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Abstract 

We study the properties of real-time decentralized information process- 
ing, as a model of human information processing in organizations, and 
use the model to understand how constraints on human information pro- 
cessing affect the returns to scale of firms. With real-time processing, 
decentralization does not unambiguously reduce delay, because process- 
ing a subordinate's report precludes processing current data. Because 
decision rules are endogenous, delay does not inexorably lead to eventu- 
ally decreasing returns to scale; however, returns are more likely to be 
decreasing when computation constraints, rat her than sampling costs, 
limit the information upon which decisions are conditioned. The re- 
sults illustrate that the requirement of informational integration causes 
a breakdown of the replication arguments that are often used to establish 
non-decreasing returns. 
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1 Introduction 

This paper explores the properties of real-time decentralized information pro- 
cessing, a s  a model of human information processing in organizations such as firms, 
and uses the model to study how constraints on human information processing affect 
the returns to scale of firms. 

1.1 Real-time decentralized information processing 

Information processing is the procedure of transforming data into decisions. 
Modeling the information processing of economic agents, whether these agents are 
individuals or organizations, is a way to understand how decision rules are dif- 
ferent when there are information processing constraints from those predicted by 
models with unboundedly rational agents. Furthermore, in organizations-in which 
information processing is decentralized, i.e., performed jointly by the members of 
the organizations-information processing is itself an economic activity that is an 
important determinant of the structure of organizations and that uses significant 
resources. In fact, the members of a firm's administrative staff are hired precisely 
because there is no unboundedly rational entrepreneur who could control the firm 
in the same way. 

There have been various approaches to modeling information processing in orga- 
nizations. Models of costly communication among a fixed number of agents, such as 
the literature on static and iterative communication mechanismshd team theory," 
attempt only to explain the decision procedures of exogenously given agents. In fact, 
information transmission cannot explain why people with no prior private informa- 
tion relevant to a firm are hired to administer the firm; such hiring only adds to 
potential communication costs. The modeIs in Williamson (1967) and Beckmann 
(1977) do have an endogenous number of managers, but profits are given by an exoge- 
nous function of managerial inputs. Although the managerial production functions 
are motivated by information processing, these papers do not explicitly model the 
source of managerial productivity. 

More recent research has attempted to explain the source of managerial produc- 
, - 

tivity, and hence not only what decision procedures managers use, but also why and 
how many administrators are hired to process information. blarschak and Reichel- 
stein (1994, 1995) is a static model of communication mechanisms in which for each 
agent the marginal cost of sending and receiving messages is increasing (and the 
amount of information that she can send or receive may be bounded). This means, 
for example, that it may be useful to spread the task of aggregating four messages 
among a network of three managers, in which two managers read and aggregate two 
messages each and the third manager aggregates information received from these 

 o or example, Arrow and Hurwicz (1960), Hurwicz (1960), Malinvaud (1967), Mount and Reiter 
(1974) and Hurwicz (1977). 

'For example, Marschak (1955). Radner (1961, 1962) and Marnchak and Radnt ~ ~ ~ ~ ~ o ~ $ ~ ~ u ~ ~ ~ ~ ~ m ~ R e s e a r c h  
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two managers, because each manager only has to read two  message^.^ In Geanakop- 
10s and Milgrom (1991), which is a static team theory model of hierarchical resource 
allocation, each manager can learn only a bounded amount of information about 
the environment, and hence it is valuable to hire more managers so that more in- 
formation can be brought to bear on a problem. 

One gap in these static models is that, in reality, individuals are not so much 
bounded in the size of information processing tasks they can handle, but rather in 
the size of the tasks they can perform in a given amount of time. Given enough 
time, a single person (or several generations working one at a time) can perform 
almost any computation task that a group of people can perform concurrently. To 
account properly for the time that information processing takes, a sequential model 
of computation is needed. Radner (1993) was the first to use such a model for 
organizations, in a paper that studies decentralized associative computation. There 
is a fixed computation problem whose data arrive at  the same moment, and the time 
(the delay) between when the data arrive and the answer is produced is endogenous. 
Keren and Levhari (1979, 1983) can be interpreted as a reduced form of the Radner 
(1993) model, with restrictions on the regularity of hierarchies. In these three papers, 
the value of hiring more administrators is that they can perform an information 
processing task faster. In the models of periodic associative computation in Radner 
(1993), Bolton and Dewatripont (1994) and Van Zandt (1994), an organization may 
also hire more managers because they can handle a faster flow of tasks. 

Presumably, the advantage of processing information more quickly and fre- 
quently is that decisions are based on more recent information, but these papers 
do not model this decision-theoretic value of timeliness. To do so requires a stochas- 
tic control problem in which the lag of information upon which decisions are based 
can be endogenous. In such a problem, new data become available each period and 
also new decisions are made each period. The adaptation of information process- 
ing to such a temporal decision problem is called real-time information processing. 
Radner and Van Zandt (1992) introduced such a model of real-time decentralized 
information processing, in which the decision problem is to predict the sum of a 
family of stochastic processes. 

The current paper generalizes the model in Radner and Van Zandt (1992), and 
- ' explores the differences between batch and real-time processing. We find that a 

model of real-time decentralized information processing does not merely provide a 
decision-theoretic derivation of the cost of delay for a batch processing model such 
as Keren and Levhari (1979, 1983) or Radner (1993). Instead: 

1. The decision rule that is computed, and hence the computation task, is en- 
dogenous; 

3 ~ h e s e  papers study mechanisms that minimize the sum of the individual communication costs 
(measured by increasing functions of the dimension of the message space) for a b e d  set of agents, 
but endogenizing the number of agents would be a natural extension. 
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2. A decision can be based on data of heterogeneous lags, and so there is not 
even a single measure of delay; 

3. The timing of decisions is fixed, and decentralization of information processing 
affects what recent information can be incorporated into decision rules. 

Furthermore, with a model of real-time information processing, we can see that 
there is some truth to the statement that information processing in a firm is decen- 
tralized because the task of controlling a firm is too Large for one person, and to the 
notion in Geanakoplos and Milgrom (1991) that decentralization allows decisions to 
be based on more information. A single person does not have forever to compute a 
decision rule, because the time decisions are made is part of the decision rule. Some 
decision rules that can be computed by several people cannot be computed by a 
single person, because the amount of current information a single person can learn 
each period is bounded. 

We also find that there is a decision-theoretic cost to decentralization that can- 
not arise with batch processing. Because all data are available at the same time 
in batch processing and there is a single measure of delay, decentralization unam- 
biguously reduces delay, up to a point. In contrast, with real-time computing, the 
trade-off between managerial resources and delay is ambiguous. Increased decen- 
tralization increases the amount of data of some lags that can be processed, but the 
subsequent aggregation of partial results displaces recent data. To illustrate this 
decision-theoretic cost, we give an example (Theorem 1) in which the value of the 
information in a subordinate's report is always lower than the value of a raw obser- 
vation, and so it is optimal for each decision to be computed by a single manager, 
even though managers are costless. The intuition is that a manager may prefer to 
read today's newspaper instead of listening to a subordinate's summary of the news 
from the preceding five days, when the environment is changing very quickly. 

This resuIt suggests that real-time decentralized information processing may 
have interesting implications for organizational structure, but these are not the fo- 
cus of this paper. Instead, we use the methodology to study returns to scale, and we 
will argue in Section 1.2 that it is we11 suited for this purpose. In subsequent work, 
Van Zandt (1995b) uses the paradigm in a model of hierarchical resource allocation. 

,. 
In that paper, organizational structure is at the forefront, and the multilevel hier- 
archies with decentralized decision making that appear there would not be possible 
(or at least not advantageous) in an analogous model with batch processing. 

1.2 Modeling returns to scale 

The classical study of technological returns to scale reached the conclusion that 
decreasing returns to scale should arise only when some input is held fixed. The 
reason is that a large firm can always imitate the production processes of several 
small firms, and thus should have average costs that are no higher than those of 
these small firms. Since the large firm may also be able to organize ] CenterforDigital Economy Research 
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ways that separate small firms cannot, the large firm is likely to actually have lower 
long-run average costs. This conclusion is troubling because empirically we observe 
that most industries have several firms, rat her than the natural monopolies that 
would arise with increasing returns to scale. 

Economists have long hypothesized that there are organizational limits on re- 
turns to scale due to the problems of coordinating large numbers of activities within 
a single firm and of operating in diverse environments. Such limits are theoretically 
possible once we take into account decision procedures and information processing 
constraints because replication cannot be used to extend the scale of a firm at con- 
stant or decreasing unit cost. For a large firm to divide itself into subunits that 
replicate the activities of small firms means that the subunits cannot communi- 
cate, coordinate their activities, or allocate resources except as independent firms 
would do, such as through markets. There can be no headquarters that controls 
the subunits because such control would incur managerial costs and delays that 
the independent firms avoid. Such informationally disintegrated units could hardly 
constitute a single firm. 

In Sections 4 and 5 of this paper, we use our model of real-time decentralized 
information processing to study whether and how information processing constraints 
can limit firm size. Real-time decentralized information processing is well suited to 
this task for severaI reasons: 

1. Managerial resources are endogenous; hence, larger firms can hire more man- 
agers in order to cope with more complex decision problems. 

2. Decision rules and information processing tasks are endogenous; hence, larger 
firms are not forced to bog themselves down with additional computation. 

