
Building an Effective Representation for Dynamic Networks

Shawndra B. Hill, Deepak K. Agarwal, Robert Bell, Chris Vol insky*

February 19, 2005

Abstract

A dynamic network is a special type of network which is comprised of connected transactors which

have repeated evolving interaction. Data on large dynamic networks such as telecommunications networks

and the Intenlet are pervaive. However, represe~lting dyna~nic networks in a manner that is conducive

to efficient large-scale analysis is a challenge. In this paper, we represent dynamic graphs using a data

structure introduced by Cortes et. a]. [Q]. We advocate their representation because it accounts for

the evolution of relationships between transactors through time, mitigates noise at the local transactor

level, and allows for the removal of stale relationships. Our work improves on their heuristic arguments

by formalizing the representation with three tunable parameters. In doing this, we develop a generic

framework for evaluating and tuning any dynamic graph. We show that the storage saving approximations

involved in the representation do not affect predictive performance, and typically improve it. We motivate

our approach using a fraud detection example from the telecommunications industry, and demonstrate

that we can outperform published results on the fraud detection task. In addition, we present preliminary

analysis on web logs and email networks.

Keywords: approximate suhgraphs, dynamic graphs, exponential averaging, fraud detection, trans-

actional data streams.

1 Introduction
'First author is at Stern School of Business, New York, New York, all other authors are members of research staff at AT&T

Research, Florham Park, New Jersey 07934.

A graph is one way of representing complex dynamic network phenomena we encounter today. In a dynamic

graph, nodes represent the transactors, and edges represent (directed) transactions between the transactors.

A dynamic graph is built from a, list of t,ra.nsactions with time st,amps and may i n r l ~ ~ d e other import,ant

information such as the duration of the transaction or the physical location of the transactors. Put another

way, a dynamic graph is a collection of nodes and edges where the nodes and edges are subject to discrete

changes, snch additions or delet,ions [13].

The notion of a dynamic network appears naturally in a wide range of domains. Perhaps the most obvions

examples of dynamic networks are communications networks such as a telephony network or the Internet. In

a telephony network data exists in the form of call detail records, which contain information on phone calls

between two network tralsactoru or IDS. The data may include the originatiot~ and terrni~~atior~ telephone

numbers, the date and time of the call, the duration of the call and any charges for the call. Other examples

of data that can be represented by dynamic graphs are author citation networks, social networks, online

auctions, and disease transmission data. While data on dyna~nic neturorks are readily available, representing

the dynamics in a way that is meaningfnl for analysis is a challenge.

There has been a vast amount of recent research on real world networks and graphs as representations of

those networks [23]. Historically, studies have focused primarily on the global aspects of networks, such as

scale-free or small world properties[$. Global properties allow us to learn about overall characteristics of a

graph, such as link structure, average path length, graph diameter, degrees of separation, etc. Global graph

topology has informed the design of robust infrastructures [I] and has implications for the rate infectious

diseases spread [Z] as well as the adoption rate of fads 1281. In addition, global models of network growth

such as triad completion[l9], polarization and balkanization, and cumulative advantage [26] also commonly

referred to as preferential attachment141 have been used to explain empirical data on real world network

topologies. In general, global network models rely on centralized evaluation methods that require the use of

the entire network in order to generate nsefnl information.

In many applications global network analysis is not feasible. For example, in the telecommunications

industry many business problems rely on complex real time analysis of large scale call detail record databases.

Firms often cannot process the entire call network graph a t one time due to its scale. However, global analysis

is not always necessary. Often the analysis can be distributed and the behavior of individual nodes can be

directly represented.

One example of a domain using individnal node analysis is fraud detert,ion in teIecommunirat,ions. One

type of fraud is repetitiue fmud where we have an individual who has perpetrated some type of fraud,

perhaps payment related, and has been disconnected. Sometimes the individual will attempt to set up

another account,, wit,h no intention of valid payment. This individnal may use methods to obsc~~re its true

identity, perhaps through identity theft, in order to obscr~re the fact that they are a frandster. Therefore,

we cannot use standard record-linkage techniques to link the old fraudulent account and the new account

together. However, we assume the new fraudulent ID hns comm~lnication patterns similar to the old one (for

example, the uew ID will c o r r ~ ~ ~ ~ n ~ ~ i c a t e with the sanle people that the old frauduleut ID did). In this way,

we can use information present in the network of transactions to identify fraudsters.

The challenge is to explore all new IDS on the network to see which exhibit the same network patterns as

the known fraudulent ID. This suggests a local analysis, focusing on modelling each transactor. Nonetheless,

when analyzing and comparing local relational features of transactors, processing queries against the millions

of other network transactors in a short amount of time is still a challenge. To facilitate this, we employ an

efficient representation of the dynamic transactional network. Repetitive fraud was the motivating applica-

tion for our research, and this paper develops our methodology in this context. However, our representation

is applicable to any domain with transactional data.

Two main challenges exist for dynamic network representation. The first challenge, is to represent

dynamic graphs efficiently so that the massive volumes of data in these domains can be processed in a

reasonable timeframe. The second challenge, is to account for the dynamic nature of transactional data

by capturing the most relevant information while eliminating spurious information that does not provide

important information about the transactors.

Recently, dynamic network representations have been proposed to address these issues using node labeling

schemes. Local node labeling schemes allow one to infer the distance between [lG] or adjacency of [GI two

nodes from their labels. We know of two dynamic local distance labeling schemes that allow for distributed

incremental updates, weighted dynamic trees 1211 and Communities of Interest (COI) graphs 191. Weighted

dynamic trees assume a fixed tree graph structure. Therefore, global topological reassignment is needed when

nodes and edges are added or deleted. The assignment is costly for dynamic graphs that have sufficiently

high node and edge growth or decay rates. Tn contrast, COT graphs [9] use a more general paramet,rized

vector-based approximation that handles distributed incremental revisions to the labels. The parameter

setting, which can be set by employing only a sample of the entire dynamic network, is required only once.

The COI representat,ion is stored in an efficient database so that transaction behavior on individl~al nodes

can be queried.

We address the aforementioned challenges with an extension of the COI method. This method compactly

represents nodes and their corresponding transactions by siimmarizing the dynamic nature of transactions

between related nodes by the freqoellcy and recency of interactio~~. We de~nonstrate oar tecllnique on several

real world datasets and show that we perform better than a representation that does not take dynamics into

account. This paper makes the following contributions:

Approximation technique. We formalize the COI method, represent it as an approximation pa-

rameterized by three key parameters, each with a clear interpretation, and provide an algorithm for

how to set these parameters in a given application.

Evaluation technique. We propose an evaluation technique for paranieter selection based on pre-

dictive performance on future unobserved data.

