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We present a framework for measuring software quality using pricing and demand data, and

empirical estimates that quantify the extent of quality degradation associated with software ver-

sioning. Using a 7-month, 108-product panel of software sales from Amazon.com, we document

the extent to which quality varies across different software versions, estimating quality degradation

that ranges from as little as 8% to as much as 56% below that of the corresponding flagship ver-

sion. Consistent with prescriptions from the theory of vertical differentiation, we also find that an

increase in the total number of versions is associated with an increase in the difference in quality

between the highest and lowest quality versions, and a decrease in the quality difference between

"neighboring" versions. We compare our estimates with those derived from two sets of subjective

measures of quality, based on CNET editorial ratings and Amazon.com user reviews, and discuss

competing interpretations of the significant differences that emerge from this comparison. As the

first empirical study of software versioning that is based on both subjective and econometrically

estimated measures of quality, this paper provides a framework for testing a wide variety of results

in IS that are based on related models of vertical differentiation, and its findings have important

implications for studies that treat web-based user ratings as cardinal data.
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1 Introduction

Many manufacturers create product lines by first developing a flagship product with an optimal

level of features and functionality, and then creating one or more inferior versions by deliberately

reducing the quality of this flagship product. This practice is commonly referred to as quality

degradation, and many instances of this have been documented in practice. For example, the Intel

486SX processor was initially produced by beginning with a fully functioning 486DX processor, and

then disabling the math coprocessor. In 1990, IBM introduced the LaserPrinter E, which printed

at 5 pages per minute, half the printing speed of the superior IBM LaserPrinter, but used the same

printing engine, though with added firmware that inserted wait states to slow printing. A number

of other examples of “damaging” a flagship product to create inferior versions exist across a variety

of industries, ranging from disk drives to overnight delivery service (Deneckere and McAfee, 1996).

Quality degradation is ubiquitous in the software industry. There are multiple versions of

large number of popular desktop software packages that differ only in their quality or number

of features (rather than in their development or release date), and which are sold at different

prices. At any point in time, one can find different versions of popular software titles like Adobe

Acrobat, TurboTax, Microsoft Money and Norton AntiVirus available. These are examples of

software titles for which a firm has developed a flagship version, disabled a subset of the features

or modules of this version, and released both the higher quality version and one or more lower

quality versions simultaneously. Correspondingly, a large variety of software manufacturers make

a limited functionality version of their product available for free, and charge a positive price for a

full-featured version (Eudora and Eudora Light being a popular example). This prevalence is not

surprising, given that the cost of disabling features or removing software modules is relatively low,

as are the variable costs of producing software.

The theory used to study software versioning and quality degradation typically draws from

second-degree price discrimination (Mussa and Rosen, 1978, Maskin and Riley, 1984). The key idea

drawn from this theory is that of market segmentation using multiple versions that are quality-
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differentiated substitutes, and which are created by strategically distorting down the quality of a

flagship version. Many recent papers in information systems have used this theory to study the

optimal number of versions for a seller of information goods (Jones and Mendelson, 1998, Raghu-

nathan, 2000, Varian, 2000, Bhargava and Choudhary, 2001, 2004, Weber 2002), often concluding

that a single version is optimal. Moreover, this underlying model of market segmentation using

quality distortion is used in an increasing number of related IS studies that investigate, among

other things, licensing in software contracts (Zhang and Seidmann, 2002), optimal software up-

grade paths (Bala and Carr, 2004, Sankaranarayanan, 2005), pricing of online services (Bhargava

and Sundaresan 2003), efficiency and pricing of interorganizational (IOS) systems (Barua, Kriebel

and Mukhopadhyay 1991, Nault 1994), free download policies (Boom, 2005, Tang and Cheng, 2003)

and managing digital piracy (Chen, Wu and Anandalingam, 2003, Snir, 2003, Sundararajan, 2004,

Chellappa and Shivendu 2004).

To summarize, some notion of quality assessment by consumers, and of strategic degradation

of quality levels by sellers is embedded in a variety of IS studies that use the underlying model of

vertical differentiation. Since each of these studies makes different managerial and policy prescrip-

tions based on their models, it seems important to determine how to actually measure levels of

quality and quality degradation predicted by such models, towards setting up a way of testing their

theories empirically, and towards exploring whether quality degradation estimates based on the

model of vertical differentiation seem reasonable. Moreover, since there are a growing number of

Internet-based resources that report more subjective measures of software quality (editorial reviews

and user reviews are the two most common), it is likely that there is some information about actual

customer perceptions of quality differences between software versions contained in such ratings.

The central objective of our study is therefore to empirically estimate the measures of software

quality and quality degradation predicted by the commonly-used economic theory of vertical dif-

ferentiation, to assess how they vary across software titles, and to contrast these estimates with

those based on subjective Internet-based ratings. We do so by making the following contributions:
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(a) We develop a method for directly estimating the extent of quality degradation based on the

framework of price discrimination using vertical differentiation, and using publicly available pricing

and demand data.

(b) We provide the first systematic estimate of the extent of quality degradation in the software

industry, using a 7-month, 108-version panel of demand and pricing data gathered from Ama-

zon.com.

(c) We contrast these economic estimates of quality degradation with two independent subjective

assessments of software quality: editorial ratings gathered from CNET, and average consumer

ratings gathered from Amazon.com.

