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Abs t rac t  tribution. Often the comparison of two or more ROC 
We address the problem of comparing the performance of Curves consists of either looking a t  the Area Under 
cl,asqitiers. In t h ~ s  paper un. study techniques for generat- thc Curvc (AUC) or foct~si~lp, G ~ I  a particular pnrL of 
i n e  and evaluatlne bnllds on ROC curve. 11s. the curvcc and idr~~tiiying \vlli<:l~ vurvr ~lon~i r~a les  the 
~~~ - - ~ ~ ~ ~ ~  ~ ~ ~~ - 
toricallv this has been done using one-dimcnsionnl ~ ~ n f i -  other in order to select the best-performing algorithm. 
dence intervals by freezing one variablethe falsepositive 
rate, or threshold on the clsssification scoring function. We 
adapt two prior methods and introduce a new radial sweep 
method to generate confidence bands. We show, through 
empirical studies, that the bands are too tight and in- 
troduce a general optimization methodology for creating 
bands that better fit the data, a~ well as methods for eval- 
uating confidence bands. We show empirically that the 
optimized confidence bands fit much better and that, us- 
ing our new evaluation method, it is possible to gauge the 
relative fit of different confidence bands. 

1. Introduction/Motivation 
We address the problem of comparing the performance 
of cln%ifiers. Receiver-Operator Characteristic (ROC) 
analysis is an evaluation technique uscd in signal datcc- 
tion theory, which in recent years has seen an increas- 
ing usc for types of diagnostic, machinolearning, and 
information-retried systems (Swets, 1988; Provost. & 
Fawcett, 1997; Ng & Kantor, 2000; Provost & Fawcett, 
2001; Macskavy ct al., 2001). ROC graphs plot false- 
oositive (FPI rates on the x-axis and true-positive ~. 
(TP) rates on the y-axis. ROC curves are generated in 
a similar fashion t o  precision/rcc~ll rnrvrs, hy varying 
a threshold across the output range of ascoring modcl, 
and observing the curl-esponding clas~ilication perfor- 
mances, Although ROC curves arc isomorphic to pre- 
cision/recall curves, they have the added benefits that  
they are insensitive to changes in marginal class dis- 
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Much less attention has bwn given t o  robust statisti- 
cal comparisons of ROC curves. This paper addresses 
the creation of confidence bands on ROC curves. Prior 
work has considered sweeping across thraholds on the 
classification scoring function, creating confidence in- 
tervals around the TP/FP  points for various thresh- 
olds (Fawcctt, 2003), or sweeping across the F P  rat- 
and creating vertical confidence intervals around av- 
eraged TP levels (Provost et  al., 1998). Confidence 
bands could be created by connecting these confidence 
intervals (as we will show). We examine 1 - 6 confi- 
dence bands on a model's ROC curve. We ask whether, 
assuming test examples arc drawn from the same, 
fixed distribution, one indeed should expect that  the 
model's ROC curves will fall within the hands with 
probability 1 - 6. 

Figure 1 shows an example of what such prototypical 
confidence hands should look like with 6 = 0.05. In the 
figure, any ROC curve that  does not lie completely in 
the shaded area would be said to be different from the  
mean curve with a 95% confidence. 

In this paper we examine methods for creating and 
evaluating such confidence bands for a given learned 
model. As we will show, thc bands created by prior 
techniques arc too tight. We ir~troduce a IILW lecll- 
nique that  creates more realistic bands bascd on an 
empirical distribution. To these ends, we describe a 
framework for evaluating the fit of ROC confidence 
bands. 

The rest of the papcr is organized as follows. The next 
section discusses related work on creating confidence 
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Protowoe Confidence Bands 
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Figure 1. Prototype ROC Confidence Bands 

intervals for ROC cllrvcs, followed by a scction d o  
scribing our methods for generating ROC confidence 
bands from confidcncc intcrvals. Wc then dcscribc 
our evaluation methodology and a casc study showing 
that  our initial methods do not perform as well as cx- 
pected. Wc then dcscribc a general optimization-bawd 
methodolorn that  can be applied to cach of thc band- 
generating tcchniqucs, and discuss a pcrhaps more rca- 
sonahle evaluatron measure and finally revrslt the case 
study using the optimized method. 

2. Related Work 
Prior work on creating confidence intervals for ROC 
curves has for the most part been in the context of 
creating one-dimensional confidence intervals. 

Pooling is a technique in which the i-th points from all 
the ROC curvcs in the sample arc averaged (Bradley. 
1997). This makes a strong assumption that  the  i-th 
uoints from all thcso curvcs arc actually estimating the 

subset of thresholds among thc sortcd set of all thrcsh- 
olds secn across thc set of ROC curvcs in thc sam- 
ple. For each of these thresholds, it identifies the set 
of ROC points that would bc generated using that 
threshold on cach of thc ROC curves. From thcsc ROC 
points, the mean and standard deviations arc gcncr- 
ated for the FP and TP rates, giving the mean ROC 
point as well as vertical and horizontal confidence in- 
tervals. 

