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Abstract
This paper presents NetKit, a modular toolkit for classification in networked data, and a case-study
of its application to a collection of networked data sets used in prior machine learning research.
Networked data are relational data where entities are interconnected, and this paper considers the
common case where entities whose labels are to be estimated are linked to entities for which the
label is known. NetKit is based on a three-component framework, comprising a local classifier, a
relational classifier, and a collective inference procedure. Various existing relational learning algo-
rithms can be instantiated with appropriate choices for these three components and new relational
learning algorithms can be composed by new combinations of components. The case study demon-
strates how the toolkit facilitates comparison of different learning methods (which so far has been
lacking in machine learning research). It also shows how themodular framework allows analysis
of subcomponents, to assess which, whether, and when particular components contribute to supe-
rior performance. The case study focuses on the simple but important special case of univariate
network classification, for which the only information available is the structure of class linkage in
the network (i.e., only links and some class labels are available). To our knowledge, no work pre-
viously has evaluated systematically the power of class-linkage alone for classification in machine
learning benchmark data sets. The results demonstrate clearly that simple network-classification
models perform remarkably well—well enough that they should be used regularly as baseline clas-
sifiers for studies of relational learning for networked data. The results also show that there are a
small number of component combinations that excel, and thatdifferent components are preferable
in different situations, for example when few versus many labels are known.

Keywords: relational learning, network learning, collective inference, collective classification,
networked data

1. Introduction

This paper is about classification of entities innetworkeddata, one type of relational data. Rela-
tional classifier induction algorithms, and associated inference procedures, have been developed in
a variety of different research fields and problem settings (Emde and Wettschereck, 1996; Flach
and Lachiche, 1999; Dzeroski and Lavrac, 2001). Generally,these algorithms consider not only
the features of the entities to be classified, but the relations to and the features of linked entities.
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Observed improvements in generalization performance demonstrate that taking advantage of rela-
tional information in addition to attribute-value information can improve performance—sometimes
substantially (e.g. (Taskar et al., 2001; Jensen et al., 2004)).

Networked dataare the special case of relational data where entities are interconnected, such
as web-pages or research papers (connected through citations). This is in contrast with domains
such as molecules or arches, where each entity is a self-contained graph and connections between
the entities are absent or ignored. With a few exceptions (e.g., (Chakrabarti et al., 1998), (Taskar
et al., 2001)), recent machine learning research on classification with networked data has focused on
across-networkinference: learning from one network and applying the learned models to a separate,
presumably similar network (Craven et al., 1998; Lu and Getoor, 2003).

This paper focuses onwithin-networkinference. In this case, networked data have the unique
characteristic that training entities and entities whose labels are to be estimated are interconnected.
Although the network may have disconnected components, generally there is not a clean separation
between the entities for which class membership is known andthe entities for which estimations of
class membership are to be made. This introduces complications (Jensen and Neville, 2002b). For
example, the usual careful separation of data into trainingand test sets is difficult. More important,
thinking in terms of separating training and test sets obscures an important facet of the data: entities
with known classifications can serve two roles. They act firstas training data and subsequently as
background knowledge during inference (Provost et al., 2003).

Many real-world problems, especially those involving social networks, exhibit opportunities
for within-network classification. For example, in fraud detection entities to be classified as being
fraudulent or legitimate are intertwined with those for which classifications are known. In coun-
terterrorism and law enforcement, suspicious people may interact with known ‘bad’ people. Some
networked data are by-products of social networks, rather than directly representing the networks
themselves. For example, networks of web pages are built by people and organizations that are in-
terconnected; when classifying web pages, some classifications (henceforth,labels) may be known
and some may need to be estimated.

To our knowledge there has been no systematic study of machine learning methods for within-
network classification that compares various algorithms onvarious data sets. A serious obstacle to
undertaking such a study is the scarcity of available tools and source code, making it hard to compare
various methodologies and algorithms. Such an in-depth study is further hindered by the fact that
many relational learning algorithms can be separated into various sub-components. Ideally, a study
should account for the contributions of the sub-components, and assess the relative advantage of
alternatives. To enable such a study, we need a framework that facilitates isolating the performance
of and interchanging sub-components.

As a main contribution of this paper, we introduce a network learning toolkit (NetKit-SRL)
that enables in-depth, component-wise studies of techniques for statistical relational learning and
inference with networked data. Starting with prior published work, we have abstracted the described
algorithms and methodologies into a modular framework. Thetoolkit is based on this framework.1

NetKit is interesting for several reasons. First, it encompasses several currently available sys-
tems, which are realized by choosing particular instantiations for the different components. This
allows us to compare and contrast the different systems on equal footing. Perhaps more impor-
tantly, the modularity of the toolkit broadens the design space of possible systems beyond those

1. NetKit-SRL, or NetKit for short, is written in Java 1.5 andis available as open source.
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that have appeared in prior published work, either by mixingand matching the components of the
prior systems, or by introducing new alternatives for components. Finally, NetKit’s modularity not
only allows allows for direct comparison of various models,but also for comparison of isolated
components as we will show.

To illustrate, we use NetKit to conduct in an in-depth case study of within-network classifi-
cation. The case study considers univariate learning and classification in homogeneous networks.
We compare various techniques on twelve benchmark data setsfrom four domains used in prior
machine learning research. Beyond illustrating the value of the toolkit, the case study makes sev-
eral contributions. It provides systematic support for theclaim that with networked data even uni-
variate classification can be quite effective, and therefore it should be considered as a baseline
against which to compare new relational learning algorithms (Macskassy and Provost, 2003). The
case study illustrates a bias/variance tradeoff in networked classification, based on the principle
of homophily (Blau, 1977; McPherson et al., 2001) (cf., assortativity (Newman, 2003) and auto-
correlation (Jensen and Neville, 2002b). Indeed, the simplest method works so well it suggests
that we should consider finding more diverse benchmark data sets. The case study also suggests
network-classification analogues to feature selection andactive learning.

The remainder of the paper is organized as follows. Section 2describes the problem of net-
work learning more formally, introduces the modular framework, reviews prior work, and describes
NetKit. Section 3 covers the case study, including the experimental methodology, data used, toolkit
components used, and the results and analysis of the comparative study. The paper ends with dis-
cussions of limitations and conclusions.

2. Network Learning

Traditionally, machine learning methods have treated entities as independent, which makes it possi-
ble to infer class membership on an entity-by-entity basis.With networked data, the class member-
ship of one entity may have an influence on the class membership of a related entity. Furthermore,
entities not directly linked may be related by chains of links, which suggests that it may be beneficial
to infer the class memberships of all entities simultaneously. Collective inferencing in relational data
(Taskar et al., 2002; Neville and Jensen, 2004) makes simultaneous statistical judgments regarding
the values of an attribute or attributes for multiple entities in a graphG for which some attribute
values are not known.

For the univariate case study presented below, the (single)attribute of vertexvi, representing the
class, can take on some categorical valueX ∈ X .

Given graphG = (V,E), a single attributexi for each vertexvi ∈ V , and given
known values forxi for some subset of verticesV K , univariate collective inferencing
is the process of simultaneously inferring the values ofxi for the remaining vertices,
V U = V −V K , or a probability distribution over those values.

As a shorthand, we will usexK to denote the set (vector) of class values forV K , and similarly
for x

U . Then,GK = (V, E,xK) denotes everything that is known about the graph (we do not
consider the possibility of unknown edges). Edgeeij ∈ E represents the edge between vertices
vi andvj, andwij represents the edge weight. For this paper we consider only undirected edges,
simply ignoring directionality if necessary for a particular application.
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Rather than estimating the full joint probability distribution P (xU |GK), relational learning of-
ten enhances tractability by making a Markov assumption:

P (xi|G) = P (xi|Ni), (1)

whereNi is the set of “neighbors” of vertexvi such thatP (xi|Ni) is independent ofG − Ni (i.e.,
P (xi|Ni) = P (xi|G)). For this paper, we make the (“first-order”) assumption that Ni comprises
only the immediate neighbors ofvi in the graph. As one would expect, and as we will see, this
assumption can be violated to a greater or lesser degree based on how edges are defined.

GivenNi, a relational model can be used to estimatexi. Note thatNU
i (= Ni ∩ V U )—the set

of neighbors ofvi whose values of attributex are not known—could be non-empty. Therefore, even
if the Markov assumption holds, a simple application of the relational model may be insufficient.
However, the relational model may be used to estimate the labels ofNK

i = Ni − NU
i . Further,

just as estimates for the labels ofNU
i influence the estimate forxi, xi also influences the estimate

of the labels ofNU
i . In order to simultaneously estimatexU , various collective methods have been

introduced for relational inference, including Gibbs sampling (Geman and Geman, 1984), loopy
belief propagation (Pearl, 1988), relaxation labeling (Chakrabarti et al., 1998), and other iterative
classification methods (Neville and Jensen, 2000; Lu and Getoor, 2003). All such methods require
initial (“prior”) estimates of the values forP (xU |GK). The priors could be Bayesian subjective
priors (Savage, 1954), or they could be estimated from data.A common estimation method is to
employ a non-relational learner, using available “local” attributes ofvi to estimatexi (e.g., as done
by Chakrabarti et al. (1998)). In the univariate case, such local attributes are not available; for our
case study, we use the marginal class distribution overV K as the prior for allxi ∈ x

U .

2.1 Network Learning Framework

As suggested by the discussion above, one prominent class ofsystems for learning and inference
in networked data can be characterized by three main components. For each component, there are
many possible instantiations.

1. Non-relational (“local”) model. This component consists of a (learned) model, which uses
only local information—namely information about (attributes of) the entities whose target
variable is to be estimated. The local models can be used to generate priors that comprise
the initial state for the relational learning and collective inference components. They also can
be used as one source of evidence during collective inference. These models typically are
produced by traditional machine learning methods.

2. Relational model. In contrast to the non-relational component, the relational model makes
use of the relations in the network as well as the values of attributes of related entities, pos-
sibly through long chains of relations. Relational models also may use local attributes of the
entities.

3. Collective inferencing. The collective inferencing component determines how the unknown
values are estimated together, possibly influencing each other, as described above.

Certain techniques from prior work, described below, can beinstantiated with particular choices
of these components. For example, using a naive Bayes classifier as the local model, a naive Bayes
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Markov Random Field classifier for the relational model, andrelaxation labeling for the inferencing
method forms the system used by Chakrabarti et al. (1998). Using logistic regression for the
local and relational models, and iterative classification for the inferencing method produces Lu &
Getoor’s (2003) link-based classifier. Using class priors for the local model, a (weighted) majority
vote of neighboring classes for the relational model, and relaxation labeling for the inference method
forms Macskassy & Provost’s (2003) relational neighbor classifier.