3. I t  best captures the effect of computational delay, which can potentially in- 
crease with the scale of the firm. 

Mathematically, what we measure in this paper dre the returns to scale of a 
statistical prediction problem that involves predicting the sum of an exchangeable 
collection of stochastic processes. This is not a complete model of a firm, but rather 

_, it is one decision problem with centralized decision making that a firm may face. 
For example, it is the control problem faced by a firm that sets its production level 
centrally in order to meet the total demand of a fixed collection of sales offices or 
customers,%r by a firm that predicts the average productivity of a firm's workers, 
machines or shops, based on past individual productivity indices. 

We define the scale of the decision problem to be the number of stochastic 
processes. If each process is the demand at a sales office and if the expected demand 
at each sales office is the same, then the scale of the decision problem (as we measure 

4E.g., Benetton's must respond quickly t o  changing market conditions a t  its many retail outlets 
in order to  implement its just-in-time inventory management practices and thereby reduce inventory 
costs. Center for Digital Economy Research 
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it) is proportional to the firm's output (the usual measure of the scale of a firm). If 
instead each process is a productivity index and if technological returns to scale are 
constant, then the scale of the decision problem is the number of workers, machines 
or shops, and it is again proportional to the firm's output. Therefore, in the examples 
given above, if technological returns to scale are constant, then the returns to scale 
of the firm are determined by the per-unit losses and computation costs for the 
prediction problem. 

Like the other papers that have related information processing and returns to 
scale,5 ours suffers from the weakness that the boundaries of a firm are defined by 
a given coordination problem or decision problem, and coordination among firms is 
not modeled. For example, the identification of firm size with the scale of our deci- 
sion problem presumes that coordination among firms through market mechanisms 
is not possible, and that coordination within firms is as centralized as in our deci- 
sion problem, in which a single decision is made each period. Clearly information 
integration is related to the boundaries of firms, but the dichotomy in our model 
and in the others is too extreme. 

An ideal model would define the relationship between informational integration 
and the boundaries of the firm, and allow the level of integration within the firm 
to be endogenous. Furthermore, it would model both the information processing 
that coordinates activities within firms and the information processing involved in 
coordinating distinct firms through market mechanisms, and would subject these 
to the same constraints. It would then be possible to view optimal firm size as 
a question of what activities to coordinate within a firm and what activities to 
coordinate in markets, as framed by Williamson (1975, 1985). 

Such an ideal model must be left for future research. In the meantime, at  the very 
least, our model tells us about the returns to scale of centralized decision making. 
For example, if the decision problem involves setting a level of output, as in the two 
examples we have given, and if the firm has the option of dividing production among 
several plants, then our results can be interpreted as follows: If returns to scale are 
increasing, then firms should set production levels centrally (ceterus paribus) to 
take advantage of the increasing returns of centralized decision making. If returns 

A 
to scale are decreasing, the firm should divide production among smaller plants to 

avoid the diseconomies of centralization, when for other reasons it should increase 
its scale. 

'These include Wiiliamson (1967), Keren and Levhari (1983), Geanakoplos and Milgrom (1991) 
and Radner (1993), along with a complementary literature on the loss of control due to incentive 
probiems that arise because of decentralization that is motivated by (but not derived from) informa- 
tion processing constraints: McAfee and McMillan (1995), Melumad et al. (1995) and Mookherjee 
and Reichelstein (1995a, 1995b). 
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..3 Results on returns to scale 

We find that returns to scale can be increasing or decreasing in our model with 
:omputation constraints, depending on our statistical assumptions. In order to dis- 
singuish between the effects of information processing constraints and the effects of 
the statistical assumptions, we also characterize the returns to scale of a benchmark 
model in which information may be costly but computation is unconstrained. We 
refer to this benchmark as the sampling problem, and to our main model as the 
computation problem. The sampling problem is a standard decision model without 
bounded rationality, but our characterization of returns to scale of the sampling 
problem is also new and of interest in its own right. 

In spite of the various caveats that have already been given-we model just one 
of the decision problems a typical firm faces, we do not treat the boundaries of the 
firm in the ideal way described above, and the results are inconclusive about whether 
computation constraints limit firm size-the mechanisms by which our results follow 
from the model illustrate properties of information processing and returns to scale 
that we consider to be important and robust. 

Returns to scale are more likely to be decreasing when computation constraints, 
rather than sampling costs, limit the information upon which decisions are condi- 
tioned, because of computational delay in aggregating information. This unites two 
themes that first appeared long ago in the economic literature on organizations. 
One is that delay and change are fundamental for understanding information pro- 
cessing constraints in organization. Kaldor (1934, p. 78) observed that coordination 
tasks arise only in changing, dynamic environments, and Robinson (1958, Chapter 
111) emphasized managerial delay as a limit to firm size. Hayek (1940, pp. 131- 
132)-in a criticism of the iterative planning procedures proposed by Lange (1936, 
1937) and Dickinson (1939), which assume that the underlying economic data are 
constant-states: 

In the real world, where constant change is the rule, . . . whether and 
how far anything approaching the desirable equilibrium is ever reached 
depends entirely on the speed with which the adjustments can be made. 
The practical problem is not whether a particular method would eventu- 
ally lead to a hypothetical equilibrium, but which method will secure the 
more rapid and complete adjustment to 'the daily changing conditions 

The second theme is that simply increasing the managerial staff along with the 
size of the firm does not eliminate organizational diseconomies of scale. -4s explained 
by Kaldor (1934, p. 68): 

You cannot increase the supply of co-ordinating ability available to an 
enterprise alongside an increase in the supply of other factors, as it is 
the essence of co-ordination that every single decisi ' ' ' '- - 
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on a comparison with all the other decisions made or likely to be made; 
it must therefore pass through a single brain. 

In our model, as  in Keren and Levhari (1983) and Radner (1993), it is not exactly 
that the brain through which a decision must pass is overloaded as the firm size 
increases, but rather that the aggregation of information, which is part of coordi- 
nation as described by Kaldor, involves delay that increases with problem size even 
when there is decentralization of information processing. 

This role of computational delay is the most important distinction between our 
model and the static team-theory model of Geanakoplos and hlilgrom (1991). Their 
results on returns to scale depend on assumptions about what aggregate information 
is available exogenously, because their model does not allow the hierarchy to aggre- 
gate information. The assumption under which they conclude that returns to scale 
are decreasing-that no aggregate information is available-is extreme. However, 
the notion that aggregate information is less available or of poorer quality than dis- 
aggregate information is supported by our model; computational delay means that 
aggregate information cannot be as recent as disaggregate information. 

Computational delay is also an important theme in Keren and Levhari (1983) 
and Radner (1993). In these papers, the impossibility of eliminating delay through 
decentralization is straightforward. The time it takes to sum n numbers, or perform 
some other associative operation on n items, is at  least of order log n, no matter how 
many managers are available to perform the task.6 In our model, the phenomenon 
is more complex, as is seen in the proofs of Theorems 3 and 5. There is no single 
measure of delay, and a decision rule can always use some very recent information; 
however, delay in aggregating information imposes intertemporal constraints on the 
lags of data upon which a decision can be based, and, in particular, puts a bound 
on the information of any given lag that can be used. In contrast, in the sampling 
problem, it is possible to obtain and use unbounded amounts of data of a given lag, 
at a linear cost. 

Another distinction between the batch processing models of Keren and Levhari 
(1983) and Radner (1993) and our real-time model is that the former are not based 
on a decision problem and the scale of the firm is defined to be the size of the 
computation problem. Delay increases unboundedly with problem size and hence 
with the scale of the firm. Combine this with a "cost" of delay derived from a 
temporal decision problem, such as ours, and the conclusion is very likely to be that 
delay leads inexorably to eventually decreasing returns to scale: Asymptotically 
decisions are based on such old information that unit costs are the same as if no 
information were processed. Even though this would also be true when the cost 
of delay is derived from our decision problem, we find (Theorem 4) that there are 
cases in our model when returns to scale are increasing in the computation problem 

6 ~ n  contrast, two vectors of length n can be added in a fixed amount of time that  does not 
depend on n by hiring n managers who sum the n coordinates concurrently; however, this does not 
involve the aggregation of n items. 
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because firms choose their decision rules and do not have to give up using recent 
data just because the firm size increases. This is shown in Theorem 4 for assumptions 
under which the firm's task is to predict a component that is common to all the 
processes; the proof involves demonstrating that a firm can achieve unit costs that 
are lower than those of a smaller firm by imitating the decision procedure of the 
smaller firm. 

Note that in that proof, a larger firm imitates a single smaller firm, rather than 
replicating the activities of several smaller firms. 'CVe stated in Section 1.2 that 
such replication does not work when we take into account information processing 
constraints. Our results illustrate this breakdown of replication arguments, and link 
it to the aggregation delay that results from informational integration. Under the 
statistical assumptions in Theorem 3, we show that there are constant returns to 
scale in the sampling problem because a firm should replicate the optimal sampling 
policy of a firm of size 1. Under the assumptions in Theorem 5, we show that 
there are eventually increasing returns to scale in the sampling problem because 
a firm of size KN can achieve per-unit costs lower than those of a firm of size N 
by dividing itself into K divisions of equal size that imitate the sampling policy of 
the firm of size 1V (returns are eventually increasing rather than simply constant 
because of a diversification effect). Such replication strategies do not work an the 
computation problem because each division would compute its own prediction. The 
aggregation of these predictions would introduce delay, and so the decision rule 
would use information that is older than the information used by the smaller firm. 
As a result, in the computation problem, there are eventually decreasing returns to 
scale under the statistical assumptions for Theorem 3, and there may be a firm size 
that minimizes unit costs under the assumptions of Theorem 5. 