Medical researchers also have cxamincd thc use 
of ROC curves and havc introduced perhaps the 
most comprehensive techniques for creating confidence 
boundarics. One such tcchniquc is similar t o  that  
of threshold averages in that  it creates a confidence 
boundary around each of the N ROC points associ- 
ated with N discrctc cvcnts in an  undcrlying model 
(Tilbury et  al., 2000). I t  does this by considering each 
axis as independent and considering an N-dinrensional 
vector along each axis, where the i-th elemcnt in the 
vectors roprcsont thc 6 t h  point in thc ROC curvc. 
Discrctiaing the vahlos and assuming a binomial dis- 
tribution, it then generates a probability distribution 
of the likelihood that  thc j-th valnc lies in each dis- 
cretized ccll. It map this probability density back into 
ROC space thereby generating confidelice boundaries 
for each point in thc ROC curvc. Thcsc models are 
very complex and are not tractable for a large set of 
ROC points as is typically found in tbc ROC curves 
common in machinc lcarning studies. 

Others have lookcd the simpler problem of comparing 
an ROC curve to that  of the expected performance of 
a random model (Macskassy, 2003). As the true the* 
retical bands can be gcncratcd undcr thc asqumption 
of a random predictor, this method was used to gcn- 
erate an  ROC confidence band around the expected 
random performance given a specific test set. 

Use of the bootstrap (Efron & Tibshirani, 1993) as a 
same point in ROC space, which is at hmt a d o ~ ~ b t f n l  morc robust s a y  tocvalr~ateexpcctcd perforrnancc has 
a+sr~motio~i ~,rcviot~sly hrrn llr~rl for e v i l l u ~ t i n ~  cost-scnzitivp daq- 

Vertical avemging looks a t  successive F P  rates and av- 
eragcs the  T P s  of ml~ltiple ROC curves a t  that  F P  rate 
(Provost et al., 1998). By freozing the F P  ratc, it is 
possible t o  generate a (parametric) confidence inter- 
val for the T P  rate based on the mean and variance; 
multiple cnrvos are generated using crossvalidation or 
other sampling tcchniques. A potential weakness of 
this method is the practical lack of indcpcndent con- 
trol over a modcl's folsc~ositivc ratcs (Fnwcctt, 2003). 

sifiers (Margineantu & Dietterich, 2000). In this work. 
bootstrapping was used t o  repeatedly draw prcdictions 
p ( i ,  j) ,  whcre p(i, j )  is the probability that  an instance 
of class j was prcdictcd t o  be in class i. Using thesc 
sample predictions: it was possible to generate a final 
cost based on a cost-matrix. They did this rcpcatcdly 
to generate a set of estimated costs, which they then 
used t o  generate confidence bounds on expected cost. 

(WC also show that thc distributional assumptions t y p  3. Generating Confidence Bands 
ically uscd with this technique are violatcd in our case In this section we describe our methodology for gen- 
study.) erating confidence bands for R. classification model or 

Threshold to ovcrcomc the modcling algorithm. The main aswmption wc make 
of the vertical by freezing for being able to generate these confidence bands is 

thresholds of thcscoringmodel rather than the  FP ratc that can generatc (or arc given) a 
(pawcett, 2003). I t  chooses a uniformly distributed CUrVCS. T h s c  Can bc generated by rllnning a learning 



algorithm on multiplc training sets, testing on multiple 
testing scts, or resampling the same data. Thcse ROC 
curves will be used to  generate confidence bands about 
an average curvc. Wc adapt two cxisting mcthods: 
vcrtical averaging and threshold averaging for gencr- 
ating confidence intervals. We also introduce a new 
radial-sweep method, which generates bands based on 
a radial sweep of the curves as we describe below. 

Our methodology comprises the following steps. 

1. Creating a distrihution of ROC Curves 
2. Generating 1-dimensional confidence intervals 

Choosing a distribution 
Swecping acres? the ROC curves 

3. Creating confidence bands fronl the confideuce ill. 
tcrvals 

3.1. Creat ing t h e  Distribution of R O C  Curves  
There cxist various ways of generating a distribution 
of instances from which to generate a confidence in- 
terval. The most common mcthods, including Cross- 
validation (Kohavi, 1995), repeatedly split a data set 
into training and test sets. Each such split gives rise to 
a learned modcl, which can be evaluated against thc 
test s e t  thcrcby gcncrating one ROC curve per split. 
Although to our knowledge it has not bcen uscd bo- 
fore to  generate multiple ROC curvcs, bootstrapping 
(Efron & Tibshirani, 1993) is a standard statistical 
technique that creates multiple samples by randomly 
drawing instances, with replacement, from a host sam- 
ple (the host sample is a surrogate for the true popu- 
lation). We will describe how we use bootstrapping in 
Section 5.3. 

