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Abstract

We revisit the issue of product line design by a monopolist and

extend the model of Mussa and Rosen (1978) in two ways. First, we

consider the case in which the unit cost is a nonconvex function of

product quality. We show that the firm does not offer those quali-

ties where the unit cost is linear or exceeds its lower convex envelope.

Consequently, there are "gaps" in its optimal quality choice. Sec-

ond, when the firm can offer only a limited number of quality levels

(due to possible fixed costs), we characterize the optimal location of

these finitely many quality levels. This characterization again has the

property that none of these qualities will lie within an interval where

the unit cost is linear or exceeds its lower convex envelope. Several

implications of the above results are discussed.
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1 Introduction

Consider a monopolist firm that provides a product at different quality levels.

Consumers differ in their willingness to pay for quality, but they all prefer a

product of a higher quality. In such a familiar context of vertical differentia-

tion, we extend the seminal Mussa and Rosen (1978) model in two directions.

First, the firm’s unit cost is a strictly convex function of quality in Mussa

and Rosen (1978) (and also the remaining literature on product line design).

A central task of the current paper is to relax this assumption and to exam-

ine the effects of non-convexity in the firm’s unit cost function on its price

discrimination and product choice. We show that the firm’s optimal price

policy is what it would be if the unit cost function were the lower convex

envelope of the firm’s true cost function. In particular, the firm will not sell

in those "anomalous" quality intervals where the unit cost function exceeds

its convex envelope. That is, its optimal quality choice contains "holes",

which contrasts with the standard conclusion that the firm’s quality choice is

a continuum (p. 310-311 of Mussa and Rosen 1978, Proposition 6 of Rochet

and Chone 1998).

Second, we also examine the firm’s quality location problem when it can

offer only a limited number of quality levels. Mainly for analytical conve-

nience, the extant literature on product line design suppresses the likely fixed

costs associated with offering each quality level, and assumes that the firm

offers all possible varieties in a quality continuum (i.e., infinitely many qual-

ity levels). Without a constraint on the number of its quality levels, the

firm’s quality choice is merely an outcome of consumers’ self-selection under

the optimal price policy. However, casual observations reveal that firms of-

ten can afford to offer only a limited number of quality varieties. In such a

case, how to locate these quality levels in the firm’s quality space becomes an

imperative question. We characterize the optimal location of these quality

levels, and show that none of them will be located in an anomalous quality

interval.
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One factor that may lead to nonconvexity in a firm’s unit cost function

is its installation of multiple distinct types of production technologies. For

a given technology, it might be true that the associated unit cost rises more

rapidly as product quality increases, and an increasing, convex cost function

effectively captures such decreasing returns in quality provision. Neverthe-

less, firms in many industries frequently employ multiple types of technology

to produce the same generic kind of goods. Examples include using digital

(analog) machines to make products with high (low) precision requirements,

using flexible systems (dedicated assembly lines) in settings requiring high

(low) degrees of customization, and using liquid crystal display (i.e., LCD)

and cathode ray tube (i.e., CRT) to build displays with high and low degrees

of steadiness and clarity, respectively. Based on a distinct engineering prin-

ciple, each type of technology has its own cost advantage within a certain

range of product performance parameters. Even though the cost function

associated with each individual technology may be convex, the combination

of multiple convex technologies may give an overall unit cost function that

is no longer convex over the entire quality domain.

The printer industry is another well known example for utilizing multiple

types of technology, such as ink-jet, laser, and dye sublimation. Currently,

ink-jet has the lowest cost and is most suitable for low-to-intermediate quali-

ties of black-and-white printing. Laser printers require higher unit costs than

ink-jet and are ideal for high-end black-and-white printing. Dye sublimation

is the most expensive but provides the best quality, especially for color or

photographic printing. Many printer manufacturers install all three types of

technology (plus possibly others) to meet the demand for various printing

qualities. The readers are referred to Sutton (1998) for additional historical

episodes of firms’ pursuing multiple "technological trajectories".

Our modeling framework is almost the same as Mussa and Rosen’s, except

that in our model the unit cost function may exhibit nonconvexity. To ease

exposition, we also assume that the distribution of consumer types satisfies
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a familiar hazard-rate condition so that "bunching" does not arise.

When the unit cost function is nonconvex, a direct analysis of both the

pricing and quality location problems will prove very complex. In this paper

we use a simple shortcut to tackle both problems. The crux throughout is

to regard the lower convex envelope of the true unit cost as a "virtual" unit

cost function, and to consider the hypothetical problem in which the firm

could produce according to this virtual unit cost function. Since this virtual

unit cost function is convex by construction, this hypothetical problem can

be readily solved via standard techniques, and its solution is then shown to

be optimal for the firm’s true problem as well.