Application of technique. We apply our technique to different domains to show its validity for

a wide range of data streams. We demonstrate that predictions based on the approximated graph

outperform predictions hawd on non-a,pproximated data on several real world data sets.

The remainder of the paper is organized as follows: Section 2 will define the representation of a dynamic

graph using the COI representation proposed in 191, and introduce the three parameters that define the

representation; Section 3 will discuss how the parameters should be set for specific applications, using

telecommunications data with repetitive fraud as an example; Section 4 will discuss some other applications;

and finally we present a discussion in Section 5.

2 Dynamic Graph Approximation

In this paper, we propose a framework for representing large dynamic networks for the class of problems where

the level of analysis is a t the transactor. We approximate dynamic networks by approximating individual

transactors on the network using entities. An entity is comprised of both a specific node label (some unique

identifier, also referred to as a seed node) and its corresponding local network. For example, the entity for a

web user would be the user herself and all of the web pages she has visited. An entity's behavior is defined by

its transactions with other nodes on the network over time, and is a subgraph of the entire communication

network.

We know three things about the frequency of transactions between entities, 1) the frequency of interaction

bctwecn cntitics cvolvcs through timc, 2) rclationships bctwccn cntitics bccomc stalc whcn thc frcqucncy of

transactions goes to zero, and 3) the frequency of transactions are sometimes bursty leading to irrelevant

or noisy relationships that exist for short periods of time. When representing the evolution of transactions,

we consider three characteristics of change: 1) the lifetime of relationships; 2) the frequency of transactions

bctwccn rclatcd nodcs; and 3) thc degradation in thc rclativc importance of rclationships with timc. Thc

frequency of data observation and rate of change of entities is domain dependent, as is the amount and type

of information available.

Cortes, et al [9] were able capture entity change in a concise representation that changes smoothly

through time. The authors use the representation to catch repetitive fraud on telecommunications networks.

That paper studied the repetitive fraud problem, and approximated an entity's behavior over time by a

parameterizable notion of a dynamic graph called the Communities of Interest (COI) graph. The COI

representation proved to be snccessfr~l in the fraud application. However, parameters were chosen in a

heuristic, ad hoc fashion, and there was little discussion about model selection, parameter fitting, properties

of the approximation in general, and most importantly, the loss associated with the approximation. The

COI representation is the only work we know of which directly modeled the evolution of entity behavior to

analyze dynamic graphs. This paper extends and generalizes that paper by providing a generic framework for

modeling any dynamic network where the main focus of analysis is a t the transactor level and the central goal

is to build an approximate representation which optimizes prediction accuracy. We note that representations

optimal for other purposes (e.g. visualization) could also be the focus in applications but are beyond the

scope of this paper.

2.1 Approximation Objectives

Our approximation of the dynamic network using the COI representation, should contain as much relevant

information ahont ent,ities as possihle, while being efficient in storage spare and processing t,ime. Tn addition,

we want a parametric representation that is flexible enough to be applied to different domains. Therefore,

we have the following objectives when building our representation:

Summarization. Represent historical behavior between two nodes in a concise manner, summarizing

the relationship into a single edge with attributes.

Simplification. Prune out noise (both edges and nodes) associated with spurious transactions (such

as wrong numbers) or stale relationships.

Efficiency. Handle massive data in a way that supports fast analysis and updating,

Prediction. Optimize the representation of entity behavior to maximize predictive performance of an

entity's behavior in a future time period.

These objectives mesh together very well: Snmmarization supports efficiency by saving time - by summa-

rizing historical behavior into a single edge in a graph, we do not have to query a massive database every time

we want to learn about significant entity relationships. Simplification supports efficiency by saving space

and time - by reducing the overall size of the graph, we can update and analyze faster. Simplification also

creates better summaries since noisy transactions are not accounted for in the summarizations. Prediction is

the evaluation metric, a target by which we can evaluate and compare parameter sets for the representation

in the context of an application and across applications.

In our approximation, the edges are represented by an exponentially weighted moving average (parame-

terized by 8) to summarize the activity on an edge. We prune out noise locally by defining a maximum in-

or out-degree (k) for each node, with any overflow going into an aggregator node. We simplify by pruning

out noise globally by removing edges which have a weight which has decayed belour a threshold (E), since we

have high confidence that this is a stale edge. The combined parameter set q5 = (9 , k, c) enables tuning of the

approximation. We estimate the parameters to maximize our accuracy in predicting future behavior. We

a.cliieve t,his by minimi7.ing a similarity score (which may be applira.tion dependent) het,wwn r~presentations

based on data in some training period and test period. The selected parameters result in a concise signature

for each node and captures the most pervasive historical behavior.

In the next, snhsections, we will provide a detailed description of the role played by the three parameters.

Later we will provide guidance in setting the parameters for specific applications.

2.2 Summarizing Historical Behavior

To define a dynamic graph, we will borrow from and extend the notation of [I)]. A graph G is a system

of nodes and edges (denoted by N(G) and E(G)) where the edges are connections between the nodes. A

dynamic graph adds to this a set of time-stamped transactions among members of N(G). In our formulation,

each edge e E E(G) is an aggregatio~~ of the transactions between the two nodes for some specified time

period. The type of aggregation defines a weight on each edge, wc(e), such as total number of transactions,

or some other relevant metric (e.g. sum of durations of phone calls).

We colislruct l l ~ e exponenlially weighled grapli as Iollows. Let A and B be iwo graphs. We firs1 define

the weighted sum of these two graphs using the graph operator @ such that if G = a A @ 4B, with positive

scalars a and 4 , then N(G) = N(A) U N(B), E(G) = E(A) U E(B), and wc(e) = a w ~ (e) + @ w ~ (e) , for

all e E E(G). In words, the weighted sum of two graphs contains the union of the nodes and the union of

the edges, with the weight on the edges in the combined graph determined by the weighted sum from the

component graphs

Let the graph corresponding to the transactions during finite time period t be gt. We define Gt as a

graph representing all transactions up to and including gt, and is defined as a weighted collection of all of

tlie time periods:
t

Gt = w~g, @ w2g2 @ . . . @ wtgt = @wig,
i=1

(1)

This definition of Gt includes all historic transactions from the beginning of time. This framework includes

the special cases where tlie edges represent the su~ii weight of all transactions (wi = I), the average weight

per time period (w = l f t) , or a moving window (wl . . .wt-, = 0; wt-,+I . . .wt = l fn) .

Often it is desirable to blend network activity in a way that discounts the p ~ s t in favor of recent behavior.