2.2 Prior Work

For machine learning research on networked data, the watershed paper of Chakrabarti et al. (1998)
studied classifying web-pages based on the text and (possibly inferred) class labels of neighboring
pages, using relaxation labeling paired with naive Bayes local and relational classifiers. In their
experiments, using the link structure substantially improved classification over using the local (text)
information alone. Further, considering the text of the neighbors generally hurt performance (based
on the methods they used), whereas using only the (inferred)class labels improved performance.

More recently, Lu and Getoor (2003) investigated network classification applied to linked doc-
uments (web pages and published manuscripts with an accompanying citation graph). Similarly to
the work of Chakrabarti et al. (1998), Lu and Getoor (2003) use the text of the document as well
as a relational classifier. Their “link-based” classifier was a logistic regression model based on a
vector of aggregations of properties of neighboring nodes linked with different types of links (in-,
out-, co-links). Various aggregates were considered, suchas the mode (the value of the most often
occurring neighbor class), a binary vector with a value of 1 at cell i if there was a neighbor whose
class label wasci, and a count vector where celli contained the number of neighbors belonging to
classci. In their experiments, the count model performed best.

Univariate within-network classification has been considered previously (Bernstein et al., 2002,
2003; Macskassy and Provost, 2003). Using business news, Bernstein et al. (2003) linked companies
if they co-occurred in a news story. They demonstrated the effectiveness of various vector-space
techniques for network classification of companies into industry sectors, based on vectors of class
labels of the neighbors. This work did not use collective inferencing, performing only a one-shot
prediction based on the known neighborhood (knowing90% of the class labels and predicting the
remaining10%). Other domains such as web-pages, movies and citation graphs have also been
considered for univariate within-network classification;Macskassy and Provost (2003) investigated
how well the univariate classification performed as varyingamounts of data initially were labeled.
They used a relaxation labeling method similar to that used by Chakrabarti et al. (1998). In both
studies, a very simple model predicting class membership based on the most prevalent class in the
neighborhood was shown to perform remarkably well. The present paper can be seen in part as a
systematic followup to these workshop papers.

Markov Random Fields (MRFs) have been used extensively for univariate network classification
for vision and image restoration. Nodes in the network are pixels in an image and the labels are
image-related such as whether a pixel is part of a vertical orhorizontal border (Dobrushin, 1968;
Geman and Geman, 1984; Winkler, 2003). MRFs are used to estimate the joint probability of a
set of nodes based on their immediate neighborhoods under the first-order Markov assumption that
P (xi|X/xi) = P (x|Ni), whereX/xi means all nodes inX exceptxi andNi is a neighborhood
function returning the neighbors ofvi. Chakrabarti et al. (1998) use an MRF formulation for their
network classifier (described above), which we reconstructin NetKit.
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One popular method to compute the MRF joint probability is Gibbs sampling (described below).
The most common use of Gibbs sampling in vision is not to compute the final posteriors as we do in
this paper, but rather to get final classifications. One way toenforce that the Gibbs sampler settles
to a final state is by using a simulated annealing approach where the temperature is dropped slowly
until nodes no longer change state (Geman and Geman, 1984). Neville and Jensen (2000) used a
simulated annealing approach in theiriterative classificationcollective inference procedure, where
a label for a given node was kept only if the relational classifier was confident about the label at a
given threshold, otherwise the label would be set tonull . By slowly lowering this threshold, the
system was eventually able to label all nodes. NetKit incorporates iterative classification based on
the subsequent work of Lu and Getoor (2003) (described above).

Graph-cut techniques recently have been used in vision research as an alternative to using Gibbs
sampling (Boykov et al., 2001), iteratively changing the labelings of many nodes at once by solving
a min-cut/max-flow problem based on the current labelings. In addition to the explicit links in the
data, each node is also connected to one special node per class label. A min-cut algorithm is then
used to partition the graph such that only one class-node remains linked to each node in the data.
Based on this cut, the method then changes the labelings, andrepeats until no pixels change labels.
These methods are very fast. NetKit does not yet incorporategraph-cut techniques.

Several recent methods apply to learning in networked data,beyond the homogeneous, univari-
ate case treated in this paper. Conditional Random Fields (CRFs) (Lafferty et al., 2001) are an
extension of MRFs where labels are conditioned not only on the labels of neighbors, but also on
the attributes of the node itself and the attributes of the neighborhood nodes. CRFs were applied
to part-of-speech (POS) tagging in text, where the nodes in the graphs represented the words in the
sentence, connected by their word order. The labels to be predicted were POS-tags and the attribute
of a node was the word it represents. The neighborhood of a word comprised the words on either
side of it.

Relational Bayesian Networks (RBNs)2 (Koller and Pfeffer, 1998; Friedman et al., 1999; Taskar
et al., 2001) extend Bayesian networks (BNs (Pearl, 1988)) by taking advantage of the fact that
a variable used in one instantiation of a BN may refer to the exact same variable in another BN.
For example, if the grade of a student depends upon his professor, this professor is the same for
all students in the class. Therefore, rather than building one BN and using it in isolation for each
entity, RBNs directly link shared variables in “unrolled” BNs, thereby generating one big network
of connected entities for which collective inferencing canbe performed. Most relevant to this paper,
for within-network classification RBNs were applied by Taskar et al. (2001) to various domains,
including a data set of published manuscripts linked by authors and citations. Loopy Belief Prop-
agation (Pearl, 1988) was used to perform the collective inferencing. The study showed that the
PRM performed better than a non-relational naive Bayes classifier and that using both author and
citation information in conjunction with the text of the paper worked better than using only author
or citation information in conjunction with the text.

Relational Dependency Networks (RDNs) (Neville and Jensen, 2003, 2004), extend dependency
networks (Heckerman et al., 2000) in much the same way that RBNs extend Bayes Networks. RDNs
have been used successfully on a bibliometrics data set, a movie data set and a linked web-page
data set, where they were shown to perform much better than a relational probability tree (RPT)

2. These originally were called Probabilistic Relational Models (PRMs). PRM now typically is used as a more gen-
eral term which includes other models such as Relational Dependency Networks and Relational Markov Networks,
described next.
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Input: GK , V U , RCtype, LCtype, CItype

Induce a local classification model, LC, of type LCtype, usingGK

Induce a relational classification model, RC, of type RCtype, usingGK

Estimatex ∈ V U using LC.
Apply collective inferencing of type CItype, using RC as the model.
Output: Final estimates forxi ∈ V U

Table 1: High-level pseudo code for the main core of the Network Learning Toolkit.

(Neville et al., 2003) using no collective inferencing. Gibbs sampling was used to perform collective
inferencing.

Relational Markov Networks (RMNs) (Taskar et al., 2002) extend Markov Networks (Pearl,
1988). The clique potential functions used are based on functional templates, each of which is a
(learned, class-conditional) probability function basedon a user-specified set of relations. Taskar
et al. (2002) applied RMNs to a set of web-pages and showed that they performed better than other
non-relational learners as well as naive Bayes and logisticregression when used with the same
relations as the RMN. Loopy Belief Propagation was used to perform collective inferencing.

The above systems use only a few of the many relational learning techniques proposed in the lit-
erature. There are many more, for example from the rich literature of inductive logic programming
(ILP) (e.g. Flach and Lachiche (1999); Raedt et al. (2001); Dzeroski andLavrac (2001); Kramer
et al. (2001); Domingos and Richardson (2004)), or based on using relational database joins to gen-
erate relational features (e.g. Perlich and Provost (2003); Popescul and Ungar (2003); Perlich and
Provost (2004)). These techniques could be the basis for additional relational model components in
NetKit.

2.3 Network Learning Toolkit (NetKit-SRL)

NetKit is designed to accommodate the interchange of components and the introduction of new
components. Any local model can be paired with any relational model, which can then be combined
with any collective inference method. NetKit’s core routine is simple and is outlined in Table 1.

NetKit consists of these primary modules:

1. Input: This module reads data into a memory-resident graphG.

2. Local classifier inducer (LC): Given as training dataV K , this module returns a model which
using only attributes of a nodevi ∈ V U will estimatexi. Ideally, LC will estimate a proba-
bility distribution over the possible values forxi.

3. Relational classifier inducer (RC):GivenGK , this module returns a model which usingvi

andNi will estimatexi. Ideally, RC will estimate a probability distribution overthe possible
values forxi.

4. Collective Inferencing: Given a graphG possibly with somexi known, a set of priors over
x

U , and a relational modelMR, this applies collective inferencing to estimatex
U .
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5. Weka Wrapper: This module is a wrapper for Weka3 (Witten and Frank, 2000) and will
convert the graph representation ofvi into an entity that can either be learned from or be used
to estimatexi.

Implementation details on these modules can be found in Appendix B. The current version
of NetKit-SRL, while able to read in heterogeneous graphs, only supports classification in graphs
consisting of a single type of node.

2.4 NetKit Components

This section describes the particular relational classifiers and collective inference methods imple-
mented in NetKit for the univariate case study. First, we describe the four (univariate4) relational
classifiers (RC components). Then, we describe the three collective inference methods.

2.4.1 RELATIONAL CLASSIFIERS(RC)

All four relational classifiers take advantage of a first-order Markov assumption on the network:
only a node’s local neighborhood is necessary for classification. The univariate case renders this
assumption particularly restrictive: only the class labels of the local neighbors are necessary. The
local network is defined by the user, analogous to the user’s definition of the feature set for proposi-
tional learning. Entities whose class labels are not known are either ignored or are assigned a prior,
depending upon the choice of local classifier.

2.4.1.1 WEIGHTED-VOTE RELATIONAL NEIGHBOR CLASSIFIER (WVRN)

Our first and simplest classifier (cf., Macskassy and Provost(2003)5) estimates class-membership
probabilities based on one assumption in addition to the Markov assumption: the entities exhibit
homophily—i.e., linked entities have a propensity to belong to the same class (Blau, 1977; McPher-
son et al., 2001). This homophily-based model is motivated by observations and theories of social
networks (Blau, 1977; McPherson et al., 2001), where homophily is ubiquitous. Homophily was
one of the first characteristics noted by early social network researchers (Almack, 1922; Bott, 1928;
Richardson, 1940; Loomis, 1946; Lazarsfeld and Merton, 1954), and holds for a wide variety of
different relationships (McPherson et al., 2001). It seemsreasonable to conjecture that homophily
may also be present in other sorts of networks, especially networks of artifacts created by people.
(Recentlyassortativity, a link-centric notion of homophily, has become the focus ofmathematical
studies of network structure (Newman, 2003).)