Our estimates of quality degradation across software versions indicate that, relative to the

assessed quality of the flagship version, the quality levels of inferior versions are degraded from

little as 8% to as much as 56%, and that the extent of degradation varies quite widely across

software titles, and within sets of titles with two versions and three versions. Moreover, we find

that an increase in the total number of versions is associated with an increase in the difference in

quality between the highest and lowest quality versions, and a decrease in the quality difference

between successive (or neighboring) versions. This is consistent with the predictions of the theory

of vertical differentiation.

However, we also find that the economic estimates of quality degradation are significantly dif-

ferent (and significantly higher) than those assessed from subjective ratings. Put differently, when

data about the actual purchasing behavior of customers is embedded into the economic model, it

predicts very different levels of perceived quality differences than those suggested by the subjective

ratings that these customers and other experts assign to the different versions of a software title.

There are at least two possible interpretations of the differences we observe:

(1) The economic theory systematically models wider variations in software quality than are

actually observed in practice. This may have important implications for the managerial and policy

prescriptions derived from models that are based on this theory.
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(2) The numbers/ratings that subjectively measure quality differences between software versions

tend to systematically understate the actual differences, where by actual differences, we mean those

based on economic measures of how much quality affects consumer willingness to pay. In other

words, these ratings, while having an reasonable ordinal interpretation, are not robust cardinal

measures of quality.

Our study makes other research contributions as well. By transforming the parameters of a

commonly-used analytical model into those that can be estimated from demand data, in particular,

to assess quality distortion and quality ratios across versions directly from demand and price data,

we provide a new framework for future empirical studies of software versioning. In our concluding

section, we discuss many directions for future research that might use this framework. We also

report on a fairly comprehensive new method for converting Amazon sales rank data into demand

data, that uses a combination of purchasing experiments and analysis of the ranking time series,

and provides the first such calibration for the computer software industry. Moreover, our analytical

model is developed in a manner that enables one to estimate customer distribution characteristics

from widely available demand data in a straightforward way. This makes future empirical studies

of pricing and quality differentiation in other IT industries more easily feasible. Thus, our paper

also adds to the new emerging stream of literature which has used e-commerce based panel data

to conduct industry specific studies (Ghose, Smith and Telang 2004) and new instances of existing

phenomena such as auctioneer/bidder strategies and price formation in online auctions (Bapna,

Goes and Gupta 2004, Bapna, Gank and Shmueli 2004).

The preceding discussion has highlighted a fraction of the IS literature that is related to our

current paper in its approach to modeling quality degradation. To our knowledge, ours is the

first paper that attempts to empirically validate this modeling approach using data in the software

industry. Research has assessed quality degradation in other industries include studies of the au-

tomobile industry (Kwoka, 1992), the airline industry (Borenstein and Rose, 1994), and the cable

television industry (Crawford and Shum, 2005), although none of these papers contrast econometri-
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cally estimated quality levels with subjective measures. Additionally, there is an impressive body of

literature on software quality (for instance, Kemerer and Porter 1992, Chidambaram and Kemerer

1994, Banker and Slaughter 1998, Slaughter, Harter and Krishnan, 1998, 2000, Krishnan et. al.

2000). Much of this literature is empirical, although our paper differs from theirs on two important

dimensions. First, these tend to study quality issues for large-scale specialized software implemen-

tations in organizations, rather than measuring quality for mass market shrink-wrapped software

like those in our data. Second, they tend to assess and study software quality using supply side

measures — intrinsic measures such as reliability and integrity of the source code, and the number

of defects per function point — while our approach is focused on different demand-side measures of

software quality.

The rest of this paper is organized as follows. Section 2 presents our analytical model that

relates pricing and quality degradation to customer characteristics, and describes how to connect

the equations of this model to our demand data. Section 3 describes our data set, our method for

converting sales rank data into demand data, and some details on how we estimate our model’s key

parameters. Section 4 presents the results of our estimation of quality degradation in the software

industry, and contrasts them with the subjective measures of software quality. Section 5 concludes

and outlines directions for future research.

2 Model

A monopolist sells n versions of a software product. This seller first develops the highest quality

(or flagship) version, of quality s1, and then degrades the quality of this to create a set of inferior

substitutes, of quality s2, ..., sn, where s1 > s2 > ... > sn. The price charged by the seller for

version i is denoted pi.

Customers are heterogenous in their preferences for quality. A customer of type θ ∈ Θ is willing

to pay upto U(s, θ) for a version of quality s, and U(s, θ) is non-decreasing in both its arguments.

The set Θ is discrete, with elements θi. Customer types are distributed according to a probability
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Figure 1: Illustrates how the utility function varies with increases in quality s, and changes in

customer type θ.

measure F over Θ, and for notational convenience, we denote the measure of customers of type θi as

fi ≡ F (θi). We make the assumption of discrete types for subsequent ease of estimation (more on

this later). Our analysis could equivalently assume that customer types are uniformly distributed

over some continuous interval.

Since the versions are substitutes, each customer purchases upto one version. A customer of

type θ therefore purchases a version of quality si if version i yields the highest positive level of

consumer surplus, that is if:

U(si, θ)− pi > U(sj , θ)− pj (1)

for each j 6= i, and if

U(si, θ)− pi ≥ 0. (2)

The seller’s problem is to choose the optimal number of versions, the quality level for each version,

and their associated prices. We assume that the utility function takes the following simple quadratic
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form1:

U(s, θ) =

⎧⎪⎨⎪⎩ θs− 1
2s
2, s < θ

1
2θ
2, s ≥ θ

. (3)

Equation (3) indicates that customers value increasing quality at a diminishing rate, and the highest

quality level that a customer of type θ is interested in is s = θ. Therefore, if Θ = {θ1, θ2, ..., θn}, the

socially optimal outcome involves the seller offering n versions, with quality levels s1 = θ1, s2 = θ2,

and so on. We analyze the cases of two types, that is, Θ = {θ1, θ2} and three types, that is,

Θ = {θ1, θ2, θ3}, since our data set contains software titles with either two or three versions.