One sac11 form results in a.n exponentially weighted moving average: WE = 06-"(1 - 0), where 0 5 0 5 1. Here

0 is a (scalar) parameter that allows recent behavior to have more relative weight (0 near 0) or less relative

weight (0 near 1) in influencing the current graph. This form of weight function is convenient in the sense

that Eq.(l) can be expressed in recurrence form:

This form is well-known in statistics as exponential smoothing [30]. It provides a smooth dynamic evolution

of Gt . The iterative nature of the updating allows us to incorporate the information from all previous time

periods without incurring the management and storage of graphs for all previous time periods. All that is

needed is the graph through time period t - 1 and the new set of transactions defined by gt.

In the following we adopt Eq. (2) as the definition of a dynamic graph a t time t. The parameter 0 is

useful in describing both the amount of historical data that should be considered as well as the priority given

to recent data. In the limits, 0 = 1 is a simple average of all time periods, while 0 = 0 only incorporates the

most recent time period. Therefore, as 0 approaches 1, we are blending in more historical data. Another

way of stating this is that 0 dctcrmincs thc dccay of thc wcight of a givcn transaction in thc aggrcgatcd cdgc.

Figure 1 displays this graphically. The figure shows the decay function of the weight given to a one hour

transaction for different values of 0. At time t = 1 day, the weight on the edge (in seconds) is 3600(1-0). and

decreases multiplicatively by 0 every day thereafter. With 0 = 0.75 , this transaction's weight has decayed

below a threshold of 0.1 in a few weeks, with 0 = 0.95 it takes several months to get to the same value,

and with 0 = 0.99 (not shown in the Figure), it takes almost two years. As we will see later, the decay rate

desired will depend on the application, and can be set by using an appropriate 0. [9] sets 0 = 0.90 based on

heuristic arguments, and later in the paper we will revisit the consequences of this choice.

2.3 Simplification by Global and Local Thresholding

The smoothed graph described above decays all edges exponentially over time, but never deletes them. The

weights on the edges will get arbitrarily small over time and at some point should be deleted. We define a

Figure 1: Contribution of a 60 minute (3600 second) call to edge weight as a function of days. For a smaller

8, this call eflectiuely reaches aem in a few weeks, whereas for a larger 8, it may take one hundred days or

more.

parameter E to be a global threshold such that when an edge weight falls below E , it is removed from the

graph. This noise reduction step can have a significant impact on the size of the graph over time. A weight

that has decayed to a small value means that it was either a small weight to begin with, or it has not been

observed in a long time. Both of these are potential indicators of a transient transaction, meaning that they

are connections made once - a wrong number, a call to a store, or a click on a web site that will never be

returned to. Or perhaps it is a stale relationship, where there was once activity but we do not expect any

more. We sho~lld gain in efficiency by pruning these noise edges. There is a subtle trade-off here; we want

to delete edges if they are transient or stale, since they do not represent an important relationship for an

entity, and they take np storage space. But we do not want to delete information that may be relevant to

an entity and can be useful in analysis. The parameter c allows us to tune this pruning.

We are also interested in reducing noise with the entity representation. For most dynamic graph appli-

cations we have studied, the graph is extremely sparse. Any single node is typically connected to only a

tiny fraction of other nodes in the graph. A growing literature shows that many networks follow a power

law, which stat,es that the vast majority of nodes have small in- and o ~ ~ t , - degrees. An exponentially smaller

set of nodes have very high in- and ont-degrees. Usually these nodes are not interesting entities. They

are 'super-nodes' that everyone is connected to, like Google in the web, or the toll-free directory in the

phone network. If we are looking t,o entities to be signatures for nodes' usage hehavior, the fart t,ha.t one is

connected to a super-node is not a distinguishing factor, and so we can prune many of these edges without

losing vital information.

Typically most entities have a large percentage of total weight accoanted for by a small percentage of

edges. We have found that an entity may have hnndreds of edges connected to the seed node, but only a

small fraction of these account for a very large fraction of the total weight. Assuming edges with extremely

small weights might be stale or transient as noted before, with high probability we can assert that such an

edge woultl not be observed in future and hence should be dropped. Removing sue11 edges would increase

efficiency and create a more relevant summary of the node's behavior.

To account for this local noise we employ a thresholding parameter, k, which is a maximum in- and

out-degree for any single entity. For each entity, we retain the k edges with the largest weight a t each update

step in Equation (2). We also add an aggregator edge, called other , which collects the weight associated with

the edges not in the top k. This new aggregator edge effectively replaces a subset of edges of this subgraph

such that it contains the same total weight of the edge subset. I3y removing a possibly large number of

edges that account for a small amount of the total weight, this pruning can have a significant impact on

computational efficiency.

2.4 Evaluation Criteria: Predictive Performance

We have now defined an approximation of a dynamic graph in terms of the parameter 4 = (8 , k , ~) . In

order to evaluate a given set of parameters, we compare it to a default case where there is no exponential

smoothing, and no pruning of edges. For this case k = m, E = 0, and we use the notation 8 = 1, since as

8 approaches 1 in Equation (2) Gt approaches the no-smoothing case, a graph where the edge weights are

simple averages of transaction weights between pairs of nodes. The parameter 8 determines the emphasis

placed on recent data. Adjusting k and E determines the amount of pruning. Having defined and interpreted

our parameters, we explain how to estimate these in the next few paragraphs. In addition, we also evaluate

the performance of the estimated parameters relative to the default case.

The COI implementation in [9] used the framework described in the previous sections, and used 4 =

(.90,9,0.1), each parameter heing set via henrist,ic argument,^. We present a more principled way to set the

COI parameters based on objective functions that minimize predictive loss between our representation of an

entity's historical behavior and the entity's future behavior. By using a predictive criterion to optimize our

parameters, we are selecting a model that minimizes variance between the repmsentat,ion and fi~ture observed

behavior. This is desirable, since it means that entity representations will not change much with typical

variation in transaction behavior. Our assumption is that such a model will create entity representations

such that entities with different behavior will have distinctly different entity representations.

h~ a perfect world, we migl~t expect eutity bel~avior to be the same in olle time period as it is in the next.

But in reality there are several factors, which cause behavior to change: evolving relationships, seasonal

effects, bursty communications due to life events, or simple statistical variance. Since entity behavior varies

across tinie as well as application, we will ueed to optimize our ~iiodel parameter 4 = (0, k , c) for each

application to maximize the predictive performance.