Definition. Givenvi ∈ V U , the weighted-vote relational-neighbor classifier (wvRN)estimates
P (xi|Ni) as the (weighted) mean of the class-membership probabilities of the entities inNi:

P (xi = X|Ni) =
1

Z

∑

vj∈Ni

wi,j · P (xj = X|Nj), (2)

whereZ is the usual normalizer. As the above is a recursive definition (for undirected graphs,
vj ∈ Ni ⇔ vi ∈ Nj) the classifier uses the “current” estimate forP (xj = X |Nj), where the
“current” estimate is defined by the collective inference technique being used.

3. We use version 3.4.2. Weka is available athttp://www.cs.waikato.ac.nz/˜ml/weka/
4. The open-source NetKit release contains multivariate versions of these classifiers.
5. Previously called the probabilistic Relational Neighbor classifier (pRN).
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2.4.1.2 CLASS-DISTRIBUTION RELATIONAL NEIGHBOR CLASSIFIER (CDRN)

Learning a model of the distribution of neighbor class labels may lead to better discrimination
than simply using the (weighted) mode. Following Perlich and Provost (2003), and in the spirit
of Rocchio’s method (Rocchio, 1971), we define nodevi’s class vectorCV(vi) to be the vector of
summed linkage weights to the various (known) classes, and classX ’s reference vectorRV(X) to
be the average of the class vectors for nodes known to be of classX. Specifically:

CV(vi)k =
∑

vj∈Ni,xj=Xk

wi,j , (3)

whereCV(vi)k represents thekth position in the class vector andXk is thekth class. Based on
these class vectors, the reference vectors can then be defined as the vector sum:

RV(X) =
1

|V K
X |

∑

vi∈V K
X

CV(vi), (4)

whereV K
X = {vi|vi ∈ V K , xi = X}.

During training, neighbors inV U are ignored. For prediction, estimated class membership
probabilities are used for neighbors inV U , and equation (3) becomes:

CV(vi)k =
∑

vj∈Ni

P (xj = Xk|Nj) · wi,j (5)

Definition. Given vi ∈ V U , the class-distribution relational-neighbor classifier (cdRN) es-
timates the probability of class membership,P (xi = X |Ni), by the normalized vector distance
betweenvi’s class vector and classX ’s reference vector:

P (xi = X|Ni) =
1

Z
dist(CV(vi),RV(X)), (6)

whereZ is the usual normalizer anddist(a, b) is any vector distance function (L1, L2, cosine, etc.).
For the results presented below, we use cosine distance.

As with wvRN, Equation 5 is a recursive definition, and therefore the value ofP (xj = X|Nj)
is approximated by the “current” estimate as given by the selected collective inference technique.

2.4.1.3 NETWORK-ONLY BAYES CLASSIFIER (NBC)

NetKit’s network-only Bayes classifier (nBC) is based on thealgorithm described by Chakrabarti
et al. (1998). To start, assume there is a single nodevi in V U . The nBC uses multinomial naive
Bayesian classification based on the classes ofvi’s neighbors.

P (xi = X|Ni) =
P (Ni|X) · P (X)

P (Ni)
, (7)

where

P (Ni|X) =
1

Z

∏

vj∈Ni

P (xj = Xj∗ |xi = X)wi,j (8)

whereZ is a normalizing constant andXj∗ is the class observed at nodevj. BecauseP (Ni) is the
same for each class, normalization across the classes allows us to ignore it (as with naive Bayes
generally).
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We call nBC “network-only” to emphasize that in the application to the univariate case study be-
low, we do not use local attributes of a node. As discussed above, Chakrabarti et al. initialize nodes’
priors based on a naive Bayes model over the local document text.6 In the univariate setting, local
text is not available. We therefore use the same scheme as forthe other RCs: initialize unknown
labels as decided by the local classifier being used (either the class prior or ’null ’, depending on
the CI component, as described below). If a neighbor’s labelis ’null ’, then it is ignored for clas-
sification. Also, Chakrabarti et al. differentiated between incoming and outgoing links, whereas we
do not. Finally, Chakrabarti et al. do not mention how or whether they account for possible zeros
in the estimations of the marginal conditional probabilities; we apply traditional Laplace smoothing
wherem = |X |, the number of classes.

The foregoing assumes all neighbor labels are known. When the values of some neighbors are
unknown, but estimations are available, we follow Chakrabarti et al. (1998) and perform Markov
Random Fields (MRF) estimations (Dobrushin, 1968; Geman and Geman, 1984; Winkler, 2003),
based on how different configurations of neighbors’ classesaffect a target entity’s class. Specifically,
the classifier computes a Bayesian combination based on (estimated) configuration priors and the
entity’s known neighbors. Chakrabarti et al. (1998) describe this procedure in detail. For our case
study, such an estimation is necessary only when using relaxation labeling (described below).

2.4.1.4 NETWORK-ONLY L INK -BASED CLASSIFICATION (NLB)

The final relational classifier used in the case study is a network-only derivative of the link-based
classifier (Lu and Getoor, 2003). The network-only Link-Based classifier (nLB) creates a feature
vector for a node by aggregating the labels of neighboring nodes, and then uses logistic regression
to build a discriminative model based on these feature vectors. This learned model is then applied
to estimateP (xi = X |Ni). As with the nBC, the difference between the “network-only”link-based
classifier and Lu and Getoor’s version is that for the univariate case study we do not consider local
attributes (e.g., text).

As described above, Lu and Getoor (2003) considered variousaggregation methods: existence
(binary), the mode, and value counts. The last aggregation method, the count model, is equivalent
to the class vectorCV(vi) defined in Equation 5. This was the best performing method in the study
by Lu and Getoor, and is the method on which we base nLB. The logistic regression classifier used
by nLB is the multiclass implementation from Weka version 3.4.2.

We made one minor modification to the original link-based classifier. Perlich (2003) argues that
in different situations it may be preferable to use vectors based on raw counts (as given above) or
vectors based on normalized counts. We did preliminary runsusing both. The normalized vectors
generally performed better, and so we use them for the case study.

2.4.2 COLLECTIVE INFERENCEMETHODS (CI)

This section describes three collective inferencing (CI) methods implemented in NetKit and used
in the case study. As described above, given (i) a network initialized by the local model, and (ii)
a relational model, a CI method infers a set of class labels for x

U , ideally with the maximum joint
probability. Alternatively, if estimates of entities’ class-membership probabilities are needed, the

6. The original classifier was defined as:P (xi = X |Ni) = P (Ni|X) · P (τi|vi) · P (X), with τi being the text of the
document-entity represented by vertexvi.
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1. Initialize priors using the local classifier model,ML. Forvi ∈ V U , ci ←ML(vi),
whereci represents the estimate ofP (xi). For the case study, the local classifier
model returns the marginal class distribution estimated fromx

K .

2. Generate a random ordering,O, of vertices inV U .

3. Set initial labels inO by sampling based on the priors. This will generate a particular
configuration of labels inG.

4. For elementsvi ∈ O in order:

(a) Apply the relational classifier model:ci ←MR.

(b) Sample a valuexs from ci.

(c) Setxi ← xs.
Note that whenMR is applied toxi it uses the “new” labelings from elements
1, . . . , (i−1), while using the “current” labelings for elements(i+1), . . . , n.

5. Repeat prior step200 times without keeping any statistics. This is known as the
burnin period.

6. Repeat again for2000 iterations, counting the number of times eachxi is assigned a
particular valueX ∈ X . Normalizing these counts forms the final class probability
estimates.

Table 2: Pseudo-code for Gibbs sampling.

CI method estimates the marginal probability distributionP (xi|GK ,Λ) for eachxi ∈ x
U , whereΛ

stands for the priors returned by the local classifier.

2.4.2.1 GIBBS SAMPLING (GS)

Gibbs sampling (GS) (Geman and Geman, 1984) is commonly usedfor collective inferencing with
relational learning systems. The algorithm is straightforward and is shown in Table 2.7 The use of
200 and2000 for the burnin period and number of iterations are commonly used values.8 Ideally,
we would iterate until the estimations converge. Although there are convergence tests for the Gibbs
sampler, they are not robust nor well understood (cf. Gilks et al. (1995)), so we simply use a fixed
number of iterations.

Notably, because all nodes are assigned a class at every iteration, when GS is used the relational
models will always see a fully labeled/classified neighborhood, making prediction straightforward.
For example, nBC does not need its MRF estimation.

2.4.2.2 RELAXATION LABELING (RL)

The second collective inferencing method implemented and used in this study is relaxation
labeling (RL), based on the method of Chakrabarti et al. (1998). Rather than treatG as being in
a specific labeling “state” at every point (as Gibbs samplingdoes), relaxation labeling retains the
uncertainty, keeping track of the current probability estimations forxU . The relational model must

7. This instance of Gibbs sampling uses a single random ordering (“chain”), as this is what we used in the case study.
In the case study, using10 chains (the default in NetKit) had no effect on the final accuracies.

8. As it turns out, in our case study GS invariably reached a seemingly final plateau in fewer than1000 iterations, and
often in fewer than500.
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1. Forvi ∈ V U , initialize the prior: c(0)
i
← ML(vi). For the case study, the local

classifier model returns the class priors.

2. For elementsvi ∈ V U :

(a) Estimatexi by applying the relational model:

c
(t+1)
i

←MR(v
(t)
i

), (9)

whereMR(v
(t)
i

) denotes using the estimatesc
(t), andt is the iteration count.

This has the effect that all predictions are done pseudo-simultaneously based
on the state of the graph after iterationt.

3. Repeat forT iterations, whereT = 99 for the case study.c(T ) will comprise the
final class probability estimations.

Table 3: Pseudo-code for Relaxation Labeling.

be able to use these estimations. Further, rather than estimating one node at a time and updating
the graph right away, relaxation labeling “freezes” the current estimations so that at stept + 1, all
vertices will be updated based on the estimations from stept. The algorithm is shown in Table 3.

Preliminary runs showed that RL sometimes does not converge, but rather ends up oscillating
between two points.9 NetKit performs simulated annealing—on each subsequent iteration giving
more weight to a node’s own current estimate and less to the influence of its neighbors.

The new updating step, replacing Equation 9, is defined as:

c
(t+1)
i = β(t+1) ·MR(v

(t)
i ) + (1−β(t+1)) · c

(t)
i , (10)

where

β0 = k

β(t+1) = β(t) · α, (11)

wherek is a constant, which for the case study we set to1.0, andα is a decay constant, which
we set to0.99. Preliminary testing showed that final performance is very robust as long as0.9 <
α < 1. Smaller values ofα can lead to neighbors losing their weight too quickly, whichcan hurt
performance when only very few labels are known. A post-mortem of the results showed that the
accuracies often converged within the first20 iterations.