2 A real-time decision problem 

2.1 The prediction problem 

PVe study the real-time computation of the following prediction problem. There 

A- 

are N discrete-time stochastic processes: {X, ,)Z- ,  for i = 1, .  . . , N. Their sum, 
X, = c:, Xti ,  must be predicted each period. Let A, be the prediction in period 
t ,  which is computed from past realizations of the processes. The performance is 
measured by a loss function $ ( X t  - A,), where $(-) is positive and +(0)  = 0. 

For example, this is the decision problem of a firm that has iV sales offices with 
demands {XI,, . . . . X N t )  in period t and that controls the level of output centrally. 
There is a loss when output is not equal to the total demand. This is our leading 
example, and we sometimes use terminology from this example for concreteness. 
Another example is a firm that sets its output centrally and needs to estimate 
the average productivity of its N machines or shops, whose individual productivity 
indices are {XI,, . . . , ;YfVt)  in period t .  In both examples, the level of output, and 
hence the scale of the firm, is proportional to the number of s t ~ ~ h a ~ t i c  nrocesses 
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whose sum is predicted. 

Unlike most decision problems one sees in economic models of firms, such as 
setting output in response to a single demand parameter, this decision problem has 
a property that is common to a variety of decision problems a firm may face and 
that is fundamental both to the potential for decentralizing information process and 
to our results on returns to scale: It involves aggregating information about many 
activities, markets or parts of the firm, whose number varies with the scale of the 
firm. 

2.2 Decentralized computation 

The computation of decisions in organizations is decentralized, in that it is per- 
formed jointly by many managers or clerks, whose numbers and organization are 
determined endogenously. To model this, we need to specify how each potential 
manager processes information and how the managers communicate so that they 
can process information jointly. 

Human information processing is complex, but we only need a model of compu- 
tation whose sophistication matches that of the decision problem. We restrict the 
decision rules to be linear. Such decisions rules only require addition, multiplication 
and communication, and so these are the only capabilities with which we endow 
the managers. The managers in our model are thus not very clever, but this is a 
consequence of the decision problem, not of an inappropriate model of computation. 
Endowing the managers with the ability to do differential topology or prove theo- 
rems would only clutter the model, since these tasks are not useful for the decision 
problem. Endowing the managers with the ability to add and multiply arbitrarily 
quickly would make them as good as unboundedly rational managers for the decision 
problem. 

Hence, it is not literally the inability of managers to do arithmetic quickly- 
which could hardly be an important constraint today even if it was before the 
invention of calculators and computers-that interests us; instead, our model is a 
proxy for more complex computations, such as when managers must aggregate cap- 
ital budget requests based on soft information about capital needs and profitability 

' or must predict demand or productivity based on soft information about markets 
or worker quality. Just as the simple decision problems in economic models help 
us understand real-world decision probIems, so do the constraints on the ability to 
compute the simple decision rules that arise in such models help us understand the 
effects of the limited human capacity to make real-world decisions. 

Most results in this paper do not make use of the minor details of the com- 
putation model, but we choose to work with a specific computation model so that 
we can illustrate the computation of decision rules and can use the model in some 
constructive proofs (Theorems 1 and 5). The model is an adaptation of the model 
of associative computation introduced by Radner (1993), which in turn is similar to 

. . 
various general models of parallel computation in the computer scier CenlerforDigital Ecollom 
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including the PRAM and the Log P model of CuIler et a1. (1993). (See Van Zandt 
(1995a) for a comparison.) 

Each manager has two types of memory: 

1. An infinite addressed bufer for receiving and storing incoming data (raw ob- 
servations or partial results sent by other managers). This is analogous to the 
manager's in- box.' 

2. A single register for storing results of computation. This is analogous to 
memory in the manager's brain. 

In one cycle (the unit of time in the computation model), a manager can perform 
the following sequence: 

1. Read the value x from one address in her buffer. 

2. Calculate a. + crlx + a2p7 where y is the current value in the register and ao, 
al and a2 are constants that may vary from one operation to another but do 
not depend on the realizations of any of the data and hence can be written 
into the manager's instructions. 

3. Store the result in her register, replacing the existing value. 

Such a sequence is called an operation, and the manager is then said to have pro- 
cessed, aggregated or read x (we use these terms interchangeably). 

With this capability, a manager can compute a linear function Po + c:=, P,x, 
of a list XI,. . . , XJ of J numbers in J cycles by storing Po + P1xl in the register 
during the first cycle, then adding P2x2 to this in the second cycle, and so on. This 
model has the simplifying feature that the complexity of a linear function does not 
depend on whether any of the multiplicative constants are equal to 1 or whether 
the additive constant is equal to 0. Counting the addition and multiplication of 
constants as separate operations would not change the general results, although 
those proofs that are constructive (Theorems 1 and 5) would require modification. 

To model decentralization, we need to specify how managers communicate and 
/ 

coordinate their actions. For the coordination of the managers, we assume that 
there is a clock that synchronizes the actions of the managers, and each manager 
has a list of instructions that specify the action taken at each moment of time. For 
communication, we assume that each manager can send the contents of his register 
to an address of one or more managers' buffers at the beginning of each cycle, and 
the value arrives instantly and without transmission costs. (The value sent is called 
a message or report.) There are still some implicit communication costs, which vie 
illustrate in the next section. However, the results on returns to scale in this paper 
are due to the managers' computational delay, rather than to communication costs. 

7We can think of the addresses as labels that  allow the manager to pick out a message or a 
da tum from his in-box. 
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Our assumptions about the input of the data { X l t , .  . . , X N t )  and the output of 
the prediction A, in each period t are as follows. To handle input, there is a device 
that distributes data instantly to the buffers of specified managers at the beginning 
of the period in which the data arrives, This is equivalent to assuming that the 
data are stored in an addressed buffer from which all managers can read values. To 
handle output, each manager can send the'value of her register to an output device 
at the beginning of a cycle, and the message arrives instantly. The value stored 
in the output device remains the current prediction until it is replaced by a new 
message. 

A decision procedure, which is given by the lists of instructions that the managers 
follow and by the distribution of data to the managers, must be such that each 
manager has only one instruction to follow at each moment, no two messages or 
data arrive at  the same address of the same buffer at the same time, and no two 
messages are sent to the output device at  the same time. It is then possible to 
trace through the operations and messages of the managers, keeping track of the 
values in each address and register and the messages sent to the output device, and 
thereby determine the decision rule that is implemented by a decision procedure. 
Some features of the model, such the managers' infinite addressed buffers to which 
the managers have random access, were selected so that we do not need to keep 
track of too many details of the computation in subsequent sections of this paper. 
For example, if a manager sends a message to another manager, it is always possible 
to come up with a non-conflicting address in which the message is stored until it 
is no longer needed by the recipient, and it is not necessary to keep track of which 
address is used for each message. 

2.3 Constrained-optimal decision procedures 

A decision procedure is a decision rule together with a computation procedure 
(algorithm) that implements (computes) the decision rule. The total cost of a deci- 
sion procedure at date t is the expected decision-theoretic loss, E[$(X,  - A,)], plus 
the computation cost, wqt, where w is the wage per manager and qt is the number of 
managers employed at time t.' We measure the performance of a decision procedure 

, by the long-run average of the total costs. 

We have modeled the process by which decisions are computed, but not the 
process by which decision procedures are selected, i.e., by which organizations evolve 
or are designed. Some of our results just characterize the feasible set of decision rules. 
Others are about the feasible decision procedures that minimize the long-run costs. 
Such decision procedures are said to be constrained optimal, or simply optimal. 

If the situation to which we apply the model is sufficiently stationary and the 
discount rate is suficiently close to zero, then an optimal decision procedure can 

'With linear decision rules, the computation costs are non-random; if operations depended on 
past observations, then the predictions would depend in a non-linear way on these observations. 
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be approximated by a stationary procedure with a finite description. The costs 
and delays of choosing a good procedure can be amortized over the life of the firm, 
whereas the costs and delays associated with the computation of a decision rule are 
incurred repeatedly. Furthermore, decision procedures can evolve slowly but still 
end up being approximately optimal. Therefore, under these (artificial) conditions, 
we may see decision procedures that are nearly constrained optimal. Otherwise, the 
constrained-optimal procedures simply provide a lower bound on the organizations' 
costs. 

The exampIes in Section 3 hint at the enormous variety of computation proce- 
dures that are available. Optimal procedures need not be statistically optimal, need 
not modify the prediction each period, and need not be stationary even when the 
statistical model is stationary. This makes it difficult to fully derive the optimal 
procedures. In Radner and Van Zandt (1992), we described some classes of "good" 
decision procedures for a few special cases (of statistical assumptions). The classes 
were sufficiently restrictive so that it was possible to select optimal procedures from 
these classes. This was a useful exercise that further illustrated the mechanics of 
the decision procedures in this model. However, in this paper, we do not need an 
exact description of the constrained-optimal procedures, and instead we characterize 
returns to scale using basic properties of the computation constraints. One impli- 
cation is that the results do not depend critically on the ability of organizations to 
derive constrained-optimal decision procedures themselves. 

3 Some properties of real-time decision making 

3.1 The costs and benefits of decentralization 

In this section, we describe a few simple (but not necessarily good) decision 
procedures. One goal is to familiarize ourselves with the real-time computation 
of decisions. Another is to illustrate the costs and benefits of decentralization of 
information processing in such a dynamic decision problem. 

In the examples, each prediction is the sum of a list of data. The predictors could 
instead be arbitrary linear functions of the data, by introducing multiplicative and 

/ additive constants, without otherwise modifying the decision procedures. 

Recall the leading example of a firm that must predict the total demand of iV 
sales offices. Suppose that the firm has four sales offices. Suppose also that one 
computation cycle is equal to one decision period. 

