite availability in the first case induces no bidder to bid higher than the posted price: In case
he loses, he always has the chance to pay that price at moment T . In the dual channel, the finite
supply induces the standard dominant “bid your own value” strategy for second-price auctions (See
Krishna [19, Section 2.2] for a detailed analysis of bidding behavior under a standard second-price
auction).

Regarding the participation decision, we argue that in the game taking place among costumers
themselves, and between them and the seller (for both settings described above), the symmetric
equilibrium strategy is defined by a threshold function in the space (valuation, time): For a customer
arriving at time t with valuation v, there is a threshold H(v) such that if H(v) ≤ t, then he will
participate in the auction. Otherwise, he will buy at the posted price P̂ . We prove the existence of
this threshold function, and characterize some properties of it.

This consumer’s strategy can be computed using an iterative algorithm in a function space, prov-
ably convergent under some special conditions. Unfortunately, this procedure is computationally
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intensive, as is usually the case. To overcome this, we formulate an asymptotic version of the problem,
in which the demand rate and the initial number of units grow proportionally large. We get a simple
closed form for the equilibrium strategy in this limiting regime, which is then used as an approximated
solution for the original problem. Numerical computations show that this heuristic is very accurate.
We can assert then that the asymptotic solution culminates in precise and simple recipes for how
bidders should behave and how the seller should structure the auction, and price the product for the
dual channel case.

Finally, we analyze the seller’s optimization problem in each of the settings, and using the asymp-
totic participation strategy of the consumers, we find numerically the optimal reservation price (and
list price for the dual channel) that the seller must announce to maximize revenues.

1.1 Literature review

Auctions have been extensively studied in the economic literature (e.g. see the seminal work of
Vickrey [36], the influential paper of Milgrom and Weber [25], the survey by Klemperer [18], or the
recent book by Krishna [19]). Price discrimination has been argued as one of the main reasons for using
them (see Bulow and Roberts [8]). Maskin and Riley [24] proved the optimality of the second-price
mechanism for the single period multiunit auction.

Several papers have put auctions in an operational perspective, mainly focusing on mechanism
design approaches. Regarding its connection with RM, Cooper and Menich [10] proposed a procedure
to auction airline tickets on a network of flights. Pinker et al. [27] study how to run a sequence
of standard multiunit auctions, using bidding information to learn about the customer valuation
distribution. Vulcano et al. [37] analyze an optimal dynamic auction for a firm selling a fixed capacity
over a finite horizon, and show how to set reservation prices for each of the units in different periods.

The firm’s choice between auctions and posted prices, but restricted to the purpose of managing
a single channel, has also been addressed (e.g. see De Vany [35], Wang [38], Harstad [15], etc.)
Gallien [13] presents a mechanism design study, where a seller faces a renewal process of customers
with single unit demand. He reduces the continuous problem to a discrete time infinite horizon dynamic
program, and proves that the optimal solution consists of a sequence of increasing posted prices.

There are some papers presenting overviews of both consumer-to-consumer (C2C) and B2C frame-
works (e.g. see Beam and Segev [1] and Lucking-Reiley [22]). They find that the auction mechanisms
used in the Internet are mostly the traditional ones (mainly English, Dutch, and first-price sealed-bid).

The problem of jointly managing auction and list price channels has not been deserved much
attention in the literature though. New features like the buy now prices has been recently addressed
by Budish and Takeyama [7], although their model is limited to two bidders and two valuation types.

Within the B2C framework, the empirical study of Vakrat and Seidmann [33] compares prices
paid through on-line auctions and catalogs for the same product. They observe that auctions result
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in average prices 25% below the catalog ones. They build a simple model of single unit auctions with
deterministic number of bidders, but ignoring customer choice behavior. In the infinite horizon model
of van Ryzin and Vulcano [34, Section 3.3], the seller operates simultaneously auctions and posted
prices, and replenishes her stock in every period. However, the streams of consumers for both channels
are independent, and the seller decides how many units to allocate to each of the channels.

Our research is mainly motivated by the work of Etzion et al. [12]. They also analyze simultaneous
dual online auctions and list price channels in a B2C framework, with customers arriving according to
a Poisson process, and deciding which channel to join. We find their work interesting and insightful.
There are important differences between the models though that we point out here.

First, Etzion et al. [12] optimize the seller’s average expected revenue per unit of time, over a
repeated sequence of games. Their decision variables are the auction length, the quantity to auction
in each period, and the price to post. They assume that the seller capacity is unlimited, and that
losers in the auction can get the item in the other channel at the end of each period, with probability
one. They found two optimal auction design strategies: short single unit auctions and long multi-unit
auctions. In our dual-channel model, we instead assume that the seller’s capacity is limited, and her
decision is how many units to offer simultaneously to both channels. Hence, bidders run the risk of
not getting the object in case the total capacity is depleted before time T .

Secondly, Etzion et al. [12] characterize the customer’s equilibrium strategy with a single value
t̄, such that all consumers with valuation below the posted price, and those arriving later than the
threshold t̄ with valuation above the posted price, will join the auction. All other customers will go
to the online catalog. Our equilibrium participation strategy turns out to be more complex, and is
defined by a continuous threshold function in the space (valuation, time). Also, when computing the
participation strategy in their paper, consumers assume that the total number of them is deterministi-
cally set at the mean of the Poisson distribution. We instead embed the random nature of the arrival
process in the computation of the customer’s participation strategy. A distinguished characteristic
of our research is the asymptotic analysis of the game. We show that the complex threshold that
describes the strategic behavior of the consumers can be easily computed in the limiting regime where
the customers’ arrival rate and the number of units offered grow proportionally large.

Overall, we believe that the two models share some features, but contrast in some important
dimensions that are worth exploring.

Finally, the problem of analyzing the equilibrium of a system where customers arrive during a time
window has been addressed by few papers, though they are oriented to the characterization of the
arrival pattern (e.g. see Glazer and Hassin [14] or Lariviere and Van Mieghem [20]). In our setting,
the arrival process is exogenous, and we concentrate on characterizing the Nash equilibrium (in pure
strategies) of the participation behavior of the customers.
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1.2 Organization of this paper

The remainder of this paper is organized as follows: We introduce the model for both variants of the
problem in Section 2. In Section 3 we focus on the single auction channel case, characterizing the
symmetric participation equilibrium of the consumers, and presenting its asymptotic analysis. The
seller’s optimization problem is introduced in subsection 3.4. An extension of this study for the dual
channel with static list price is described in Section 4. Section 5 has our concluding remarks. All the
proofs are in the Appendix.

2 Model description

We study the problem faced by a firm (seller) offering Q0 units of an homogeneous product through
an online auction with reservation price vR, during a fixed planning horizon of length T .

Customers have single unit demand, and visit the seller’s website following a Poisson process with
constant intensity λ. They are characterized by two quantities: (i) their arrival time, and (ii) their
private valuation for the product. For notational convenience, we denote by vt the private valuation
of a buyer arriving at time t. Note that this notation is well-defined since with probability one
the Poisson process has at most one arrival at a given time. We also assume that the cumulative
probability distribution F of the random variable vt is a time homogeneous and differentiable function
with support V , [0, v̄] that admits a density function f(v). Both λ and F are common knowledge.
Without loss of generality, we assume from now on that v̄ = 1, that is, we scale all prices in this
economy by v̄.

When visiting the website, the buyers must choose either to bid or to buy the product at a posted
price P̂ . We model buyers’ purchasing decision depending on their private valuation as well as on the
time elapsed until they are likely to get the object. Specifically, we assume that buyers are sensitive
to delay. We denote by u(t, τ, v−p) the discounted utility perceived by a buyer arriving at time t with
valuation v who eventually gets a unit of product at time τ at a price p (paid at the moment of getting
it). If the buyer never gets the object we use the convention τ = ∞. We consider an exponentially
discounted utility function of the form:

u(t, τ, v− p) = (v − p) exp(−w(τ − t)), (1)

where w is a fixed constant shared by all buyers. However, our main theoretical results are not
particularly tight to the functional form of the utility in (1) as long as it remains increasing in v − p

and decreasing in delay τ − t. 1

We assume that the seller and the buyers are risk neutral, and present two variants of this problem.
In the first one, the seller manages a single auction channel, and there is an external market with infinite

1Note that the buyer’s utility function is of the intertemporal type (e.g. see Mas-Colell et.al. [23, Chapter 20]).
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supply where the same product is offered at a fixed price P̂ . Arriving buyers must choose between
either buying at the posted price (and getting the item with probability one), or bidding in the auction
(and eventually being awarded the item at time T ). If a bidder is not among the winners, he can still
buy the item at the posted price at time T , though his utility will be discounted according to (1).

In the second variant of the problem, the seller is a monopolist managing simultaneously both
the auction and the list price channels. In this case, the seller’s capacity is depleted during the time
horizon, when she allocates units through the list price channel. Therefore, the number of units to be
auctioned is described by a random variable QT , with support {0, . . . , Q0}, meaning that the customer
is uncertain about the number of units to be auctioned. We also assume that in the website, the seller
announces the time left for the auction completion, the initial number of units Q0, the reservation
price vR, and the posted price P̂ .

For both settings, by denoting QT the number of units auctioned at time T , we model the auction
as a sealed-bid multiunit second-price (also referred to as (QT + 1)-price) auction, with reservation
price vR. In a (QT + 1)-price auction, the winners are the QT highest bidders in excess of vR, and all
of them pay the value of the maximum between the (QT + 1)th highest bid and vR.

A buyer arriving at time t ∈ [0, T ), based on his private value, his knowledge of the arrival rate
λ and the distribution function F , the initial capacity offered Q0, the auction remaining time T − t,
the reservation value vR, and the posted price P̂ , chooses either to bid or to buy at the fixed price
channel in order to maximize his expected utility. This participation strategy can be characterized by
a threshold function H(v) such that a buyer with valuation v enters the auction only if his arrival time
exceeds H(v). Pictorially, H(v) divides buyers’ type space (valuation, arrival time) into two regions
–as shown in Figure 1– one corresponding to the posted-price buyers and the other associated to the
auction bidders.

The firm’s problem is to design a single auction channel in the first model (by setting a value for
T , Q0 and vR), and dual auction and list price channels in the second model (by setting also a value
P̂ ), in order to maximize expected revenue, which is also exponentially discounted over time.

2.1 Discussion of the model

On a theoretical level, our model is in many ways a variation of the classical, single period, private-value
auction model, but with a stochastic arrival process embedded in it. The existence of the alterna-
tive list price channel also distinguishes our formulation from the standard monopolistic auctioneer
setting. Indeed, from the consumer’s perspective, the existence of this alternative market enforces
the non-participation in the auction value to be different than zero: the customer can eventually get
the item outside the auction and still obtain a positive utility. This departure from the standard
mechanism design literature (e.g. used in the Revenue Equivalence Theorem of Myerson [26], Riley
and Samuelson [29] and Maskin and Riley [24]) makes this approach not straightforward.
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Figure 1: An example of a participation strategy H(v) for the case T = 1 and vR = 0. The vertical dashed line

represents a possible realization of the auction price dividing bidders between winners and losers.

On a practical level, though our model captures important features of the real game, other char-
acteristics are restrictive, and their implications are worth examining in greater detail. Rothkopf and
Harstad [31] emphasize that typical assumptions in the auction literature (that are also shared by
our model) like bidder symmetry and common knowledge of private valuation distributions, may not
be verified in practice. Pinker et al. [28] point out that these assumptions are even more dubious
for online auctions, where experts and novices participate in the same game. Similar to Etzion et
al. [12], we add here an extra limitation of game theoretic models for online auctions: the common
knowledge of the arrival rate of consumers. One might think that the seller has an advantage in this
sense, since she can build statistics and learn more than the bidders through repeated runs of similar
games (although in this paper, we analyze a single period problem).

Another property related to the arrival process in our model is the constant rate. Roth and
Ockenfels [30] verify the surge in bids close to the end of auctions with sharp deadlines, the case we
are looking at. 2 They observe that when the auction end is not strict (i.e. it extends while there is
bidding activity), peaks in the bidding activity are less significant. Though we think that our analysis
could be extended to the variable arrival rate of customers, we have not explored this direction in
detail.