2.4.2.3 ITERATIVE CLASSIFICATION (IC)

The third and final collective inferencing method implemented in NetKit and used in the case
study is the variant of Iterative Classification described in the work on link-based classification (Lu
and Getoor, 2003) and shown in Table 4. As with Gibbs sampling, the relational model never sees
uncertainty in the labels of (neighbor) entities. Either the label of a neighbor isnull and ignored
(which only happens in the first iteration), or it is assigneda definite label.

9. Such oscillation has been noted elsewhere for closely related methods (Murphy et al., 1999).
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1. Forvi ∈ V U , initialize the prior:ci ←ML(vi). The link-based classification work
of Lu and Getoor (2003) uses a local classifier to set initial classifications. This will
clearly not work in our case (all unknowns would be classifiedas the majority class),
and we therefore use a local classifier model which returnsnull (i.e., it does not
return an estimation.)

2. Generate a random ordering,O, of elements inV U .

3. For elementsvi ∈ O:

(a) Apply the relational classifier model,ci ← MR, using all non-null labels.
Entities which have not yet been classified will be ignored (this will only occur
in the first iteration).

(b) Classifyvi:

xi = argmax
X
ci.

4. Repeat forT = 1000 iterations, or until no entities receive a new class label.a The
estimates from the final iteration will be used as the final class probability estimates.

a. A post-mortem of the results showed that IC often stopped within 10−20 iterations when paired
with cdRN, nBC or nLB. For wvRN, it generally ran the full1000 iterations, although the accu-
racy quickly plateaued and wvRN ended up moving within a small range of similar accuracies.

Table 4: Pseudo-code for Iterative Classification.

3. Case Study

The study presented in this section has two goals. First, it showcases NetKit, demonstrating that
the modular framework indeed facilitates the comparison ofsystems for learning and inference in
networked data. Second, it examines the simple-but-important special case of univariate learning
and inference in homogeneous networks, comparing alternative techniques that have not before been
compared systematically, if at all. The setting for the casestudy is simple: For some entities in the
network, the value ofxi is known; for others it must be estimated.

Univariate classification, albeit a simplification for manydomains, is important for several rea-
sons. First, it is a representation that is used in some applications. In the introduction we mentioned
fraud detection. As a specific example, a telephone account that calls the same numbers as a known
fraudulent account (and hence the accounts are connected through these intermediary numbers) is
suspicious (Fawcett and Provost, 1997; Cortes et al., 2001). For phone fraud, univariate network
classification often provides alarms with reasonable coverage and remarkably low false-positive
rates. In fact, the fraud detection work of Cortes et al. focuses on exactly this representation (albeit
also considering changes in the network over time). Generally speaking, a homogeneous, univariate
network is an inexpensive (in terms of data gathering, processing, storage) approximation of many
complex networked data problems. Fraud detection applications certainly do have a variety of addi-
tional attributes of importance; nevertheless, univariate simplifications are very useful and are used
in practice.

The univariate case also is important scientifically. It isolates a primary difference between
networked data and non-networked data, facilitating the analysis and comparison of relevant clas-
sification and learning methods. One thesis of this study is that there is considerable information

13
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Category Size
High-revenue 572
Low-revenue 597
Total 1169
Base accuracy 51.07%

Table 5: Details on class distribution for the IMDb data set.

inherent in the structure of the networked data and that thisinformation can be readily taken advan-
tage of, using simple models, to estimate the labels of unknown entities. This thesis is tested by
isolating this characteristic—namely ignoring any auxiliary attributes and only allowing the use of
known class labels—and empirically evaluating how well univariate models perform in this setting
on benchmark data sets.

Considering homogeneous networks plays a similar role. Although the domains we consider
have obvious representations consisting of multiple entity types and edges (e.g., people and papers
for node types and same-author-as and cited-by as edge typesin a citation-graph domain), a homo-
geneous representation is much simpler. In order to assess whether a more complex representation
is worthwhile, it is necessary to assess standard techniques on the simpler representation (as we do
in this case study). Of course, the way a network is “homogenized” may have a considerable effect
on classification performance. We will revisit this below inSection 3.3.6.

3.1 Data

The case study reported in this paper makes use of 12 benchmark data sets from four domains that
have been the subject of prior study in machine learning. As this study focuses on networked data,
any singleton (disconnected) entities in the data were removed. Therefore, the statistics we present
may differ from those reported previously.

3.1.1 IMDB

Networked data from the Internet Movie Database (IMDb)10 have been used to build models pre-
dicting movie success based on box-office receipts (Jensen and Neville, 2002a). Following the
work of Neville et al. (2003), we focus on movies released in the United States between 1996 and
2001 with the goal of estimating whether the opening weekendbox-office receipts “will” exceed $2
million (Neville et al., 2003). Obtaining data from the IMDbweb-site, we identified1169 movies
released between 1996 and 2001 that we were able to link up with a high-revenue classification in
the database given to us by the authors of the original study.The class distribution of the data set is
shown in Table 5.

We link movies if they share a production company, based on observations from previous work11

(Macskassy and Provost, 2003). The weight of an edge in the resulting graph is the number of
production companies two movies have in common. Notably, weignore the temporal aspect of the
movies in this study, simply labeling movies at random for the training set. This can lead to a movie
in the test set being released earlier than a movie in the training set.

10. http://www.imdb.com
11. And on a suggestion from David Jensen.
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Category Size
Case Based 402
Genetic Algorithms 551
Neural Networks 1064
Probabilistic Methods 529
Reinforcement Learning 335
Rule Learning 230
Theory 472
Total 3583
Base accuracy 29.70%

Table 6: Details on class distribution for the CoRA data set.

3.1.2 CORA

The CoRA data set (McCallum et al., 2000) comprises computerscience research papers. It includes
the full citation graph as well as labels for the topic of eachpaper (and potentially sub- and sub-sub-
topics).12 Following a prior study (Taskar et al., 2001), we focused on papers within the machine
learning topic with the classification task of predicting a paper’s sub-topic (of which there are seven).
The class distribution of the data set is shown in Table 6.

Papers can be linked in one of two ways: they share a common author, or one cites the other.
Following prior work (Lu and Getoor, 2003), we link two papers if one cites the other. This number
ordinarily would only be zero or one unless the two papers cite each other.

3.1.3 WEBKB

The third domain we draw from is based on the WebKB Project (Craven et al., 1998).13 It consists of
sets of web pages from four computer science departments, with each page manually labeled into7
categories: course, department, faculty, project, staff,student or other. As with other work (Neville
et al., 2003; Lu and Getoor, 2003), we ignore pages in the “other” category except as described
below.

From the WebKB data we produce eight networked data sets for within-network classification.
For each of the four universities, we consider two differentclassification problems: the6 class
problem, and following a prior study, the binary classification task of predicting whether a page
belongs to a student (Neville et al., 2003).14 The binary task results in an approximately balanced
class distribution.

Following prior work on web-page classification, we link twopages by co-citations (ifx links
to z andy links to z, thenx andy are co-citingz) (Chakrabarti et al., 1998; Lu and Getoor, 2003).
To weight the link betweenx andy, we sum the number of hyperlinks fromx to z and separately
the number fromy to z, and multiply these two quantities. For example, if studentx has2 edges
to a group page, and a fellow studenty has3 edges to the same group page, then the weight along
that path between those2 students would be6. This weight represents the number of possible co-
citation paths between the pages. Co-citation relations are not uniquely useful to domains involving
documents; for example, as mentioned above, for phone-fraud detection bandits often call the same

12. These labels were assigned by a naive Bayes classifier (McCallum et al., 2000).
13. We use the WebKB-ILP-98 data.
14. It turns out that the relative performance of the methodsis quite different on these two variants.
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Number of web-pages
Class Cornell Texas Washington Wisconsin
student 145 163 151 155
not-student 201 171 283 193
Total 346 334 434 348
Base accuracy 58.1% 51.2% 60.8% 55.5%

Table 7: Details on class distribution for the WebKB data setusing binary class labels.

Number of web-pages
Category cornell texas washington wisconsin
course 54 51 170 83
department 25 36 20 37
faculty 62 50 44 37
project 54 28 39 25
staff 6 6 10 11
student 145 163 151 155
Total 346 334 434 348
Base accuracy 41.9% 48.8% 39.2% 44.5%

Table 8: Details on class distribution for the WebKB data setusing6-class labels.

numbers as previously identified bandits. We chose co-citations for this case study based on the
prior observation that a student is more likely to have a hyperlink to her advisor or a group/project
page rather than to one of her peers (Craven et al., 1998).15

To produce the final data sets, we extracted the pages that have at least one incoming and one
outgoing link. We removed pages in the “other” category fromthe classification task, although they
were used as “background” knowledge—allowing2 pages to be linked by a path through an “other”
page. For the binary tasks, the remaining pages were categorized into either student or not-student.
The composition of the data sets is shown in Tables 7 and 8.

3.1.4 INDUSTRY CLASSIFICATION

The final domain we draw from involves classifying public companies by industry sector. Compa-
nies are linked via cooccurrence in text documents. We create two different data sets, representing
different sources and distributions of documents and different time periods (which correspond to
different topic distributions).

INDUSTRY CLASSIFICATION (YH)
As part of a study of activity monitoring (Fawcett and Provost, 1999), Fawcett and Provost

collected22, 170 business news stories from the web between 4/1/1999 and 8/4/1999. Following
the study by Bernstein et al. (2003) discussed above, we identified the companies mentioned in each
story and added an edge between two companies if they appeared together. The weight of an edge is
the number of such cooccurrences found in the complete corpus. The resulting network comprises

15. We return to these data in Section 3.3.5, where we show anddiscuss how using the hyperlinks directly is not sufficient
for any of the univariate methods to do well.
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Sector Number of companies
Basic Materials 104
Capital Goods 83
Conglomerates 14
Consumer Cyclical 99
Consumer NonCyclical 60
Energy 71
Financial 170
Healthcare 180
Services 444
Technology 505
Transportation 38
Utilities 30
Total 1798
Base accuracy 28.1%

Table 9: Details on class distribution for
industry-yh data set.

Sector Number of companies
Basic Materials 83
Capital Goods 78
Conglomerates 13
Consumer Cyclical 94
Consumer NonCyclical 59
Energy 112
Financial 268
Healthcare 279
Services 478
Technology 609
Transportation 47
Utilities 69
Total 2189
Base accuracy 27.8%

Table 10: Details on class distribution for the
industry-pr data set.

1798 companies which cooccurred with at least one other company.To classify a company, we used
Yahoo!’s12 industry sectors. Table 9 shows the details of the class memberships.