Our present paper is related to two streams of literature: product line

design and vertical differentiation. Product line design by a monopolist is a

widely studied topic in economics (e.g., Mussa and Rosen 1978, Itoh 1983,

Maskin and Riley 1984, Gabszewicz et al 1986, Wilson 1993). A key con-

tribution of Mussa and Rosen (1978) is to realize the optimality of inducing

different consumers to purchase the same product (also called "bunching")

under certain conditions on the distribution of consumer types, and to devise

an "ironing" procedure to deal with bunching. Gabszewicz et al (1986) exam-

ine how a "natural" monopolist’s product line choice may critically depend

on the scope of the consumer income distribution. The natural monopolist

prices its product line in a manner that keeps out potential entry, and its

output is thus fixed. Much of the subsequent research effort down this line

has focused on higher dimensional spaces of product attributes and consumer

types (e.g., Matthews and Moore 1987, McAfee and McMillan 1988, Wilson

1993, Armstrong 1996, Sibley and Srinagesh 1997, and Rochet and Chone

1998).

The extant papers on product line design usually adopt specific forms of

unit cost functions and thus have not fully considered the role of production

in designing an optimal screening procedure. For example, the unit cost is

an increasing, strictly convex function of quality in Mussa and Rosen (1978)
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and Rochet and Chone (1998), and is zero for all qualities in Gabszewicz et

al (1986).

There also exist oligopoly models in the context of vertical differentia-

tion, e.g., Gabszewicz and Thisse (1979), Shaked and Sutton (1982), Gal-Or

(1983), Moorthy (1985), De Fraja (1996), Johnson and Myatt (2003), and

Jing (2004). Here a paper more closely related to our current analysis is

Johnson and Myatt (2003), which examines how an incumbent firm adjusts

the structure of its product line in response to entry. In particular, they

identify respective conditions under which the incumbent will add a "fight-

ing brand" to intensify product competition and withdraw a brand too close

to the entrant’s to avoid head-on product competition.

Section 2 presents the model. Sections 3 derives the optimal price and

product policies when the firm does not face a variety constraint. In Section

4, we characterize the optimal location of a finite number of quality levels in

a continuous quality domain. Section 5 contains concluding remarks.

2 Model

In this market a monopolist firm provides a product at various quality levels.

The firm’s quality space is unidimensional and represented by an interval

Q = [0, b]. The marginal cost of providing a product of quality s is c(s),

and is independent of the amount produced at this or any other quality

level. There is no fixed cost. We assume that c is nonnegative and twice

continuously differentiable, except possibly at finitely many points. We also

assume, without essential loss of generality, that

c(0) = 0, c(b) < b. (1)

We now turn to the model of demand. There is a continuum of consumers,

indexed by the real variable θ, called the consumer’s type. Each individual

consumer either does not purchase the product, or purchases exactly one

5



unit. If consumer θ purchases a product of quality s at price p(s), her net

utility is

U [s, p(s); θ] = θs− p(s). (2)

This is the familiar Mussa-Rosen utility function, where θ measures the con-

sumer’s marginal valuation of an additional unit of quality. Through proper

rescaling, (2) can accommodate the class of utility functions that are multi-

plicatively separable in consumer type and product quality. Given the price

function p, each consumer chooses a quality level that maximizes her util-

ity. In particular, the choice of quality zero generates zero utility, and thus

represents not purchasing this product. Assume that consumer type θ is dis-

tributed on the unit interval [0, 1] according to a strictly positive probability

density function f(θ). Let

J(θ) = θ − 1− F (θ)

f(θ)
,

where F (θ) =
R θ
0
f(x)dx. Assume that

J 0(θ) > 0, (3)

which is the familiar hazard-rate condition under which bunching does not

arise. This assumption also implies that J−1(·) exists and has a positive first
derivative.

3 Exogenous Quality Space

In this Section we assume that the monopolist does not face a variety con-

straint. The problem of the monopolist is to choose a subset of Q and a

price schedule to maximize its profit. In what follows, we shall use the so-

called "direct" approach (due to Wilson (1993)) that works with the price

schedule, as opposed to the indirect approach that deals with the quality as-
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signment. Once the optimal price policy is characterized, the firm’s quality

choice is then an immediate outcome of consumer self-selection. In the body

of the text, we only sketch the formulation of the firm’s problem and state

its solution. A precise and expanded treatment of this Section is given in the

Appendix.

The firm’s price policy is a real-valued function p on Q, which we assume

satisfies the following conditions:

p(s) ≥ 0 and is nondecreasing, (4)

p(0) = 0 and p(b) ≤ 1. (5)

Because each consumer’s utility is linear in quality, one can show that, with-

out loss of generality, we can limit our attention to price functions that are

convex (see the Appendix.)