We also assume risk neutrality of all players along the paper. That a large seller is risk neutral
is quite reasonable, as typically each auction or dual channel outcome is a small proportion of her
wealth, and she could be running repeated games over time. The fact that she is maximizing expected
revenues seems quite natural then. Risk neutrality of bidders facing both auctions and list prices

2However, most of the last-minute bidding activity is originated in the proxy bidding devices of people that have

previously arrived.
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is admittedly more arguable, but we assume that they base their choice on maximizing their own
expected surplus.

The fact that when buyers arrive at the website they are just informed of the initial number of
units Q0 is plausible in the single auction channel; but it is certainly a limitation of the dual channel
model. This contrasts with the business practice of posting buy now prices while running an auction
(e.g. eBay.com): Buyers are informed of the number of remaining units when visiting the website.
However, including this factor in the consumer choice behavior would make the analysis even more
complex than what it is now, adding an extra dimension to the current space (valuation, time) for the
participation decision. Nevertheless, we think that the kind of arguments and technical tools used in
this paper can be applied to this extension as well.

We model the auction as a multiunit second-price sealed-bid auction. In standard single period
auction theory, this auction format turns out to be strategically equivalent to the English auction3

(e.g. see Krishna [19]). Actually, the English auction is by far the most common online auction
format (see Pinker et al. [28]), probably due to the simplicity of the optimal participation strategy.
Some empirical research supports the theoretical equivalence between sealed-bid second-price and open
English auctions in the online practice (e.g. Lucking-Reiley [21]).

Summarizing, our model is well supported on many practical features, but shares some limitations
of the auction related literature. However, we introduce some important departures, mainly related
to the analysis and design of simultaneous online and list price channels, that shed some light on the
tradeoffs involved in the game among customers themselves, and between customers and the seller.

3 Single auction channel

We consider now the problem of a seller that uses exclusively the auction to sell the initial capacity
Q0. The distinguishing feature of our formulation is given by the fact that potential bidders arrive at
different moments in time and their utilities are sensitive to delay. In particular, the arrival process is
Poisson with rate λ, and the effective number of bidders at time T has yet to be determined.

In our setting where the sealed (QT + 1)-price auction4 operates in parallel to an infinite supply
fixed price market, it is a dominant strategy for bidders with valuations below the posted price to bid
their true values, and it is dominant for bidders above the posted price to bid the posted price. In
other words, if a buyer with valuation v decides to enter the auction then he will bid b(v), where

b(v) =

{
v if v < P̂

P̂ if v ≥ P̂
= min{v, P̂}. (2)

3In a multiunit English auction, bids are open to all to see. As in the multiunit second-price sealed-bid auction, if Q

units are auctioned, the Q highest bidders win, and all the winners pay the highest losing bid.
4In this single channel auction, QT = Q0, since there are no items sold during the time window [0, T ).
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The optimality of b(v) = v for a low-valuation bidder with v < P̂ follows from noticing that for this
buyer the auction is the only profitable channel from which he can get the object. In addition, it is well
known that for the (QT +1)-price auction mechanism bidding the true valuation is a dominant strategy,
i.e., the strategy b(v) = v maximizes the low-valuation bidder’s expected utility independently of other
bidders’ strategies. For high-valuation buyers with v ≥ P̂ the posted price channel is also an alternative
to consider. Furthermore, and contrary to the auction channel, the fixed price channel has unlimited
capacity and buyers with v ≥ P̂ know that they can always get a unit at a the fixed price P̂ . So, these
high-valuation buyers will never bid above the posted price, that is, b(v) ≤ P̂ . In addition, a bidding
strategy with b(v) < P̂ is also suboptimal because under the (QT + 1)-price auction mechanism this
strategy reduces the bidder probability of winning the auction (with respect to the strategy b(v) = P̂ )
and at the same time does not affect the auction price in the case the bidder actually wins the auction.
Thus, the high-valuation bidder is better off choosing b(v) = P̂ .

Interestingly, if we compare the bidding strategy b(v) = min{v, P̂} of this model and the traditional
bidding strategy b(v) = v of the standard (QT +1)-price auction, we conclude that from the auctioneer’s
point of view the presence of an uncapacitated fixed price channel is equivalent to collapsing the range
of valuations [P̂ , v̄] into a single value P̂ . For further details about the optimality of b(v) = min{v, P̂},
we refer the reader to Etzion et al. [12, Lemma 1].

Equation (2) characterizes the dominant bidding strategy for all bidders. The probability distri-
bution of the number of bidders and their valuations is the only piece of information that we need
to fully characterize the output of the auction. We address this issue in the first three subsections,
where we concentrate exclusively on the buyers’ optimal participation strategy for a fixed reservation
price value vR. In Section 3.4, we consider the auctioneer’s problem which optimizes over vR. Since
vR remains constant for most of this section, we find convenient to set it equal to zero (vR = 0) and
to re-scale bidder’s valuations and its probability distribution accordingly. That is,

v ← v − vR

1 − vR
, P̂ ← P̂ − vR

1− vR
, F (v)← F (v)− F (vR + v(1− vR))

1− F (vR)
, λ← λ (1− F (vR)). (3)

This transformation models two objectives. First, only those buyers with valuation greater than or
equal to the auction reservation price are considered, the others are “discarded”. This is without loss
of generality since discarded buyers have no real impact on the auction output. The second objective
is that under this scaling the range of valuations of the (non-discarded) buyers remains [0, 1]. The
corresponding scaling of the posted price P̂ , distribution F , and arrival rate λ follows from these two
conditions.

3.1 Participation strategy and auction price probability distribution

Since information about the number of units Q0 to auction as well as the probability distribution of
customer valuations F are common knowledge, we can characterize the decision of a buyer arriving at
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time t with private valuation v by a threshold function H(v) such that the buyer will place a bid if
and only if t ≥ H(v). The fact that we can represent the participation strategy for all v-buyers (i.e. ,
those buyers with valuation v) by a single threshold H(v) is a consequence of the monotonicity of the
utility function on the waiting time. In other words, if it is optimal for a v-buyer arriving at time t to
wait (T − t) time units for the auction then it is also optimal for any other v-buyer arriving after t.

Two assumptions are used in this representation of the participation strategy. First, note that this
characterization is based on the notion of a symmetric equilibrium in which all buyers use the same
bidding function H(v). In addition, we are also assuming that a buyer arriving at time t is incapable to
observe the number of bids already in the system. That is, we are assuming that the only information
that buyers use to decide whether or not to enter the auction –besides λ, T , Q0, and F– is his arrival
time and private valuation.

We will denote by H the set of participation thresholds from which buyers choose their strategies.
In order to keep our formulation reasonably simple, avoiding measure theoretical technicalities, we
assume that H ⊆ C, the set of continuous integrable functions. We will see that this apparently
restrictive assumption is not fully needed since in equilibrium, participation strategies are always
continuous. Note that by our definition, the elements of H are functions taking values in [0, T ].
Furthermore, for any H ∈ H and any valuation v ∈ [0, P̂ ], we must have H(v) = 0 and b(v) = v. This
reflects the fact that any buyer with valuation in this range cannot afford to buy the product in the
external market: the auction is his only potentially profitable channel, no matter his arrival time. In
summary, we define the set of potential bidding strategies as the set of functions

H =
{
H ∈ C, H : [0, 1]→ [0, T ], such that H(v) = 0 for all v ∈ [0, P̂ ]

}
.

We still need to characterize what the equilibrium H(v) ∈ H looks like for v ∈ (P̂ , 1]. Buyers in this
range will participate in the auction (and bid b(v) = P̂ ) only if the expected auction price is small
enough to compensate the disutility associated to waiting for the auction.

For any H ∈ H, let us define two important random variables.

• PH : the auction price if all buyers use the participation strategy H ∈ H.

• PH(v): the auction price given that (i) there is a v-buyer that has joined the auction, and (ii)
all other buyers use the participation strategy H ∈ H.

In order to compute the probability distribution of these prices we need to estimate the number of
bidders and their corresponding valuations. For this, consider H ∈ H and let us define for all v ∈ V

ΛH(v) , λ

∫ 1

v
(T −H(x)) dF (x) , λ T ηH(v), (4)

where

ηH(v) M=
∫ 1

v

(
1− H(x)

T

)
dF (x). (5)
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By the definition of the bidding function H(v), the function ΛH(v) represents the average number
of bidders with valuation in [v, 1]. Similarly, ηH(v) represents the average fraction of arrivals with
valuation in this range.

Let us denote by B(ΛH(v)) the random number of bidders with valuation greater than or equal to v.
Since buyers arrive according to a Poisson process with rate λ, B(ΛH(v)) has a Poisson distribution
with mean ΛH(v). Based on our assumptions that the elements in H are integrable and that F (v)
admits a density f(v) in V , we have that the functions ΛH(v) and ηH(v) are well defined and continuous
in V .

We can now compute the probability distribution of PH and PH(v) given a symmetric participation
strategy H ∈ H. Under a (Q0 + 1)-price auction, PH < x if and only if (i) x > P̂ , or (ii) the number
of bidders with valuation greater than or equal to x is less than or equal to the number of objects in
the auction. That is,

PH < x ⇐⇒ {x > P̂} ∨ {B(ΛH(x)) ≤ Q0}.

Therefore, the probability distribution of PH is given by

P(PH < x) =





1 if x > P̂

P(B(ΛH(x)) ≤ Q0) =
∑Q0

k=0

(
ΛH (x)

)k
exp(−ΛH(x))

k! if x ≤ P̂ .
(6)

Using a similar argument, it follows that

P(PH(v) < x) =





1 if x > P̂

P(B(ΛH(x)) + 11(x ≤ v) ≤ Q0) =
∑Q0−11(x≤v)

k=0

(
ΛH(x)

)k
exp(−ΛH (x))

k! if x ≤ P̂ ,

(7)
where 11(E) is the indicator function of event E. It also follows from the continuity of ΛH(x) that
P(PH < x) is continuous in x ∈ [0, 1]−{P̂}, and that P(PH(v) < x) is continuous in x ∈ [0, 1]−{P̂ , v∧
P̂}.

3.2 Characterization of a symmetric participation equilibrium H(v)

In order to characterize a symmetric participation equilibrium (SPE) H ∈ H, we use the following two-
step approach. First, we look at a buyer’s best-response participation strategy assuming that other
buyers use a fixed strategy H ∈ H. We will denote by R(H) ∈ H this best-response participation
strategy and refer toR as the best-response mapping onH. Then, we impose the equilibrium condition
R(H∗) = H∗ to characterize the symmetric equilibrium H∗ ∈ H. Before moving into this analysis, we
recall that the optimal strategy for buyers with valuation v ≤ P̂ (independent of H) is to enter the
auction and so we must have R(H)(v) = 0 for all v ∈ [0, P̂ ].

Suppose a buyer –that we refer as buyer τ– arrives at time τ with private valuation vτ > P̂ and
suppose that every other buyer is using the participation strategy H . If buyer τ decides not to bid and
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buy a unit through the external fixed price channel, then his expected utility would be u(τ, τ, vτ− P̂ ).
On the other hand, if he decides to bid then his profit would be u(τ, T, vτ − P̂ ) if he does not get the
object (since he can always buy the product in the external market at time T ), and u(τ, T, vτ−PH(vτ ))
if he indeed gets the object. Thus, a rational buyer τ enters the auction only if

u(τ, T, vτ − P̂ ) (1−P(PH(vτ ) < P̂ )) + E[u(τ, T, vτ −PH(vτ ))|PH(vτ ) < P̂ ] P(PH(vτ ) < P̂ ) ≥ u(τ, τ, vτ − P̂ ), (8)

where P(PH(vτ) < P̂ ) is the probability that bidder τ gets one of the auctioned objects at a price
strictly less than the posted price. We should still explicitly characterize this participation constraint
in terms of the function H(·), but at this stage note that H(·) is embedded in the r.v. PH(vτ) (see
equation (7)).