INDUSTRY CLASSIFICATION (PR)

The second Industry Classification data set is based on35, 318 prnewswire press releases gath-
ered from April 1, 2003 through September 30, 2003. As above,the companies mentioned in each
press release were extracted and an edge was placed between two companies if they appeared to-
gether in a press release. The weight of an edge is the number of such cooccurrences found in the
complete corpus. The resulting network comprises2189 companies which cooccurred with at least
one other company. To classify a company, we use the same classification scheme from Yahoo! as
before. Table 10 shows the details of the class memberships.

3.2 Experimental Methodology

NetKit allows for any combination of a local classifier (LC),a relational classifier (RC) and a collec-
tive inferencing method (CI). If we consider an LC-RC-CI configuration to be a complete network-
classification (NC) method, we have12 to compare on each data set. Since, for this paper, the LC
component is directly tied to the CI component, we henceforth consider an NC system to be an
RC-CI configuration.

We first verify that the network structure alone (linkages plus known class labels) often contains
a considerable amount of useful information for entity classification. To that end, we assess the
classification performance of each NC as we vary from10% to 90% the percentage of nodes in
the network for which class membership is known initially. Varying the amount of information
initially available assesses: (1) whether the network structure enables classification; (2) how much
prior information is needed in order to perform well, and (3)whether there are regular patterns of
improvement with more labeled entities.
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Figure 1: Overall classification accuracies on the twelve data sets. Horizontal lines represent predicting the
most prevalent class. Individual methods will be clarified in subsequent figures. The horizontal
axis plots the fraction (r) of a network’s nodes for which the class label is known ex ante. In each
case, when many labels are known (right end) there is a set of methods that performs well. When
few labels are known (left end) there is much more variation in performance. Data sets are tagged
based on the edge-type used, where ‘prodco’ is short for ‘production company’, and ‘B’ and ‘M’
in the WebKB data sets represents ‘binary’ and ‘multi-class’ classifications, respectively.
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Accuracy is averaged over10 runs. Specifically, given a data set,G = (V, E), the subset of
entities with known labelsV K (the “training” data set16) is created by selecting a class-stratified
random sample of(100× r)% of the entities inV . The test set,V U is then defined asV−V K . We
further pruneV U by removing all nodes inzero-knowledgecomponents—nodes for which there is
no path to any node inV K . We use the same10 training/test partitions for all NC systems.

3.3 Results

3.3.1 INFORMATION IN THE NETWORK STRUCTURE

Figure 1 shows the accuracies of the12 NC systems across the12 data sets as the fraction (r) of
entities for which class memberships are known increases from r = 0.1 to r = 0.9. As mentioned
above, in the univariate case, if the linkage structure is not known the only non-subjective alternative
is to estimate using the class base rate (prior), which is shown by the horizontal line in the graphs.
As is clear from Figure 1, many of the data sets contain considerable information in the class-linkage
structure. The worst relative performance is on industry-pr, where at the right end of the curves the
error rate nonetheless is reduced by30–40%. The best performance is on webkb-texas, where the
best methods reduce the error rate by close to90%. And in most cases, the better methods reduce
the error rate by over50% toward the right end of the curves.

Machine learning studies on networked data sets seldom compare to simple network-classification
methods like these, opting instead for comparing to non-relational classification. These results argue
strongly that comparisons also should be made to univariatenetwork classification, if the purpose is
to demonstrate the power of a more sophisticated relationallearning method.

3.3.2 COLLECTIVE INFERENCECOMPONENT

We now compare the different collective inference components. We are not aware of theory that
makes a strong case for when one method should perform betterthan another. However, we will
be comparing classification accuracy (rather than the quality of the probability estimates), so one
might expect iterative classification to outperform Gibbs sampling and relaxation labeling, since the
former focuses explicitly on maximum a posteriori (MAP) classification and the latter two focus on
estimating the joint probability distribution over the class labels. On the other hand, with few known
labels, MAP classifications may be highly uncertain, and it may be better to propagate uncertainty,
as does relaxation labeling.

Figure 2 shows, for three of the data sets, the comparative performances of the three collective
inference (CI) components. Each graph is for a particular relational classifier. The graphs show that,
while the three CI components often perform similarly, their performances are clearly separated for
low values ofr.

Table 11 shows thep-values for a paired t-test assessing whether the first method (listed in
column 1) is significantly better than the second. Specifically, for a given data set and label ratio
(r), each NC experiment consisted of10 random train/test splits—the same for all configurations.
For each pair of CI components, pooling the10 splits across the4 RC components and12 data sets
yields480 paired data points. The results show clearly that RL, acrossthe board, outperformed both

16. These data set will be used not only for training models, but also as existing background knowledge during classifi-
cation.
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Figure 2: Comparison of Collective Inference methods on a select few data sets, with data set and
RC component listed above each graph. The horizontal line represents predicting the
most prevalent class.

GS and IC, often atp ≤ 0.001. Further, we see that IC also was often better than GS, although not
always significantly.

The foregoing shows that relaxation labeling is consistently better when the results are pooled
across CI pairs. Table 12 shows the magnitude of the differences. In order to be comparable across
data sets with different base rates, the table shows how muchof an error reduction over the base
rate the first method (listed first in column 1) produces as compared to the second (listed second in
column 1). As a simple example, assume the base error rate is0.4, method A yields an error rate
of 0.1, and method B yields an error rate of0.2. Method A reduces the error by75%. Method B
reduces the error by50%. The relative error reduction of A vs. B is1.5 (50% more error reduction).
More precisely, for each labeling ratior, we computed the relative error reduction ratio, ER∗

REL,
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

RL v GS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

RL v IC 0.001 0.001 0.100 0.025 0.001 0.001 0.001 0.001 0.001

IC v GS 0 .200 0.300 0.100 0.050 0 .450 0.200 0.100 0.005 0.250

Table 11: p-values for the statistical significance in differences in performance between pairs of CI
components across all data sets and RC methods. For each cell, bold text means that the
first method was better than the second method and italics means it was worse.

sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 overall

RL v GS 2.790 1.462 1.136 1.124 1.063 1.061 1.042 1.035 1.014 1.093

RL v IC 404.315 1.593 1.115 1.078 1.072 1.055 1.037 1.018 1.013 1.098

IC v GS 144 .937 1 .090 1.019 1.043 1 .009 1.005 1.005 1.016 1.002 1 .004

Table 12: Relative error reduction (ER∗REL) improvements for each CI component across all data
sets. Each cell shows the ratio of the better method’s error reduction over the other
method’s error reduction. As above, bold text means that thefirst method was better than
the second, and italics mean it was worse. The last column, overall, is based on taking
the ratio of the average error reduction for the methods across all sample ratios.

between two components, CIA and CIB as follows.

ERABS(RC,CI, D, r) = (baseerr(D)− err(RC-CI, D, r)) (12)

ERREL(RC,CI, D, r) =

{

NA if ERABS(RC,CI,D, r) < 0
ERABS(RC,CI,D,r)

baseerr(D) otherwise
(13)

ERREL(RC,CI, r) =
1

|D|

∑

D∈D

ERREL(RC,CI, D, r) (14)

ERREL(CI, r) =
1

|RC|

∑

RC∈RC

ERREL(RC,CI, r) (15)

ER∗
REL(CIA, CIB, r) =

{

∞ if ERREL(CIB , r) = NA or 0
ERREL(CIA,r)
ERREL(CIB ,r) otherwise

(16)

(17)

where err(RC-CI,D, r) is the error for the configuration (RC and CI) on data setD with r% of the
graph being labelled. A ratioρ > 1 means that CIA reduced the error by(100 × (1 − ρ))% over
that of CIB .

Table 12, following the same layout as Table 11, shows the ratios for each CI comparison. The
unusually large entries occur when ERREL(CIB , r) is very close to zero. As is clear from this table,
RL outperformed IC across the board, from as low as a1.3% improvement (r = 0.90) to as high as
59% or better improvement (r ≤ 0.2) when averaged over all the data sets and RC methods. Overall
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 total

RL 11 11 10 7 4 5 6 4 6 64
GS 1 1 0 1 5 3 4 4 4 23
IC 0 0 2 4 3 4 2 4 2 21

Table 13: Number of times each CI method was the best across the12 data sets.

RL improved performance over IC by about10% as seen in the last column in the “RL v IC” row of
the table. RL’s advantage over IC improves monotonically asless is known in the network. Similar
numbers and a similar pattern are seen for RL versus GS. IC andGS are comparable.17

The results so far have compared the CI methods disregardingthe RC component. Table 13
shows, for each ratio as well as a total across all ratios, thenumber of times each CI implementation
took part in the best-performing NC combination for each of the twelve data sets. Specifically, for
each sampling ratio, each win for an RC-CI configuration counted as a win for the CI module of
the pair (as well as a win for the RC module in the next section). For example, in Figure 2, the
first column of four graphs shows the performances of the 12 NCcombinations on the CoRA data;
at the left end of the curves, wvRN-RL is the best performing combination. Table 13 adds further
support to the conclusion that relaxation labeling (RL) wasthe overall best component, primarily
due to its advantage at low values ofr. We also see again that Gibbs Sampling (GS) and Iterative
Classification (IC) were comparable.

3.3.3 RELATIONAL MODEL COMPONENT

Comparing relational models, we would expect to see a certain pattern: if even moderate homophily
is present in the data, we would expect wvRN to perform well. Its nonexistent training variance18

should allow it to perform relatively well, even with small numbers of known labels in the network.
The higher-variance nLB may perform relatively poorly withsmall numbers of known labels (pri-
marily because of the lack of training data, rather than problems with collective inference). On the
other hand, wvRN is potentially a very-high-bias classifier(it does not learn at all). The learning-
based classifiers may well perform better with large numbersof known labels if there are patterns
beyond homophily to be learned. As a worst case for wvRN, consider a bipartite graph between
two classes. In a leave-one-out cross-validation, wvRN would be wrong on every prediction. The
relational learners should notice the true pattern immediately.

Figure 3 shows for four of the data sets the performances of the four RC implementations. The
rows of graphs correspond to data sets and the columns to the three different collective inference
methods. The graphs show several things, which will be clarified next. As would be expected,
accuracy improves as more of the network is labeled, although in certain cases classification is
remarkably accurate with very few known labels (e.g., see CoRA). One method is substantially
worse than the others. Among the remaining methods, performance often differs greatly with few
known labels, and tends to converge with many known labels. More subtly, there often is a crossing
of curves when about half the nodes are labeled (e.g., see Washington).

17. NB: it is possible for the winner in Table 11 and the winnerin Table 12 to disagree (as seen for the IC and GS
comparisons atr = 0.20), because the relative error reduction depends on the base error whereas the statistical test
is based on the absolute values.