Suppose, for the moment, that p is twice differentiable and its derivative

is nondecreasing. From the consumer utility function (2), the optimal quality

choice of consumer θ, σ(θ), is simply the solution of the first order condition

p0[σ(θ)] = θ, (6)

provided that

0 ≤ σ(θ) ≤ b and θσ(θ)− p[σ(θ)] > 0.

If the consumer is indifferent between multiple qualities, we make the con-

vention that she will choose the lowest such quality. Then since p0(s) is

nondecreasing,

σ(t) ≤ σ(θ) if and only if t = p0[σ(t)] ≤ p0[σ(θ)] = θ.

Hence, the mass of consumers who purchase a quality not exceeding s is

F (p0(s)), and the density of consumers who purchase quality s is f(p0(s))p00(s).
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Therefore, the price function p(s) yields the firm a profit

π(p) =

Z b

0

[p(s)− c(s)]f(p0(s))p00(s)ds. (7)

In fact, one cannot generally assume that the optimal price function will have

the nice properties we have just assumed for it. Essentially, one can only

require that the price function be sufficiently "regular" so that the profit is

well defined. A precise statement of the class of "admissible" price functions

is given in the Appendix.

Next, we only describe the firm’s optimal price policy; the detailed analy-

sis is relegated to the Appendix. Let w denote the largest convex function

that lies below the cost function c. Formally, let ª denote the set of all

convex functions ϕ on [0, b] such that

ϕ(s) ≤ c(s) for all s in [0, b],

and define w by

w(s) = max {ϕ(s)|ϕ ∈ ª} . (8)

We call w the lower convex envelope of c. One can show that w is convex

and nondecreasing, and that w(0) = 0. We call a quality level s extreme if

it is not contained in an open interval on which w is linear. We also call an

interval on which c(s) > w(s) anomalous. Note that by construction w(s)

is linear in an anomalous quality interval, and that at the extreme quality

levels, w(s) = c(s).

Theorem 1 The optimal price function is given by

p∗(s) =
Z s

0

J−1(w0(x))dx. (9)

Furthermore, demand is zero except at the extreme quality levels.

Because of the consumer utility function (2), by choosing a price function
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that is linear on a particular interval, the firm has effectively chosen not to

offer the quality levels in that interval. Clearly, the optimal price function is

linear where w(s) is linear. Theorem 1 thus implies that, when the unit cost

is not a convex function of quality, the monopolist will choose not to offer

one or more intervals of quality. This directly contrasts with the previously

known result that the quality choice of a monopolist with a strictly convex

cost function has no gaps (Mussa and Rosen 1978, and Rochet and Chone

1998).

When the consumer types are uniformly distributed on [0, 1], the monop-

olist’s optimal price schedule simply becomes

p∗(s) =
s+ w(s)

2
.

A second implication of Theorem 1 relates to technology utilization by a

firm employing multiple individually convex production technologies.

Corollary 2 Suppose the monopolist employs I production technologies, each
represented by a convex unit cost function ci on (0, b]. Then its optimal

quality choice is a collection of intervals such that on each interval, for

some technology i, ci(s) = w(s), where w is the lower convex envelope of

c(s) = min{ci(s), i = 1, ..., I}.

The proof is immediate from Theorem 1. According to this Corollary,

the firm should use technology i to produce those quality intervals where

ci(s) = w(s). A technology for which no such interval exists may be called

obsolescent. Note that, in our model a technology may become obsolescent

even if it still possesses a cost advantage over certain quality levels; this

happens for technology i if ci(s) > w(s) holds for all s.

Theorem 1 also implies a fairly general sufficient condition for price dis-

crimination to be suboptimal for the monopolist. When c(s) > w(s) on

(0, b), the monopolist’s quality choice degenerates to a singleton {b}, namely
the upper bound of the quality space. Alternatively, a corner solution is
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optimal as long as the cost function c(s) lies above the straight line connect-

ing (0, 0) and (b, c(b)) (Here the straight line is the lower convex envelope

w(s)), regardless of the curvature of c(s). This corresponds to the previous

results by Stokey (1979), Salant (1989), and Johnson and Myatt (2003). In

a intertemporal monopoly that can potentially discriminate on delivery time

(with a sooner delivery meaning a higher quality), Stokey (1979) shows that

under certain cost conditions the firm may choose only its earliest feasible

delivery date and thus does not invoke price discrimination. Also in settings

of vertical differentiation, Salant (1989) and Johnson and Myatt (2003) show

that the monopolist will sell only its highest feasible quality when there are

increasing returns to quality (i.e., when the unit cost function is sufficiently

flat).

4 Locating a Finite Number of Qualities

In Section 3, we have examined the monopolist’s quality choice when it does

not face a variety constraint. To benchmark with the extant literature, the

preceding analysis has ignored any likely fixed costs required for offering each

quality. When such fixed costs are taken into account, however, the firm can

only afford to offer a limited number of qualities, despite the fact that it

is technologically feasible to produce at any level in the quality continuum.