Without loss of generality, we will assume that P̂ > 0 (otherwise, the auction is meaningless, since
buyers will go directly to the external fixed price channel and get a unit at no risk). This is also
consistent with the scaling in (3) where we set vR = 0, since all the bidders with valuations smaller
than vR will have zero utility, and will quit without purchasing in any of the markets.

We compute the best-response strategy for buyer τ (R(H)) by looking at the threshold function
that is consistent with (8). First, note that in our setting, where buyers have the exponentially
discounted utility function defined in equation (1), condition (8) is equivalent to

P̂ − E[PH(vτ )|PH(vτ) < P̂ ]
vτ − P̂

P(PH(vτ) < P̂ ) ≥ exp(w(T − τ))− 1. (9)

From this condition we conclude that in equilibrium the following inequality must be satisfied by the
bidders:

E[PH(vτ)|PH(vτ) < P̂ ] < P̂ (10)

That is, no buyer would have an incentive to bid if the expected auction price in case of wining is at
least what he would pay in the external market, at no risk. The following proposition characterizes
R(H):

Proposition 1 For the exponential utility function (1), condition (9) is equivalent to

τ ≥ T − 1
w

ln

(
1 +

∫ P̂

0

P(PH(vτ ) < x)
vτ − P̂

dx

)
. (11)

Thus, a buyer arriving at time τ with valuation vτ enters the auction if and only if τ ≥ R(H)(vτ),
where

R(H)(vτ) ,





0 if vτ ∈ [0, P̂ ][
T − 1

w ln
(
1 +

∫ P̂
0

P(PH(vτ )<x)

vτ−P̂
dx
)]+

if vτ ∈ (P̂ , 1].
(12)
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A couple of observations can be derived from this result. First, note that R(H)(vτ) is continuous
in vτ ∈ [0, P̂ ] as well as continuous in vτ ∈ (P̂ , 1] 5. In addition, as vτ ↓ P̂ we have that R(H)(vτ)→
0 = R(H)(P̂). This observation follows by noticing that

for all H ∈ H, lim
vτ ↓P̂

∫ P̂

0

P(PH(vτ ) < x)
vτ − P̂

dx = +∞,

since the numerator of the integrand is strictly positive and bounded away from zero. Therefore,
for any H ∈ H we have that the best-response strategy R(H)(v) is continuous in [0, 1] and so R
effectively maps H into H. Furthermore, since a SPE is characterized by the fixed-point condition
R(H) = H , we conclude that a symmetric participation equilibrium of this game is in fact continuous.
Our next result extends this conclusion and shows that the best-response strategies are K-Lipschitz
continuous6 functions in [0, 1], for an appropriate constant K > 0. This additional property of the
bidding strategies becomes relevant in our proof of existence of an equilibrium. However, before we
formally address this issue some extra notation and analysis are required.

We have already argued that any SPE H(v) must satisfy H(v) = 0 in the range v ∈ [0, P̂ ]. Based
on Proposition 1, we can extend this range even more. In fact, note that R(H)(v) > 0 if

1 +
∫ P̂

0

P(PH(vτ) < x)
vτ − P̂

dx < exp(wT ).

Since the left-hand side goes to infinite as vτ ↓ P̂ , we can unambiguously define for every H ∈ H

vH , 1 ∧ argmin
v≥P̂

{
1 +

∫ P̂

0

P(PH(v) < x)
v − P̂

dx ≤ exp(wT )

}
. (13)

Note that by construction, for any H ∈ H we must have R(H)(v) = 0, for all v ∈ [0, vH]. To obtain a
lower bound on vH independent of H , we can solve

ṽ , inf
H∈H

{vH} . (14)

Unfortunately, this is not a straightforward optimization problem for which we can compute the
optimal solution ṽ. However, we can obtain a lower bound on ṽ by mean of the following inequality.

For all H ∈ H, 1 +
∫ P̂

0

P(PH(v) < x)
v − P̂

dx ≥ 1 +
∫ P̂

0

P(P0(v) < x)
v − P̂

dx,

where P0(v) stands for the auction price when H = 0. Since for x < P̂ , P(P0(v) < x) = P(B(Λ0(x)) ≤
Q0 − 1) = P(B(λT [1− F (x)]) ≤ Q0 − 1), we get a lower bound on ṽ solving for v in

1 +
∫ P̂

0

P(B(λT [1− F (x)]) ≤ Q0 − 1)
v − P̂

dx = exp(wT )

5This follows from the continuity of P(PH(vτ ) < x) for x ∈ [0, P̂ ] (see equation (7)).
6We say that a real function f(x) is K-Lipschitz continuous in A if for all x, y ∈ A, |f(x) − f(y)| ≤ K |x − y|.
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or equivalently,

v = P̂ + exp(−wT )

(
1 +

∫ P̂

0
P(B(λT [1− F (x)]) ≤ Q0 − 1) dx

)
.

It is possible that for some values of the problem’s parameters (e.g. when wT is small) such a v does
not exist in (P̂ , 1]. In these cases we set v = ṽ = 1. Note that if ṽ = 1 then for any H ∈ H we must
have R(H)(v) = 0 for all v ∈ (P̂ , 1] and so H(v) = 0 is the unique SPE. We summarize our previous
discussion in the following proposition.

Proposition 2 For the exponential utility function (1) and for all H ∈ H, there is a positive con-
stant K (independent of H) such that the best-response strategy R(H)(v) is a K-Lipschitz continuous
function that satisfies R(H)(v) = 0 for all v ∈ [0, ṽ]. In addition, if ṽ = 1 then it is optimal for every
buyer, independent of his arrival time and private valuation, to enter the auction. That is, if ṽ = 1
then {H(v) = 0 for all v ∈ [0, 1]} is the unique (symmetric) participation strategy equilibrium.

Proposition 2 characterizes a SPE for those special cases in which every buyer enters the auction.
For the general case, finding a symmetric equilibrium H(v) or even proving its existence are not
easy tasks. A standard way to approach the existence problem is to prove that the set of bidding
strategies H has the fixed-point property (see Cheney [9, Section 7.1] for details) and that the best-
response mapping R is continuous in H. We will take this approach here, though we need to slightly
modified our set of strategies H first. From our previous discussion and the result in Proposition 2,
we can restrict the search of a symmetric equilibrium to those strategies H in H that are K-Lipschitz
continuous and satisfies H(v) = 0 in [0, ṽ]. For this reason, we redefine H to be this set:

H , {H : [0, 1]→ [0, T ] s.t. H is K-Lipschitz continuous and H(v) = 0 in v ∈ [0, ṽ]} .

Note that by Proposition 2, R is a well defined mapping from H to H.

Theorem 1 The set of strategies H equipped with the uniform norm ‖X‖ = sup0≤v≤1{|X(v)|} in
[0, 1] exhibits the fixed-point property. In addition, for all H, H̃ ∈ H, the mapping R satisfies:

‖R(H)−R(H̃)‖ ≤ λ β(Q0− 1)
w

( ∫ P̂

0

(1− F (x))
ṽ − P̂

dx
)
‖H − H̃‖.

Therefore, R is a continuous mapping and there always exists a SPE. In addition, if

λ β(Q0− 1)
w

( ∫ P̂

0

(1− F (x))
ṽ − P̂

dx
)

< 1

then R is a contraction. In this case, the fixed point R(H∗) = H∗ is guaranteed to be unique and can
be found through the iteration Hn+1 = R(Hn) starting at an arbitrary H1 ∈ H.

We conclude our characterization of a SPE with the following property.
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Proposition 3 For the exponential utility function (1), a SPE H∗(v) is an increasing and concave
function of v ∈ [vH∗, 1].

The result implies that in equilibrium buyers with large private valuation are less likely to participate
in the auction.

To summarize, in this section we have characterized buyers’ best-response participation strategy
through a continuous mapping R and we have shown that there always exists a SPE H∗(v) satisfying
H∗ = R(H∗) which is identically zero in then range [0, vH∗] and K-Lipschitz continuous, increasing,
and concave in the range [vH∗, 1]. Moreover, we have been able to characterize those cases in which
either H∗(v) = 0 or the algorithm Hn+1 = R(Hn) effectively converges to H∗. Unfortunately, this
analysis is not exhaustive in the sense that there are instances of the problem for which we do not have
a guaranteed method for computing the equilibrium.7 For this reason, in the next section we consider
an asymptotic regime for which explicit solutions are obtained. As we will see, numerical experiments
reveal that the behavior of the asymptotic approximation is satisfactorily accurate.

Other important feature to point out before proceeding is the existence of the value vH∗ defined
in (13). This means that in equilibrium, all customers with valuations slightly above the posted price
(i.e. with valuation v ∈ [P̂ , vH∗]) will join the auction regardless the arrival time.

3.3 Asymptotic analysis

In this section we characterize the outcome of the auction using asymptotic analysis. In particular,
we consider the limiting case in which both the number of units Q0 and the average arrival rate λ

grow proportionally large. In this regime, we show that characterizing the bidders’ strategy (i.e., the
threshold function H(v)) is equivalent to solving a deterministic problem which we can do efficiently
(Theorem 3).

Consider a sequence of instances of the problem indexed by n and let Qn
0 and λn be the correspond-

ing number of units to auction and demand rate for instance n, respectively. All other parameters are
kept independent of n. The asymptotic regime that we consider is defined by:

lim
n→∞

Qn
0

n
= Q0 and lim

n→∞

λn

n
= λ. (15)

For each instance n of the problem, we let ρn M= Qn
0

λnT . Then,

lim
n→∞

ρn = ρ, for ρ =
Q0

λ T
. (16)

7In practice, we have been able to find a SPE for all instances that we have tested using the following small step size

version of the iteration in Theorem 1 (see Bertsekas and Tsitsiklis [3, Chapter 4]):

Hn+1 = αHn + (1 − α)R(Hn),

where α ∈ [0, 1) is empirically selected.
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For future references, we refer to ρ as the excess supply ratio which can be viewed as a proxy for the
average number of units available per arriving customer. In this respect, the case ρ < 1 reflects the
most interesting situation in which, on average, there are less units than customers.

The auction price for instance n given that a v-buyer enters the auction is Pn
H(v), with distribution:

P(Pn
H(v) < x) =

{
1 if x > P̂

P(B(Λn
H(x)) ≤ Qn

0 − 11(x ≤ v)) if x ≤ P̂ ,

where Λn
H(x) = λn T ηH(x).

We need the following preliminary result:

Lemma 1 Let Bi(µn) be a sequence of i.i.d Poisson random variable with mean µn, and let yn be an
increasing sequence of nonnegative integers. For each n, define Syn

M=
∑yn

i=1 Bi(µn). Suppose that:

lim
n→∞

yn =∞, and lim
n→∞

µn = µ.

Then, the moment generating function of the r.v. Yn
M= Syn/yn converges to a constant exp(θ µ), and

hence Yn converges weakly 8 to the constant µ.

We are now ready to characterize the asymptotic regime:

Theorem 2 Suppose the participation strategy H(v) is fixed. Then, in the limit as n→∞, the auction
price Pn

H(v) converges weakly to the constant P∞
H (v) = min{P̂ , η−1

H (ρ)}, where η−1
H (ρ) M= min{v ∈ [0, 1] :

ηH(v) ≤ ρ}.

It follows from Theorem 2 that the probability distribution of the limiting auction price is

P(P∞
H (v) < x) =





1 if x > P̂

1 if ρ > ηH(x) and x ≤ P̂

0 if ρ < ηH(x) and x ≤ P̂ .

Suppose x ≤ P̂ and ρ < ηH(x), that is, there are on average more bidders with valuation at least
x than units to auction, Q0 < ΛH(x). In this situation, there is scarcity of units for bidders with
valuation greater than or equal to x. Note that the monotonicity of ηH(x) implies x ≤ min{P̂ , η−1

H (ρ)}
and it follows from Theorem 2 that the auction price will be higher than x. On the other hand, when
there are more units to auction than bidders with valuation at least x, that is ρ > ηH(x), the final
auction price will be lower than x with certainty.