18. NB: there still will be variance due to the set of known labels.
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

wvRN v cdRN 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

wvRN v nBC 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

wvRN v nLB 0.001 0.001 0.001 0.001 0 .300 0 .001 0 .001 0 .001 0 .001
cdRN v nBC 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

cdRN v nLB 0.001 0.001 0.001 0.001 0 .002 0 .001 0 .001 0 .001 0 .001
nLB v nBC 0 .250 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 14: p-values for the statistical significance of differences in performance among the RC com-
ponents across all data sets. For each cell, bold text means that the first method was better
than the second method and italic text means it was worse.

sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 overall

wvRN v cdRN 1.483 1.092 1.059 1.070 1.042 1.058 1.047 1.057 1.040 1.068

wvRN v nLB ∞ 7.741 1.901 1.279 1 .027 1 .091 1 .081 1 .082 1 .067 1.163

cdRN v nLB ∞ 7.086 1.794 1.195 1 .071 1 .154 1 .132 1 .144 1 .110 1.089

Table 15: Relative error reduction (ER∗REL) improvements for each RC component across all data
sets. Each cell shows the ratio of the better method’s error reduction over the other
method’s error reduction. The last column,overall, is based on taking the ratio of the
average error reduction for the methods across all sample ratios. Bold text means the first
method is better and italics means the second method is better.∞ means that the second
method performed worse than the base error.

sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 total

wvRN 7 4 4 6 4 4 2 1 2 34
cdRN 5 8 6 2 1 0 0 1 1 24
nLB 0 0 2 4 7 8 10 10 9 50

Table 16: Number of times each RC implementation was the bestacross the12 data sets.
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Figure 3: Comparison of Relational Classifiers on a select few data sets. The data set (and link-type)
and the paired collective inference component is listed above each graph. The horizontal
line represents predicting the most prevalent class.

Table 14 shows statistical significance results, computed as described in the previous section
(except here varying the RC component). Clearly, nBC was always significantly worse than the
other three RCs and is therefore eliminated from the remainder of this analysis. wvRN was always
significantly better than cdRN. Examining the two RN methodsversus nLB we see the same pattern:
at r = 0.5, the advantage shifts from the RN methods to nLB.

Table 15 shows the error reduction ratios for each RC comparison, computed as in the previous
section with the obvious changes between RC and CI. The same patterns are evident as observed
from Table 14. Further, we see that the differences can be large: when the RN methods are better,
they often are much better. The link-based classifier also can be considerably better than wvRN—
however, we should keep in mind that wvRN does not learn!
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 total

wvRN-IC 0 0 0 0 0 0 0 0 1 1
wvRN-GS 1 1 0 1 3 0 0 0 0 6
wvRN-RL 6 3 4 5 1 4 2 1 1 27
cdRN-IC 0 0 0 0 0 0 0 0 0 0
cdRN-GS 0 0 0 0 0 0 0 0 0 0
cdRN-RL 5 8 6 2 1 0 0 1 1 24

nBC-IC 0 0 0 0 0 0 0 0 0 0
nBC-GS 0 0 0 0 0 0 0 0 0 0
nBC-RL 0 0 0 0 0 0 0 0 0 0
nLB-IC 0 0 2 4 3 4 2 4 1 20
nLB-GS 0 0 0 0 2 3 4 4 4 17
nLB-RL 0 0 0 0 2 1 4 2 4 13

Table 17: Number of times each RC-CI configuration was the best across the12 data sets.

sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

wvRN-RL v cdRN-RL 0 .400 0 .002 0 .400 0 .400 0.999 0.300 0.100 0.005 0.001

wvRN-RL v nLB-IC 0.001 0.001 0.001 0.100 0 .050 0 .001 0 .001 0 .001 0 .001
wvRN-RL v nLB-GS 0.001 0.001 0.001 0.001 0.100 0 .050 0 .005 0 .001 0 .001
wvRN-RL v nLB-RL 0.001 0.001 0.001 0.001 0.200 0 .001 0 .001 0 .001 0 .001
cdRN-RL v nLB-IC 0.001 0.001 0.001 0.050 0 .050 0 .001 0 .001 0 .001 0 .001
cdRN-RL v nLB-GS 0.001 0.001 0.001 0.001 0.100 0 .020 0 .001 0 .001 0 .001
cdRN-RL v nLB-RL 0.001 0.001 0.001 0.001 0.200 0 .001 0 .001 0 .001 0 .001

nLB-IC v nLB-GS 0.001 0.001 0.001 0.001 0.025 0.200 0.300 0 .100 0 .200
nLB-IC v nLB-RL 0.001 0.001 0.001 0.001 0.025 0 .999 0 .999 0 .050 0 .020
nLB-RL v nLB-GS 0.999 0.050 0.250 0.025 0.300 0.100 0.200 0.300 0.050

Table 18: Statistical significance of differences in performance among the four best RC-CI config-
urations across all data sets. For each cell, normal text means that the first method was
better than the second method and italic text means it was worse.

Table 16 shows how often each RC method participated in the best combination, as described in
the previous section. nLB is the overall winner, but we see the same clear pattern that the RN meth-
ods dominate for fewer labels, and nLB dominates for more labels, with the advantage changing
hands atr = 0.5.

3.3.4 INTERACTION BETWEEN COMPONENTS

Table 17 shows how many times each of the twelve individual RC-CI configurations was the best,
across the twelve data sets and nine labeling ratios. Five configurations stand out: wvRN-RL,
cdRN-RL, and nLB with any of the CI methods. Table 18 and Table19 compare these five methods
analogously to the previous sections. (Here, each cell comprises120 data points gathered from
the12 data sets times10 runs.) The clear pattern is in line with that shown in the prior sections,
showing that of this set of best methods, the RN-based methods excel for fewer labeled data, and
the nLB-based methods excel for more labeled data.
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 overall

wvRN-RL v cdRN-RL 1 .233 1 .165 1 .042 1 .025 1 .009 1 .002 1.003 1.020 1.027 1 .028
wvRN-RL v nLB-IC 4.120 1.937 1.208 1.045 1 .041 1 .070 1 .066 1 .068 1 .057 1.070

wvRN-RL v nLB-GS ∞ ∞ 3.659 1.724 1.052 1 .054 1 .062 1 .076 1 .063 1.370

wvRN-RL v nLB-RL ∞ ∞ 3.390 1.573 1.031 1 .074 1 .070 1 .077 1 .068 1.331

cdRN-RL v nLB-IC 5.081 2.257 1.259 1.071 1 .032 1 .068 1 .069 1 .090 1 .086 1.100

cdRN-RL v nLB-GS ∞ ∞ 3.813 1.767 1.061 1 .052 1 .065 1 .098 1 .092 1.409

cdRN-RL v nLB-RL ∞ ∞ 3.533 1.612 1.040 1 .072 1 .074 1 .098 1 .096 1.369

nLB-IC v nLB-GS ∞ ∞ 3.028 1.649 1.095 1.015 1.004 1 .007 1 .005 1.281

nLB-IC v nLB-RL ∞ ∞ 2.805 1.505 1.074 1 .004 1 .004 1 .008 1 .010 1.245

nLB-RL v nLB-GS NA NA 1.079 1.096 1.020 1.019 1.008 1.001 1.004 1.029

Table 19: Relative error reduction (ER∗REL) improvements for the5 best RC-CI configurations
across all data sets. Each cell shows the ratio of the better method’s error reduction
over the other method’s error reduction. The last column, overall, is based on taking the
ratio of the average error reduction for the methods across all sample ratios. Bold text
means the first method was better and italics menas the secondmethod was better.∞
means that the second method performed worse than the base error, and a value of “NA”
indicates that both performed worse than the base error.)

In addition, these results show that the RN-methods clearlyshould be paired with RL. nLB,
on the other hand, does not favor one CI method over the others. One possible explanation for
the superior performance of the RN/RL combinations is that RL simply performs better with fewer
known labels, where propagating uncertainty may be especially worthwhile as compared to working
with estimated labelings. However, this does not hold for nLB (where, as more labels are known,
RL performs comparably better than IC or GS). Therefore, there must be a more subtle interaction
between the RN methods and the CI methods. This remains to be explained.

Following up on these results, a2-way ANOVA shows a strong interaction between RC and CI
components for most data sets for small numbers of labeled nodes, as would be expected given the
strong performance of the specific pairings wvRN-RL and cdRN-RL. As more nodes are labeled,
the interaction becomes insignificant for almost all data sets, as might be expected given that nLB
dominates but no CI component does. The ANOVA suggests that for very many known labels, it
matters little which CI method is used.

3.3.5 WHEN THINGS GO WRONG

To create homogeneous graphs, we had to select the edges to use. As mentioned briefly above, the
type of edge selected can have a substantial impact on classification accuracy. For these data sets,
the worst case (we have found) occurs for WebKB. As describedin Section 3.1.3, for the results
presented so far we have used co-citation links, based on observations in prior published work. An
obvious alternative is to use the hyperlinks themselves.

Figures 4 and 5 show the results of using hyperlinks instead of co-citation links. The network-
classification methods perform much worse than in the previous experiments. Although there is
some lift at large values ofr, especially for the Washington data, the performance is notcompara-
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Figure 4: Performances on WebKB multi-class problems usinghyperlinks as edges.
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Figure 5: Performances on WebKB binary-class problems using hyperlinks as edges.

ble to that with the co-citation formulation. The transformation from the hyperlink-based network
to the co-citation-based network adds no new information tothe graph. However, in the hyper-
link formulation the network classification methods cannottake full advantage of the information
present—mainly because of the first-order Markov assumption made by the relational classifiers.
These results demonstrate that the choice of edges can be crucial for good performance.
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3.3.6 SELECTING EDGES

Creating a graph with a single type of edge from a problem where various possible links exist is
a representation engineering problem reminiscent of the selection of a small set of useful features
for traditional classification.19 For feature selection, practitioners use a combination of domain
knowledge and trial and error to select a good representation. To create the networked data for our
study, we chose edges based on suggestions from prior work—which indirectly combines domain
knowledge and prior trial and error, although we explicitlyavoided choosing the representations
based on their performance using NetKit.

Pursuing the analogy with choosing features, it may be possible to select edges automatically. It
is beyond the scope of this paper to address the general (openand important) problem of edge selec-
tion; however, the excellence (on these data sets) and simplicity of wvRN suggests straightforward
techniques.

If we consider the data sets used in the study, all but the industry classification data sets have
more than one type of edge:

1. cora: We linked entities through citations (cite). Alternatively, we could have linked by the
sharing of an author (author), or by either relationship (combined as a single generic link).

2. imdb: There are many types of ways to connect two movies, but we focus here on four that
were suggested to us by David Jensen:actor, director, producerand production company
(prodco). Again, we could use any or all of them (we do not consider allpossible combina-
tions here).

3. WebKB: Based on prior work, we chose co-citations (cocite) for the case study and later
showed that the original hyperlinks (hyper) were a poor choice.