2.1 Two versions

We start by assuming that Θ = {θ1, θ2}. The seller offers the flagship version of quality s1,

and may offer a second version of quality s2 < s1. It is well known that the seller only need

consider direct mechanisms, will design one quality-price pair for each type, such that these pairs

are incentive-compatible (IC) and individually rational (IR). These conditions yield the following

price equations:

p2 = U(s2, θ2), (4)

p1 = U(s1, θ1)− U(s2, θ1) + p2. (5)

The firm therefore chooses s1 and s2 to maximize

f1[U(s1, θ1)− U(s2, θ1)] + U(s2, θ2), (6)

and the solution to this maximization yields the optimal quality levels:

s1 = θ1, (7)

s2 = max

½
θ2 −

f1
f2
(θ1 − θ2), 0

¾
. (8)

1A more commonly used functional form is even simpler: U(s, θ) = θs, although that predicts that for a good

with constant variable costs, a single version is optimal, which, based on our data, is clearly inconsistent with the

software industry.
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Equations (7-8) indicate that the seller will offer two versions so long as the difference between the

quality preferences of the two types is not too large, and there is a sufficient fraction f2 of lower

type customers. Notice that the flagship version is assigned the socially optimal quality level, while

the quality of the lower version is distorted downwards. In this case, the corresponding prices as

functions of the model’s primitives are:

p1 =
f1
f2
(θ1 − θ2)

2 +
1

2

£
θ22 + (θ1 − θ2)

2
¤
, (9)

p2 =
1

2

∙
θ22 −

f21
f22
(θ1 − θ2)

2

¸
. (10)

We will refer back to these expressions shortly to discuss how we use them to estimate quality.

2.2 Three versions

Next, we assume that Θ = {θ1, θ2, θ3}. The seller will therefore offer the flagship version of quality

s1, along with upto two other versions with quality s2 < s1 and s3 < s2. The corresponding price

equations from the IC and IR conditions are:

p3 = U(s3, θ3), (11)

p2 = U(s2, θ2)− U(s3, θ2) + p3, (12)

p1 = U(s1, θ1)− U(s2, θ1) + p2. (13)

The firm chooses s1, s2 and s3 to maximize

f1[U(s1, θ1)− U(s2, θ1)] + (f1 + f2)[U(s2, θ2)− U(s3, θ2)] + U(s3, θ3), (14)

yielding the following optimal quality levels:

s1 = θ1, (15)

s2 = max

½
θ2 −

f1
f2
(θ1 − θ2), 0

¾
. (16)

s3 = max

½
θ3 −

f1 + f2
f3

(θ2 − θ3), 0

¾
. (17)
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Assuming that all these quality levels are in fact non-zero, the corresponding expressions for prices

as a function of the model’s basic parameters are:

p1 =
f1
f2
(θ1 − θ2)

2 +
f1 + f2
f3

(θ2 − θ3)
2 +

1

2
[θ23 + (θ2 − θ3)

2 + (θ1 − θ2)
2], (18)

p2 =
f1 + f2
f3

(θ2 − θ3)
2 +

1

2
[θ23 + (θ2 − θ3)

2 − f21
f22
(θ1 − θ2)

2], (19)

p3 =
1

2

"
θ23 −

µ
f1 + f2
f3

¶2 (θ1 − θ2)
2

2

#
. (20)

2.3 Linking this theory to prices and demand data

Rather than the numerical values of quality implied by the model, we are interested in the extent

of quality degradation for different products: that is, in the ratios s1/sj , for each j > 1. Given

a set of price data for each of the versions of a software product, one needs estimates of each of

the θi and fi parameters in order to use equations (7-8) or (15-17) to compute these quality ratios.

Further, in the underlying model, notice that the demand for version i is simply fi.

These observations lead to a natural way of linking the theoretical model to a data set of prices

and demand. First, for each product, we observe the fraction of demand realized by each of its

versions, in each of our time periods, and use this as an observation about the corresponding fi. We

use these observations to assess a maximum likelihood estimate of each fi for each product (further

details follow a description of our data). Given these estimates, we can use observed average prices

and the system of equations (18-20) to estimate θ1, θ2 and θ3 (or correspondingly, equations (9-10)

in the two-version model to estimate θ1 and θ2). Notice that, given prices and the fi/fj ratios,

(18-20) is a system of 3 equations in three unknowns. These estimates can then be used in equations

(15-17) or in equations (7-8) to estimate the quality degradation associated with versions of the

software title.
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3 Data and Estimation

3.1 Overview of our data

We estimate our models using a panel data set compiled from publicly available information about

software prices and sales rankings, gathered using automated Java scripts to access and parse

HTML and XML pages downloaded from Amazon.com. The panel includes over 280 products,

with an equal number from each of five major categories — Business and Productivity, Graphics

and Development, Security and Utilities, Children’s Software and Operating Systems. These are

major categories listed by Amazon.com, and resemble a parallel categorization by CNET.com,

although we do not use this categorization in any substantive way.

Of our 280 products, we identify 108 as belonging to a family of different versions of the same

product. In this context, it is important to distinguish between versions and successive generations.