8A sequence of distribution functions is said to converge weakly to a limit F (written Fn ⇒ F ) if Fn(y) → F (y)

for all y that are continuity points of F . A sequence of random variables Xn is said to converge weakly or converge in

distribution to a limit X∞ (written Xn ⇒ X∞) if their distribution functions Fn(x)
M
= P (Xn ≤ x) converge weakly. See

Durrett [11, Section 2.2].
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Note that the limiting auction price P∞
H (v) does not depend on v since as the number of units

and buyers goes to infinity, the auction price is unaffected by the decision of one particular bidder.
In other words, we can think of this asymptotic regime as one in which we have a continuum of
marginal buyers each one having no impact on the overall outcome of the auction. In this respect, the
asymptotic regime under consideration is of the fluid type. For notational convenience, let us define
PH

M= P∞
H (v).

Suppose buyer τ with valuation vτ arrives at time τ and suppose that every other buyer is using
the participation strategy H .

• If vτ ∈ [0, P̂ ] the buyer enters the auction independently of the auction price since the posted
price exceeds his valuation. Thus, we have that R(H)(vτ) = 0 for all vτ ∈ [0, P̂ ].

• If vτ ∈ (P̂ , 1] then it is optimal for buyer τ to participate in the auction only if

(vτ − PH) exp(−w(T − τ)) ≥ vτ − P̂ , or equivalently τ ≥ h(vτ) (17)

for the auxiliary threshold function

h(vτ ) = T − 1
w

ln
(

vτ − PH

vτ − P̂

)
.

The logarithm above goes to ∞ as vτ ↓ P̂ and so buyers with valuation greater but close to P̂

will enter the auction. In fact, let us define vH to be the unique positive root of the equation

T − 1
w

ln
(

v − PH

v − P̂

)
= 0 which is equivalent to vH

M=
P̂ exp(wT )− PH

exp(wT )− 1
≥ P̂ ,

where the inequality follows from the condition PH ≤ P̂ . Then, by condition (17) buyer τ with
valuation vτ ∈ (P̂ , vH] will always enter the auction independently of his arrival time τ . On the
other hand, buyer τ with valuation vτ greater than vH will enter the auction only if his arrival
time is greater than R(H)(vτ), where

R(H)(vτ) = T − 1
w

ln
(

vτ − PH

vτ − P̂

)
, vτ ∈ [vH, 1].

We note that we have implicitly assumed that vH ≤ 1, however, depending on the values of PH ,
P̂ , w, and T , it is possible that vH > 1. So, in order to avoid this technicality, we redefine vH as
follows

vH , min

{
P̂ exp(wT )− PH

exp(wT )− 1
, 1

}
(18)

Clearly, if vH = 1 then every buyer will enter the auction independently of his arrival time, in
which case H∗(v) = 0 for all v ∈ [0, 1].
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In summary, given H ∈ H and the associated auction price PH , the best-response participation
strategy R(H) satisfies

R(H)(v) =

{
0 if v ∈ [0, vH]

T − 1
w ln

(
v−PH

v−P̂

)
if v ∈ [vH, 1].

(19)

For v ∈ [vH, 1], and given that PH ≤ P̂ ,

d
dv

R(H)(v) = − 1
w

(
1

v − PH

− 1
v − P̂

)
> 0 and

d
d2v

R(H)(v) = − 1
w

(
− 1

(v − PH)2
+

1
(v − P̂ )2

)
< 0.

That is, R(H)(v) is increasing and concave in v, for all v ≥ vH .

In order to determine the equilibrium value of the auction price PH∗ and the corresponding partic-
ipation strategy H∗(v), we have to impose the equilibrium condition R(H∗) = H∗. In this asymptotic
regime, we can solve this fixed-point condition efficiently using equation (19) and Theorem 2.

Theorem 3 In the asymptotic regime under consideration, the auction price PH∗ is the unique solu-
tion in [0, P̂ ] to the equation

F (vH∗)− F (PH∗) +
1

wT

∫ 1

vH∗
ln
(

v − PH∗

v − P̂

)
dF (v) = min{ρ, ηH∗(0)}, (20)

where vH∗ = min

{
P̂ exp(wT )− PH∗

exp(wT )− 1
, 1

}
and the SPE strategy H∗(v) is given by

H∗(v) =

{
0 if v ∈ [0, vH∗]

T − 1
w ln

(
v−PH∗

v−P̂

)
if v ∈ [vH∗ , 1].

The next result characterizes two extreme outputs of the game and follows directly from Theorem 3:

Corollary 1 In the asymptotic regime, it follows that:

a) The auction price equals the reservation price, that is PH∗ = 0, if

F (vH∗) +
1

wT

∫ 1

vH∗
ln
(

v

v − P̂

)
dF (v) ≤ ρ, where vH∗ = min

{
P̂ exp(wT )
exp(wT )− 1

, 1

}
and

b) All arriving buyers enter the auction, that is H∗(v) = 0 for all v ∈ [0, 1], if

F−1(1− ρ) ≤ 1− exp(wT ) (1− P̂ ) in which case PH∗ = F−1(1− ρ).
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Asymptotic Approximation: Computational Experiments
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H*(1,0.6) 

H*(5,0.6) 

H*(10,0.6) 

H*(20,0.6) ≈ H*(∞,0.6)

Q0 PH PApprox
H Error

1 0.1249 0.1346 7.20%

5 0.1930 0.1979 2.43%
10 0.2144 0.2168 1.12%
20 0.2312 0.2319 0.30%

Figure 2: Asymptotic approximation for the case with valuations uniformly distributed in [0, 1], and T = w = 1,

P̂ = 0.5, ρ = 0.6. In this case, the asymptotic price is P∞
H∗ = 0.2578.

By introducing the notation H∗(Q0, ρ) when referring to the optimal participation strategy if the
seller has Q0 units to auction and the excess supply ratio (Q0/λT ) is equal to ρ, in Figure 2 we compare
the optimal asymptotic participation strategy H∗(∞, 0.6) (computed using Theorem 3) to four optimal
bidding strategies H∗(1, 0.6), H∗(5, 0.6), H∗(10, 0.6), and H∗(20, 0.6) (computed numerically using
the iteration in Theorem 1). From the graph on the left of Figure 2, we can see that the asymptotic
approximation mimics quite closely buyers’ participation strategy even for small values of Q0. As
a matter of the fact, for values of Q0 greater than 10 units, the bidding strategies H∗(Q0, 0.6) and
H∗(∞, 0.6) are almost indistinguishable.

The table on the right of Figure 2 compares the expected price of the auction PH with the approximated
value PApprox

H obtained using the asymptotic participation strategy. In other words, PApprox
H is the

expected auction price if every buyer uses the participation strategy H∗(∞, ρ). As we can see, for a
single-unit auction the error on the estimate is about 7%. However, for moderate multi-unit auctions
(with 5 or more items) the quality of the approximation improves considerably fast. With 20 items
the approximation is almost exact. As we expect, both the auction price PH and the approximated
auction price PApprox

H converge to the asymptotic price P∞
H as Q0 goes to infinity. The quality of results

reported in this example were systematically replicated in all instances of the problem that we have
considered.

We conclude this section, discussing our results on a particular instance of the problem with
uniform valuations, a distribution widely considered in the auction literature.

Example: Uniform Distribution Case.
Suppose the valuations are uniformly distributed in [0, 1], that is, F (v) = v. In this case, we

can apply Theorem 3 to get the following cases:
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• If P̂ ≤ P̂1(ρ, wT ) where P̂1(ρ, wT ) solves

−1
wT

[
(1− P̂1) ln(1− P̂1) + P̂1 ln

(
P̂1

exp(wT )− 1

)]
= min{1, ρ},

then PH∗ = 0 and H∗(v) =
[
T − 1

w ln
(

v
v−P̂

)]+
.

• If P̂ ≥ P̂2(ρ, wT ) , 1− exp(−wT )(1− (1− ρ)+) then H∗ = 0 and PH∗ = (1− ρ)+.

• If P̂1(ρ, wT ) < P̂ < P̂2(ρ, wT ) then the auction price PH∗ ∈ (0, P̂) solves ηH∗(PH∗) = ρ,

which in this case is the same as

1
wT

[
(1− PH∗) ln(1− PH∗)− (1− P̂ ) ln(1− P̂ )− (P̂ − PH∗) ln

(
P̂ − PH∗

exp(wT )− 1

)]
= ρ.

In words, P̂1(ρ, wT ) is a lower bound on the posted price over which there will be enough

people in the auction such that the outcoming auction price will be positive. P̂2(ρ, wT ) is the

minimum posted price such that all customers will participate in the auction. Figure 3 plots

the auction price as a function of the posted price. As we can see, for low values of the posted
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Figure 3: Auction price PH as a function of the posted price P̂ for four different values of the excess supply ratio ρ. In

this numerical example wT = 1.

price P̂ , the auction price equals the reservation price zero. The intuition in this case is that

a low posted price will induce a large fraction of the high-valuation buyers to purchase at the

posted price and so there will be fewer bidders left on the auction; bidders that, moreover,

have a low valuation. As we can see from Figure 3, P̂1(ρ, wT ) increases with ρ reflecting the

fact that the higher the number of units in the auction the lower the value of the bid of the

last winning bidder. On the other extreme, P̂2(ρ, wT ) decreases with ρ; that is, the higher the

ρ, the lower the posted price needed to induce all the players to participate in the auction. In

21



summary, the auction price PH∗ is an nondecreasing function of P̂ given by

PH∗ = P(P̂ , ρ, wT ) ,





0 if P̂ ∈ [0, P̂1(ρ, wT )]
solves ηH∗(PH∗) = ρ if P̂ ∈ [P̂1(ρ, wT ), P̂2(ρ, wT )]

(1− ρ)+ if P̂ ∈ [P̂2(ρ, wT ), 1]

. (21)

The corresponding number of units sold in the auction QH∗ satisfies

QH∗ = λT Q(P̂ , ρ, wT ), where Q(P̂ , ρ, wT ) ,





ηH∗(0) if P̂ ∈ [0, P̂1(ρ, wT )]
ρ if P̂ ∈ [P̂1(ρ, wT ), P̂2(ρ, wT )]

min{1, ρ} if P̂ ∈ [P̂2(ρ, wT ), 1],
(22)

and

ηH∗(0) =

{
1

wT

[
P̂ ln

(
(1−P̂ )(exp(wT )−1)

P̂

)
− ln(1− P̂ )

]
if P̂ exp(wT ) < exp(wT )− 1

1 if P̂ exp(wT ) ≥ exp(wT )− 1.

3.4 Auctioneer’s optimization problem

After having characterized the strategic behavior of the customers, in this section we analyze the seller’s
design of the auction channel with the objective of maximizing revenues. For simplicity, and provided
the accuracy of the approximation shown in Section 3.3, we will work on the simple asymptotic regime,
assuming that the original distribution of valuations is F

M= Unif[0, 1], and that the seller’s revenue is
exponentially discounted over time. We denote by α > 0 this discount rate factor, which can differ
from the w shared by the customers.

The first step is to revert the scaling in (3) and formulate the auctioneer’s problem in terms of the
original reservation price vR. Specifically, we unscale the arrival rate, the supply-excess ratio, and the
posted price as follows

λ→ λ(1− vR), ρ→ Q0

λT (1− vR)
=

ρ

1− vR
, P̂ → P̂ − vR

1− vR
.

Based on this transformation, and the auction output for the uniform case given by (21) and (22), the
unscaled auction price and number of units auctioned are given by

PH∗(vR, T ) = vR + (1 − vR)P
( P̂ − vR

1 − vR
,

ρ

1 − vR
, wT

)
and QH∗(vR, T ) = λT (1 − vR)Q

(P̂ − vR

1 − vR
,

ρ

1 − vR
, wT

)
,

respectively. The first aspect we study is the selection of the optimal reservation price. Suppose that
the seller holds Q0 units of capacity, receives customers with an arrival rate λ, conducts an auction
of length T , and faces a constant external posted price P̂ , independent of all other parameters of the
problem. In this context, the seller has to solve (numerically) the following problem:

VA(Q0, T ) = max
0≤vR≤1

{exp(−αT ) PH∗(vR, T ) QH∗(vR, T )}. (23)
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Figure 4 shows that there is an optimal (or range of optimal) reservation price vR. Specifically, when
ρ = Q0/(λ T ) ≥ 1, all the winners pay the reservation price, and the tradeoff is between the number
of those bidders and the reservation price announced. The revenue function is unimodal in that case.
When ρ < 1, there is a range of reservation prices (starting at vR = 0) such that all the Q0 units are
allocated to the winners (i.e. the flat part of the curve in case (b)). However, for a higher vR, the
number of bidders is less than Q0, and revenues start to decrease.