Example 1 Consider the decision rule that sets output in each period to the total 
demand four periods earlier: 
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Output 

... 1 2  3 4  1 2 - . .  

Manager 

4 FIGURE 1. Computing the decision rule At = Xt,t-.i with 4 managers 
(Example 1). 

A decision procedure that computes this decision rule is depicted in Figure 1. The 
firm gives the sales reports of the four sales offices to one manager in each period. 
The manager who receives the reports in period 1 computes the sum in four periods 
and sends the result ( A 5 )  to the production controller by period 5, as required. The 
manager is then free to process the reports that arrive in period 5. However, the 
reports that arrive in periods 2, 3 and 4 must be given to other managers. Thus, a 
total of four managers are needed to compute the decision rule. 

Example 2 Although the task of computing the decision rule is shared among 
four managers in Example 1, computation is not truly decentralized because the 
managers do not communicate and each decision is computed by a single manager. 
We now consider a decision procedure with true decentralization. 

The procedure is illustrated in Figure 2. In each period, the four latest sales 
/ reports are divided among two managers. Each manager receives two reports and 

computes their sum in two periods. One of the managers then sends her partial sum 
to the other manager, who adds it to his own partial sum in the next period. This 
manager can then send the total to the production controller, three periods after 
the reports were received.  h he decision rule that is computed is thus 

This decision procedure uses five managers---one more than in in Example 1- 
because the reports that the managers send each other increase the workload. This 
is an example of the overhead cost of decentralization. 

. .. 
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Output 

. . . 1 2  3 4 5 2 1 4  3 2 a . e  

Manager 

FIGURE 2. Computing the decision rule At = c:=, X.,t-3 with five managers 
(Example 2). 

The potential decision-theoretic benefit of decentralized information processing 
is that delay is reduced. Each decision is computed fiom information that is three 
periods old in Example 2, compared to four periods old in Example 1. There are 
limits, however, to what can be achieved by decentralization. For example, the 
decision rule 

which sets output to the total demand two periods earlier, is computationally infea- 
sible, because the four sales figures cannot be summed in two periods. (See Radner 
(1993) for bounds on speed-up from decentralization with batch processing.) 

Example 3 Decentralization unambiguously reduces delay in "batch mode" mod- 
els of computation, such as  Keren and Levhari (1979, 1983, 1989), Radner (1993) 
and Van Zandt (1994), because all data are available at  the same moment. The 
reduction in delay is also unambiguous when comparing Examples 1 and 2 because 

/' 
each decision is computed from data that have the same lag. However, this does not 
have to be the case in real-time computation. 

In Example 1, manager 1 processes office 2's period-1 sales report (Xz,) in period 
2. The manager could instead process office 2's period-2 sales report ( X Z 1 ) .  If we 
modify the procedure in Example 1 so that managers always use the most recent 
report when processing an office's sales report, then the following decision rule is 
computed: 

24t = .Yl,t-4 + X~,t -3  +X3,t-2 fX4.t-1 

'The decision procedure is illustrated in Figure 3. The potential advantage of this 
procedure over Example 1 is that some of the data is more recent. 
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Output 

. . 1 2  3 4  1 2 . . .  

Manager 

FIGURE 3. Computing the decision rule 

with four managers (Example 3). 

Output 
8 A s - - - ' " - " " - ' - - - - - - - - - - - - - - - - - - -  

7 A I C  - - - - -  -------------------  i - T  . . a  

6 A s -  ------- - - - - - - - - -  x y x y  
3 5 ,‘, s - - - - -  - e m - -  x25 x45 X15 x 3 5  
. - i-r I 1 

x 2 4  x44 x14 x34 

3 

2 X 2 2  x42 x12 X32 

I I 
1 . Xll X31 

. . .  1 2  3 4  5 2 1 4  3 2  . . .  
Manager 

FIGURE 4. Computing the decision rule 

with five managers (Example 4).  
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Example 4 If we also modify Example 2 so that managers use the most recent raw 
data, the decision rule 

is computed. This is illustrated in Figure 4. Observe that the lags of the data 
in this procedure do not dominate the lags of the data in Example 3. In this 
procedure, the data have lags of 2 and 3. In Example 3, the data have lags that 
range from 1 to 4. In the last period before the decision is finished in this procedure, 
a manager is aggregating previously computed partial sums, whereas in Example 3 a 
manager is still reading in recent raw data. This illustrates a decision-theoretic cost 
of decentralization that arises in real-time parallel computation but not in models 
with batch processing: When a manager listens to a subordinate, whose report may 
be based on a great deal of infomation, the manager foregoes processing raw data 
that are more recent than any of the data upon which the subordinate's report is 
based. 

Theorem 1 shows that this decision-theoretic cost of delegation can be dominant, 
so that there is no decentralization even when managers' wages are zero. 

Theorem 1 Assume: 

1. The loss is quadratic: +(Xt - A,) = ( X t  - A t ) 2 .  

2. The processes are mutually independent and .identically distributed, and each 
process is a first-order autoregressive process: 

where the random variables Wtt are i.i.d. across time and processes and have 
finite variance. 

3. The length of a cycle is one period. 

4 .  The managerial wage is 0. 

If 0 < yl 5 m, then only one manager computes each action, no matter how 
large the problem sire. If < 171 < 1, then the number of managers that 
compute each action grows unboundedly as the problem size increases. 

(The proof is given in Section 5.) 

Under the assumptions of the theorem, the constrained-optimal decision proce- 
dures are similar to the one illustrated in Figure 4. Each decision uses one obser- 
vation from each process. Hence the workload-and the total number of managers 
employed-is roughly proportional to the firm size. For each decision, the pro- 
cesses are divided among the managers who compute the decision. Tho m2nauPrc: 
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begin processing raw data at roughly the same time, sequentially aggregating the 
most recent observation from each assigned process. Then the managers aggregate 
the partial results hierarchically, as in the networks for associative computation 
studied by ~ a d n i r  (1993). (These properties are derived in the proof of the the- 
orem.) When 171 is smaller, i.e., when the environment is changing more quickly, 
the decision-theoretic cost of decentralization is higher and the number of managers 
who compute each decision is lower. In the extreme case, when 171 5 m, the 
value of a current raw observation is always greater than the value of all the infor- 
mation (none of which is current) that could be contained in a subordinate's report. 
Therefore, each decision is computed by a single manager. 

3.2 Constrained optirnality versus statistical optirnality 

Given a decision rule, let & be the data upon which the prediction At is based. 
kt is the set of observations of the stochastic processes whose realizations affect At. 
In Example 4, 

f i t  = {XL,t-3, X2.t-2, X3,t-3, X4,t-2) . 

For the moment, let us say that a decision rule is statistically optimal if it minimizes 
the expected loss conditional upon the information used by the decision rule: 

A, = argmin E [$(x( - at) / f i t ]  . 
ae 

Unlike in models without computational constraints, a constrained-optimal decision 
procedure is not necessarily statistically optimal, because two decision rules that 
use the same data can have different computation costs. I t  is even possible that one 
is feasible but the other is not. 

Although this is an obvious general principle, it is not obviously relevant to our 
model, because we restrict attention to linear decision rules and use a computation 
model in which all linear functions of the same data have the same complexity. 
From here on, we say that a decision rule-is statistically optimal if it minimizes 
the expected loss within the class of linear predictors. If only the prediction for a 
single period had to be computed, then any two linear decision rules using the same 
data would have the same computational complexity, and hence constrained-optimal . 
decision procedures would be statistically optimal. However, because the decision 
problem is dynamic, a linear decision rule is not a single function, but rather a 
sequence of functions. Partial or final results in the computation of one prediction 
may be used to compute other predictions. For this reason, not all linear decision 
rules using the same data have the same computational complexity. We illustrate 
this in the following example. 

Example 5 The decision rule in this example i s  a simple updating rule. There are 
four managers who do the same thing as the managers in Example 3, but instead 
of sending their answers to the production office, they send them to manager 0. - . ?- 

Manager 0 is the only one who sends predictions to the production center for Digital Emnomy 
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Output 

0 . . .  1 2 3 4 1 2 

Manager 

FIGURE 5 .  Computing the decision rule 

4 
At = C,=, (C,, bS~1,t-.-st*) 

with five managers. 

4 making prediction A,, she receives Xi=, aiXi,t-4+i from one of the other managers 
and computes 

4 

in one cycle. This is the prediction for period t + 1. The procedure is illustrated in 
Figure 5 .  Observe that each prediction is based on an infinite amount of data, even 
though only five managers are employed. 

In this procedure, lags of the data in Bt are stationary. Hence, if the stochastic 
processes are stationary, the decision rule can only be stochastically optimal if it is 
also stationary. This means that manager 0 must always use the same coefficient /3 

" and the other managers must always use the same coefficients crl, a 2 ,  a3 and ad. 
Then the following stationary decision rule is computed: 

For some distributions of the stochastic processes, there may be values of a l ,  a*, 
a3 ,  a4 and ,B such that this decision rule is actually statistically optimal. However, 
since there are only five parameters to vary, not all linear decision rules using this 
data can be computed this way. If we imagine that the purpose of all computation 
up to period 0 is to compute ;lo, then by adjusting the coefficients used in that 
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computation we can make A. statistically optimal, without hiring more managers. 
However, the changes to the coefficients will affect the predictions in period t f: 0, 
and so it is typically not possible to make the predictions stochastically optimal 
in every period, without either using less data for each prediction or hiring more 
managers.' Therefore, this decision procedure can be constrained optimal even if it 
is not statisticaIly optimal. 