The following question then arises naturally : How should the firm locate

a finite number of qualities in the continuous quality space? The current

Section aims to answer this question.

The monopolist has to locate K (a finite number) distinct quality levels

labeled 0 < s1 < ... < sK in Q. We proceed in two stages. First, we

determine the optimal pricing policy for any K given quality levels.
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4.1 Pricing a Finite Set of Qualities

Suppose for now that the quality levels s1, ..., sK are fixed. Without any con-

fusion, let ck denote the marginal cost at quality sk, c(sk). To ease exposition,

we introduce a zero-quality product s0 = 0, which costs the firm nothing to

produce, i.e., c0 = 0. Let s = hs0, s1, ..., sKi and c = hc0, c1, ..., cKi. Define

dk =
ck − ck−1
sk − sk−1

, 1 ≤ k ≤ K. (10)

These dk are the “slopes" of the cost vector. Since the unit cost function c(s)

need not be convex in our model, the cost vector c may be such that dk is

not nondecreasing in k.

The firm charges a price, pk, for each product of quality sk. We make

the convention that s0 is offered for free, i.e., p0 = 0. Given the price vector

p = hp0, p1, ..., pKi, each consumer chooses a quality level that maximizes her
net utility. Again, a consumer choosing s0 does not purchase.

Define

θk =
pk − pk−1
sk − sk−1

, 1 ≤ k ≤ K. (11)

The variables θk are the "slopes" of the price vector. Observe that each

product has a non-negative demand if and only if θk is nondecreasing in k.

Hence the price vector p is called admissible if

0 ≤ θ1 ≤ ... ≤ ...θK ≤ 1. (12)

For an admissible price vector p, the demand for each quality sk (1 ≤ k ≤ K)

is F (θk+1) − F (θk), where θK+1 = 1. The firm chooses an admissible price

vector p to maximize its profit:

Problem P. Max
p

πc(p) =
KX
1

(pk − ck)[F (θk+1)− F (θk)]. (13)
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In what follows, it will be useful to express (13) in terms of the variables

θk.

Lemma 3 The objective in Problem P is equivalent to

πc(p) =
KX
1

(sk − sk−1)(θk − dk) [1− F (θk)] . (14)

The proof of the Lemma is relegated to the Appendix. For a strictly

convex cost function, Itoh (1983) first used a profit formula similar to (14)

to analyze the impacts of adding a new product by the monopolist (repre-

senting finer market segmentation) on the prices of its existing products, and

consequently on consumer welfare.

If the "cost slopes" dk are non-decreasing in k, then maximizing (14)

pointwise will give the optimal "price slopes" θk that are also non-decreasing

in k, and thus the resulting price vector will be admissible. However, since

the unit cost function c(s) is nonconvex in our model, the cost vector c may

be such that dk are not non-decreasing in k. This means that maximizing

(14) pointwise does not yield an admissible solution in general.

To obtain an admissible price policy for Problem P, we next construct

and consider an alternative, virtual problem of the firm (Problem V), which

has an admissible solution. We then show that the solution to Problem V is

also optimal for Problem P.

Let H be the convex hull of the pairs (sk, ck), 0 ≤ k ≤ K, and let v be the

function whose graph is the lower boundary of H. Clearly, v(s0) = c0 and

v(sk) ≤ ck for k ≥ 1. In Problem V, the firm were able to produce according
to the hypothetical unit cost v(sk), instead of ck, and had to choose a price

vector p for the given quality vector s to maximize its profit:

Problem V. Max
p

πv(p) =
KX
1

(pk − v(sk))[F (θk+1)− F (θk)]. (15)
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Define

gk =
v(sk)− v(sk−1)

sk − sk−1
, 1 ≤ k ≤ K.

Note that gk is non-decreasing in k by construction of v. Using an argument

similar to Lemma 3, we rewrite (15) as

πv(p) =
KX
1

(sk − sk−1)(θk − gk) [1− F (θk)] . (16)

Maximizing (16) pointwise with respect to θk yields

θ∗k −
1− F (θ∗k)
f(θ∗k)

= gk, (17)

or equivalently

θ∗k = J−1(gk), (18)

from which the optimal price vector for Problem V follows:

p∗k =
kX
1

J−1(gi)(si − si−1), 1 ≤ k ≤ K. (19)

Since J−1(·) is strictly increasing, θ∗k is non-decreasing in k, and therefore p∗k
is admissible.

From (17) and (18), we also have

£
J−1(gk)− gk

¤
f(J−1(gk)) = 1− F (J−1(gk)). (20)

We are now in a position to characterize the optimal price vector for s.

Theorem 4 p∗ is an optimal price vector for Problem P. In particular, the

demand for sk is positive only if gk < gk+1.