Optimization of the Reservation Price for the Single Channel Case
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Figure 4: Auctioneer’s revenue as a function of the reservation price vR, auction duration T = 1, original valuations

with distribution F
M
= Unif [0, 1], λ = 10, w = 1, α = 2, and external posted price P̂ = 0.6. In case (a), Q0 = 30, and the

optimum is vR = 0.35. In case (b), Q0 = 5, and any vR ∈ [0,0.375] is optimal.

If the auctioneer wants to simultaneously optimize T and vR for a given capacity Q0, then she must
solve: maxT≥0 VA(Q0, T ). Figure 5 illustrates this for Q0 = 15. The revenue function has a global
maximum at vR = 0.45 and T = 0.4.

4 Dual channel with static list price

We consider here the case of a monopolistic seller who has Q0 units to sell through two different
channels: a list price channel, in which she sets a constant list price P̂ that will be kept during the
whole horizon of length T , and the auction that will take place at the end, with the remaining QT

units.

One of the important differences of this model with respect to the one discussed in the previous
section is that the fixed price channel has now a limited capacity, bounded above by Q0. Therefore,
in this new setting the optimal bidding strategy for bidders is b(v) = v as opposed to the strategy
b(v) = min{P̂ , v} of the previous section. To see this, note that in this case a high-valuation buyer
(i.e. with v > P̂ ) that enters the auction and looses will not get the object at all, since all the units

23



0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0

0.5

1

1.5

2

2.5

3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

v
R
G

T 

V
A
(1

5,
T

) 

Figure 5: Revenue function for Q0 = 15, original valuations with distribution F
M
= Unif [0, 1], λ = 10, w = 1, α = 2,

and external posted price P̂ = 0.6.

are cleared at T among buyers with valuations above vR. So, once this high-valuation buyer decides
to enter the auction then the game he plays is exactly equivalent to a (QT +1)-price auction for which
we know the optimal strategy is to bid the true valuation, b(v) = v. 9

Similar to the previous section, we analyze the buyers’ participation problem under the scaling in
(3), which we only revert at the end of this section when we study the seller’s optimization problem. For
simplicity, we will keep the same notation that we use in the single channel case with the understanding
that the value of some quantities (such as ṽ, vH , or PH) will be slightly different.

4.1 Characterization of a symmetric participation equilibrium H(v)

Suppose P̂ has been selected. Like in the previous section, we restrict buyers’ participation strategies
to the set

H =
{
H ∈ C : [0, 1]→ [0, T ] such that H(v) = 0, for all v ∈ [0, P̂ ]

}
,

and we characterize the decision of a buyer by mean of a threshold function H ∈ H, such that a buyer
arriving at time t with valuation vt will join the auction only if H(vt) ≤ t. The fact that H(vt) does
not depend explicitly on the number of bids at time t nor on Qt (number of unsold units at time t)
means that the buyer is incapable to observe the number of bids already in the system, and the exact
number of remaining units. That is, at any time t ∈ [0, T ], buyer t only knows the initial quantity Q0.

Similarly to Section 3.2, we analyze the buyer’s problem at his arriving time in order to compute
R(H), the best-response participation strategy given that all other buyers use the strategy H . As we

9Note that in this case QT is not a fixed quantity but a random variable that depends on the initial number of units

Q0 and the number of buyers that select the fixed price channel during [0, T ). The strategy is dominant even for this

case where the number of units to auction QT is uncertain. The argument is similar to the one used for the standard

second-price auction.
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will see, much of the analysis of Section 3.2 remains unchanged as long as we redefine PH(v) as follows:

PH(v) is the (random) auction price given that (i) there is a v-buyer that has joined the
auction, (ii) all other buyers use the participation strategy H , and (iii) the (random)
number QT of items left for the auction is equal to the difference between the initial value
Q0 and the number of items purchased through the fixed-price channel during [0, T ]. We
also use the convention PH(v) = 1 if QT = 0.

As we will see shortly, an SPE in this dual channel case depends on the probability distribution
of PH(v) and the value of P(Qτ > 0|H), the probability that at time τ there are still unsold units
given that buyers use the participation strategy H . In order to compute these quantities, we follow
an approach similar to the one developed for the single auction channel: We fix H , and in addition
we define

ΛH+(τ) M= λ T ηH+(τ), for ηH+(τ) M=
∫ 1

0
min

{
τ

T
,
H(v)

T

}
dF (v), and

ΛH−(x) M= λ T ηH−(x), for ηH−(x) M=
∫ 1

x

H(v)
T

dF (v) = F̄ (x)− ηH(x),

where F̄ (x) stands for the tail distribution of the valuations. Note ΛH+(τ) is the average number
of buyers selecting the fixed-price channel during [0, τ ], and ηH+(τ) is the corresponding fraction of
arrivals in this category. Since buyers arrive according to a Poisson process of rate λ, it follows that

P(Qτ > 0|H) = P(B(ΛH+(τ)) ≤ Q0 − 1) =
Q0−1∑

k=0

(
ΛH+(τ)

)k exp(−ΛH+(τ))
k!

. (24)

On the other hand, ΛH−(x) represents the average number of fixed-price buyers (i.e. those below
the threshold H) with valuation greater than or equal to x, and ηH−(x) is the fraction of arrivals with
valuation greater than or equal to x who go for the fixed-price channel.

The random variable B(ΛH−(x)) represents the number of fixed-price buyers with valuation greater
than or equal to x. Again, given that customers arrive according to a Poisson process with rate λ,
we have that B(ΛH−(x)) has a Poisson distribution with mean ΛH−(x). One important member of
this family of random variables is B(ΛH−(0)), which represents the total number of buyers that have
selected the fixed-price channel. Therefore, we can define the number of units left for the auction as
QT = (Q0 − B(ΛH−(0)))+. From this observation and condition (7) we obtain

P(PH(v) < x) =
Q0∑

k=1

P(B(ΛH (x)) + 11(x ≤ v) ≤ k) P(QT = k)

=
Q0∑

k=1

k−11(x≤v)∑

n=0

(
ΛH(x)

)n exp(−ΛH(x))
n!

(
ΛH−(0)

)Q0−k exp(−ΛH−(0))
(Q0 − k)!

=

[
Q0−1∑

k=0

(
ΛH(x) + ΛH−(0)

)k

k!
+ 11(x > v)

(
ΛH(x) + ΛH−(0)

)Q0 −
(
ΛH−(0)

)Q0

Q0!

]
exp(−(ΛH(x) + ΛH−(0)))
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We note that for x ≤ v, the distribution of PH(v) reduces to

P(PH(v) < x) =
Q0−1∑

k=0

(
ΛH(x) + ΛH−(0)

)k

k!
exp(−(ΛH(x) + ΛH−(0))) = P(B(ΛH (x) + ΛH−(0)) ≤ Q0 − 1). (25)

To get some intuition about this condition (25), note that ΛH(x) + ΛH−(0) represents the average
number of buyers that either enter the auction bidding more than x (first summand) or buy directly
the object from the fixed-price channel (second summand).

We are now ready to characterize the best-response mapping R in this dual channel case. Consider
buyer τ arriving at time τ with valuation vτ . If vτ ≤ P̂ then the auction is his only profitable channel
and so he enters the auction independently of τ . On the other hand, if vτ > P̂ then both channels
are potentially profitable. If he decides to buy a unit through the fixed-price channel, his expected
utility is zero if Qτ = 0 (that is, there are no units left) or equals u(τ, τ, vτ − P̂ ) if Qτ > 0. Thus, the
expected utility if he selects the fixed-price channel is given by (vτ − P̂ ) P(Qτ > 0|H). On the other
hand, if buyer τ decides to bid and gets one object, then his utility is u(τ, T, vτ − PH(vτ )), and zero
otherwise.10 Therefore, buyer τ enters the auction if his expected utility from bidding exceeds his
expected utility from the fixed-price channel. From the exponentially discounted utility function (1)
that we consider, this participation condition is equivalent to

exp(−w(T − τ))(vτ − E[PH(vτ)|PH(vτ ) < vτ ]) Pr(PH(vτ ) < vτ ) ≥ (vτ − P̂ ) P(Qτ > 0|H)

which we can rewrite for the case vτ > P̂ in the more convenient form (see equation (28)):

1
vτ − P̂

∫ vτ

0
P(PH(vτ ) < x) dx ≥ exp(w(T − τ)) P(Qτ > 0|H). (26)

Condition (24) implies that for every H ∈ H the function P(Qτ > 0|H) is continuous and non-
increasing in τ ∈ [0, T ]. Therefore, the function F(H)(τ) , exp(w(T − τ)) P(Qτ > 0|H) is mono-
tonically decreasing in τ and admits a continuous decreasing inverse function F(H)−1 in the domain
[P(QT > 0|H), exp(wT )]. We find convenient to (continuously) extend this domain of F(H)−1 to the
entire R+ as follows:

F(H)−1(x) = T, x ∈ [0, P(QT > 0|H)] and F(H)−1(x) = 0, x ≥ exp(wT ).

Although a closed-form expression for F(H)−1 is not available, its existence is all what we need to
establish the following result.

Proposition 4 In the dual channel case, for any strategy H ∈ H, the corresponding best-response
participation strategy R(H) ∈ H satisfies

R(H)(vτ) =





0 if vτ ∈ [0, P̂ ]

F(H)−1

(∫ vτ
0 P(PH(vτ )<x)dx

vτ−P̂

)
if vτ ∈ (P̂ , 1].

10Note that in this dual channel setting, the seller clears min{Q0, B(λT )} units through both channels by time T .
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The proof of the Proposition is omitted as it follows directly from the participation condition (26)
and the extended definition of F(H)−1 above. Only the continuity of R(H)(vτ) at vτ = P̂ , as it is
required by the condition R(H) ∈ H, deserves some attention. For this, note that for all H ∈ H we
have that

lim
vτ ↓P̂

∫ vτ

0 P(PH(vτ) < x) dx

vτ − P̂
→ +∞.

Continuity at P̂ now follows from the fact that F(H)−1(x) = 0 for all x ≥ exp(wT ). Using a similar
argument, we also note that for every H ∈ H there is a vH > P̂ such that R(H)(v) = 0 for all
v ∈ [P̂ , vH]. As in equation (14), we define

ṽ , inf
H∈H

{vH} .

We can get a lower bound on ṽ from the fact that
∫ vτ

0 P(PH(vτ) < x) dx

vτ − P̂
≥
∫ vτ

0 P(B(λT (1− F (P̂ ))) ≤ Q0 − 1) dx

vτ − P̂
=

vτ P(B(λT (1− F (P̂ ))) ≤ Q0 − 1)
vτ − P̂

.

The lower bound v is obtained by solving

vτ P(B(λT (1− F (P̂ ))) ≤ Q0 − 1)
vτ − P̂

= exp(wT ),

that is,

v =
exp(wT ) P̂

exp(wT )− P(B(λT (1− F (P̂ ))) ≤ Q0 − 1)
.

As in the single channel case, the existence of ṽ > P̂ guarantees that the best-response strategy R(H)
is K-Lipschitz continuous for an appropriate constant K. Therefore, we can redefine the space of
strategies to be

H , {H : [0, 1]→ [0, T ] s.t. H is K-Lipschitz continuous and H(v) = 0 in v ∈ [0, ṽ]} .

The following result formalizes this claim and proves the existence of a symmetric participation equi-
librium (SPE) for this dual channel case.

Theorem 4 For the exponential utility function (1) and for all H ∈ H, there is a positive constant K

(independent of H) such that the best-response strategy R(H)(v) is a K-Lipschitz continuous function
that satisfies R(H)(v) = 0 for all v ∈ [0, ṽ]. In addition, the best-response mapping R is continuous
in H equipped with the uniform norm, and so a symmetric equilibrium always exists in H.