3.3 Sampling versus computation 

As we shall see, the returns to scale are sensitive to the specific statistical distri- 
butions of the processes and the shape of the loss function. To distinguish the effect 
of the statistical assumptions from the effects of computation constraints, we also 
characterize the returns to scale for the standard approach to statistical decision 
problems-where computation is costless and instantaneous, but data is costly. TVe 
call this benchmark the sampling problem, and we call the main model of this paper, 
in which data is freely available but computation is constrained, the computation 
problem. 

A special case of the sampling problem, which is included in all our results 
for this benchmark, is where all past observations are available at no cost. The 
computation problem thus consists of this special case combined with computation 
constraints. However, we also characterize the returns to scale of the sampling 
problem for more general assumptions about the sampling technology. We only 
assume that, in the sampling problem, the availability and cost of a datum is the 
same for all processes and depends only on the lag of the datum. For example, if 
it costs $1 to observe yesterday's realization of one process, then it costs $100 to 
observe yesterday's realization of 100 processes. For some lags, observing data may 
be free or impossible. 

In the sampling problem, let fit be the data that has been sampled up through 
period t. & \ gt-, is the data that is sampled in period t .  Let s (d )  be the cost of 
observing one of the processes with a lag of d. Then tLe sampling cost at date t is 

The total cost in each period is the decision-theoretic loss plus the sampling cost. 

Because there is perfect recall and there are no computation constraints in the 
sampling problem, At is statistically optimal given gt. This is one difference between 
the sampling problem and the computation problem. However, for returns to scale, 
the important difference is how much data of a given lag can be used in a decision. 
This is illustrated in Figure 6, for the case where one period equals one cycle. 

'If { X I )  has a rational spectrum, then E [ X t  / H ~ ]  c a n  be computed using a recursive updating 
rule, but the updating may involve averaging, in each period, a large but finite number k of past 
predictions. (See Yagiom (1962, Chapter 4 )  for details.) This will require a t  least k - 1 more 
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Processes 

- - - - - - - - - - - -  ......................... 
Sampling Serial processing Parallel processing 

FIGURE 6. Bounds on aggregation speed. Each region shows an example of 
the data that could be incorporated'into the prediction at time t .  The region 
for parallel processing is for the case of two managers. 

Suppose that, in the sampling problem, the prediction in period t of a firm of 
size 1 is based on Xl,t-2. For a firm of size N, it is possible to sample Xi,,-2 for all 
2,  with the same per-unit sampling cost faced by the firm of size 1. The decision 
then uses the data surrounded by the solid line in Figure 6. 

This is not possible in the computation problem. For example, suppose that 
each prediction is computed by a single manager. Then the decision at time t can 
be based on Xt,t-l ,  Xz,t-2, X3,t-3, etc.; only one datum of each lag is used in the 
decision rule. The decision uses the data surrounded by the dashed line in Figure 6. 
If instead two managers compute each decision, with their partial results aggregated 
in the last cycle before the decision is made, then the decision in period t might be 
based on Xl,t-2, d;Y2,t-2, X3,t-3, X4,t-3, etc. The decision uses the data surrounded 
by the dotted line in Figure 6. This parallelization increases the amount of data of 
lag d used in the decision rule, for d 2 2 (but decreases it for d = l ) ,  but there are 
limits to the speed-up from parallelization. 

- It is known (e.g., Radner (1993)) that for this computation model, it takes at 
least [log, n] f 1 cycles to aggregate n items. Inverting, this implies that a decision 
rule in the computation problem can use no more than 2d-' observations with a lag 
of d or less (measured in cycles). It is this limit on the use of recent information 
that bounds firm size, compared to the sampling problem. Although the specific 
value of this limit does depend on the computational model, the existence of such 
a limit is a feature of all but the most unrealistic models of computation, and is 
certainly a property of actual human information processing. For this reason, we 

managers than the procedure in Example 5, but the difference in expected loss may be arbitrarily 
small. 
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claim that the results on returns to scale that are due to the existence of such a 
limit are robust with respect to the model of computation. 

4 Returns to scale 

4.1 Statistical assumptions 

For the characterization of returns to scale, we impose three assumptions on the 
infinite pool {Xlt), {X,,), . . . of potential stochastic processes. 

Assumption 1 The vector process {Xlt, X2,, . . . ) is covariance-stationary. 

Motivation: So that long-run average costs are well-defined, so that the statisti- 
cal anaIysis is simpler, and to be consistent with the focus on constrained-optimal 
decision procedures (see Section 2.3). 

Assumption 2 The processes {Xlt), {Xzt), . . . are exchangeable (their joint dis- 
tribution is symmetric). 

Motivation: So that the demand processes are statistically indistinguishable, and 
hence a larger firm is quantitatively larger than, but qualitatively similar to, a 
smaller firm. 

Assumption 2 is satisfied, for example, if the stochastic processes can be written 

where the processes {Y,), {Zit), {Z21), . . . are independent and the processes {Zit}, 
{Zz,), . . . are identically distributed. (The converse is true if the processes are 
Gaussian.) {Y,) is called the common component of the processes, and {Z,t) is called 
the idiosyncratic component of process i. We will sometimes use.this terminology 
even when we are not restricting attention to this case. 

Assumption 3 The vector process {XI,, X 2 t , .  . . ) is purely indeterministic. 

Motivation: So that the value of information diminishes with its age. 

.-I covariance-stationary process is called purely indeterministic if its Wold de- 
composition does not have a deterministic component (e.g., see Anderson (1971, pp. 
420-434)), and hence can be written as an infinite-order moving average. Let Ht be 
the history of all processes (i = 1 , 2 , .  . . ) up to period t .  A necessary and sufficient 
condition for Assumption 3 is that the covariance matrix of the error for the best 
linear prediction of {X,,, X2, , . .  . ), conditional on Ht-& converges to the uncondi- 
tiond covariance matrix of (XI,, ;Yzt,. . . ) as d 4 m. This property is used to prove 
Theorem 3. Another implication of this assumption is that if Cov(.Y,, , ,Y,,) > 0 and 
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E , ~  and eJt are errors for linear predictions of XTt  and iY,t, respectively, using lagged 
data, then Cov(ett, eJt) > 0. This property is used to prove Theorem 2. 

In the theorems, we consider two possible loss functions. The first is the quadratic 
loss: 

$(Xt - At) = (Xt - . 

Then we consider a case where the per-unit loss is a convex function of the per-unit 

error: 
'T#J(X, N - A,) = !P ( k ( x t  - A,)) . 

In the definition, Q is a convex function that does not depend on iV, whereas @ may 
depend on iV, tVe refer to this as a "scalable loss" function. It includes the case 
where the quadratic loss is adjusted for firm size, 

(in which case Q(e) = e2), and it also includes the case where T#J is piecewise linear 
and does not depend on 1V: 

4.2 Definitions of returns to scale 

For both the computation and sampling problems, let AC(IV) be the per-unit 
cost for an organization of size N. That is, AC(f'i) is the minimized long-run average 
of the decision-theoretic expected loss, plus computation or sampling cost, divided 
by N. 

We use the foIIowing three notions of returns to scale: 

Monotonic Returns to scale are rnonotonicatly increasing, decreasing or constant 
if AC(IV) is decreasing, increasing or constant. 

Eventual Returns to scale are eventually increasing if limsup,,,, AC(Nf)  < 
AC(N) for all N. They are eventually decreasing if lim infw),, rlC(1V') > 
-4C(iV) for all N. 

Asymptotic Returns to scale are asymptotically increasing, decreasing or constant, 
respectively, if limiv,, AC(N) equals 0, co or hl, for some 0 < K < a, 
respectively. 

.An optimal firm size is one that minimizes =1C(iV). 

A/lonotonically and asymptotically increasing or decreasing returns to scale are 
both stronger properties than eventually increasing or decreasing returns to scale, 
but the existence of an optzrnal firm szze zs d e t e m z n e d  by eventual returns to scale. 
There is no optimal firm size if returns to scale are eventually increasing, and there 
is an optimal firm size if returns to scale are eventually decreasing. 
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Statis t ical  R e t u r n s  t o  Scale  
Assumpt ions  Sampl ing  P r o b l e m  C o m p u t a t i o n  P r o b l e m  

TABLE 1. Table of results. 

r 

mutually 
correlated 

mutually 
uncorre]ated 

common process 
plus noise 

general 

4.3 Main theorems 

In this section, we characterize the returns to scale of the computation and sam- 
pling problems under various statistical assumptions. The results are summarized 
in Table 1. All proofs are given in Section 5. 

asymptotically decreasing 

constant 
f constant per-unit gain) 

monotonically increasing 

eventually increasing 

We first consider the case where the loss function is quadratic. If the per-unit 
error is constant, then the per-unit loss increases linearly with N. This leads to 
decreasing returns to scale, in both the computation and sampling problems, unless 
the processes are mutually uncorrelated: 

asymptotically decreasing 

eventually decreasing 
(per-unit gain +O) 

monotonically increasing 

example with 
minimum per-unit cost 

Theorem 2 If the loss is quadrcatac and Cov(XZt, X,,) > 0 for i # j ,  then returns 
to scale are asymptotically decreasing in both the sampling and the computation 
problems. 

However, when the processes are mutually uncorrelated, a law-of-large-numbers 
effect counterbalances the curvature of the loss function. This leads to constant 

- returns to scale in the sampling problem, which is actually separable over the pro- 
cesses, as shown in the proof of Theorem 3. In the computation problem, however, 
returns to scaIe are still eventually decreasing-and the per-unit gain from infor- 
mation processing converges to zero--because of the constraints on the amount of 
recent information that can be aggregated. This is a negative informational exter- 
naIity between the sales offices; processing data about one sales office increases the 
lag with which data about other sales offices can be processed. 