Kohavi and John (1997) differentiate between wrapper approaches and filter approaches to fea-
ture selection, and this notion extends directly to edge selection. For any network classification
method we can take a wrapper approach, computing the error reduction overGK using cross-
validation. wvRN is an attractive candidate for such an approach, because it is very efficient and
requires no training; we can use a simple leave-one-out (loo) estimation.

The homophily-based wvRN also lends itself to a filter approach, selecting the edge type simply
by measuring the homophily inGK . Heckathorn and Jeffi (2003) define a homophily index, but it
computes homophily for a specific group, or class, rather than a general value across all classes. The
assortativity coefficient(Newman, 2003) is based on the correlation between the classes linked by
edges in a graph. Specifically, it is based on the graph’s assortativity matrix—a CxC matrix, where
cell eij represents the fraction of (all) edges that link nodes of classci to nodes of classcj , such that

19. We required a single edge type for our homogeneous case study; it is reasonable to conjecture that even if heteroge-
neous links are allowed, a small set of good links would be preferable. For example, a link-based classifier produces
a feature vector representation with multiple positions per link type.
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mean mean Assortativity ERREL ERREL

base num edge node(edge) (node) loo (wvRN) wvRN at
Data set size acc. edges weight degree AE AN r = 0.90 r = 0.90
coracite 3583 0.297 22516 2.061 6.284 0.737 0.642 0.5373 0.805
coraall 4025 0.315 71824 2.418 17.844 0.656 0.656 0.6122 0.767
coraauthor 3604 0.317 56268 2.262 15.613 0.623 0.558 0.4662 0.711
imdbprodco 1169 0.511 40634 1.077 34.760 0.501 0.392 0.3711 0.647
imdbproducers 1195 0.520 13148 1.598 11.003 0.283 0.389 0.3618 0.547
imdball 1377 0.564 92248 1.307 66.992 0.279 0.308 0.3415 0.531
imdbdirectors 554 0.549 826 1.031 1.491 0.503 0.210 0.0369 0.498
imdbactors 1285 0.541 48354 1.135 37.630 0.131 0.174 0.1372 0.246
cornellBall 349 0.585 27539 3.000 78.908 0.325 0.399 0.5655 0.629
cornellBcocite 346 0.581 26832 2.974 77.549 0.360 0.394 0.5345 0.618
cornellBhyper 349 0.585 1393 2.349 3.991 −0.169 −0.068 −0.1621 −0.114
cornellMall 349 0.415 27539 3.000 78.908 0.219 0.286 0.3209 0.382
cornellMcocite 346 0.419 26832 2.974 77.549 0.227 0.273 0.2481 0.366
cornellMhyper 349 0.415 1393 2.349 3.991 0.054 0.102 −0.2883 −0.212
texasBcocite 334 0.512 32988 2.961 98.766 0.577 0.617 0.7166 0.819
texasBall 338 0.518 33364 2.995 98.710 0.523 0.585 0.6939 0.768
texasBhyper 285 0.547 1001 2.605 3.512 −0.179 −0.114 −0.1368 −0.232
texasMcocite 334 0.488 32988 2.961 98.766 0.461 0.477 0.3737 0.475
texasMall 338 0.482 33364 2.995 98.710 0.420 0.458 0.3874 0.466
texasMhyper 285 0.453 1001 2.605 3.512 −0.033 −0.044 −0.6583 −0.490
washingtonBall 434 0.652 31253 3.800 72.012 0.388 0.455 0.4225 0.530
washingtonBcocite 434 0.652 30462 3.773 70.189 0.375 0.446 0.3940 0.477
washingtonBhyper 433 0.651 1941 2.374 4.483 −0.095 0.076 −0.1126 −0.069
washingtonMcocite 434 0.392 30462 3.773 70.189 0.301 0.359 0.3481 0.503
washingtonMall 434 0.392 31253 3.800 72.012 0.331 0.377 0.4023 0.453
washingtonMhyper 433 0.390 1941 2.374 4.483 0.084 0.233 −0.0167 0.004
wisconsinBall 352 0.560 33587 3.543 95.418 0.524 0.587 0.7219 0.855
wisconsinBcocite 348 0.555 33250 3.499 95.546 0.673 0.585 0.7168 0.788
wisconsinBhyper 297 0.616 1152 2.500 3.879 −0.147 −0.103 −0.2123 −0.331
wisconsinMcocite 348 0.445 33250 3.499 95.546 0.577 0.489 0.4286 0.544
wisconsinMall 352 0.440 33587 3.543 95.418 0.416 0.474 0.4518 0.503
wisconsinMhyper 297 0.384 1152 2.500 3.879 0.160 0.021 −0.4729 −0.275

# mistakes 5 2 4

Table 20: Assortativity details on data sets across variousedge types. Each data set grouping is
sorted on ERREL. AE , AN andERREL values were all averaged over the10 data splits
used throughout the case study. The leave-one-out measure used onlyGK to calculate
theERREL value.

29



MACSKASSY AND PROVOST

∑

ij eij = 1. The assortativity coefficient,AE , is calculated as follows:

ai =
∑

j

eij (18)

bj =
∑

i

eij (19)

AE =

∑

i eii −
∑

i ai · bi

1−
∑

i ai · bi
(20)

AE measures homophily across edges, while wvRN is based on homophily across nodes. It is
possible to create (sometimes weird) graphs with highAE but for which wvRN performs poorly,
and vice versa. However, we can modifyAE to be anode-based assortativitycoefficient,AN , by
defininge∗ij , a node-based cell-value in the assortativity matrix as follows:

e∗ij =
1

Z
RV(Xi)j, (21)

where RV(Xi)j is the jth element in RV(Xi) as defined in Equation 4, andZ is a normalizing
constant such that alleij sum to1.

To assess their value for edge selection for wvRN, we computethe error reduction for each
different edge type (and all edges) for the benchmark data sets, and compare the best with that of
the edge selected by each of these three methods (loo,AE , AN ). In Table 20 the first six columns
show the data set, the number of nodes, the base accuracy, thenumber of edges, the average edge
weight, and the average node degree. The next columns showAE andAN . The next column shows
the estimated ERREL value based on the leave-one-out estimation, and the last column shows the
ERREL values on the test set. Each data set group is sorted by the ERREL performance on its various
edge types, so the top row is the “best” edge selection. Note that as the edge types differ, we get
different connectivities and different coverages, and hence different the values are not completely
comparable.

The results show that the links used in our study generally resulted in the highest node-based
assortativity.20 AN in 8 out of 10 cases chose the best edge. In the two cases where this was not
the case, the differences in ERREL were small. Neither the leave-one-out (loo) method norAE

performed as well, but they nevertheless yield networks on which wvRN performs relatively well.
Notice that for IMDb, althoughdirector has the highestAE , it also has very low coverage (only554
nodes were connected), and with such a slight difference in assortativity between that andprodco
there should be no question which should be used for classification. AN and the leave-one-out
estimates are much more volatile thanAE as the amount of labeled data decreases, because there
typically are many more edges than nodes. If we believe that assortativity is relatively stable across
the network, it may be beneficial to useAE when little is known. However, for our data sets,AN

performs just as well asAE even whenr = 0.1.

3.4 The Case for Network-Only Baseline Methods

On the benchmark data sets, error rates were reduced markedly by taking into account only the
class-linkage structure of the network. This argues strongly for using simple, network-only models

20. We had picked the edge types for the study before performing this analysis. However, common sense and domain
knowledge lead one to conclude that the edge types we used in the case study would have high assortativity.
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Figure 6: Comparison of wvRN to RBN (PRM) (Taskar et al., 2001). The graph shows wvRN
using both citation and author links as in the original study. The “pruned” results follow
the methodology of the case study in this paper by removing zero-knowledge components
and singletons from the test set.

as baselines in studies of more complex methods for classification in networked data. For example,
consider CoRA. In a prior study, Taskar et al. (2001) show that a relational Bayesian network (RBN),
there called a Probabilistic Relational Model (PRM), was able to achieve a higher accuracy than a
non-relational naive Bayesian classifier forr = {0.1, . . . , 0.6}. However, as we saw above, the
no-learning wvRN performed quite well on this data set. Figure 6 compares the accuracies of the
RBN (transcribed from the graphs in the paper) with wvRN. We see clearly that wvRN was able
to perform comparably.21 This demonstrates that CoRA is not a good data set to showcasethe
advantages of RBNs for classification. Had a method such as wvRN been readily available as a
baseline, then Taskar et al. would most likely have used a more appropriate data set.

More generally, this study has not demonstrated that these benchmark data sets hold little value
for studying within-network learning. However, wvRN does set a high bar for studying more-
complicated methods for learning classification models forthese data sets.

3.5 Limitations

As mentioned earlier, we would like to be able to characterize how much classification ability comes
from the structure of the network alone. We have examined a limited notion of using the structure
of the network. These methods all assume that “the power of the network” can be reduced to “the
power of the neighborhood,” bolstered by collective inference, rather than using relational models

21. The “pruned” results show the accuracy after eliminating the zero-knowledge components, for which wvRN can only
predict the most prevalent class.
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that look deeper. Furthermore, we only considered links andclass labels—we did not consider
identifying the individual nodes. Networked data allow theidentities of particular related entities
to be used directly in classification and learning—being linked to Mohammed Atta is informative
(Perlich and Provost, 2004).

In the homogeneous, univariate case study we have ignored much of the complexity of real
networked data, such as heterogeneous edges, heterogeneous nodes, directed edges, and attributes
of nodes and edges. Each of these introduces complications and opportunities for modeling. There
are too few comprehensive machine learning studies that consider these dimensions systematically.
For example, when using attributes of nodes, how much is gained by using them in the relational
classifier, as opposed to using them simply to initialize priors? (For example, Chakrabarti et al.
(1998) found that using the text of hyperlinked documents reduced performance.) Similarly, how
much value is added by considering multiple edge types explicitly?

An important limitation of this work, with respect to its relevance to practical problems, is
that we randomly choose training data to be labeled. It is likely that the data for which labels are
available are interdependent. For example, all the membersfrom one terrorist cell may be known
and none from another. If other attributes are available more uniformly, then studies such as this
may artificially favor network-only methods over attribute-based methods.

Another limitation of this study is that we have not completely explained the very poor per-
formance of nBC (used by Chakrabarti et al. (1998)). Our treatment of zeros does not seem to be
the culprit; for example, zeros are rare in the binary classification problems. As with naive Bayes
more generally, the posterior estimates typically are extreme and this is exacerbated by having many
neighbors (as one would expect if the independence assumption is grossly violated). Poorly cali-
brated probability estimates are problematic for the collective inference methods–for example, con-
sider Gibbs sampling given posteriors comprising essentially zeros and ones. We are investigating
this further.