We choose two predictive criteria to maximize C$. Both criteria are defined for a single node i , the value

of a criterion for the entire node set being the average of its value over all nodes. In our framework, we

have two sets of transactions involving node i , usually corresponding to two distinct time periods. One is a

training set which we use to build a prediction for what will happen during a distinct test period immediately

following the training period. To assess the performance of a given parameter value + A , we apply to the

training set to create Ai. The edges contained in Ai include the top k edges plus the aggregator edge, called

other. We want to see how well this predicts what actually occurs, so we create B; from the test set using

the parameter values associated with no approximation, or 4~ = (1, co, 0). Since k=co, Bi does not have an

other bin. Now, we have two graphs, Ai and B, and the predictive criterion is simply a measure of graph

distance between the two. Our two criteria are actually score functions that are maximized when the graphs

are identical.

Dropping the suffix i from our notation, our first criterion is based on the Dice criterion [l2], which is

commonly used in information retrieval for measuring similarity between documents and queries. For two

sets A and B, the Dice Criterion is:

or twice the cardinality of the intersection of the two sets divided by the sum of the cardinalities of the sets.

This criterion has the nice property that it is bounded between 0 and 1, with a value of 1 when the two sets

are identical.

We extend the Dice criterion to take account of the weights in the training and test set. First we

normalize the weights within training and test set by defining normalized edge weights p for any graph G,

pc (i) = w o (i) / C j wn(j). Then let the weighted Dice Criterion betu~een A and B equal:

weighted Dice has the same same properties as Dice in that it is maximized at one when all edges in the

predicted training set appear in the test set, and it equals zero if there are no overlaps between the two sets.

The term in the denominator is necessary to correct for the case where the predictive set fills up its top-k

cases, such that the overflow "other" edge is non-zero.

Our second predictive criterion is based on the Hellinger Distance [5] , designed to measure distances

bctwccn statistical distributions. hpplicd to our problcm, Hclliugcr Distancc bccomcs:

This sum is also bounded by 0 and 1, and is maximized when all elements of i the predicted set appear in

the test set, with the same nownalired weights.

These two criteria measure complimentary, but slightly different aspects of the validity of the prediction.

Both are penalized prediction criteria, designed to penalize predictions which incorporate noise edges which

do not show up in the test set. Weighted Dice depends on the total proportion in the training and test sets

which belong to the overlap set and does not attempt to minimize the discrepancy between individual weights

in the pre and post period. Hellinger, on the other hand gives an added premium if the individual proportions

in the training and test sets are similar. Note that a small pre(post) period weight which corresponds to

a large post(pre) period weight would contribute more to weighted Dice compared to Hellinger. For cases

where the difference between pre and post period weights is close to zero, the contribution to both the

criteria is approximately the same. This suggests that the performance of weighted Dice should improve

more with increaqing k and decreaing c relative to Hellinger. We use these two criteria as our guide to set

the pa.ramet,ers in order to maximize the ahility of our approximation to predict frrti~re transactions, while

minimizing noise. For each criteria, we select the parameter set that gives the best average performance on

the entire training and test set.

Finally, a choice must he made hetween criteria. Criteria selert,ion is application dependent hecanse

the goals of different types of network analysis varies. Therefore, when we evalnate parameter sets, we

do so within the context of a specific application. For example, in link prediction applications, future

links are dependent variables. Thus, predictive performance, which in essence is the ability to reliably

predict the appearance of future relationsl~ips is t l ~ e criteria by wwh11 the selection is made. On the otller

hand, the similarity score between two entities is often used as an attribute for entity classification. When

a classification target is the dependent variable, evaluation measures such as classification accuracy and

area under the ROC curve may be the application goal. Another application goal niay include not only

performance evaluation, but also target space and computation requirements. Once the application goal is

determined, we select the criteria and optimized parameter set that performs best at the task.

In the next section we show how to apply the above construction to the specific application of repetitive

fraud, including guidelines on how to set the parameters.

3 Introduction of Technique in Context

There are many different types of telecomml~nications fraud. In this section, we will apply our methods to the

repetitive fraud example described in Section 1, where a perpetrator of fraud is trying to hide his identity

in order to re-establish an account or a presence on the network. Our goal is to identify the fraudulent

individuals when they appear as a new identity buy analyzing their network behavior. The framework we

have just described allows us to characterize the behavior of fraudulent individuals in a concise manner as

entities, and to look for that behavior in new entities appearing on the network.

We need lo show lhal our approxi~nalion described in Seclion 2 is a good represenlalion 01 an ID'S

behavior, in that it is a useful predictor of future behavior. In order to show this, we select a random sample

of entities from the network, apply our approximation and evaluate it using the two predictive measures that

we introduced in Section 2.4, allowing us to fit our model parameter 4 for this example.

3.1 Data

We collected data on the usage of 1092 active network IDS over a twelve month period. We see all outbound

data from our customers because it is carried on our network, hut only the subset of inbound data that

originates from another of our customers because these are proprietary data of another firm. Therefore,

there is an inherent difference between outbound and inbound data. Because of this we will analyze the

inhnnnd and the outhound portions of the entities separately.

Figure 2 shows some descriptive statistics of the 1092 IDS. The plods show cumulative distributions for

total calls and edge degree for the IDS over a one year period. Both inbound and outbound distributions are

plotted. Inbound data has noticeably smaller quantiles for both total calls and edge degree than outbound

data. We believe this results is due t o the missing data described above. Note that IDS are connected to no

more than a few hundred other IDS. The 95th percentile of edge degree is shown a? a horizontal line on the

plot, and equates to 175 for outbound data and 66 for inbound data.

3.2 Tuning k and tl

The parameters each control different parts of the optimization. 8 represents how steep the decay is, and

the closer 8 is lo one, the longer the weighl lakes lo die oul. k represents how many iu~portaul edges there

are per entity; we want to set it low enough that it removes the noise but high enough so that it retains any

important links for the entity. Therefore, it is intuitive that for a larger 8, edges will take longer to fall to

incremental values, and might necessitate a larger k. The parameter e is a tolerance value which we set a t

the small value of later we will investigate the robustness of the results to this value.

We can show this relationship between 8 and k graphically. As is true in many networks, most of the

overall entity weight lies with a few of the edges with the highest weights. Figure 3 shows this graphically

through what we call the 95/95 Plot, for inbound (left plot) and outbound (right plot). A line in the plot

corresponds to a particular value of 8, from 0.75 up to 0.99. For each of these values, we look a t a range of

Figure 2: Descriptive Statistics of the data set of randomly selected IDS. Plots show cumulative distributions

for total calls (left) and edge de.ree (right). The distribution for outbound data is shown as a solid line,

inbound data is shown as a dotted line. A horizontal line is plotted at the 95th percentile.

k to see what percentage of the entities have a t least 95% of its weight in its top-k edges. A horizontal line

drawn a t 0.95 shows where the curve crosses the 0.95 value, what we call the 95/95 point. The value of k

a.t t,lie 95/95 point sliows how many edges need to he inrlnded to he assnred t,ha.t 95% of the entit,ies retain

95% of their weight. The 95/95 point gives guidance into how many edges we might be able to prune while

maintaining almost all of the weight of the collection of entities.