For instance, Adobe Standard 7.0 and Adobe Professional 7.0 are 2 different versions of Adobe

Acrobat 7.0. Similarly, TurboTax Premier 2004, Deluxe 2004 and Standard 2004 are 3 different

versions of TurboTax 2004. On the other hand, Adobe Illustrator 10.0 and Adobe Illustrator CS

are successive generations of Illustrator, and while substitutes, were developed at different points

in time and released over two years apart. As a consequence, this pair of products is not consistent

with our underlying economic model of versioning, in which a seller develops a flagship version and

then strategically degrades its quality to create inferior versions.

We separate our products into two sets. The first consists of all software titles which have 3

different versions. The ordering of these versions is naturally inferred from their titles (a typical

labeling would be Premier, Deluxe and Standard, for instance, in decreasing order of quality).

The second category consists of all products which have 2 versions (often labelled Professional and

Standard, in decreasing order of quality). We end up with 27 software titles with two versions, and

18 software titles with three versions (for a total of 27× 2 + 18× 3 = 108 versions).

We collected data every 8 hours, over a 7-month period (from November 2004 to May 2005).
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Variable Mean Standard Deviation Minimum Maximum

Sales Rank 1649.61 1971.26 1 11622

List Price 99.2 226.2 19.99 1799.99

Amazon Price 95.53 208.57 10.95 1699.99

Customer Rating 3.14 0.99 1 5

Number of Reviewers 56.2 81.6 7 606

Table 1: Summary statistics of our data

Each observation contains the product’s list price, its Amazon retail price, its Amazon sales rank

(which serves as a proxy for units of demand, as described further later), the date the product

was released into the market, the average customer rating for the product, the number of reviews

based on which the average rating was computed, and some secondary market data. The summary

statistics of our data are in Table 1.

For benchmarking purposes, we have also collected similar data from Buy.com: sales ranks, list

prices, retail prices and so on. Similar to Amazon.com, Buy.com provides sale rankings of all of its

products publicly and these sales ranks are also based on actual quantities sold at their site. The

Buy.com data exhibits qualitatively similar characteristics as the Amazon.com data, and since we

do not use this data further in our analysis, it is not described.

3.2 Inferring software demand from sales ranks

A few recent papers have used the following Pareto relationship to infer product quantities from

Amazon.com sales ranks

q = δ(SalesRank)β (21)

Chevalier and Goolsbee (2003) estimate the parameters of this equation for books by associating

demand data with sales rank on the Wall Street Journal best-seller list, and by independently

conducting a purchasing experiment on one book whose actual weekly demand was known to them,
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observing the extent to which its sales rank reacted to their purchases. They estimate the value

of (1/β) to be −1.2. Brynjolfsson, Hu and Smith (2003) provide an alternative estimate of the

parameters of equation (21) for books, using data from a book publisher that maps observed sales

rank to the number of copies the publisher sold to Amazon, and estimate β = −0.871 (this is the

parameter β2 in their model), log[δ] = 10.526 (this is the parameter β1in their model).

To our knowledge, there are no corresponding estimates available for software, and industry

specific demand patterns preclude using estimates from book demand for the software industry.

Moreover, in summer 2004, Amazon altered its sales rank system in the following way: they elimi-

nated their three-tier system, updating ranks each hour for most products (rather than merely for

the top products), and they moved to a system that uses exponential decays to give more weight

in the sales rank to newer purchases.

We therefore conducted an independent analysis to convert our measured sales ranks into de-

mand data. We retain the assumption of a Pareto relationship (21) between demand and sales

rank. Over a two-week period in mid-June 2005, we collected hourly sales rank data for each of

the 280 products in our panel, yielding a time series of 336 observations for each product. For

products not ranked too high, a general trend in these time series is an extended downward drift in

the rank value over many hours (that is, the rank becomes a progressively larger number), followed

by intermittent spikes which result in a large upward shift in rank (that is, the rank became a

smaller number suddenly). We interpret these spikes as reflecting time periods in which one or

more purchases have occurred.

A day before this data collection began, we had purchased 1, 2 and 3 copies of different software

titles over the course of an hour. We chose titles that had different initial sales ranks, and also

those for which Amazon reported on the number of items they had in stock, towards confirming

that ours were the only purchases of these titles during that hour. We then tracked the magnitude

of the spikes in sales rank that corresponded to the purchase of one unit, two units and three units,

for different starting sales rank values. This was towards being able to assign hour-over-hour units
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of demand for corresponding changes in our sales rank time series.

This experiment led us to conclude that for products that were highly ranked (that is, which

were ranked 150 or better), there would be a lot of noise in associating changes in sales ranks with

units of demand. There were two reasons for this conclusion. First, the magnitude of change in

sales rank induced by a purchase was relatively small for these highly-ranked products (less than

50). Second, and related, it was likely that the extent to which a product’s sales rank changed was

affected not just by how many units of it were purchased in the last hour, but by how many units

of products ranked close to it were purchased — these are sales ranks, after all, and even with the

same unit sales in an hour, a product’s rank can move up more if lots of nearby products don’t

sell a unit during that hour. This is true of all products, clearly, but for products ranked below

150, the magnitude of the change in sales rank for a unit purchase is high enough to discount these

smaller movements.