3.6 Conclusions and Future Work

We introduced a modular toolkit, NetKit-SRL, for classification in networked data. The importance
of NetKit is three-fold: (1) it generalizes several existing methods for classification in networked
data, thereby making comparison to existing methods possible; (2) it enables the creation and use of
many new algorithms by its modularity and extensibility, for example as demonstrated with nLB-
GS, nLB-RL, and cdRN-RL, which were among the five best network classifiers in the case study,
and (3) it enables the analysis/comparison of individual components and configurations.

We used NetKit to perform a case study of within-network, univariate classification for homo-
geneous networked data. The case study makes several contributions. It provides demonstrative
support for points 2 and 3 above. By comparing the various components and combinations, clear
patterns appear. Certain collective inference and relational classification components stand out with
consistently better performance: for CI, relaxation labeling was best; for RC, the link-based clas-
sifier was clearly preferable when many labels were known. The lower-variance methods (wvRN
and cdRN) dominated when fewer labels were known. In combination, five RC-CI methods stand
out strikingly: nLB with one of the CI methods dominates whenmany labels are known; wvRN-RL
and cdRN-RL dominate when fewer labels are known.

More generally, the results showcase two different modes ofwithin-network classification: cases
when many labels are known ex ante versus cases where few are known. The former scenario may
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correspond (for example) to networks that evolve over time with new nodes needing classification,
as would be the case for predicting movie box-office receipts. Examples of the little-known scenario
can be found in counter-terrorism and law enforcement, where analysts form complex interaction
networks containing a few, known bad guys. The little-knownscenario has an economic component,
similar to active learning: it may be worthwhile to incur costs to label additional nodes in the
network, because this will lead to much improved classification. This suggests another direction
for future work—identifying the most beneficial nodes for labeling (cf., Domingos and Richardson
(2001)).

The case study also showcases a problem of representation for network classification: the se-
lection of which edges to use. It is straightforward to extend NetKit’s RC methods to handle het-
erogeneous links. However, that would not solve the fundamental problem that edge selection,
like feature selection for traditional learning, may improve generalization performance (as well as
provide simpler models).

Finally, the case study demonstrated the power of simple network classification models. On
the benchmark data sets, error rates were reduced markedly by taking into account only the class-
linkage structure of the network. No attribute informationwas used. Although learning helped in
many cases, the no-learning wvRN was a very strong competitor—performing very well when few
labels were known. This argues strongly for using simple, network-only models as baselines in
studies of classification in networked data. It also calls raises the question of whether we need more
powerful methods or “better” benchmark data sets.

Classification in networked data is important for real-world applications, and presents many
opportunities for machine-learning research. The field is beginning to amass benchmark domains
containing networked data. We hope that NetKit can facilitate systematic study.
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Appendix A. Glossary

cdRN Class Distribution Relational Neighbor Classifier. See Section 2.4.1.

CI Collective Inference Method. See Section 2.4.2.

D A data set. See Section 3.2.

DK What is known aboutD. See Section 3.2.

DU What is not known (and hence what needs to be predicted) aboutD. See Section 3.2.

GS Gibbs Sampling. See Section 2.4.2.

IC Iterative Classification. See Section 2.4.2.

LC Local Classifier. See Section 2.1.

nBC Network-only Bayes Classifier. See Section 2.4.1.

NC Network-Classification System. An LC-RC-CI combination. See Section 3.2.

nLB Network-only Linked-Based Classifier. See Section 2.4.1.

r The ratio of data which is known in the network. See Section 3.3.1.
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RC Relational Classifier. See Section 2.4.1.

RL Relaxation Labeling. See Section 2.4.2.

wvRN Weighted Vote Relational Neighbor Classifier. See Section 2.4.1.

Appendix B. Implementation Notes Regarding NetKit

This section describes in more detail the primary modules.
The current version of NetKit can be obtained from the primary author of this paper. We are

currently getting the toolkit ready to be released as open-source (Java 1.5).

B.1 Input Module

This module reads in the given data and represents it as a graph. This module supports heteroge-
neous edges and nodes although the classification algorithms all assume homogeneous nodes. The
edges can be weighted and/or directed.

The data input that the toolkit currently supports consistsof a set of flat files, with a schema file
defining the overall schema and the files where to read the datafrom. Each node type and edge type
are in separate flat files.

B.2 Local Classifier (LC) Module

The Local Classifier (LC) module is a general application programming interface (API), which
enables the implementation of “local” classifiers.

The API consists of two main interface methods:induceModel( V K) andestimate( v) ,
wherev is a vertex in the graph for which to predict the class attribute.

The induceModel( V K) methods takes as its input a set of vertices,V K , and induces an
internal model,ML, which can be used to estimateP (x|v).

Theestimate( vi) method takes as its input a vertex in the graph and returns a normalized
vector,c, where thek-th item,c(k), corresponds to the probability thatx takes on the categorical
class valueXk ∈ X .

The toolkit, through the Weka wrapper described below, fully supports the use of any classifiers
available in Weka. The toolkit, for experimental purposes,also has the three strawman classifiers
which predict a uniform prior, the class prior, ornull .

Extending NetKit by creating a new local classifier requires one to create a newsubclass of the
generic NetKit classifier (ClassifierImp) and write a minimum of 5 methods:

1. public String getShortName()

2. public String getName()

3. public String getDescription()

4. public boolean estimate(Node node, double[] result)

5. public void induceModel(Graph g, DataSplit split)

Once a new class has been created, it must be added to thelclassifier.properties config-
uration file to let NetKit know about its existence.
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B.3 Relational Classifier (RC) Module

As with the LC module, the Relational Classifier (RC) module is a general API which enables
the implementation of relational classifiers. As with LC, the module consists two main methods:
induceModel( GK) andestimate( v) .

The induceModel( V K) methods takes as its input the set of vertices,V K , and induces an
internal model,MR, which can be used to estimateP (x|v).

The estimate( vi) method takes as its input the vertexvi and returns a normalized vector,
ci, where thek-th item,ci(k), corresponds to the probability thatxi takes on the categorical class
valueXk ∈ X .

The toolkit fully supports the use of any Weka classifiers, which are turned into relational clas-
sifiers through the use of aggregation of neighbor attributes.

This module can be configured to aggregate only on the class attribute or on all neighbor at-
tributes. It currently only supports aggregation of directneighbors. It can further be configured to
not make use of intrinsic variables, for experimental studies such as the one performed in this paper.

Extending NetKit by creating a new relational classifier requires one to create a new subclass
of the generic NetKit network classifier (NetworkClassifierImp) and write a minimum of 6 methods:

1. public String getShortName()

2. public String getName()

3. public String getDescription()

4. public boolean includeClassAttribute()

5. public boolean doEstimate(Node node, double[] result)

6. public void induceModel(Graph g, DataSplit split)

For ease-of-use, the default implementation has a helper method,

makeVector(Node node, double[] vector),

which takes the intrinsic variables and all the aggregatorsused by the model and create a vector
representation of doubles. This is what is used by the Weka-wrapper module.

Once a new class has been created, it must be added to therclassifier.properties
configuration file to let NetKit know about its existence.

B.4 Collective Inferencing Module

The Collective Inferencing (CI) module is a general API which enables the implementation of infer-
encing techniques. The API consists of one main method:estimate( MR, V U ) , which takes
as its input a learned relational model,MR, and the set of vertices whose value of attributex needs
to be estimated. It returnsC = {ci}.

There are currently three collective inferencing algorithms implemented, each of which are
described in Section 2.4.2.

Extending NetKit by creating a new collective inferencing method requires one to create a new
subclass of the generic NetKit InferenceMethod class and write a minimum of 4 methods:

39



MACSKASSY AND PROVOST

1. public String getShortName()

2. public String getName()

3. public String getDescription()

4. public boolean iterate(NetworkClassifier classifier)

This should iterate through the list of nodes whose attributes are to be predicted and apply the
classifier to those nodes. How this is done, and what to give the classifier is dependent on the
inference method.

Once a new class has been created, it must be added to theinferencemethod.properties
configuration file to let NetKit know about its existence.

B.5 Aggregators

The toolkit currently supports the more common aggregationtechniques, which include the mode,
mean, min, max, count, exist and ratio (a normalized count).There are plans to extend these to also
include class-conditional aggregation (Perlich and Provost, 2003).

Extending NetKit by creating a new aggregator requires one to either subclassthe Aggrega-
torImp class or AggregatorByValueImp class, depending on whether the aggregator is across all val-
ues of an attribute (such as min/mode/max) or for a particular attribute value (such as count/exist/ratio.)

Once a new class has been created, it must be added to theaggregator.properties
configuration file to let NetKit know about its existence.

B.6 Weka Wrapping Module

The final module is the Weka wrapping module. This module actsas a bridge to Weka, a popular
public machine learning toolkit. It needs to be initializedby giving it the name of the Weka classifier,
WC, to wrap.

There are two wrappers for weka, one for the LC module and one for the RC module, where the
induceModel andestimate methods convert the inputs to the internal representation used by
Weka, and then passes this transformed set of entities to WC to let Weka induce the classifier.

The estimate method works similarly by converting the attribute vectorA into the inter-
nal representation used by Weka (again, making use of the aggregator functions specified in the
induceModel method), calls WC to estimatexi, and then transforms the reply from WC back
into the vector formatc used by our toolkit.

B.7 Configuring NetKit

NetKit is very configurable and should require very little programming for most uses. The config-
uration files allow great customization of how the LC, RC, andCI modules work, by being able to
set many parameters such as how many iterations the CI methods should run for, as well as what
kind of aggregation and aggregators the RC methods should use.

There are7 configuration files:

1. aggregator.properties
This defines the aggregators available as well as what kind ofattributes (continuous, categor-
ical, discrete) they will work on.

40



CLASSIFICATION IN NETWORKED DATA

2. distance.properties :
This defines the vector-distance functions available. Currently, there are the three commonly
used distance functions, L1, L2 and cosine. Currently, onlyone classifier, cdRN, makes use
of distance functions.

3. inferencemethod.properties :
This defines, and sets the parameters, for all the inferencemethods available to NetKit. Each
method and patemeter specification group is given a unique name such that the same method
can be used more than once but with different parameters.

4. lclassifier.properties :
Like the inferencemethod above, this defines and sets the parameters for the local classifiers.

5. NetKit.properties :
This sets default parameters for NetKit (which can be overridden on the commandline.)

6. rclassifier.properties :
Like the inferencemethod above, this defines and sets the parameters for the relational classi-
fiers.

7. weka.properties :
This defines the weka classifiers available to NetKit.

Each of the configuration files are well-commented to make it easy to customize NetKit.
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