Again, like in the end of Section 3.2, we point out the existence of vH∗ and its implication: there is
always a range of buyer valuations above the list price P̂ , such that those buyers will join the auction
regardless their arrival time.
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4.2 Asymptotic analysis

Following Section 3.3, here we analyze the limiting regime for the dual channel setting when both the
initial number of units Q0 and the arrival rate λ grow proportionally large (see equation (15)). The
auction price for instance n given that a bidder with valuation v enters the auction is Pn

H(v), and the
final random number of units to auction is Qn

T . Next proposition characterizes the asymptotic regime:

Theorem 5 Suppose the participation strategy H(v) and the static price P̂ are given. Then, in the
limit as n→∞:

i) The re-scaled number of units Qn
T /n to sell through the auction converges weakly to a constant

QT
M= (Q0 − λ T ηH−(0))+.

ii) If a final auction takes place (i.e. QT > 0), its price Pn
H(v) converges weakly to a constant

P∞
H

M= min{v ∈ [0, 1] : ηH(v) ≤ ρ− ηH−(0)}, where ρ is defined in equation (16).

Following the argument in Section 3.3, in order to determine the value of the auction price PH

and the corresponding participation strategy H(v), we have to impose the equilibrium condition
R(H∗) = H∗. Since R(H)(v) = 0 for all v < P̂ , we must have H∗(v) = 0 in v ∈ [0, P̂ ). In words,
buyers with valuation smaller than the posted price P̂ have no other choice but entering the auction.
To describe the behavior of H∗(v) in v ∈ [P̂ , 1] we need to distinguish two cases:

Case 1: Suppose that the initial supply of units is limited in the sense that ρ ≤ 1 − F (P̂ ). In this
situation, buyers with valuation greater than P̂ have no incentive to enter the auction since the auction
price is guaranteed to be greater than or equal to P̂ . Therefore, the resulting participation strategy
is H∗(v) = T for all v ≥ P̂ and the auction never takes place since all the units will be bought at the
posted price (i.e. QT = 0).

We note that H∗(v) = T 11(v ≥ P̂ ) is not the only SPE in this case. In fact, let us define
τ∗ , T ρ (1 − F (P̂ ))−1. Then, any H of the form H(v) = (τ∗ + h(v)) 11(v ≥ P̂ ) for an arbitrary
nonnegative and bounded function h(v) ≤ T − τ∗ is a SPE. In fact, for such an H the initial Q0 units
will be depleted by time τ∗ (i.e. Qτ∗ = 0, since τ∗ λ(1− F (P̂ )) = Q0). Therefore, any buyer arriving
after τ∗ will never get a unit and so he becomes indifferent between the two channels.

Case 2: Suppose that initial supply is abundant in the sense that ρ > 1−F (P̂ ). In this case, QT > 0
and some buyers with valuation smaller than P̂ get units through the auction. It is not hard to see
that in this case the auction price is given by PH∗ = F−1(1− ρ). Therefore, buyer τ arriving at time
τ with valuation vτ ≥ P̂ enters the auction only if vτ − P̂ ≤ exp(−w(T − τ)) (vτ − PH∗). We conclude
that in this abundant case the unique SPE H∗(v) is given by:

H∗(v) =

{
0 if v ∈ [0, vH∗]

T − 1
w ln

(
v−PH∗

v−P̂

)
if v ∈ [vH∗ , 1]

where vH∗ = min

{
P̂ exp(wT )− PH∗

exp(wT )− 1
, 1

}
.
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Figure 6 compares the optimal asymptotic strategy H∗(∞, ρ) to four optimal participation strate-
gies H∗(Q0, ρ) (Q0 = 1, 5, 10, 20) for the case of ρ = 0.5. As in the single channel case, the asymptotic
strategy is almost identical to the optimal strategy for values of Q0 greater than 10 units. The table on
the right compares the expected value of the auction price PH and the approximation PApprox

H obtained
using the asymptotic participation strategy H∗(∞, 0.5). Similarly to the single auction channel, the
asymptotic approximation is very accurate even for small values of Q0.

Asymptotic Approximation: Computational Experiments
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H*(1,0.5) 

H*(5,0.5) 

H*(10,0.5) ≈ H*(20,0.5) ≈ H*(∞,0.5)

Q0 PH PApprox
H Error

1 0.2793 0.2834 1.428%
5 0.4175 0.4184 0.213%
10 0.4539 0.4540 0.034%

20 0.4760 0.4760 0.002%

Figure 6: Asymptotic approximation for the case with valuations uniformly distributed in [0, 1], and T = w = 1,

P̂ = 0.6 and ρ = 0.5. In this case, the asymptotic price is P∞
H∗ = 1 − ρ = 0.5.

As in the single auction channel, we conclude this section specializing the asymptotic results to
the case of uniformly distributed valuations.

Example: Uniform Distribution Case.
Suppose buyers’ valuations are uniformly distributed in [0, 1]. Under this assumption, we will

characterize the auction price PH∗ as well as the number of units sold in the auction QH∗ ,

the cumulative number of units sold in the fixed-price channel during [0, T ] QF∗ , and the

corresponding rate λF∗(t) at which these units are sold. In the asymptotic regime under

consideration we have that

QF∗ =
∫ T

0
λF∗(t) dt.

Depending on the values of ρ and P̂ , we distinguish two cases.

Limited-Supply Case: ρ ≤ 1−P̂ . In this case, all units are depleted through the fixed-price

channel, that is, QF∗ = Q0 and QH∗ = 0. In addition, the fixed-price channel demand rate

satisfies

λF∗(t) = λ (1− P̂ ) 11(t ≤ τ∗), t ∈ [0, T ]
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where τ∗ = Q0

λ(1−P̂)
≤ T is the time at which all Q0 units are sold.

Abundant-Supply Case: ρ > 1− P̂ . In this case, there is a positive number of units that

are sold through the auction at a price PH∗ = (1− ρ)+. The number of units auctioned and

sold through the fixed-price channel are

QH∗ = λ T ηH∗(PH∗) and QF∗ = λ T (1− ηH∗(PH∗)),

respectively, where

ηH∗(PH∗) =
∫ 1

PH∗

(
1−

[
1− 1

wT
ln
(v − (1− ρ)+

v − P̂

)]+)
dv.

In this case, the fixed-price channel demand rate satisfies

λF∗(t) = λ H∗−1(t)

= λ

[
1− P̂ exp(w(T − t))− (1− ρ)+

exp(w(T − t))− 1

]+

. (27)

4.3 Seller’s optimization problem

For this dual channel setting, the seller must solve (numerically) a more complex problem than the
one in Section 3.4, since she also controls the list price P̂ . Again, for simplicity and provided the
accuracy of the approximation in Section 4.2, we will work on the asymptotic regime, assuming that
the original distribution of valuations is F , Unif[0, 1]. We also reverse the scaling in (3), that is,

λ→ λ(1− vR), ρ→ Q0

λT (1− vR)
=

ρ

1− vR
, P̂ → P̂ − vR

1− vR
,

to formulate the seller’s problem in terms of the original data. This problem consists on finding a
reservation price vR, a posted price P̂ , and possibly an auction duration T , that maximize the seller’s
revenue, which we assume is exponentially discounted over time at rate α. Note that the seller can
restrict the optimization to those cases in which vR ≤ P̂ , otherwise the auction is trivially dominated
by the fixed-price channel. Based on the results in Section 4.2, we distinguish two cases.

Limited-Supply Case: If the seller chooses a posted-price P̂ such that ρ ≤ 1−P̂ then independently
of the reservation price vR the auction never takes place; all units are sold through the fixed-price
channel. The seller’s revenue function in this case is given by

VD(P̂ , T ) =
∫ τ∗

0
P̂ exp(−α t)λ(1−F (P̂ )) dt =

P̂ λ(1− F (P̂ ))
α

(1−exp(−α τ∗)), where τ∗ =
Q0

λ (1− P̂ )
,

which leads to the following constrained optimization: V ∗
D , maxP̂ ,T {VD(P̂ , T ) : 0 ≤ P̂ ≤ 1− Q0

λT }.
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Abundant-Supply Case: In this case, the seller chooses a posted price P̂ such that ρ > 1− P̂ . In
this case a final auction takes place with outcome price PH∗ = max{vR, (1− ρ)+}. The revenue just
from the auction is:

VDA
(vR) = λ T ηH∗(PH∗) PH∗ exp(−α T )

The calculation of the revenue from the list price channel requires inverting the scaling for the fixed-
price channel demand rate in (27), that is,

λF∗(t) = λ

[
1− vR − (P̂ − vR) exp(w(T − t))− (1− ρ− vR)+

exp(w(T − t))− 1

]+

.

The revenue obtained from the list price channel is therefore:

VDLP
(P̂ ) = P̂

∫ 1

0
exp(−α t)λF∗(t) dt,

where the integral represents the aggregated cumulative discount for the list price buyers (i.e. those
customers below the curve H∗).

Figure 7 shows the expected seller’s revenue as a function of the list price P̂ , given that the
reservation price of the auction has been optimized for every P̂ . The parameters considered are:
T = w = 1, α = 2, and λ = 10. In Case a), the list price to post must be marginally above 0.6.
For prices below, there is no auction (case 1 in Section 4.2), and P̂ determines the revenues. For
prices above, there are some remaining units at T , and the auction takes place (case 2 in Section 4.2).
Moreover, for P̂ > 0.84, no customers go to the posted price channel. In Case b), the optimal list
price to post is P̂ = 0.5: For list prices in the range [0, 0.92], there is no auction; and for list prices
above 0.92, nobody goes for the list price.

5 Concluding remarks

In this paper, we have proposed a model to analyze the problem faced by a seller when designing a
single channel online auction, or when managing a dual online auction and list price channel. The
key to build this model is understanding the strategic behavior of the bidders, provided they choose
to either join the auction or buy the product at the posted price.

The private information of the buyers has two dimensions: the arrival time, and the private value
for one of the units being offered. For a discounted utility function, we showed that their participation
equilibrium strategy is of the threshold type, that is, a buyer will join the auction if and only if his
arrival time is higher than a function of his own valuation. Of course, for buyers with values below the
list price, the optimal strategy is always to participate in the auction. For buyers with higher values,
the threshold is nondecreasing in the own valuation. Interestingly, we found that there is always a
range of values above the fixed price for which it is also optimal to go for the auction, regardless the
arrival time.
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Optimization of the List Price for the Dual Channel Case
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Figure 7: Seller’s revenue as a function of the list price P̂ , auction duration T = 1, original valuations with distribution

F
M
= Unif [0,1], λ = 10, w = 1, and α = 2. In case (a), the seller has to announce a list price marginally above 0.6. In

case (b), the optimal list price is P̂ = 0.5.

We proposed a contraction algorithm in a function space to find this threshold, and proved that
it is convergent under some conditions. When these conditions do not hold, we managed to find the
fixed point of the algorithm by slightly perturbing the values of each iteration.

To overcome the computationally intensive feature of this procedure, we provided asymptotic
analysis for both settings. In the limiting regimes, we got very simple limiting threshold functions
which turned out to be indeed good approximations of the true equilibrium functions, according to
our numerical experiments. Given this accuracy, we plugged in this limiting threshold in the seller’s
optimization problem, and numerically solved for few instances. Because of the number of parameters
involved in the formulations (number of units, auction duration, auction reservation price, and list
price in the dual channel case), we have just provided few examples as simple illustrations of the
potential use of this analysis.

We believe that the techniques used to derive the equilibrium participation strategy here, in par-
ticular the asymptotic analysis, can also be used when extending our model to incorporate the number
of remaining units as part of the information structure of the bidders. That would mean adding one
coordinate to the threshold, leading to a three-dimensional surface, but we have not explored this
direction in detail.