We therefore chose to focus on the 186 products whose average sales rank over the two-week

period was between 500 and 5000 (a small number of products with ranks over 5000 had virtually no

demand over the two weeks, and were therefore dropped). We verified that among these products,

and across 336 observations for each products, there were only 5 instances of the sales rank dropping

below 150, and it never dropped below 100. We tracked the changes in sales rank from period to

period for each of these 186 products, and associated units of demand2 with upward shifts of more

than 50 (that is, changes for which rankt−1 − rankt > 50).

This procedure yielded a data set of 186 observations, which associated a weekly demand level

1A low numerical value of sales rank indicates higher demand. An increase in the numerical value of sales rank

indicates a decrease in the rate at which a product is selling. We use the term ”highly ranked” to refers to products

that have higher demand, that is, those products whose sales ranks are low integer values. Therefore, a product with

sales rank 50 is more "highly ranked" than a product with sales rank 5000.
2We also checked changes in rank magnitude between 25 and 50 by hand, towards verifying whether these might

correspond to single-unit sales. Of the hundreds of such changes, only four appeared to be possible sales (in a sample

over which there were thousands of unit sales in the two week period). This seemed like an acceptable level of noise,

and we therefore ignored all salesrank movements below 50.
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Variable Estimated Value

log[δ] 8.352∗∗∗ (0.042)

β −0.828∗∗∗ (0.032)

R2 0.779

∗∗∗ significant with p ≤ 0.001

Table 2: Mapping average sales rank to unit demand for software

with each average sales rank, for two successive weeks. Weekly unit sales ranged from 0 to 16.

Using the implied pairs of average weekly demand and average sales rank, we them estimated the

following OLS equation:

log[q + 1] = log[δ] + β log[rank], (22)

where q is average weekly demand, and rank is the corresponding average salesrank3. The results

of this estimation are summarized in Table 2. To provide a sense for what this estimate implies:

weekly sales of two units correspond to an average salesrank of about 3100, weekly sales of 10 units

correspond to an average salesrank of about 440, and weekly sales of 25 units correspond to an

average salesrank of about 150.

3.3 Estimating the customer type distribution

The preceding experiment enables us to associate our sales ranks with corresponding periodic unit

demand levels. Now, consider a software title with n versions, and demand data over T periods. In

any period t, let the demand for version i be qit, and define the total demand for this title during

period t as qt =
P
i
qit. One can model this demand as the result of qt draws from the distribution

3Similar to Brynjolfsson, Hu and Smith (2003), we used White’s heteroskedasticity-consistent estimator (see

Greene, 2000, page 463) to estimate both parameters.

14



F over Θ, with the outcome reflecting qit draws of type θi, for each version i of each software title.

Define Qi as the random variable that takes the value 1 if a draw from F yields θi, and takes the

value 0 otherwise. It follows that Qi is a Bernoulli random variable with parameter fi. Therefore,

each realization of a unit of demand for any version of the product is an observation about the true

value of fi, and it is well known that with n such observations, the maximum likelihood estimator

of fi is simply the fraction of true realizations. As a consequence, once we have computed the

periodic demand levels for each version of each title, the maximum likelihood estimate of fi for a

specific software title is simply:

fi =

TP
t=1

qit

TP
t=1

nP
k=1

qkt

, (23)

or the estimated demand for the version as a fraction of the total demand for all versions of the title.

As described in section 2.3, once we have estimates of fi for each version i of each product, we are

able to compute the implied corresponding values of θi, and the corresponding quality degradation

levels.

It is worth noting that our equations always involve a ratio of two fi values (rather than an fi

value in isolation). Therefore, if one chooses the appropriate periodic demand rate associated with

an average sales rank, these ratios can be computed directly from average sales ranks, since, based

on equation (23):

fi
fj
=

TP
t=1

qit

TP
t=1

qjt

,

which, based on equation (21), and an appropriate normalization for the length of the time interval

which cancels out in the numerator and denominator, simplifies to

fi
fj
=

µ
ranki
rankj

¶β

,

where ranki is the average sales rank of product i.
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4 Evidence

Before we present the results of our estimated quality degradation, and contrast them with the sub-

jective measures we have collected, it seems important to distinguish between quality degradation

and quality distortion, since the latter term is used quite extensively in the price discrimination

literature. Our measure of quality degradation for any version is simply the ratio of the estimated

quality of the highest version to the estimated quality of the version in question. For instance, the

extent of quality degradation for the second-highest quality version of a product with three versions

is (s1/s2), which based on (15-16), is:

s1
s2
=

θ1

θ2 − f1
f2
(θ1 − θ2)

. (24)

A higher value of this ratio implies a higher difference in quality, and therefore, more significant

quality degradation.

On the other hand, quality distortion refers to the extent to which the quality of an inferior

version i has been distorted below the socially optimal level θi. We also report on our estimated

percentage quality distortion levels, which are simply (θi − si)/θi, though we do not discuss them

much. For instance, the percentage of quality distortion for the second-highest quality version of a

product with three versions, based on (15-16), is:

1− s2
θ2
=

f1
f2

µ
θ1
θ2
− 1
¶
. (25)

4.1 Estimated quality degradation

Tables 3 and 4 summarize our estimates of quality degradation and quality distortion, for software

titles with two versions and three versions respectively. For titles with two versions, we find that the

quality ratios vary from as low as 1.09 to as high as 1.75. This reflects a downward degradation in

the quality of the flagship version from as little as 8% to as much as 43%, with a mean degradation

of about 27%. For titles with three versions, we find that the quality ratios for the medium quality

version (that is, the ratios s1/s2) range from 1.08 to 1.46, thereby reflecting degradation of the
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Product
Quality degradation ratio

(s1/s2)