For valrles of 8 closer to one, edge weights decay slower, and so more edges will contribrlte slihstantially

to the overall weight coming out of a node, resulting in a higher 95/95 point. For the outbound data with

8 = 0.90, the 95/95 point is a t 15 edges. With B = 0.99, that number increases to 48 edges. So, even though

some entities may have hundreds of edges (recall from the last section that the 95th percentile of outbound

node degree is 175), we need oi~ly a few d o ~ e n to capture 95 percent of the weight for 95 percent of the

entities, even with a relatively large B like 0.99. This exploratory analysis suggests that we might he able to

prune quite a few edges from our data, saving in computational storage, while not losing much information.

The 95/95 point also allows us to set ranges for rea~onable values of k and 6' for investigation. Note

that we do not consider values of 0 less than 0.75. From Figure 1 we see that for 0 = 0.15, weights decay

quite quickly, within a week or two . For teleco~nmnnications data, we expect that we need to go back much

further than that to get a representation that captures the relevant behavior, so it is not desirable for the

decay function to be quite so steep. From the 95/95 plot, we see that for B = 0.75, the 95/95 point is less

than 10, which seems inadequate to capture the behavior of most telephone numbers. So we set 0 = 0.75

as a lower bound for our investigation. We can also see that if a B near 0.99 is possible, we will need to

investigate k of a t least the 95/95 point of k = 48, but values of k much greater than that will probably not

add much predictive ability (because the weights on those edges will be so low).

To evaluate predictive performance we generated three datasets using a moving window of ten consecutive

months of data. The first nine months of each dataset were used a? preperiod data and the tenth consecutive

month as test data. The selected criteria were computed for each of three datasets in the test period and the

results averaged. Figure 4 shows results of optimizing these two parameters for the Hellinger distance, and

Figure 5 shows the same for weighted Dice. In each plot, for a range of values of k, we plot the value of 0

Figure 3: 95/95 plots for inbound (left) and outbound (right). These plots show, for diferent values oft?, the

cumulative distribution of edges needed to reach the 95th percentile of overall weight. The horizontal line at

0.95 and vertieal guide lines shows the 95/95 point, the number of edges when? 95% of the entities contain at

least 95% of thek overall weight. For instance, the 95/95 point for 8 = 0.99 on the Inbound plot is at k = 22

which maximized the predictive score, and the value of the maximized score. For instance, for the Hellinger

plot, if we set k = 40, the value of 0 that maximized the Hellinger score was 0.973. This resulted in a

Hellinger score of 0.454, the y-coordinate for that point.

A key feature of the the plots for both Hellinger and weighted Dice is that the predictive metrics increase

monotonically as a function of k, since more overlaps will occur. But there is a point when we get diminishing

returns. This point where the curve flattens out is a good candidate for k, since choosing a hiher k will

not result in any increase in predictive performance. A look at the Hellinger plots shows this point to be

at around k = 20 for inbound, and k = 40 for outbound. The weighted Dice plots seem to suggest slightly

larger values of k.

We also show how our approximation performs compared to a "baseline" prediction. The default case we

considered was one where the prediction made was simply the arithmetic average of transactions aver the

training set, with no smoothing and no pruning. (This can be represented in our framework as O$ = (1, oo, O).).

For each plot, we show a dotted horizontal line corresponding to this default case. We can see in all of our

plots that the approximation has the ability to outperform the default case. This is due to the improvement

exponential smoothing provides by increasing the relative importance of recent data over historical data.

The improvement over the default case is more pronounced for inbound data than for outbound data. A

difference between inbound and outbound is expected due to our inability to observe all inbound calls.

The optimal values of 8 show reasonable consistency within a given prediction criterion. For Hellinger, 8

is mostly between 0.97 and 0.98, whereas for weighted Dice, it falls between 0.945 and 0.965.

Inbound Outbound

Figure 4: Optimal 8 for the Hellinger Distance, inbozlnd (left) and ozltbovnd (right). The plot shows the

mazimized value of 0 plotted for a range of values of k , at the point of the score function for that maximized

value. The horizontal dotted line shows the default value of t$ = (1 , rxl, 0).

Inbound Outbound

Figure 5: Optimal 0 for the weighted Dice Distance, inbound (left) and outbound (right). The horizontal line

shows the default value of q5 - (l,m,O).

3.3 Tuning 6

For the above section, we set E = a s a tolerance to prune out edges that are not important. In this

section we investigate how robust the results are to this value of r, by plotting the same curves as above for

several different values of e. Since e is basically a tolerance value, we want to set it to "do no harm", such

that we axe not pruning edges too soon before they have decayed sufficiently. So, we look for a value of c

that will not affect the predictive results.

The results are in Figure 6 for Hellinger Distance and weighted Dice. Here we get the interesting result

that for Hellinger Distance, the results barely change with different values of r, suggesting that a value of 0.1

has the same performance as 0.0001. This could allow for a significant amount of pruning while not affecting

approximation performance. However, for weighted Dice, there is a clear improvement as e approaches 0:

indicating that this tolerance value needs to be lower.

Figure 6: Results for different values of E , shown for Hellanger Distance (a) inbound and (b) outbound, and

for weighted Dice (c) inbound and (d) outbound.

3.4 Selecting Criterion

The results show that for this data set, using our representation with appropriate settings for the parameters

can improve predictive performance. The Hellinger distance and the weighted Dice give slightly different

recommendations given the arguments above. From the Hellinger plots (for inbound) above we might select

k = 20 wit,h its maximized B of 0.972 and F = 0.1, which weighted Dice silggest,s k = 40, B = 0.952, and

6 = 0.00001. The difference in suggested values is due to characteristics of the score functions themselves.

weighted Dice is additive in the weights of the overlapping nodes, and as such is maximized whenever all

of the edges predicted from the training data appear in the test data, regardless of their weights. Hellinger

score is multiplicative, and so is much more sensitive to the specific edge that overlaps; the score gives more

"credit" for matching a high weight node than a low weight node. In a particular application, matching

the weights correctly may or may not be important, and this will play a role in which of these (or other)

predictive metrics should be used.

In general, selecting a similarity criterion is similar in spirit to model selection for a given problem and

depends very much on the application, nature of data and the purpose of the study. We have st~ggested

and evaluated two such measures which optimize two different features we have found important in most

applications we have worked with but remark other menyores might be more useful and appropriate in some

other settings. In fact, any metric which defines a distance between networks would suffice, such as those

found in 1221. Just as the case is with model building, constructing appropriate similarity scores is more an

art than exact science. However, we have provided a general framework which allows us to plug and play

with any user defined abase to look for matches.