Proof: Denote π∗c and π∗v as the maximum profit attainable in Problems

P and V, respectively. First, π∗v ≥ π∗c . This is because, for any admissible
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price vector p, πv(p) ≥ πc(p) as ck ≥ v(sk) by construction of v.

Next, for any quality sk where gk = gk+1, we have θ
∗
k = θ∗k+1 under the

price vector p∗ (by (18)). Therefore, in Problem V the demand for such

quality levels is zero. That is, the demand for sk is positive only if gk < gk+1.

Note that gk < gk+1 implies ck = v(sk). Therefore the profit π∗v is also

attainable with the firm’s true cost vector c and price vector p∗. That is,

π∗v = π∗c .

This shows that p∗ solves the monopolist’s real problem, Problem P.

Q.E.D.

When gk is strictly increasing in k, we have ck = v(sk) for all k, and

thus dk must be strictly increasing in k. Therefore, Theorem 4 implies that

dk must be strictly increasing in k in any nondegenerate location of these K

quality levels (in the sense that each quality level attracts positive demand

under optimal pricing.)

In essence, this Subsection is the discrete analogue of Section 3. Compar-

ing Theorems 1 and 4, we see that the optimal price policies have the same

spirit for both continuous and discrete quality sets.

4.2 Quality Location

We now turn to the firm’s problem of locating s inQ. By Theorem 4, plugging

p∗ ((19)) into Problem P gives the firm’s profit as a function of s:

Problem P0: Max
s

Πc(s) =
KX
1

(p∗k(s)− c(sk))[F (J
−1(gk+1))− F (J−1(gk))].

(21)

To solve Problem P0, we first consider the hypothetical quality location

problem (Problem V0) in which the firm could produce according to the vir-

tual cost function w(s), the lower convex envelope of c(s). Let H 0 denote the

convex hull of the pairs (sk, w(sk)), 0 ≤ k ≤ K, and let v be the function

14



whose graph is the lower boundary of H 0. Since w(s) is convex by construc-

tion, we have v(sk) = w(sk) for all k.

Define

hk =
w(sk)− w(sk−1)

sk − sk−1
, 1 ≤ k ≤ K. (22)

Therefore, if the firm were to produce according to the virtual cost func-

tion w(s), then the optimal price for each quality sk would simply be

p0k(s) =
kX
1

J−1(hi)(si − si−1), 1 ≤ k ≤ K,

(cf. (19)), and Problem V0 may be formulated as

Problem V0: Max
s

Πw(s) =
KX
1

(p0k(s)−w(sk))[F (J−1(hk+1))−F (J−1(hk))],
(23)

or equivalently (by an argument analogous to Lemma 3):

Max
s

Πw(s) =
KX
1

(sk − sk−1)(J−1(hk)− hk)
£
1− F (J−1(hk))

¤
. (24)

The following equation would also hold valid (cf. (20)):

£
J−1(hk)− hk

¤
f(J−1(hk)) = 1− F (J−1(hk)). (25)

This entity plays a critical role in the subsequent analysis.

As we have seen in Section 3, absent the variety constraint, the firm will

not sell a quality level in an anomalous interval. The next Theorem shows

that this result remains valid when the firm can offer only K quality levels

in the quality domain.

Theorem 5 An optimal interior solution s∗ for Problem P0 is characterized
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by: for 1 ≤ k ≤ K − 1,

[1− F (θ∗k)]θ
∗
k − [1− F (θ∗k+1)]θ

∗
k+1 = [F (θ

∗
k+1)− F (θ∗k)]w

0(s∗k), (26)

and

θ∗K = w0(s∗K), (27)

where θ∗k = J−1(hk). Furthermore, each s∗k must be an extreme quality.

Proof: We first show that s∗ as characterized in (26) and (27) is an optimal

interior solution to Problem V0, and then show that it is also optimal for

Problem P0.

Differentiating (24) with respect to sk and cancelling terms with (25), we

have, for 1 ≤ k ≤ K − 1,

∂Πw(s)

∂sk
= [1− F (J−1(hk))][J−1(hk)− w0(sk)]

+[1− F (J−1(hk+1))][w0(sk)− J−1(hk+1)] (28)

and
∂Πw(s)

∂sK
= [1− F (J−1(hK))][J−1(hK)− w0(sK)]. (29)

Since Πw(s) is continuous, an optimal solution to Problem V0, s∗, always

exists. The characterization of an interior solution s∗ (as given in (26) and

(27)) follows from rearranging the first order conditions ((28) and (29)). In

fact, it has the following property.

Lemma 6 In the optimal solution to Problem V0, no quality level is in an

open interval where w is linear.

The proof of the Lemma is given in the Appendix.

Denote Π∗c and Π
∗
w as the maximum profits attainable in Problems P

0 and

V0, respectively. We have Π∗w ≥ Π∗c . This is because, for any given quality
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vector s and a corresponding price vector p, producing with w yields a profit

at least as large as producing with c does (cf. (13)), because w(s) ≤ c(s) by

construction.