Quality distortion %

1− (s2/θ2)

Adobe Acrobat 6.0 (WIN) 1.3 12%

Adobe Acrobat 7.0 (WIN) 1.31 13%

Adobe Acrobat 7.0 (Mac) 1.3 12%

Adobe Creative Suite 2 (WIN) 1.21 10%

Adobe Creative Suite 2 (Mac) 1.21 11%

Adobe Video 1.27 11%

Adobe Photoshop 1.4 16%

Macromedia Flash 2004 1.3 13%

Quicken 2001 1.39 18%

Quicken 2002 1.46 19%

Quicken 2003 1.44 17%

Quicken 2004 1.31 12%

Norton SystemWorks 2002 1.38 16%

Norton SystemWorks 2003 1.17 8%

Norton SystemWorks 2004 1.27 11%

Norton SystemWorks 2005 1.32 14%

Norton AntiVirus 2003 1.71 20%

Norton AntiVirus 2004 1.49 16%

Norton Internet Security 2004 1.75 21%

Symantec AntiVirus SBS 1.28 11%

McAfee VirusScan 7.0 1.31 13%

McAfee VirusScan 8.0 1.27 12%

McAfee Internet Security 2005 1.69 21%

Microsoft Encarta 2002 1.34 15%

Microsoft Streets 2005 1.65 24%

Microsoft Windows SBS 2003 1.09 5%

Microsoft Office 2003 1.15 7%

Table 3: Estimated quality degradation and downward quality distortion for software titles with

two versions
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Product Quality degradation ratio Quality distortion %

s1/s2 s1/s3 1− (s2/θ2) 1− (s3/θ3)

Encyclopaedia Brittanica 2005 1.19 1.69 9% 28%

MS Encarta 2003 1.21 1.83 9% 31%

MS Encarta 2004 1.11 2.04 6% 39%

MS Encarta 2005 1.21 1.76 8% 33%

Quickbooks 2002 1.37 1.69 14% 22%

Quickbooks 2003 1.30 1.58 12% 22%

Quickbooks 2004 1.21 1.83 12% 21%

Quickbooks 2005 1.33 1.63 11% 21%

Quicken 2005 1.32 1.88 11% 29%

Turbo Tax 2003 1.34 1.63 14% 23%

Turbo Tax 2004 1.36 1.70 14% 24%

Microsoft Money 2004 1.08 1.68 3% 27%

Microsoft Money 2005 1.16 1.73 8% 29%

Zone Alarm 1.35 1.96 10% 34%

PC-Cillin Internet Security 2005 1.23 2.31 5% 39%

Art Explosion 1.28 1.81 12% 32%

Corel WordPerfect 12 1.46 1.86 20% 28%

MS Windows XP 1.3 1.69 15% 26%

Table 4: Estimated quality degradation and downward quality distortion for software titles with

three versions
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quality of the flagship version from as low as 7% to as high as 31% (with a mean of about 21%).

The corresponding quality ratios for the low quality version (the ratios s1/s3) are between 1.63 to

2.31, which correspond to quality degradation ranging from 39% to as much as 57% (and mean of

about 44%).

These estimates indicate that when a product line has three versions, the extent of quality

degradation between the best version and the second-best version is significantly lower (both on

average, and in its variance) than the extent to which the quality of a second-best version is degraded

when a third version does not exists. However, the extent to which the quality of the lowest version

is degraded when the product line has three versions is significantly more than when the product

has just two versions. We verify these statements by testing the difference in mean between both

pairs of data (finding significant t-statistics in each case). These results are interesting because

they are consistent with what the theory of vertical differentiation would predict. All else being

equal, an increase in the number of versions offered will increase the extent of quality degradation

of the lowest quality version, but will also reduce the differences in quality between neighboring

versions.

Exactly the same statements can be made about the percentage of quality distortion (highest

for lowest of three versions, lowest for second of three versions, significant differences in means).

We do not explore any welfare issues using these estimates, though this represents an interesting

direction for future work.

4.2 Contrasting economic and subjective measures of quality degradation

We next report on our estimates of quality degradation based on two subjective measures of assessed

quality, from CNET and from Amazon.com. A set of editors at CNET evaluate most software

products according to a standard set of review criteria, and rank these products on a scale of 1-10.

According to CNET, they judge a product on the quality and appropriateness of its feature set

along with service and support provided by the firm. They also evaluate the number and severity of
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any bugs as well as the overall ease of setup, configuration, and use. We use these summary scores

from CNET as our first subjective measure of quality, and assess quality degradation by computing

the ratio of scores for different versions of a title. Prior studies have used such rankings as an

objective measure of software quality (for instance, Liebowitz and Margolis 1999). We collected

these scores from CNET’s web site on a periodic basis. Since CNET also archives ratings for older

products, we have been able to gather these ratings for most products in our dataset.

Our second source of subjective quality assessments is from reviews for each product provided

by Amazon.com’s customers. These are part of Amazon’s customer review feature, and each review

contains a written report as well as a numerical score on a scale of 1 to 5. We use the average

numerical score associated with a product as our second subjective measure of quality. We collected

longitudinal data on these ratings, along with the total number of reviewers based on which the

average rating is published. We chose to drop those product ratings which were based on reviews

by 5 or fewer customers. The average number of reviews for the remaining products is 56, and the

number of reviews ranges from 7 to 605 (though most products have 20-50 reviews).