Theorem 3 Assume that the loss is quadratic and that the processes {XI,), 
. are m,utually uncorrelated. Then returns to scale are constant in the sampling 

problem but eventually decreaszng zn the computatzon problem. In adJ7f7nn f h p  
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computation problem, the per-unit loss converges (as N -+ m) to the no-information 
per-unit loss. 

Radner and Van Zandt (1992) characterize the returns to scale and approxi- 
mately optimal decision procedures in the computation problem for an example 
with a quadratic loss function and i.i.d. AR(1) processes, which fits the assumptions 
of Theorem 3. 

With a quadratic loss function that does not change with firm size, larger firms 
have the same tolerance for errors of fixed magnitude as smaller firms. This does 
not hold if, for example, the loss when output exceeds demand comes from holding 
inventories and the inventory capacity is proportionate to firm size. The scalable 
loss function may then be more realistic, and so we consider it next. 

When the processes are noisy versions of a common process, the task is to es- 
timate the common process. This prediction is a "public good"; as the size of the 
firm grows, more data are available and the cost of the prediction can be spread 
among more processes. In particular, when the loss function is also scalable, a larger 
firm can achieve a strictly lower per-unit loss than a smaller firm simply by scaling 
the smaller firm's decision rule. This scaling does not increase the computational 
burden or the sampling cost, and thus the per-unit computation or sampling cost 
is strictly lower for the larger firm. Hence, in both the computation and sampling 
problems, returns to scale are monotonically increasing. This is a case where delay 
does not lead to decreasing returns to scale in the computation problem because the 
scale of the computation is endogenous. 

Theorem 4 If the loss is scalable and X,t = Yt 4- Zit, where {Y,)  is a common 
process and the random variables Z,t are 2.i.d. across i and t ,  then returns to scale 
are monotonically increasing in both the sampling and the computation problems. 

Radner and Van Zandt (1992) also characterize the returns to scale and approxi- 
mately optimal decision procedures in the computation problem for an example that 
fits the assumptions of this theorem. The loss is piecewiselinear and the processes 
are noisy versions of a common AR(1) process. 

The idea behind Theorem 4 is that a larger firm can achieve a lower per-unit loss 
than a small firm by imitating (but scaling) the decision rule of a single small firm. 
This is not an analogue of the principle that leads to non-decreasing technological 
returns to scale: A large firm can imitate the production processes of several small 
firms whose total size is the size of the large firm. In the sampling problem, the 
analogue of this-a large firm imitates the sampling policies of several small firms- 
does lead to eventually decreasing returns to scale when the loss function is scalable, 
under general statistical assumptions. This is the first part of Theorem 5. However, 
there is no such analogue for the computation problem. If a large firm imitates 
the decision rules of several small firms, it ends up with several predictions. If it 
attempts to aggregate these predictions, there is additional delay and so the decision 
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rule uses information that is older than the information used by the small firms. The 
fact that this kind of replication is not possible does not imply that returns to scale 
are inexorably decreasing in the computation problem; this was shown in Theorem 
4. However, we can find a robust example in which there is an optimal firm size in 
the computation problem, even though returns to scale are eventually increasing in 
the sampling problem. This is the second part of Theorem 5. 

Theorem 5 Assume that the loss function is scalable. 

In the sampling problem, per-unit costs are strictly lower for a firm of size K N  
than for a firm of size N ,  for any K > 1. Moreover, returns to scale are eventually 
increasing. 

However, there is an optimal firm size in the computation problem (i)  if one cycle 
equals one period, (ii) i f  the cost of managers is close to zero, (iii) if the processes 
have the decomposition X,, = Yt +ZZt described in  Section 4.1, (iv) i f  {Y , )  and {Z,,) 
are AR(1) processes with autoregressive parameters close to 1 and with innovation 
terms whose variances are close to 2 and 1, respectively, and (v) if  either @ ( E )  = e2 

or the processes are Gaussian. 

5 Proofs 

The following preliminary discussion is mainly relevant to the proof of Theorem 
1. 

Recall the definition of an operation in Section 2.2. We say that an operation 
affects a message if eliminating the operation could change the value of the message. 
To determine whether an operation affects a message, we do not have to determine 
the exact linear coefficients of the operations. Instead, we only have to distinguish 
between operations a. + alx + a2y for which a;! is zero, which we call a STORE oper- 
ation because it replaces the value in the register and hence eliminates information 
that had previously been aggregated, and those for which a2 # 0, which we call 
an ADD operation because it adds a number to the d u e  in the register and hence 
preserves any information that had previousiy been aggregated. 

Now construct the following directed graph for a given procedure. The nodes are 
all the observations, messages and operations. There is an edge from an operation 
to a message if and only if the same manager performs the operation in cycle t 
and sends the message in cycle t', with t' > t ,  and the manager does not perform a 
STORE operation after cycle t and before cycle t' (that is, if and only if the operation 
is directly part of the calculation of the message by the manager). There is an edge 
from an observation or message to an operation if ,and only if the operation processes 
the observation or message. (Hence, the observation or message directly affects the 
operation.) Because (i) an operation can only be connected to a message that 
is sent at a later date, and (ii) a message or observation cannot be connected to 
an observation sent at an earlier date, the digraph is acyclic. The observations, 
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messages and operations that affect a message are the predecessors of the message 
in the digraph. 

PROOF OF THEOREM 1: When the managerial wage is zero, the organization can 
compute each prediction with a separate network of managers. (The only reason 
to use updating rules or otherwise use partial results from the computation of one 
prediction in the computation of another prediction is to reduce managerial costs.) 
Therefore, for a given period t ,  we can study the decision procedure for predicting 
Xt in isolation from predictions for other periods. In what follows, a manager means 
one who is involved in computing A,, and an operation, message or observation is 
one that affects At. 

When the computation of At is separated from that of other predictions, the 
linear coefficients for the operations that affect At can be chosen to minimize the 
expected loss in period t. Let ~ ( f i , )  be the no-information minimum expected loss 
minus the minimized expected loss when fit is the information used to compute At. 
This is the value of the information I?',. The design problem is to find the procedure 
that maximizes v(&). 

Under the assumptions of this theorem, the restriction to linear estimates is not 
binding. Because the Ioss is quadratic, the prediction that minimizes the expected 
loss conditional on fit is .E[xtlfit]; this expectation is linear because the processes 
are AR(1). If di is the lag of the most recent observation of process i in a, then 

(If there is no observation of process i in fit, then we define di = m and yd* = 0.) 
It  follows that for a constrained-optimal procedure, fit can contain at  most one 
observation for each process. 

The value of information in & is 

Since Var(X,t) is a constant in this formula, we can normalize Var(XIt) = 1 to 
N 

simplify notation. Let X = r 2 ,  so that the value of information is Cz=, Adz.  Call Ad* 
the value of the observation of process i. If Z is the set of processes for which an 
observation affects a report, then the value of information in the report is defined 
to be CIEZ Ad*. 

In Lemmas 1 through 7, we derive some properties of the computation of At for 
constrained-optimal procedures. The properties are used to prove the main results 
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of this theorem. The lemmas also paint the following picture of the constrained- 
optimal procedures. Let M be the set of messages, including the final output, that 
affect A,. Consider the directed graph whose nodes are M and where a message m 
is connected to a message mt if, in the digraph described at the beginning of this 
section, m is connected to an operation that is connected to m' (the manager who 
sends m' processes m in an operation that affects m'). This is a connected graph, 
since otherwise the messages not in the connected component containing the final 
output would not affect the final output. According to Lemma 7, each message 
is processed only once. Furthermore, the final output cannot be connected to any 
message. Therefore, there are # M  - 1 edges, which implies that the connected 
graph is a tree. According to Lemma 3, each manager sends one and only one 
message, and so the tree also represents the communication between managers. 
That is, it is hierarchical as in the association computation networks in Radner 
(1993). Furthermore, as in Radner (1993), managers first process raw data and 
then process messages (Lemma 5). We can also show that, as in Radner (1993), all 
managers begin processsing raw data at approximately the same time.1° 

The proof of each lemma has the following format. It is shown that if a candi- 
date procedure does not have the property stated in the lemma but has the other 
properties so far derived, then there is an alternate procedure for which the value 
v(H~)  of information is higher. 

Lemma 1 In a constrained-optimal procedure, l?, contains one observation for each 
process. Hence, d ,  < co for i = 1,. . . , N .  

PROOF: Suppose that in a candidate procedure there is a process i for which no 
observation is in at (hence, d, = co). Pick a manager and let s be the f i s t  period 
the manager processes an observation for the calculation of At; there is such a period 
since At is calculated from finitely many observations. This manager can instead 
first store X,,t-s-l in period t - s -  1, and add in period t - s  the information that was 
stored in the candidate procedure, without affecting subsequent operations. This 
change adds X,,,-,-, to but does not change any of the other observations in f i t .  
Hence, the value of information increases by A"+'. cl 

Lemma 2 la a constrained-optimal procedure, if a manager processes in  pe- 
riod t - s' and the operation a$ects A,, then s = st. 

PROOF: That is, when a manager reads an observation for a process, she reads the 
most recent one. If not, then the manager can instead process XI,,-,I in the alter- 
nate procedure. If ,YZ,,-, is processed in any other operation that affects At, then 
that operation should be eliminated. The information in the alternate procedure is 
then kt, except that XI,,-, is replaced by X,,,-,, . Hence, the value of information 
increases by A'' - AS. 