Other possible extensions are related to the seller’s optimization problem. In our formulation, we
have included the capital cost. But for example, in the dual channel case, one can easily add some
holding cost for keeping the units until the end of the time horizon, such that the seller has an incentive
to give more units through the list price channel. One could also add a penalty cost for keeping units
at the end of the horizon, or a shortage cost for not being able to serve a customer if the units are
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depleted before the time scheduled for the auction.
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Appendix

The following Lemma will be used a few times in this appendix.

Lemma 2 Let B(x) a Poisson random variable mean x > 0. Then, for a nonnegative integer n

d
dx

P(B(x) ≤ n) = −P(B(x) = n).

Proof:

d
dx

P(B(x) ≤ n) =
n∑

k=0

d
dx

(
(x)k exp(−x)

k!

)

=
n∑

k=1

k (x))k−1 exp(−x)
k!

−
n∑

k=0

(x)k exp(−x)
k!

= −(x)n exp(−x)
n!

= −P(B(x) = n).

Proof of Proposition 1

Using the fact that PH(vτ) is a random variable with positive mass at vR = 0 and the properties of
conditional expectation, we have that

E[PH(vτ)|PH(vτ ) < P̂ ]

= vR P(PH(vτ) = vR|PH(vτ) < P̂ ) + E[PH(vτ)|vR < PH(vτ) < P̂ ] P(PH(vτ) > vR|PH(vτ ) < P̂ )

=

(∫ P̂

0
P(PH(vτ) ≥ x|0 < PH(vτ) < P̂ ) dx

)
P(PH(vτ) > 0|PH(vτ) < P̂ )

=
∫ P̂

0

P(x ≤ PH(vτ) < P̂ )
P(PH(vτ ) < P̂ )

dx (28)

Combining this expression and (9), after some algebra we get the participation constraint:

τ ≥ T − 1
w

ln

([
P̂ P(PH(vτ) < P̂ )−

∫ P̂

0
P(x ≤ PH(vτ) < P̂ )dx

]
1

vτ − P̂
+ 1

)

= T − 1
w

ln

(
1 +

∫ P̂

0

P(PH(vτ) < x)
vτ − P̂

dx

)
, hH(vτ),

which proves (11). From this last inequality, it follows that the right-hand side hH(vτ ) is the natural
candidate for best-response strategy for buyer τ with valuation vτ > P̂ . However, for an arbitrary
H ∈ H, hH(vτ ) is not guaranteed to be nonnegative and so hH is not necessarily a well-defined
participation strategy in H. Fortunately, note that we can correct this problem by simply setting the
best-response strategy R(H)(vτ) = (hH(vτ))+ which is equivalent to (12) and consistent with (9).
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Proof of Proposition 2

Note that we only need to prove the K-Lipschitz property of R(H)(v); the rest of the proposition
follows directly from the definition of ṽ.

To prove that R(H)(v) is K-Lipschitz continuous, we will make use of the following lemma (not
hard to prove).

Lemma 3 For arbitrary reals a, b, and c:
∣∣[a−b]+− [a−c]+

∣∣ ≤ |b−c|. For arbitrary nonnegative
reals x, y ≥ 1:

∣∣ ln(x)− ln(y)
∣∣ ≤ |x− y|.

Recall from the definition of vH that R(H)(v) = 0 for all v ∈ [0, vH]. So, we can concentrate on
proving the K-Lipschitz property on the interval [vH , 1]. In this range, condition (12) implies that

R(H)(v) =
[
T − 1

w
ln(ZH(v))

]+
where ZH(v) , 1 +

∫ P̂

0

P(PH(v) < x)
v − P̂

dx.

So based on the previous lemma we have that for arbitrary v1, v2 ∈ [vH , 1]

|R(H)(v1)−R(H)(v2)| =

∣∣∣∣∣

[
T − 1

w
ln(ZH(v1))

]+
−
[
T − 1

w
ln(ZH(v2))

]+
∣∣∣∣∣

≤ 1
w
|ln(ZH(v1))− ln(ZH(v2))|

≤ 1
w
|ZH(v1)− ZH(v2)| .

From the definition of ZH(v) and the fact that
∫ P̂
0 P(PH(v) < x)dx is independent of v for v ≥ vH > P̂

(since bidders with valuation in this range bid b(v) = P̂ independent of v), we have that

|ZH(v1) − ZH(v2)| =
∣∣∣∣
∫ v2

v1

d
dv

ZH(v) dv

∣∣∣∣

≤

∣∣∣∣∣

∫ v2

v1

[
−
∫ P̂

0

P(PH(v) < x)
(v − P̂ )2

dx

]
dv

∣∣∣∣∣

≤

∣∣∣∣∣

∫ v2

v1

[
P̂

(ṽ − P̂ )2

]
dv

∣∣∣∣∣ (using ṽ ≤ v ≤ 1)

=

[
P̂

(ṽ − P̂ )2

]
|v1 − v2|.

We conclude that for arbitrary v1, v2 ∈ [vH , 1]

|R(H)(v1)−R(H)(v2)| ≤
1
w

[
P̂

(ṽ − P̂ )2

]
|v1 − v2| , K |v1 − v2|.

The constant K is guaranteed to by finite since ṽ ≥ v > P̂ .

Proof of Theorem 1
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To prove that H has the fixed-point property, we apply the Schauder-Tychonoff Fixed-Point Theorem
(see Cheney [9, Chapter 7] for details). For this, we need to show that H is a compact convex
set. Convexity is immediate from the definition of H. To check compactness, we apply the Arzelà-
Ascoli Theorem II (Cheney [9, Chapter 7]), that is, we need to show that H is closed, bounded, and
equicontinuous. Take a sequence {Hn}n≥1 of strategies in H that converges pointwise to H . For all
v ∈ [0, ṽ], Hn(v) = 0 and so H(v) = 0 as well. In addition, to verify the K-Lipschitz property of H

note that from Proposition 2, for n ≥ 1 and v1, v2 ∈ [0, 1]

|Hn(v1)−Hn(v2)| ≤ K |v1 − v2|.

By the continuity of the absolute value and the point-wise convergence of Hn to H we conclude

|H(v1)−H(v2)| ≤ K |v1 − v2|,

which proves the closedness of H. The boundedness of H follows from the fact H(v) ∈ [0, T ] for all
H ∈ H. Equicontinuity, on the other hand, follows directly from the fact that the elements of H are
K-Lipschitz continuous. In fact, to prove equicontinuity we need to show that for ε > 0 there is δ > 0
such that:

For all H ∈ H and v1, v2 ∈ V such that |v1 − v2| < δ then |H(v1)−H(v2)| < ε.

For this, take δ = ε
K and use the K-Lipschitz continuity of H as follows:

For all H ∈ H and v1, v2 ∈ V such that |v1 − v2| < δ, |H(v1)−H(v2)| ≤ K|v1 − v2| < K δ = ε.

This proves that H has the fixed-point property.

We now prove that the best-response R mapping is continuous. Note that from the definitions of
the mapping R and ṽ we just need to prove the result for the restriction of R to the interval (ṽ, 1].
For the proof, we will requires the following to lemma.

Lemma 4 Let a and b be two nonnegative reals and N ≥ 1 and integer. Then, there is 0 ≤ β(N) ≤ 1
such that ∣∣P(B(b) ≤ N)− P(B(a) ≤ N)

∣∣ ≤ β(N) |b− a|.

Proof: Since P(B(a) ≤ N) is a continuous and differentiable function of a we have that

P(B(b) ≤ N) = P(B(a) ≤ N) +
∫ b

a

d
dx

P(B(x) ≤ N) dx

which is straightforward to prove (using Lemma 2) that is equivalent to

P(B(b) ≤ N) = P(B(a) ≤ N)−
∫ b

a

P(B(x) = N) dx.
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Therefore,

∣∣P(B(b) ≤ N)− P(B(a) ≤ N)
∣∣ =

∫ a∨b

a∧b
P(B(x) = N)dx

≤ |b− a|P(B(N) = N),

where the inequality follows from the fact that P(B(x) = N) is maximized at x = N . So, by setting

β(N) , P
(
B(N) = N

)

the proof of the lemma is completed.

Based on Lemma 3, we have that for any v ∈ (ṽ, 1],

|R(H)v −R(H̃)v| =

∣∣∣∣∣∣

[
T − 1

w
ln

(
1 +

∫ P̂

0

P(PH(v) < x)
v − P̂

dx

)]+

−

[
T − 1

w
ln

(
1 +

∫ P̂

0

P(PH̃(v) < x)
v − P̂

dx

)]+
∣∣∣∣∣∣

≤ 1
w

(∫ P̂

0

∣∣P(PH(v) < x) − P(PH̃(v) < x)
∣∣

v − P̂
dx

)
.

Now, by Lemma 4
∣∣P(PH(v) < x) − P(PH̃(v) < x)

∣∣ =
∣∣P(B(ΛH (x)) ≤ Q0 − 1) − P(B(ΛH̃ (x)) ≤ Q0 − 1)

∣∣

≤ β(Q0 − 1)
∣∣ΛH(x) − ΛH̃(x)

∣∣ = β(Q0 − 1)
∣∣∣∣λ
∫ 1

x

(H̃(y) − H(y)) dF (y)
∣∣∣∣

≤ λ β(Q0 − 1) (1 − F (x)) ‖H − H̃‖.

Finally, from this inequality we get that for all v ∈ (ṽ, 1]

|R(H)v −R(H̃)v| ≤
λ β(Q0 − 1)

w

(∫ P̂

0

(1− F (x))
v − P̂

dx
)
‖H − H̃‖

≤ λ β(Q0 − 1)
w

(∫ P̂

0

(1− F (x))
ṽ − P̂

dx
)
‖H − H̃‖

where the second inequality follow from the fact that v ∈ (ṽ, 1].

From this result, we conclude that R is continuous which together with the fixed-point property of
the set H guarantee the existence of a SPE.

Proof of Proposition 3

Given the equilibrium H∗, we define ZH∗(v) by

ZH∗(v) , 1 +
∫ P̂

0

P(PH∗(v) < x)
v − P̂

dx, v ∈ [vH∗ , 1].
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Note that in the range [0, vH∗] the function H∗ is constant at 0.

Based on the definition of the best-response mapping R, we can write the fixed-point condition
R(H∗) = H∗ satisfied by H∗(v) as

H∗(v) = T − 1
w

ln(ZH∗(v)), for all v ∈ [vH∗, 1].

Taking derivative with respect to v and using the fact that

χ ,
∫ P̂

0
P(PH∗(v) < x) dx

is independent of v for v ≥ vH∗ > P̂ , we get that

d
dv

H∗(v) =
−1
w

1
ZH∗(v)

d
dv

ZH∗(v) =
χ

w

(
1

(v − P̂ )(v − P̂ + χ)

)
> 0,

and we conclude that H∗(v) is increasing in v for all v ≥ vH∗ . Finally, taking a second derivative we
get

d2

dv2
H∗(v) = −χ

w

(
2(v − P̂ ) + χ

(v − P̂ )2 (v − P̂ + χ)2

)
< 0,

and we conclude that H∗(v) is concave in the range v ∈ [vH∗ , 1].

Proof of Lemma 1

First, note that Syn ∼ Poisson(yn µn). Using the moment generating function for the Poisson,

E exp
(

θ
Syn

yn

)
= E exp

(
θ

yn
Syn

)
= exp

(
yn µn

(
eθ/yn − 1

))

= exp
(

yn µn

(
θ

yn
+ o(1/yn)

))

= exp(µn θ) + o(1)

Hence,
lim

n→∞
E exp(θ Syn/yn)→ exp(θ µ),

the moment generating function of the constant µ. This guarantees convergence in distribution (see
e.g. Billingsley[4, Section 30]).