We find that the extent of quality degradation assessed from our economic estimates is sig-

nificantly higher than those assessed from the subjective measures of quality. The mean quality

degradation is significantly higher for comparisons of s1/s2 for products with two versions, and with

three versions, and for comparisons of s1/s3, for the subjective measures based both on CNET ed-

itorial ratings and on Amazon customer reviews. As illustrated in Table 6, these differences are

somewhat higher for CNET than for Amazon. Furthermore, the differences were most stark when

comparing the extent of quality degradation of the lowest quality version for products with three

versions.

There are many ways in which one might interpret these findings. One interpretation might be

that in models of vertical differentiation, the extent to which quality varies across versions in the

model are far wider than are actually observed in practice. In other words, the magnitude of the

optimal quality difference prescribed by the model’s quality parameters si and sj may be higher
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Product
CNET Ratings

s1/s2

Amazon Ratings

s1/s2

Adobe Acrobat 6.0 (WIN) 1.04 1.17

Adobe Acrobat 7.0 (WIN) 1.08 1.11

Adobe Acrobat 7.0 (Mac) − −
Adobe Photoshop 1.14 1.23

Adobe Creative Suite 2(WIN) 1 −
Adobe Creative Suite 2 (Mac) 1 −

Adobe Video 1.125 1

Macromedia Flash 2004 1.125 0.8

Quicken 2001 1 0.71

Quicken 2002 1.08 1

Quicken 2003 1.14 1

Quicken 2004 1.14 1

Norton SW 2002 1.04 1.17

Norton SW 2003 1.14 1.17

Norton SW 2004 1.26 1

Norton SW 2005 − 0.69

Norton AntiVirus 2003 1 1

Norton AntiVirus 2004 1.0 1

Norton IS 2004 1.05 1.0

Norton AntiVirus SBS − −
McAfee VirusScan 7.0 1.04 −
McAfee VirusScan 8.0 1.04 1

McAfee IS 2005 1.04 −
MS Encarta 2002 1.125 1.5

MS Streets 2005 1.15 1.17

MS Windows SBS 2003 − −
MS Office 2003 1 −

Table 5: Estimated quality degradation based on two subjective quality measures for software titles

with two versions. Blank cells indicate that either no review was available for one or more of the

versions of that product, or, in the case of the Amazon.com numbers, there were too few reviews

(5 or fewer) to include the rating in our data set.
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Product CNET Ratings Amazon Ratings

s1/s2 s1/s3 s1/s2 s1/s3

Encyclopaedia Brittanica 2005 1 1.14 − −
MS Encarta 2003 1 1.33 1 1.33

MS Encarta 2004 1 1.04 1 1.14

MS Encarta 2005 1 1.04 − −
Quickbooks 2002 1.125 1.125 1.2 1.2

Quickbooks 2003 1.04 1.04 1.25 1.25

Quickbooks 2004 1.04 1.04 1.2 1.2

Quickbooks 2005 1 1.14 − −
Quicken 2005 1.1 1.14 1.07 1.5

Turbo Tax 2003 1 1.08 1.5 1.2

Turbo Tax 2004 1 1.14 1.1 1.65

MS Money 2004 1.1 1.1 1.2 1.2

MS Money 2005 1.1 1.1 1.02 1.33

Zone Alarm 1.04 1.06 − −
PC-Cillin Internet Security 2005 1 1.04 − −

Art Explosion − − 1.14 −
MS Windows XP 1.00 1.125 1 1.13

Corel WordPerfect 12 − 1.04 − −

Table 6: Estimated quality degradation based on two subjective quality measures for software titles

with three versions. Blank cells indicate that either no review was available for one or more of the

versions of that product, or, in the case of the Amazon.com numbers, there were too few reviews

(5 or fewer) to include the rating in our data set.

22



s1/s2 for products

with two versions

s1/s2 for products

with three versions

s1/s3 for products

with three versions

Model CNET Model CNET Model CNET

Mean 1.38 1.07 1.25 1.03 1.79 1.10

Variance 0.03 0.01 0.01 0.002 0.03 0.01

Observations 23 23 16 16 17 17

t-statistic 7.93 8.59 14.54

p 5E-09 9E-09 1E-12

s1/s2 for products

with two versions

s1/s2 for products

with three versions

s1/s3 for products

with three versions

Model Amazon Model Amazon Model Amazon

Mean 1.37 1.03 1.25 1.14 1.75 1.29

Variance 0.02 0.03 0.01 0.02 0.02 0.02

Observations 19 19 11 11 12 12

t-statistic 6.25 2.01 8.13

p 2E-07 0.03 3E-08

Table 7: Summary of difference in means tests between the quality degradation levels we estimated

from our data, and those from CNET’s editorial ratings, and Amazon’s average customer ratings

respectively. The numbers under the label "Model" refer to those from our estimates described in

Section 4.1.

than the actual quality difference that is required to obtain the appropriate optimal magnitude in

value difference; the latter difference is what influences the willingness to pay of customers and

the firm’s eventual success with price discrimination based on versioning. This would suggest that

prescriptions from models of versioning or price discrimination that are based on the magnitude of

the quality difference across versions should be interpreted carefully.

Another interpretation might be that the numbers that subjectively measure quality differences

between software versions tend to systematically understate the actual differences, where by actual

differences, we mean those based on economic measures of how much quality affects consumer
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willingness to pay. These subjective ratings might therefore be a good way of ranking different

versions, but their numerical magnitudes may not be appropriate cardinal measures of quality. This

interpretation has important implications for future research, because editorial ratings have been

used as measures of software quality in prior studies, and aggregate customer feedback measures

from eBay, Amazon.com, and various other review sites are frequently used in IS research as cardinal

measures of some form of quality, in studies of seller reputation, movie quality, used-good quality

and so on.