10 If a Manager I1 starts processing two or more periods after a Manager I, then Manager I1 could 
first read an observation for the first process sampled by Manager I, and this would decrease the 
lag of the observation For that process. 
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Lemma 3 In a constrained-optimal procedure, each manager sends one message 
that aJ4ects At .  

PROOF: Suppose that in a candidate procedure there is a manager I who sends one 
message in period t - s l  and a subsequent message in period t - s2, both of which 
affect A,. Let manager I1 be the receiver of the first message and let t - si be the 
period in which she processes the message. Let Xl,r- ,y be one of the observations 
aggregated in the message. Then 1 < si  < s l  < sy. Consider an alternate decision 
procedure that differs in two ways. (1) Manager I1 processes in period 
t - si  instead of processing manager 1's first message. (2) Manager I does not 
process Xl, t -sy  and does not send the first message. Instead, he changes any STORE 

executed between t - s, and t - s2 - 1 to an ADD, so that the message he sends in 
period t - s2 in the alternate procedure contains the same information as his first 
and second messages of the candidate procedure, except that it is missing Xl,t-s;'.  
The only process whose observation is different for the two procedures is process i, 
for which the value of information has increased from As' to 2.  Hence, the total 
value of information is higher in the alternate procedure. CJ 

Lemma 4 In a constrained-optimal procedure, the value of information in a report 
that is processed in period t - s is greater than the value A" of a raw observation 
processed in that period. 

PROOF: Let Z be the set of processes for which a report is an aggregate of obser- 
vations in a candidate procedure, and let t - s be the period the report is processed 
by its recipient, manager I. Suppose that xles Ad* --< A S .  Consider an alternate 
procedure in which manager I processes XtVt-, for some i E f in period t - s rather 
than processing the report. The value of the raw observation is As,  and so the total 
value of information increases if As > zlEz Ad*.  Otherwise, the candidate and alter- 
nate procedures have the same value of information because As = Ads.  This 
implies that #Z > 1 and the alternate procedure does not use an observation for 
every process. By Lemma 1, the alternate procedure is not constrained optimal and 
hence neither is the candidate procedure. CJ 

Lemma 5 In a constrained-optimal procedure, no manager processes a raw obser- 
I 

vation after processing a report. 

PROOF: Suppose that in a candidate procedure, manager I processes a report in 
period t - s and a raw observation in period t - s', with 1 < s' < s. Let E be the 
set of processes for which observations are aggregated in the report. From Lemma 
4, the value xlE5 - Ad* of information in the report is greater than As.  Let j be the 
process for which manager I aggregates a raw item in period t - s'. 

Consider the following alternate procedure which roughly involves exchanging 
the times in which the report and the raw observation are processed. All the man- 
agers involved in aggregating information for the report perform each of their op- 
erations s - st periods later than in the candidate procedure. By Lemma 3, these 
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managers do not perform any operations after sending a message, and hence the 
only effect of this shift is that-the report is sent s - s' periods later. Manager I 
aggregates this report in period t - s' rather than t - s ,  and aggregates X,,,-, in 
period t - s rather than aggregating X,,t-,t in period t - s f .  

The observations in the report in the alternate procedure are s-s' periods newer, 
and so the value of the report increases from xlEZ Ads to xlEE ~d,-(+-" ' ) ,  which is 
an increase of (x-("-"') - 1) xl,, Ad*. The value of the observation of process j fa1Is 
from A"' to A", which is a decrease of (x-("-"') - 1)AS. Since xz,, Ad* > AS,  the 
total value of information is higher for the alternate procedure. 0 

Lemma 6 Suppose that, in a constrained-optimal procedure, a manager processes 
K raw observations and either sends a message or processes his first report in period 
t -s .  Then the manager processes the raw observations in periods t -s-  K to t-s-1, 
and the value of these observations is XS+'(1 - X K ) / ( l  - A). 

PROOF: By Lemma 5, each manager first reads raw data, then perhaps reads re- 
ports, and then sends a single message. If a manager reads a raw observation in 
period t - st ,  sends his report or processes a report in period t - s, and is idle in 
some period t - st' between periods t - s' and t - s ,  then the value of the manager's 
information is increased if the manager reads a raw observation in period t - s" 
rather than in period t - s'. Thus, the raw observations are processed without in- 
terruption between periods t - s - K and t - s - 1, and by Lemma 2, the value of 
these raw observations is 

Lemma 7 In a constrained-optimal procedure, a manager processes a report only 
during the period it is received. 

PROOF: Suppose a manager I1 processes in period t - s' a report that is received 
in period t - s ,  with 1 < s' < s. It follows from Lemma 3 that all managers 

-= who aggregate information for the report can shift their operations forward by s - st 
periods, thereby increasing the value of the information in the report, and the report 
will still be ready by period t - st. 0 

The remainder of this proof has two parts: 

1. We show that if A < 112, then the value of a subordinate's information is al- 
ways lower then the value of a raw observation. That is, if a manager is reading 
in a partial sum set by another manager, the expected loss is reduced if instead 
the manager reads in a raw datum. Therefore, in the optimal procedures, a 

N 
single manager computes each At. (Hence, At = xr=l y f X t - t  .) 
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2 .  We show that if X > 1 / 2 ,  then there is an upper bound on the number of raw 
observations processed by each manager in the computation of each A,. Since 
A, should be a function of one observation from each process, the number of 
managers who compute each A, is proportional to the problem size. 

PART 1: Suppose that more than one manager computes A,. Let period t - s 
( s  > I )  be the first period a report is sent, and let managers I and I1 be the receiver 
and sender, respectively. Since this is the first report sent, it is the aggregate only 
of raw observations processed by manager 11. By Lemmas 6 and 7, the value of 
the information in this report is Xs"(l - X K ) / ( l  - A), where K is the number of 
observations processed by manager 11. By Lemma 4, the procedure is not constrained 
efficient if this is less than the value As of a raw observation processed in period C -  s,  
which is true if X / ( 1  - A) < 1  or X 5 112.  

PART 2:  Suppose instead that X > 112.  Suppose manager I processes K raw 
observations. B y  Lemma 6, this takes place from periods t-s- K to periods t -s- 1, 

for some s > 0 and the value of this information is Xs+'(l - X K ) / ( l  - A) .  Call this 
procedure P. 

%ow consider a procedure like P, but in which there is an additional manager 
I1 who shares the workload of manager I. Managers I and I1 read observations from 
r K / 2 1  and l K / 2 J ,  respectively, of the processes that manager I was previously 
sampling. They do this from periods t - s - 1  - [ K / 2 1  and t - s - 1 - l K / 2 J ,  
respectively, to t - s - 2 ,  and then manager I adds in 11's partial result in period 
t - s - 1.  The value of this information is 

Call this procedure P*. The difference between procedures P and P* is like the 
difference between Examples 3 and 4. 

Procedure P is constrained optimal only if its value of information is greater 
than or equal to the value (1) of information in P*. That is: 

( 1  - X K )  L. ( K  mod 2 ) ( l  - x ) x ~ " / ~ ~  + 2X(1  - 
2X - 1  < 2 ~ L ~ / ~ j + ~  - X~ - ( K  mod 2 )  ( 1  - X ) X f K 1 2 1  . 

The right-hand side converges to 0 as K -+ co, and the left-hand side is positive 
since X > 1 / 2 .  Therefore, this inequality can only hold for finitely many K. 

This completes the proof of Theorem 1. 

Given random vectors z and I, let & [ x l l ]  be the best linear predictor (that 
minimizes the mean-squared error) of x  conditional on I .  
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PROOF OF THEOREM 2: il. lower bound on the loss in both the computation and 
sampling problems is that of the-best linear prediction E[X~ I H,-l] conditional on 
Ht-l. (Recall that Ht is the history of all processes (i  = 1,2, . . . ) up to and including 
period t.) Let e,, be the error for this prediction of X,,, i.e., EL,  = &[Xtt / HtV1] -XZt. 

N 
Then {eLt, E P ~  , . . . } are exchangeable. The aggregate error is x,=, elt, and the per- 
unit expected loss is 

The theorem assumes Cov(Xit7 Xjt)  > 0. By Assumption 3, Cov(eiT, ejt) > 0. There- 
fore, this lower bound on the per-unit expected loss increases linearly in N. 0 

PROOF OF THEOREM 3: Let &=t be the information about process i in a t ,  SO that 
u,"=, gt = &. L et Stt be the sampling cost at time t for the observations of process 

N i, SO that XI=, St.t = St.  

Because processes {XIt}fo=, and {X,,},"=, are mutually uncorrelated for i f j ,  
the statistically-optima1 decision rule is 

Because I?[xit /I?it] is not correlated with Xjt and &[xjt /ajt] for j # i, the expected 
loss for this decision rule is the sum of the individual mean-squared errors. The 
total cost is then 

N 

C ~ [ ( x i t  - @ [ ~ i t / f i i t I ) ' l +  Sit . 

The sampling problem is thus separable over the processes. That is, the problem 
is to find the sampling policy for a single process that minimizes the long-run average 
of 

This policy should be used for all processes, whatever the size of the firm, and the 
per-unit cost for a firm is the minimized value of (2). Hence, returns to scale are 
constant. 

" For the computation problem, we show that, for any decision rule that satisfies 
the constraints on the amount of recent information that is processed, the per-unit 
gain from information processing converges to 0. 

Let dZt be the lag of the most recent observation in g*,. Then the expected loss 
is at least 

Ld E[(Xit - ~ [ ~ i t ( x % , t - d ,  Xi,t-d-1, . - -I) ' ]  . 