Proof of Theorem 2

From the definitions of Λn
H(x) and ηH(x), and the relationship between λn and Qn

0 , we have that

Λn
H(x) =

ηH(x)
ρn

Qn
0 .
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Now, let {Bi

(
ηH(x) (ρn)−1

)
: i = 1, . . . , Qn

0} be a sequence of i.i.d Poisson r.v. with mean ηH(x) (ρn)−1.
It follows that B(Λn

H(x)) has the same distribution as the sum of the Bi

(
ηH(x) (ρn)−1

)
from i equals

1 to Qn
0 . Therefore, for a given n,

P(Pn
H(v) < x) = 1, if x > P̂ or (29)

P(Pn
H(v) < x) = P(B(Λn

H(x)) ≤ Qn
0 − 11(x ≤ v))

= P




Qn
0∑

i=1

Bi

(
ηH(x) (ρn)−1

)
≤ Qn

0 − 11(x ≤ v)




= P

(∑Qn
0

i=1 Bi

(
ηH(x) (ρn)−1

)

Qn
0

≤ 1− 11(x ≤ v)
Qn

0

)
, if x ≤ P̂ . (30)

Taking the LHS of the last inequality inside the parenthesis, we define

Bn(x) M=
∑Qn

0
i=1 Bi

(
ηH(x) (ρn)−1

)

Qn
0

.

From Lemma 1, Bn(x) converges in distribution to the constant ηH(x) ρ−1. Moreover, it is clear
that the RHS of the inequality in (30) converges to 1. So, by focusing on the continuity points, the
distribution of Pn

H(v) converges weakly to the distribution:

P(P∞
H (v) < x) =





1 if x > P̂

1 if ρ > ηH(x) and x ≤ P̂

0 if ρ < ηH(x) and x ≤ P̂ .

(31)

This corresponds to the distribution of the constant min{P̂ , η−1
H (ρ)} at its continuity points, and so

P(Pn
H(v) < x)⇒ P(P∞

H (v) < x). Thus, Pn
H(v)⇒ P∞

H (v), for P∞
H (v) = min{P̂ , η−1

H (ρ)}.

Proof of Theorem 3

From Theorem 2, we have that PH∗ = min{v ∈ [0, 1] : ηH(v) ≤ ρ}. Since the function ηH(v) is
monotonically decreasing we conclude that ηH∗(PH∗) = min{ρ, ηH∗(0)}. This condition together with
equation (19) and the equilibrium condition H∗ = R(H∗) imply condition (20). The value of vH∗ and
H∗ follow from conditions (18) and (19), respectively.

Proof of Theorem 4

We first prove K-Lipschitz continuity of R(H)(v) in (ṽ, 1] . Observe that due to the shape of the
function F−1

H (x) (flat at T in the range [0, P(QT > 0|H)], and flat at zero for x ≥ exp(wT )), it is
enough to prove this property in the range (P(QT > 0|H), exp(wT )), where R(H)(v) is differentiable.
Let us define

ZH(v) , 1
v − P̂

∫ v

0

P(PH(v) < x) dx.
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Now, for any pair v1, v2 ∈ (ṽ, 1] we have that

∣∣R(H)(v1)−R(H)(v2)
∣∣ =

∣∣F−1
H (ZH(v1))−F−1

H (ZH(v2))
∣∣

=

∣∣∣∣∣

∫ ZH(v2)

ZH(v1)

d
dx
F−1

H (x) dx

∣∣∣∣∣ =
∣∣∣∣∣

∫ ZH(v2)

ZH(v1)

(
d
dτ
FH(τ)

)−1 ∣∣∣
τ=F−1

H (x)
dx

∣∣∣∣∣

Note that the differentiability of F−1
H (x) follows from the fact that the function FH(τ) is differentiable.

In fact, from Lemma 2 we have that

d
dτ
FH(τ) = − exp(w(T − τ))

[
w P(Qτ > 0|H) + P(B(ΛH+(τ)) = Q0 − 1)

d
dτ

ΛH+(τ)
]

,

where
d
dτ

ΛH+(τ) = λ
d
dτ

∫ 1

0
min {τ, H(v)} dF (v) = λ

∫ 1

0
11(τ ≤ H(v)) dF (v).

Using the fact that P(Qτ > 0|H) ≥ P(QT > 0|H) ≥ P(B(λT ) ≤ Q0− 1), that 0 ≤ d
dτ

ΛH+(τ) ≤ λ, and
that 1 ≤ exp(w(T − τ)) ≤ exp(wT ), we get that

w P(B(λT ) ≤ Q0 − 1) ≤
∣∣∣ d
dτ
FH(τ)

∣∣∣ ≤ exp(wT ) [w + λ]

and so

∣∣R(H)(v1)−R(H)(v2)
∣∣ =

∣∣F−1
H (ZH(v1))−F−1

H (ZH(v2))
∣∣ =≤ (w P(B(λT ) ≤ Q0−1))−1

∣∣ZH(v1)−ZH(v2)
∣∣.

(32)
K-Lipschitz continuity follows now combining this inequality and the following:

∣∣ZH(v1)− ZH(v2)
∣∣ =

∣∣∣∣
∫ v2

v1

d
dv

ZH(v) dv

∣∣∣∣ =

∣∣∣∣∣

∫ v2

v1

[
P(PH(v) < v)

v − P̂
−
∫ v

0

P(PH(v) < x)
(v − P̂ )2

dx

]
dv

∣∣∣∣∣

≤

∣∣∣∣∣

∫ v2

v1

[
1

ṽ − P̂
+

1
(ṽ − P̂ )2

]
dx

∣∣∣∣∣ =

(
1 + ṽ − P̂

(ṽ − P̂ )2

)
∣∣v1 − v2

∣∣.

The constant K equals (w P(B(λT ) ≤ Q0 − 1))−1
(

1+ṽ−P̂
(ṽ−P̂ )2

)
and it is well-defined since ṽ ≥ v > P̂ .

To prove the continuity in H of the mapping R, we first note that the mapping F(H) is continuous
in H. In fact,

∣∣F(H)(τ)−F(H̃)(τ)
∣∣ = exp(w(T − τ))

∣∣P(Qτ > 0|H)− P(Qτ > 0|H̃)
∣∣

= exp(w(T − τ))
∣∣P(B(ΛH+(τ)) ≤ Q0 − 1)− P(B(ΛH̃+(τ)) ≤ Q0 − 1)

∣∣

≤ exp(w(T − τ)) P(B(Q0 − 1) = Q0 − 1)
∣∣ΛH+(τ)− ΛH̃+(τ)

∣∣

≤ λ exp(w(T − τ)) P(B(Q0 − 1) = Q0 − 1) ‖H − H̃‖ , KF ‖H − H̃‖,

where the first inequality follows from Lemma 4, and the second one follows from the definition of
ΛH+(τ) and the property

∣∣min{τ, a} −min{τ, b}
∣∣ ≤

∣∣a − b
∣∣. The continuity of the mapping R(H) =
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F(H)−1 follows now from

∣∣R(H)(v)−R(H̃)(v)
∣∣ =

∣∣F(H)−1(ZH(v))−F(H̃)−1(ZH̃(v))
∣∣

≤
∣∣F(H)−1(ZH(v))−F(H̃)−1(ZH(v))

∣∣

+
∣∣F(H̃)−1(ZH(v))− F(H̃)−1(ZH̃(v))

∣∣. (33)

Regarding the first term in (33), from condition (32), we have that

∣∣F(H̃)−1(ZH(v))−F(H̃)−1(ZH̃(v))
∣∣ ≤ (w P(B(λT ) ≤ Q0 − 1))−1

∣∣ZH(v)− ZH̃(v))
∣∣.

As in the proof of Theorem 1, we can prove that

∣∣ZH(v)− ZH̃(v))
∣∣ ≤ KZ ‖H − H̃‖,

for an appropriate constant KZ .

Now we focus on the second term in (33). Without loss of generality, suppose F(H)−1(ZH(v)) ≤
F(H̃)−1(ZH(v)). Using the continuity of F in H that we just proved, it follows that

F(H̃)(F(H)−1(ZH(v))) ≤ ZH(v) + KF ‖H − H̃‖.

Applying F(H)−1 in both sides, and given that F(H̃)−1(v) is nonincreasing in v, we have that

F(H)−1(ZH(v)) = F(H̃)−1(F(H̃)(F(H)−1(ZH(v))) ≥ F(H̃)−1(ZH(v) + KF ‖H − H̃‖).

From the assumption F(H)−1(ZH(v)) ≤ F(H̃)−1(ZH(v)) we get

∣∣F(H)−1(ZH(v))−F(H̃)−1(ZH(v))
∣∣ ≤

∣∣F(H̃)−1(ZH(v) + KF ‖H − H̃‖)−F(H̃)−1(ZH(v))
∣∣

≤ (w P(B(λT ) ≤ Q0 − 1))−1 KF ‖H − H̃‖,

where the second inequality follows from condition (32) above.

Therefore, using the bounds for the two absolute terms in (33), we conclude that

∣∣R(H)(v)−R(H̃)(v)
∣∣ ≤ (w P(B(λT ) ≤ Q0 − 1))−1 (KZ + KF ) ‖H − H̃‖,

which proves the continuity of R in H.

Finally, as in Theorem 1, the existence of a symmetric equilibrium follows again from the Schauder-
Tychonoff Fixed-Point Theorem.

Proof of Theorem 5

Recall that B(Λn
H−(x)) is a Poisson r.v. with mean Λn

H−(x). To prove i), we start by rewriting Λn
H−(x)

as
Λn

H−(x) =
ηH−(x)

ρn
Qn

0 .
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Let {Bi(ηH−(x) (ρn)−1) : i = 1, . . . , Qn
0} be a sequence of i.i.d Poisson random variables with mean

ηH−(x) (ρn)−1. The random variable B(Λn
H−(x)) has the same distribution as the sum of the Bi(ηH−(x) (ρn)−1),

1 ≤ i ≤ Qn
0 . For a fixed 0 ≤ α ≤ 1,

P(Qn
T ≥ αQn

0) = P(B(Λn
H−(0)) ≤ Qn

0(1− α))

= P




Qn
0∑

i=1

Bi(ηH−(0)(ρn)−1) ≤ Qn
0 (1− α)




= P

(∑Qn
0

i=1 Bi(ηH−(0)(ρn)−1)
Qn

0

≤ 1− α

)
,

where the first equality follows from the fact that all the units put to the auction are the remaining
ones from the list price channel. Let

Bn
−(0) M=

∑Qn
0

i=1 Bi(ηH−(0)(ρn)−1)
Qn

0

.

From Lemma 1, Bn
−(0) converges in distribution to the constant ηH−(0)ρ−1. Given that for n sufficiently

big, Qn
0 = n Q0+o(n), then by focusing on the continuity points, the tail distribution of Qn

T/n converges
weakly to the tail distribution:

F̄QT
(αQ0) =

{
1 if ηH−(0) < ρ(1− α)
0 if ηH−(0) > ρ(1− α)

In words, the first case corresponds to αQ0 < Q0−λ T ηH−(0), that is, there are more units available in
the auction channel than the requested αQ0; the second case is the opposite. This is the distribution
of the constant (Q0 − λ T ηH−(0))+ at its continuity points, and so Qn

T/n⇒ QT .

For part ii), we have:

P(Pn
H(v) < x) = P(B(Λn

H(x)) ≤ Qn
T − 11(x ≤ v))

= P




Qn
0∑

i=1

Bi

(
ηH(x) (ρn)−1

)
≤ Qn

T − 11(x ≤ v)




= P

(∑Qn
0

i=1 Bi

(
ηH(x) (ρn)−1

)

Qn
0

≤
Qn

T − 11(x ≤ v)
Qn

0

)
(34)

A similar argument to the one above shows that as n→∞,

Bn(x) M=
∑Qn

0
i=1 Bi

(
ηH(x) (ρn)−1

)

Qn
0

⇒ ηH(x) ρ−1

Regarding the RHS in (34), from part i) if a final auction occurs, for n large enough we have Qn
T ≈

Qn
0 − λn T ηH−(0). Then, as n→∞,

Qn
T − 11(x ≤ v)

Qn
0

→ 1− ηH−(0)
ρ

.
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By focusing on the continuity points, the distribution of Pn
H(v) converges weakly to the distribution:

P(P∞
H (v) < x) =

{
1 if ηH(x) < ρ− ηH−(0)
0 if ηH(x) > ρ− ηH−(0)

This corresponds to the distribution of the constant P∞
H = min{v ∈ [0, 1] : ηH(v) ≤ ρ− ηH−(0)} at its

continuity points, and so Pn
H(v)⇒ P∞

H .
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