Recall that w is linear in an anomalous interval (where c(s) > w(s)). By

Lemma 6, at each s∗k we must have c(s
∗
k) = w(s∗k). This implies Π

∗
w = Π∗c .

Therefore, the solution to Problem V0, s∗, must also be optimal for Problem

P0. The second statement of the Theorem follows directly from Lemma 6.

Q.E.D.

Since the demand for a product of quality s∗k is F (θ
∗
k+1)−F (θ∗k), the RHS

of (26) above represents the marginal costs due to an additional increment in

s∗k. The first term on the LHS ([1−F (θ∗k)]θ
∗
k) is the increase in revenue from

consumers purchasing a quality equal to or above sk, due to an additional

increment in sk. An increment in sk would also make it more attractive

to the original purchasers of sk+1,..., sK , and thus compete away sales and

reduce the revenue from these qualities above sk. The second term on the

LHS captures such a revenue reduction, and reflects the spirit of "upstream

interference" as first pointed out by Mussa and Rosen (1978). Equation (26)

thus equates the marginal revenue from quality sk to its marginal cost, and

(27) has a similar interpretation.

Theorem 5 has only considered the case of an interior solution (0 < s∗K <

b). Since the function J(·) is defined on [0, 1], J−1(·) is bounded between 0
and 1. An interior solution obtains when w0(b−) ≥ 1. To see this, simply
note that ∂Πw(s)

∂sK
|SK=b ≤ 0 when w0(b−) ≥ 1.

Note that, s∗K may also occur at the corner (i.e., s∗K = b). A sufficient

condition for s∗K = b is w0(b−) < 1 and J−1(w(s)/s) − w0(s) > 0 on (0, b].

When w0(b−) < 1, we always have hK < 1 = J(1) or J−1(hK) < 1, which

implies 1 − F (J−1(hK)) > 0. When J−1(w(s)/s) − w0(s) > 0 on (0, b], we
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have

J−1(hK) = J−1
µ
w(sK)− w(sK−1)

sK − sK−1

¶
> J−1

µ
w(sK)

sK

¶
> w0(sK).

We therefore have ∂Πw(s)
∂sK

> 0 on (0, b], which implies s∗K = b must hold.

As an example, when consumer types are uniformly distributed on [0, 1],

(26) and (27) simply reduce to

w0(sk) =
1

2
(hk+1 + hk), k < K,

and

w0(sK) =
1

2
(1 + hK),

respectively.

From the proof of Theorem 5, the problem of locating K qualities for

a nonconvex cost function c(s) (Problem P0) is equivalent to locating K

qualities for its lower convex envelope (Problem V0).

Another property of the quality location problem is its supermodularity.

Theorem 7 Πw(s) in Problem V0 is a supermodular function.

Proof: We only need to show that the cross partial derivatives of Πw(s)

w.r.t. qualities are nonnegative (Topkis 1978): For k < K,

∂2Πw(s)

∂sk∂sk+1
= −f(J−1(hk+1))(J−1(hk+1))0∂hk+1

∂sk+1
[w0(sk)− J−1(hk+1)]

−[1− F (J−1(hk+1))](J−1(hk+1))0
∂hk+1
∂sk+1

= f(J−1(hk+1))(J−1(hk+1))0
∂hk+1
∂sk+1

[hk+1 − w0(sk)]

> 0,
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where the second equality is derived after collecting terms with (25), and the

inequality is due to ∂hk+1/∂sk+1 > 0 and hk+1 > w0(sk).

For |k − j| > 1, we have

∂2Πw(s)

∂sk∂sj
= 0.

Q.E.D.

An implication of Theorem 7 is that a local cost reduction around quality

sk may lead to an upward adjustment not only to sk, but also to the remaining

quality levels.

5 Conclusion

This paper has extended the theory of product line design along two direc-

tions: a nonconvex unit cost function and endogenous location of a finite

number of quality levels. To the best of our knowledge, these two directions

are still underexplored in the extant literature. When the monopolist does

not face a variety constraint, its quality choice consists only of those "ex-

treme" quality levels (i.e., quality levels where the lower convex envelope of

the unit cost function is nonlinear.) Thus, there are gaps in its product line.

This result also has implications for: (1) utilization of multiple individually

convex technologies; and (2) conditions under which price discrimination is

suboptimal (i.e., when the monopolist should "bunch" all participating con-

sumers to a single quality level.)