Because of computational delay (see Sections 2 and 3), the number of processes i 
for which d,, 5 d is bounded for all dl uniformly over t and N. Since each {XIt) is 
purely indeterministic, 

lim Ld = Var(Xit) 
d--tm 
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For b > 0, there is d such that Ld is within b of Var(X,,). Since d,, < d for 
boundedly many i, 

This convergence is uniform over t .  Since Var(Xit) is also an upper bound on the 
per-unit loss, attained by not processing any information, the long-run per-unit 
expected loss converges to Var(X,,) as N -+ m. 0 

PROOF OF THEOREM 4: We will show that the per-unit expected loss for any fixed 
decision rule, scaled by firm size, is a decreasing function of firm size. Note that 
"scaled by firm size" means that the prediction in each period is multiplied by a 
constant that changes with the firm size, not that the data used or relative coeffi- 
cients of the data change with firm size. Therefore, the computation or sampling 
cost of such a decision procedure is independent of firm size, and the per-unit com- 
putation or sampling cost is decreasing. Hence, a larger firm can always attain a 
lower per-unit cost than a smaller firm by imitating the decision procedure of the 
smaller firm. 

For the purpose of this proof, a decision rule is simply a sequence {A,) of ran- 
dom variables such that A, is independent of Zit (because the {Zit) are serially 
independent). We normalize so that the scaled version for firm size N is {NA,). 
The per-unit error for a firm of size N is 

Because .4, is independent of each Zit, each e y  is a noisy version of -A,. Further- 
N 

more, because the riskiness of xi=, Zit is decreasing (in the Rothschild-Stiglitz 
sense) in N (since the {Z,,, ZZt,. . . ) are i.i.d.), the riskiness of e y  is decreasing in 
N. Since Q is convex, E[Q(efl)] is decreasing in N. cl 

PROOF OF THEOREM 5: The sampling and computation problems axe treated sep- 
arately. 

-' 

Sampling problem 

We construct an upper bound AC(K, N) on the per-unit costs of a firm of size 
K N  such that AC(K, N) is strictly decreasing in K and is always strictly less than 
the per-unit cost of a firm of size N. 

Note that as  K -+ m, the difference between the per-unit costs of a firm of size 
K N  and the per-unit costs of a firm of size KN i- j, for j = 1,. . . , N, diminishes to 
zero. Therefore, it follows also that returns to scale are eventually increasing. 
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Let A? be the optimal policy of a firm of size N, with sampling costs Sp and 
per-unit error E?. A firm of size K N  can replicate the policy of a firm of size N as 
follows: It divides itself into K divisions of size N. Each division uses the sampling 
policy of the firm of size N and calculates an estimate of the sum of the processes 
in the division in the same way that firm N does. Let Ag be the "decision rule" 
of division k, and let €2 be the per-unit error for this division. The firm then 

h' K uses Ck=, A; as its estimate" of Xt7  and its per-unit error is ( l /K)  Ek-, - EE. Let 
AC(K, N )  be the per-unit costs of a firm of size KN when it uses this sampling 
policy and decision rule. 

As constructed, {E:, cf, . . . ) is an exchangeable sequence of random variables and 
K 

the riskiness of Xk=, E$ is decreasing in K ,  according to the following facts: 

If {xl,  x2, .  . . ) is an exchangeable sequence of random vectors and if f is a 
measurable function of {xi+,, xi+2, . . . , X~+N), then 

is an exchangeable sequence of random variables. 

If {xl, x2, . . . ) is an exchangeable sequence of random variables, then the risk- 
K 

iness of Ek=, xk is decreasing in K.  (This is a simple extension of the same 
property for a sequence of i.i.d. random variables.) 

The expected per-unit loss of a firm of size KN is E [Q (k x;=, eg) ] . The risk- 

iness of + ~ f ,  E& is decreasing in K and '$ is convex; therefore, E [Q (+ EL, €;)] 
is decreasing in K .  Hence, the expected per-unit loss is decreasing when firms repli- 
cate the decision rule of fkm N.  The per-unit sampling costs are constant. Hence, 
the overall per-unit cost AC(K, N )  is decreasing in K.  This is the desired upper 
bound on per-unit costs of a firm of size K N .  It is decreasing in K and it is strictly 
less than the per-unit costs of a firm of size N,  since these are equal to AC(1, N ) .  

Computation problem 

Under the additiona1 assumptions for the computation problem, if additive con- 
stants are used optimally, the per-unit expected loss is an increasing function of the 
variance of the per-unit error: 

If XI'(€) = c2, then the additive constant is set so that the mean of the per-unit 
error is zero, and so the per-unit expected loss is equal to the variance of the 
per-unit . error. 

"Note that this estimate of X t  typically does not make optimal use of the information that has 
been sampled because the prediction of each process should be conditioned on all the information 
that has been sampled, rather than only the information sampled within the process's division. 
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r If instead the stochastic processes are Gaussian, then so are the per-unit errors. 
Let el and e2 be pei-unit errors for decision rules that make optimal use of 
additive constants. Suppose Var(el) < Var(e2). Let 7 be a constant such that 
el + 7 and e2 have the same mean. Since variance is a measure of risk for 
Gaussian random variables and since 9 is convex, E[9(el + q)] < E[Q(e2)]. 
Since the decision rules use constants optimally, E[S (el)] 5 EL9 (€1 + q)] .  

Hence, without loss of generality, we measure (ordinally) the per-unit loss by the 
mean of the squared per-unit error. 

By assumption, {Y , )  and {Z,,) are AR(1) processes, which we write 

yt = yY,-1 +V, 

Zit = pZi,t-l + Wit . 

{V,) and {Wit) are noise processes. Assume that y = p = 1. The processes are then 
not stationary. However, we will claim later that our calculations vary continuously 
with y and p, and we will only need y and /? close to 1. Setting y = ,B = 1 now 
simplifies the calculations. Assume also that Var(V,) = 2 and Var(Wlt) = 1. 

In this proof, firm N means a firm of size N. 

Intuition: Firm I can make a good prediction of Xt just by observing X1,t-l. 
Firm 1 cannot differentiate & and ZZt with this data, but it does not need to. Firm 
N (for large N )  cannot make such a good prediction of each Xlt, because it cannot 
use recent data about most of the processes. However, for large N what is really 
important is predicting Y, (a law-of-large-numbers effect diminishes the per-unit loss 
from errors in predicting the Z,,). The idea that predicting Y, is all that matters 
for large N applies to the sampling problem a s  well, but in the sampling problem, if 
firm 1 can observe Xl,t-l, then firm N can observe X,,t-l for each i. Hence, for large 
N ,  it gets many noisy observations of yt-, and can get a precise estimate of I L 1 .  
In the computation problem, however, the number of rioisy observations of Y,-, is 
bounded for each s, and so the prediction of Y,  may have a greater mean-squared 
error than firm 1's prediction of X,. 

/ 

MSE for firm 1: Firm 1 can compute EIXtlXl,t-l] = Xl,t-l with one manager, 
and this is the statistically-optima1 prediction since Xt  = Xlt = X,,,-, + + Wit. 
The mean-squared per-unit error is 

MSE for firm N: We construct a lower bound on the mean-squared per-unit 
error for large firms. 

Consider the data from dates t - 1 and t - 2 that firm N can use to compute At: 
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Case 1 andXl,t-21 forsomei. 
Case 2 X,,,-, and XJ,t-2, for some i and some j # i. 
Case 3 X,,t-2 and X,,,-2, for some i and some j # i. 

(See Figure 6.) In addition, the firm could use data from periods t - 3 and earlier, 
but any such data is strictly less valuable than being able to condition the prediction 
on Ke3 and {Zl,t-31.. . , ZN,t-3). Thus, to construct a lower bound on the MSE, we 
assume that firm N can compute a statistically-optima1 prediction of X,, conditional 
on one of the pairs of data listed above together with YL3 and { Z I , ~ - ~ ,  . . . , ZN,,-3). 

Consider Case 2. E.g., the firm uses Xl,t-l and X2,t-2. Given that the firm 
knows Ke3 and Zz,t-3, and hence X,,,-,, the problem is to estimate 

from 

Let B = @[B I B1, B2]. Since E[B] = EIB1] = E[B2] = 0, B = alBl + a2B2 for 
some constants al and a2 (i.e., there is no constant term). Given the estimate .@ 
of B, the firm sets At = NB + EN, Xl,t-l. Then the mean-squared per-unit error 
E[(B - B ) ~ ]  is equal to 

.- 
Solving the first-order conditions for minimization yields al = 417 and a2 = 217. 

The minimized value of (3) is thus 3 + 117 + 3/N, which is greater than 3. Similar 
calculations show that the minimized mean-squared per-unit error for Cases 1 and 
3 are even larger (3 + 113 + 3/N and 4 + 4/25 + 3/N, resp.). 

Hence, for large firms, the mean-squared per-unit error is greater than 3, which 
is the mean-squared per-unit error that we calculated for a firm of size 1. 

Note that this prediction problem, using K-3 and Zl,t-3, involves extrapolating 
the processes only finitely many periods. Therefore, this lower bound on the per- 
unit loss depends continuously on y and P. The per-unit loss and the managerial 
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costs for firm size 1 also depend continuously on these parameters and on the wage. 
By setting y and P close enoiigh to 1 and w close enough to 0, we can still find N' 
and 6' > 6 > 0 such that the mean-squared per-unit error plus per-unit managerial 
costs of firms of size N 2 N' is greater than 6' and the mean-squared error plus 
managerial costs of firms of size 1 is less than 6. Therefore, there is an optimal firm 
size. 
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