In the repetitive fraud example, our goal is to recognize when a known fraudnlent case appears as a

different ID. In practice, when a fraudulent case is recognized, the entity representation associated with

the fraudulent ID is captured and put into a database to compare to future accounts. Future accounts are

allowed to establish their entity behavior, and are then compared to the fraudulent database to look for

matches. The biggest evidence for a match is if the new entity has many edges in common with a fraudulent

one. This means that they have the same communication profile, in that they communicate with the same

other network IDS. The fact that there is overlap, and the number of overlapping nodes between the two

entities, are the salient facts with our fraud investigators. Therefore, we rely on the weights to rank the

important nodes in the top-k. These arguments led to the evaluation of weighted Dice and Hellinger, which

bot,h nt,ilize edge weight,^.

In order to select the criterion, we evaluate each approximation and similarity criterion in the context

of repetitive fraud classification. The classification problem in this example, involves distinguishing between

matcher, new arcount,s t,hat belong t,o known frandsters, and nonmatcher, new accollnt,s t,hat belong to paying

customers. For each criterion, we find optimized parameter sets for both inbound and outboi~nd behavior.

We use the optimized representation to generate similarity scores for each candidate match. We then utilize

the scores as attributes for a cla3sification model. We compare models by area under the ROC curve (AUC),

a standard tool used to evaluate classifiers. For this application, we select the sit~~ilarity criterion that

maximizes AUC.

3.5 Implementation

We turn now to implementation and evaluation of our fitted parameters in our repetitive fraud application.

191 discussed implementation of COI to this particular repetitive fraud problem, but made strictly heuristic

arguments for using 4, = (0.90,9,0.1), and did not evaluate the performance of the representation other

than to say that it resulted in improved fraud detection. The current process in production uses 4, and

identifies 50-100 cases a day t o be evaluated by fraud experts. Each case pairs a known fraudulent case

with a new account that we believe might belong to the same individual. Each case is then assigned a label

by an expert as to whether or not it was truly fraud. This labeling provides us with a test set to evaluate

parameters, independent of the randomly selected set used to optimize the paramet,ers.

In order to compare parameter values, we took a set of 412 actual cases identified from the current process

from one week in November, 2004. Of these 412 cases, 217 of them (53%) were ultimately determined to

be fraud, that is, the expert concluded via thorough investigation that the new account should be shut

down. For each case, we calculated both weighted Dice and Hellinger scores between the old account and

the new account for the current 6, = (0.90,9,0.1) and our optimized fit @, = (@,j,@,,), where @,i and &,

are the optimized1 parameter sets for inbound and outbound behavior, respectively We build a classification

'We use the term "optimized" to refer to recommended settings based on our methodology. We realize that we do not

model using the inbound and outbound similarity scores associated with each pair of candidate matches as

attributes. \Ve hope that our new 4, results in increased score values for the cases that eventually were

labelled fraud. However, we realize that since hot,h scores are monotonic with increasing k, t,here resrllting

scores are almost guaranteed to he higher for all cases (as 4, has a larger k). In order to make clear that our

improvement is not simply due to the monotonicity of wD in k, we also investigate 4n. which has optimized

vahles for 8 and F , but keeps the same k a9 4,.

Our goal is to see whether the new values of $r and @, allow 11s to discriminate fraud from non-fraud

better than we are able to with &. One way to do this is with an ROC curve, which measures the ability

of the classifiers built nsing the different parameters to separate fraud and non-fraud cases. ROC curves

plot the false positive rate versus tlle true positive rate, fur different valliev of a score tl~resl~old. A r a~do ln

classifier will fall on the 45 degree line, whereas an ideal classifier tends toward the upper left corner. The

performance of each classifier can be evaluated at any particular threshold, or the overall performance can

be quantified by the area under the curve (AUC). Figure 7 shows ROC curves for the three classifiers for

both weighted Dice and Hellinger. The AUC values for 4,,, h, and 4, are (0.831, 0.813,0.785) and (0.797,

0.771,0.752) for Hellinger and weighted Dice, respectively. We see that in both cases, the 4, is the best,

followed by q5n. and finally 4,. In this case the best overall AUC results from the model built with Hellinger

and the optimized parameter 6,.

Based on AUC scores, Hellinger would he our ultimate choice of criterion. We would also like to see

that the improvement in Hellinger scores from our optimized parameters are statistically significant over the

already implemented 4,. . Table 1 shows results from calculating Hellinger on the three parameter sets.

First, we see that within each of the 4 values, Hellinger separates the fraud and non-fraud cases by giving

higher scores to the fraud cases (e.g. 0.37 for fraud vs. 0.12 for non-fraud for d). So all of the 4 are able

to discriminate fraud from non-fraud. Next we want to see if 4, is an improvement on 4,. For both the

fraud and non-fraud cases the scores for 4, (0.44 and 0.14) are greater than for & (0.37 and 0.12). These

increases are both significant (a = 0.05), as indicated by a star in the "Diff from 4, column. However, the

increase in score for the fraudulent cases is bigger than the increase in score for the non-fraudulent cases,

technically optimize over three parameters, but believe our solution is optimal for typical user constraints on storage and

Computation.

Figure 7 ROC curves for weeghted Dice distance (left) and Hellinger distance (right), resulting from appli-

cation of new parameters to repetitive fmud example. The A UC values for 4, (Optimized), dk (Same k), and

4c (Current) are (0.831, 0.81 3,O. 785) and (0.797, 0.771,O. 752) for Hellinger and weighted Dice, respectivelg.

The reference line at the $5 degree line corresponds to the outcome of a random classification model.

and the difference in these increases is significant (as shown in the "t-stat" column) showing that 4, results

in better separation of the classes. We also investigate c # ~ to correct for the overall score inflation, and the

table shows that scores for the fraud cases increase significantly, whereas scores for the non-fraud cases do

not change, resulting in an overall improvement in discrimination (although not as significant as for &).

The implications of a high AUC and statistically significant improvement in prediction are that by setting

4 wisely we can better rank our cases. This means that our fraud experts, who are only able to work a small

number of cases per day, are better utilized. Practically, we expect a change in the parameters to result in

a few extra fraud cases caught per week. In addition, the better we are at separating out fraud, the closer

we get to our ultimate goal, where we have enough confidence in our scores that we can do automatic fraud

detection, without a fraud expert in the loop.

Tahle 1: Hellanger values from application of optimized parameters to repetitive fmvd data for three parameter

uakres. A star in the "Difffrom q5c" column indicates significant difference in a paired t-test (a = 0.05).