A third interpretation might simply be that editors and customers have a different benchmark

when assessing the quality of different versions, and that these benchmarks (or reference points)

are affected by what the customer/editor expects from a specific version. For example, a rating of

5 on a Professional version might require a higher level of overall quality than a rating of 5 for a

Standard version. This would cause a systematic overstatement of the quality of lower versions as

measured by these average ratings or reviews, which in turn would lead to lower assessed quality

degradation levels.

A preliminary analysis towards a better understanding of the relationship between these objec-

tive and subjective measures did not yield results that were significant enough to report4. Deter-

mining which of these interpretations might be the most valid remains an open question, though

we believe that more data is required to answer this well.

4We estimated equations of the form

∆seco = a+ b(∆ssubj) +
i

civersioni +
i

di(∆ssubj)versioni,

where ∆seco and ∆ssubj were the economic and subjective quality ratios respectively, and versioni was a dummy

variable that captured whether the ratio was between versions 1 and 2 of a 2-version product, versions 1 and 2 of a

3-version product, or versions 1 and 3 of a 3-version product. We estimated these with and without interacting the

dummy variables with ∆ssubj . None of these generated significant coefficients for the CNET data. For the Amazon

data, a couple of equations had significant coefficients, but since there was sufficient variation in coefficients across

equations, we do not have a good interpretation of their relative magnitudes.
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5 Conclusions and directions for future research

This paper has presented the first empirical study of versioning in the software industry. The

contributions of this study are summarized below:

(1) In order to assess the success of a chosen versioning strategy relative to others, it is useful for

firms to derive an economic measure of the relative quality of each version which has been created

based on quality degradation. This represents a considerable challenge in the software industry,

because while subjective assessments of software value from independent experts and from its end

users are available, there are no natural objective measures of product size or quality (counting the

number of features is not really sensible, for instance). Therefore, objective assessments of software

quality based on economic demand-side measures of a product’s quality can be of managerial value.

We develop a framework for directly estimating the extent of software quality degradation based on

a widely used model of price discrimination using vertical differentiation, and that can be estimated

using pricing and demand data that is publicly available.

(2) We provide the first systematic estimate of the extent of quality degradation associated

with versioning in the software industry. We do so by compiling and using a 7-month, 108-product

panel of demand and pricing data for software sold on Amazon.com. Our results indicate that there

is significant quality degradation associated with software versioning, and significant variations in

its extent across software titles. Our estimates are consistent with theoretical predictions that an

increase in the number of versions is associated with an increase in the quality difference between the

highest and lowest quality version, but a reduction in the quality differences between neighboring

versions.

(3) We provide new estimates of quality degradation between versions using two independent

sources of subjective quality assessments: editorial ratings gathered from CNET, and average user

ratings gathered from Amazon.com. We contrast these estimates of quality degradation with those

from our economic model. We show that the estimates of quality degradation from the latter

are significantly and consistently higher than those assessed from subjective measures of software
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quality, and discuss different interpretations of this measured difference.

(4) We extend existing methods for imputing demand from Amazon.com’s sales rank informa-

tion, and provide the first calibration of this relationship for the software industry.

Apart from providing a first step towards testing other existing IS theories that are based on

models of vertical differentiation, our work suggests a number of new directions for future research,

and provides an infrastructure that can be used to explore these directions. A natural question that

arises from our study is whether software versioning is in fact an optimal strategy for sellers, and if

so, measuring the extent to which it increases profits. It is likely that the benefits from versioning

are related to both the category of software, and the extent to which the flagship version has been

degraded to create each inferior version. Examining this relationship could be of particular interest

to IS practitioners making pricing and product management choices.

We have also provided the first estimates of the extent of quality distortion for software (relative

to the socially optimal quality level of a version). This is a first step towards assessing the magnitude

of the welfare losses that ensue on account of this distortion. However, there are likely to be welfare

gains from the prevalence of versioning, due to the expansion of the set of customers who can afford

a version of the product. Comparing the relative gains and losses from quality distortion, given that

the absence of this kind of distortion would lead to higher prices represents another promising line of

research. A related study might examine whether there is a relationship between measured quality

distortion and subjective measures of quality, based on the hypothesis that subjective ratings assess

product quality relative to a benchmark for that kind of version, rather than relative to the flagship

version, and therefore might measure distortion rather than degradation. An analysis of the text

associated with editorial reviews might be instructive in this regard.

A preliminary exploration of whether there are variations in the differences between subjective

and economic measures of quality degradation across each of our product categories did not yield

significant results, though this may be a consequence of the fact that there are insufficient titles

in each category for any systematic differences to show up. For instance, it may be relatively
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straightforward for consumers and experts to assess the quality of finance and accounting software,

based on their features and ease of installation. However, the quality of security software is much

harder to assess, since it is contingent on future performance at detecting and suppressing viruses,

minimizing the probability of a breach, or detecting an intrusion. Studying this in more detail,

using a larger data set, or perhaps longitudinal data, seems like another interesting direction for

future work.

Finally, while our study has been of the software industry, many of our techniques can generalize

to other IT industries. Future empirical researchers might use our method to map sales ranks to

demand for other categories of products, which would facilitate new industry-specific quality degra-

dation studies that answer related strategic and welfare questions in other IT product industries.

We hope that our study is a first step in this direction.
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