Another contribution of this paper is characterizing how the monopolist

should position a finite number (K) of products in the quality space, since

most firms in reality will face such a variety constraint. We see that the op-

timal locations of these K products are again "extreme" qualities. The fol-

lowing two types of quality region are therefore excluded: (1) the anomalous

intervals where the unit cost lies strictly above its lower convex envelope; and
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(2) those quality intervals where the unit cost function is linear. Note that

this result does not follow directly from the pricing policy. Recall that the

pricing policy (Theorem 4) only entails that the slopes of the cost trajectory

formed by the K qualities are strictly increasing. One could still obtain a

cost trajectory with increasing slopes even with one or more qualities located

in the anomalous intervals.

We conclude by discussing certain assumptions in the model. Our Section

3 uses the assumption that the cost function is twice differentiable except at

(at most) finitely many points. This assumption facilitates exposition but

does not appear essential. In fact, the analysis in Section 3 holds for cost

functions with kinks or jumps, including step functions.

A limitation is that our results are confined subject to the class of utility

functions that are multiplicatively separable in quality and consumer type.

It would be useful to extend the current analysis to more general classes of

utility functions. However, such an extension would undoubtedly be much

more complex. Largely for the same reason, a vast majority of the literature

on screening and vertical differentiation has also focused on multiplicatively

separable utilities.
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6 Appendix

A1. Expanded Treatment of Section 3: Exogenous Quality Space
Here we complete the description of the firm’s problem in Section 3, and

give the details of the analysis. First, we assume that the price function, p, is
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nonnegative and Lebesgue measurable on the interval [0, b]. Given the utility

functions (2) of the consumers, there is no loss of generality in assuming that

p is monotone nondecreasing, and

p(0) = 0, p(b) ≤ 1. (30)

Furthermore, since the utility functions are linear in the quality level s, the

firm can restrict its price functions to be convex. [To see this, let Lp denote

the lower convex envelope of p; then if p(s) > Lp(s), no consumer type will

demand quality s.]

The following standard proposition about convex functions will be useful

(see, e.g., Royden, 1988, Prop. 17, pp. 113-114).

Proposition 8 If p is convex on [0, b], then it is absolutely continuous. Its

right-and left-hand derivatives exist at each point, and are equal to each other

except possibly on a countable set. The left- and right-hand derivatives are

monotone nondecreasing functions, and at each point the left-hand derivative

is less than or equal to the right-hand derivative.

In view of the Proposition, we shall make the convention that the deriv-

ative of the price function, which we shall denote by G, is its right-hand

derivative, and so it is continuous from the right. With this convention,

p(s) =

Z s

0

G(t)dt. (31)

We next characterize the measure of the consumers who purchase a qual-

ity not exceeding s. For the moment, fix a convex price function, say p, and

let G denote its derivative. Since p is convex, the net utility of consumer θ is

concave as a function of quality s, and the right-hand derivative of her net

utility function at s is

θ −G(s).
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There are three cases to consider. First, suppose that there is an interior s∗

such that G(s∗−) ≤ θ ≤ G(s∗) and s∗ is the minimum of such values. Then

the consumer will purchase s∗, provided

θs∗ − p(s∗) > 0.

Second, if θ ≤ G(0), then the consumer will purchase quality level 0. Finally,

if G(b−) ≤ θ ≤ 1, then the consumer will purchase quality level b, provided

θb− p(b) > 0.

In this case, the mass of consumers purchasing quality level b is 1−G(b−).
A price function p is called admissible if it satisfies

p(0) = 0, G(0) ≥ 0, G(b) = 1, and (32)

G(s) is nondecreasing in s. (33)

The assumption that G(b) = 1 is only a convention, since it does not affect

the price function, but with this convention the mass of consumers purchasing

quality level b is equal to G(b)−G(b−).
It now follows that, since θ is distributed on [0, 1] according to c.d.f. F ,

for an admissible price function the measure of the set of consumers who

purchase a quality level not exceeding s is equal to F (G(s)). Therefore, the

firm’s profit is

πc(p(s)) =

Z b

0

[p(s)− c(s)]dF (G(s)). (34)

[Cf. equation (7) of Section 3.]

We assume here that the unit cost function, c, is nonnegative and con-

tinuous. We also assume, without essential loss of generality, that

c(0) = 0, c(b) < b.
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Observe that these assumptions are weaker than those made in Section 3.

As in Section 3, let w denote the lower convex envelope of c. Let H denote

the set of points (s, y) that lie above the graph of w, i.e.,

H = {(s, y)|0 ≤ s ≤ b and y ≥ w(s)}. (35)

Note that H is a closed convex set. Recall that an extreme point of H is

a point in H that is not a nondegenerate convex combination of two other

distinct points of H. The following two facts about extreme points of H will

be useful, and are stated without proof.

Lemma 9 The pair (s, w(s)) is an extreme point of H if and only if there

exist no s0, s00 such that s0 < s < s00 and h is linear on [s0, s00]. Furthermore,

if (s, w(s)) is an extreme point of H, then w(s) = c(s).