4 Generalizing to Other Applications

The purpose of this section is to demonstrat,e the generalizahility of oilr framework to different domains. We

present two experiments in less detail to show proof of concept. The experiments we on dynamic network

transactions taken f'om two real world datasets. The first experiment is on Internet browsing and the second

experiment is on academic email. It is important to note that we know nothing about the content of the

transactions involved and we cannot link transactor labels to individuals. In this section, we demonstrate

that our framework performs substantially better a t predicting fi~ture entity behavior in dynamic networks

than the default case on both datasets.

4.1 Web Logs

Enabling firms to understand the specific evolving needs of individual ciistomers, allows firms to participate

in ongoing persnna.lizat,inn and prerise t,arget marketing. Gen~rat,ing informa.t,ive cnst,nmer signa.t,nres from

Web usage may enable firms offer personalized target marketing and services to their consumers and thereby

increase profits [20]. The use of our method to create reliahle customer signatures, which can he segmented

or evaluated on an individual basis, can be an important step in a creating training data for online marketing

prediction tasks. For example, firms may utilize signatures to select the appropriate hag of goods offered to

a new or returning customer.

Onr first experiment is a preliminary investigation of how similar web user behavior is over time. We use

the ComScore panelist dataset from Media Metrix on Internet browsing and buying behaviors of one hundred

thousand nsers across the Unit,ed St,ates for a period of six months, Jnly 2002-neremher 2002 (available via.

Wharton Research Data Services - http://wrds.wharton.upenn.edu). Web data and telecommunications data

are somewhat different in nature. On the Web, the dynamic network is defined by a bipartite graph [18] and

i~ser behavior is characterized by much more activity per day in both dnr t ion and n ~ ~ m b e r of relationships.

We use the first five months to predict behavior in the sixth month. We optimize onr model parameters to

minimize the loss between the time periods based on two loss functions, Hellinger and weighted Dice (Figure

8). The Hellinger distance may be the more appropriate criterion for Web applications because the relative

edge weights t nay be l~elpful wl~en distinguisl~ing between the Illany users that frequent the same subset of

popular websites.

From Figure 8 we can draw a few conclusions. First, using our representation with appropriate settings

for the parameters can ili~prove predictive perfornlance over the default case. Second, predictive perfornlance

continr~es to significantly improve a t a much a higher k than in telephone usage behavior. Based on our

data sets, we find the frequency of transactions as well as the number of relational ties between individuals

and web sites is greater than that between individuals. Therefore, in this example, more daily storage may

be required to achieve peak performance. Finally, we see that the actual score values in this domain are

higher, indicating less within-user variance than in our other examples. Therefore, predictive performance

is relatively higher despite having to consider more transactions, and this allows for a more representative

signature to be built on each user.

4.2 Email Logs

The va3t amount of data stored on electronic communication such as the data found in email logs, enables

the discovery of com~nnnication patterns between individuals, organizations and entire communities. One

interesting challenge for organizations is to compare how their formal organization structure compares to

their communities of pmctice 1291, which are their informal collaboration and communication clusters bound

by shared expertise and shared objectives. Email has been used to identify comm~mities of practice 1271 and

Figure 8: Optimal 0 for the Web data, wing Hellinger Distancefleft) and weighted Dice (right). The hori-

zontal line shows the default value of # - (1, ao, 0).

to identify leadership [3] within organizations. Another interesting problem, where email networks have been

used, is in the identification of pockets of expertise [25]. Our framework may be used not only to identify

both individuals and groups from email usage behavior, but also to extend these types of analyses to explore

how communities of practice change over time [l q .

For this email experiment, we selected 2,000 email accounts from approximately 16,000 email users with

a large school at a Northeast university. We were able to collect two months of data from Nov 18, 2002 to

Jan 19, 2003. We used our framework to select the appropriate model to represent the first month of data

for evaluation against the second month of data (Figure 9).

Although we outperform the default case in this example, results in Figure 9 illustrate that our method

does not significantly outperform the default setting. We believe the performance is the result of having

only one month's worth of training data. Additionally, we find we need a much lower 8 for email than

when predicting other types of behavior. This result indicates recent behavior is more indicative of future

behavior than past behavior. Some intuition about these results may be taken from what we know about

email communication. We know individual email transactions do not have duration attributes. Instead, we

are only able to observe that a message between two people exists. We also know multiple email transactions

are often used to communicate and clarify ideas that may have been addressed in one transaction using

other methods of communication. Therefore, we may need more data to asses the relative strength of the

relationships between nodes to get optimal performance.

Figure 9: Optimal 8 for the Email data, using Hellinger Distance (left) and weighted Dice (rdght). The

horizontal line shows the default value of 9 = (1, m, 0).

5 Discussion

Efficiently and effectively representing large evolving dynamic networks is difficult. Dynamic network evolu-

tion has been investigated in domains such as the Web [7] and social networks such as friend networks [19].

In addition, Dynamic Bayesian networks[ll] extend Bayesian networks to consider dynamics by represent-

ing the state of the world as a set of variables, and model the probabilistic dependencies of the variables

within and between time steps. Similarly, dynamic probabilistic relational models [24] extend probabilistic

rdational modds proposed hy [Is]. While these rdational represent,ations are dynamic repr~sentations, they

are more concerned with the entire network and the probabilistic relationships between the nodes on the

network. When making entity approximations, we are interested in a compact representation that captures

the dynamics of an individual ent,ity on the network. In this paper, we employed two similarity measnres for

assessing the correlation between local node representations of past and flitlire node behavior on dynamic

networks. Our choices corresponded to similarity scores that would be familiar to a machine learning andi-

ence, who would he familiar with the Dice criterion, or a statistics audience, who might be more familiar

with the Hellii~ger Distance.

We presented a compact dynamic network graph representation for local node analysis. By representing

the network as a graph, we are aggregating multiple transactions on the same edge to a single edge. In doing

so we lose the actual time staiilp information in this approximation, and might therefore lose iliiportant

information. However, our method allows for incremental updates to the representation, which is efficient

when many analyses must he made.

Our main contribution is a framework for optimizing the parameter settings in a principled way for our

proposed dynamic network representation. The framework can be used to evaluate any local representation

that has a goal of predicting future behavior. In addition to optimizing the parameters for predictive

performance, our framework suggests the visualization of the performance gains with increasing the amount

of information kept (increasing k). In addition, we visualize the improvement over the default setting of

using all edges without weight decay.

We used our framework to evaluate our representation on call detail, email, and web log network data.

We found that by optimizing the parameters we outperform the default setting in all cases. We also find

that the optimal parameter settings are different across data sets, in ways that are informative about the

data. In addition, our methods applied to a repetitive fraud application are better at catching fraud than

those currently employed.