Referring to the terminology of Section 3, the preceding lemma implies

that a quality level s is extreme if and only if (s, w(s)) is an extreme point

of H.

Define π∗c to be the maximum profit the firm can obtain with the cost

function c. Analogously, let π∗w be the maximum profit the firm could obtain

if its cost function were w. Since we have not yet shown that these maxima

exist, to be precise we define

π∗c = sup{π(p)|p is admissible and the cost function is c}, (36)

π∗w = sup{π(p)|p is admissible and the cost function is w}. (37)

Since w ≤ c, it follows that

π∗w ≥ π∗c . (38)

We shall now show that π∗w = π∗c . Let πw(p) denote the firm’s profit if its
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price function were p and its cost function were w. Thus

πw(p) =

Z b

0

[p(s)− w(s)]dF (G(s))

. =

Z b

0

p(s)dF (G(s))−
Z b

0

w(s)dF (G(s)).

Since w is convex and increasing, the Proposition is applicable; let its deriv-

ative be denoted by w0. Since G is right-continuous and F is continuous,

F (G(·)) is also right-continuous. Integrating by parts,

πw(p) = p(b)F (G(b))− p(0)F (G(0))−
Z b

0

F (G(s))p0(s)ds

−w(b)F (G(b)) + w(0)F (G(0)) +

Z b

0

F (G(s))w0(s)ds.

For the validity of the formula for integration by parts in this context, see

Rudin (1964). However,

p0 = G.

p(b)− w(b) =

Z b

0

[G(s)− w0(s)]ds

p(0) = w(0) = 0,

G(b) = 1.

Hence, after making the appropriate substitutions and collecting terms, we

arrive at:

Lemma 10

πw(p) =

Z b

0

[G(s)− w0(s)][1− F (G(s))]ds. (39)

Maximizing the right-hand side of (39) pointwise with respect to G(s),
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we get

G∗(s)− 1− F (G∗(s))
f(G∗(s))

= w0(s),

or equivalently

G∗(s) = J−1(w0(s)). (40)

Integrating the last gives the price function

p∗(s) =
Z s

0

J−1(w0(x))dx, (41)

which is optimal for the cost functionw. (Note that to determine the constant

of integration we have used the condition that p(0) = 0.)

Now recall that w is linear in any anomalous interval, and hence so is p∗.

Hence demand is zero except where (s, w(s)) is extreme. Furthermore, at

any extreme point, w(s) = c(s), and so

π∗w = πw(p
∗) = πc(p

∗) ≤ π∗c .

But we previously showed that π∗w ≥ π∗c [cf. (38)], and so

π∗w = π∗c . (42)

We thus have shown that p∗(s) as given in (41) is also optimal for the cost

function c, proving the first statement of Theorem 1. The second statement

of Theorem 1 is obvious considering the consumer utility function (2).

A2. Proof of Lemma 3.
Lemma 3.

πc(p) =
KX
1

(sk − sk−1)(θk − dk) [1− F (θk)] .

Proof : Let
xk = pk − ck.
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With this notation, (13) becomes

π(p) =
KX
1

xk[F (θk+1)− F (θk)],

where θK+1 = 1. Rearranging terms, one has

KX
1

xk[F (θk+1)− F (θk)] = −
KX
1

(xk − xk−1)F (θk) + xK.

(This is an analogue of integration by parts for finite sums.) Hence

π(p) = −
KX
1

(xk − xk−1)F (θk) + pK − cK .

Observe that

xk − xk−1 = (sk − sk−1)(θk − dk),

pK − cK =
KX
1

(sk − sk−1)(θk − dk).

These, together with the preceding equation for the profit, lead immediately

to the conclusion of the lemma. Q.E.D.

A3. Proof of Lemma 6.
Proof: We prove this Lemma by showing that Πw(s) is convex in sk in

any open interval where w is linear. Differentiating (28) with respect to sk

and simplifying with (25), we see that for 1 ≤ k ≤ K − 1, when w00(sk) = 0,

∂2Πw(s)

∂s2k
= (J−1(hk))0

∂hk
∂sk

f(J−1(hk))[w0(sk)− hk]

+(J−1(hk+1))0
∂hk+1
∂sk

f(J−1(hk+1))[hk+1 − w0(sk)].

We can readily verify the following: ∂hk/∂sk > 0, ∂hk+1/∂sk > 0, w0(sk) ≥
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hk, and w0(sk) ≤ hk+1. From these, it is clear that ∂2Πw(s)/∂s
2
k ≥ 0 wherever

w00(sk) = 0. Similarly, it can be verified that, wherever w00(sK) = 0,

∂2Πw(s)

∂s2K
= (J−1(hK))0

∂hK
∂sK

f(J−1(hK))[w0(sK)− hK ] ≥ 0.

This indicates that, in Problem V0 the firm would never locate any quality

in an open interval where w is linear. Q.E.D.
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