One important benefit of our methodology that we did not focus on is computational storage. A typical

phone call data record has hundreds of fields associated with it, but if we jnst consider the essential data of

originating node, terminating node, time stamp, and duration of call, this can be captured in less than 40

bytes. In a t,ypical day, there are approximatdy 3.50 million calls, so storage for one day will he about 14

GB, or about 420 GB a month. Compressed we can get this information down by factor of 2.5. We store and

update our entity representations using a domain-specific C-based programming language called Hancock

[a], pnblicly available for non-commercial nse a t

In Hancock, the entire indexed entity representation database takes up about 8 GB (compressed).

We have several plans to extend this work. We plan to evaluate other criteria or techniques that can be

used for parameter optimization, including methods that are not predictive in nature, such as multinomial

likelihood methods. Any scoring function that calculates a distance between two simple graphs could work,

and it would be interesting to see which of these perform best.

We would like to investigate the potential for more complex entity representations, including those that

include nodes that are more than one graph hop away from the seed node. It has been our experience that

the information gain that resolts from expanding the entity has been minimal. However, in some cases it

might hclp, such as for a tclccommunications company that has missing data bccausc it only sccs calls from

its own customers.

In our work we set parameters jointly for all entities in a given dataset. We could optimize parameters

on a per-entity basis, but that would significantly increase the computational complexity of the process. A

middle ground could be to define a small number of clusters of entities based on behavior. For instance web

users could be classified into power users, daily news and weather checkers, and casual, occasional users.

Each entity representation might have different parameter values, and cs long m we could assign entities to

clusters appropriately, this should result in more robust entity representations.

When we optimize parameters on a random set of network IDS, we assume that fraudulent users behave

the same as others. However, prior work in fraud detection details the need for taking the adversarial

behavior of fraudsters into account when building fraud detection models[l4]. We plan to incorporate the

method presented in recent work on adversarial classification [lo], which considers the fact that adapting

adversaries, may behave differently than the average user, or even worse, they may learn the system and

change behavior in response to our methods.

6 Acknowledgements

The authors would like to thank Daryl Pregibon and Foster Provost for their very helpful comments on an

early draft of this paper.

References

[l] R. Albert, H. Jeong, and A. L. Barabasi. Error and attack tolerance of complex networks. Nature,

406(6794):378-382,2000,

[2] R. M. Anderson and R. M. May. Infectious diseases of humans : dynamics and control. Oxford science

publications. Oxford University Press, Oxford ; New York, 1991.

[3] P. Ball. Emai l reveals real leaders. Nature, 2003.

[4] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509-512,

1999.

[5] R. Beran. Minimum hellinger distance estimates for parametric models. Annab of Statistics, 5(3):445-

463, 1977.

[GI M. A. Breuer. Coding vertexes of agraph. IEEE Tmnsactions on Infonnation Theory, IT12(2):148-153,

1966.

[7] B. E. Brewington and G. Cybenko. How dynamic is the web? Computer Networks-the International

.lorrrnnl of Comprrter and Telecommunicntaons Networking, 33(1-6):257-276, 2000.

[8] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F. Smith. Hancock: A language for extracting

signatures from data streams. In Proceedings of the Sizth International Conference on Knowledge

Discovery and Data Mining, 2000.

[9] C. Cortes, D. Pregibon, and C. Volinsky. Computational methods for dynamic graphs. Journal of

Computational and Gmphical Statistics, 12:950-970, 2003.

[lo] N. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verrna. Adversarial classification. In Proceedings

of the Tenth International Conference on Knowledge Discovery and Data Mining, pages 99-108,2004.

[ll] T. Dean and I<. Kanazawa. A model for reasoning about persistence and causation. Computational

Intelligence, Volume 5(3):142-150, 1989.

1121 L. R. Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):297-302,

1945.

1131 D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic gmph algorithms. CRC Press, 1999.

[14] T. Fawcett and F. J. Provost. Adaptive fraud detection. Data Mining and Knowledge Discovery,

1(3):291-316, 1997.

[15] N. Friedman, L. Getoor, D. I<oller, and A. Pfeffer. Learning probabilistic relational models. In Proceed-

ings of the 16th International Joint Conference on Artificial Intelligence, pages 1300-1309, 1999.

[16] C. Gavoille and C. Paul. Distance labeling scheme and split decomposition. Discrete Mathematics,

273(1-3):llS-130,2003.

[17] P. Gongla and C. R. Rizznto. Evolving communities of practice: IBM global services experience. IBM

Systems Journal, 40(4):842-862, 2001.

[IS] J. L. Gross and J. Yellen. Handbook of gmph theorg. Discrete mathematics and its applications. CRC

Press, Boca Raton, 2004.

1191 E. M. Jin, M. Girvan, and M. E. J. Newman. Structure of growing social networks. Physical Review E,

6404(4):167-256, 2001.

[20] B. I<asanoff. Making it personal : how to profit from pe~sonalization without invading privacy. Perseus,

Cambridge, MA, 2001.

[21] A. Korman and D. Peleg. Labeling Schemes for Weighted Dynamic Tmes (Extended Abstmct), volume

2719 of Lecture Notes in Computer Science. Springer-Verlag Heidelberg, 2003.

[22] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In Proceedings

of the Twelfth international conference on Information and knowledge management, pages 556 - 559.

ACM Press, 2003.

1231 M. E. J. Newman. The structure and function of complex networks. Sdam Review, 45(2):167-256,2003.

[24] S. Sanghai, P. Domingos, and D. S. Weld. Dynamic probabilistic relational models. In G. Gottlob and

T. Walsh, editors, IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence, Acupulcu, Mm.w, Auguvt 9-15, 2003, pages 992-1002. Morgau K a u f n ~ a n ~ ~ , 2003.

[25] M. Schwartz and D. Wood. Discovering shared interests among people using graph analysis of global

electronic mail traffic. Communication of the ACM, 36(8):78-89, 1993.

[26] P. D. d. Solla. A gcncral thcory of bibliomctric and othcr cumulative advantage proccsscs. Journal of

the American Society for Information Science, 273292-306, 1976.

[27] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Elnail as spectroscopy: automated discovery of

community structure within organizations. In Proceedings of the First International Conference on

Communities and Technologies, pages 81-96. I<luu,er, 2003.

[28] D. J . Watts. A simple model of global cascades on random networks. Proceedings of the National

Academy of Science.* of the United Stntea of America, 99(9):5766-5771, 2002.

1291 E. Wenger and W. Snyder. Communities of practice: The organizational frontier. Harvard Bvsiness

Review, (Jan-Feh):13%145,2000.

[30] P. R. Winters. Foreca~ting sales by exponentially weighted moving averages. Management Science,

6(3):324 342, 1960.