3.2. Genera t ing  1-Dimensional Confidence 
Intervals 

3.2.1. DISTRIBUTION ASSUMPTION 
Most methodologies assume a normal distribution, hut 
it may be that ROC points are not distributed nor- 
mally. For example, for a givcn x-value (FP rate) the 
y-value (TP ratc) is a proportion. So a binomial d i s  
tribution may be appropriatc. Wc considcr thrce d i s  
tributions for creating confidence intervals: normal, 
binomial, and empirical. Let us assume that we are 
givcn a sample distribution D of points along some 
dimension and a confidence threshold of 6. 

We generate confidence interval? under the assump 
tion of a normal distribution by calculating the mean 
p a n d  standard deviation o of 'D. We then look up 
the statistical constant, z,  for a twwsided bound of 
6 confidence on a distribution size of ID1 giving us a 
confidence interval of p * .z . a. 

For thc binomial distribution, wc calculate the variance 
as V = 1 1 .  (1 - IL) ,  thus giving confidence interval 

Pf 2.G. 

For an emptncal dtstnbutaon we sort the values of 'D 
and choose UI and u,.. such that vl is thc value is smaller 
than 9 of all valucs and v, is larger than 9 of all 
valucs, thus 1 - 6 of all valucs lic bctwccn q and u,,. 

We will examine these tlucc techniques for calculating 
1-dimensional intervals (a.e., givcn a sample distribu- 
tion of valucs for one variable). If not statcd othcrwisc, 
results presented will be based on the empirical distri- 
bution. 

3.2.2. SWEEP METHODS 
So what are these dimensions along which the confi- 
dence intervals will be created? These are defined by 
how onc :'swccpsn across the collection of ROC curves. 
A sweep samples the set of points that define a point 
on the average ROC curve and the confidence inter- 
val about it. We use three different sweep orientations 
to  sample ROC points. The first two are adaptations 
from existing methods nnd the last, the radial sweep, 
is a method wc introduce in this paper. 

The uerttcal sweep method sweeps a vcrtical line from 
F P  = 0 to FP  = 1, sampling thc distribution of TPs 
from the collection of ROC curves a t  regular points 
along the sweep. For each such sampling at  a fixed 
FP, TP confidence intervals can be created using any 
of the distribution assumptions mentioned above. 

The threshold sweep method works a little differently 
than the vertical sweep. It swoops along the thresh- 
olds on the model scores from -m to  +m, sampling 
the distribution of ROC points generated with each 
threshold. It thcn gcneratcs thc mean (FP,TP) point 
for each sampled threshold and finds the confidence 
intervals of the FPs and TPs, using any of the distri- 
bution assumptions mentioned above. 

Both of these consider only the r or y axis as the 
axes for orienting the confidence intervals. The draw- 
back with both of these is that they do not take the 
curvature into account. For example, vertical inter- 
vals will tend to  be much wider for smaller FP  rates 
than for larger FP  rates (due to the slopes of the 
curves). In fact, for cost-sensitive classification cor- 
responding points on different ROC curves are points 
wherc thc tangent lines to  the curves have thc same 
slope (Provost & Fawcctt, 2001). Thus, one might ar- 
gue that iL is proper to have confidence intervals that 
are normal to an average curve. Producing intervals 
normal to  an average curvc is not easy (nor even well 
defined); for this paper we introduce a straightforward, 
intuitive approximation. 

For the mdzal sweep method, rather than freezing the 
threshold or the FP  ratc, wc instead do a radial sweep 
of the glven curves by affixing one end of a vector to 
the lower right corner (at position (1,O)) and swceping 
it radially from (0,O) to  (1,l). At fixed angular Inter- 
vals, we sample the points where all thc givcn ROC 



Figure 2. Transforming vertical sweep into confidence 
hands. 
curves intcrsect the vector. For each such sampling at  
angle 0-...wl~icli ranges from 0 a t  (0,O) to 5 a t  (1,l)- 
and for each ROC curvc, we gct a polar coordinatc 
(@,length) whcrc thc curve intersects thc swccp vcctor. 
The length in the polar coordinata (the distance of the 
point from thc Iowcr right corncr) is thc variable for 
which we will compute the confidence interval-again 
using any of the distribution assumptions mentioned 
abovc. Although thc sweep vcctor rarely is truly or- 
thogonal to the ROC curve tangent a t  any given in- 
terscction, the sweep method does provide us with a 
straightforward approximation. 

"P. qf.~~~~~~,~n?,"~gP~~;&~,~%c'~dhFd:8f~~o"~t,"'85% 
confidence bound throughout this paper. We did 
test with othcr 6's (0.10 and 0.01) wiLlr silirilar 
results as those prcsentcd bclow. 

2. The distribution assumption undcr which the con- 
fidence intervals are generated. We test under all 
t h r ~ r  distribrition assumptions mcntioned above: 
normal, binomial, and cmpirical. 

3. The set of points to samplc along the  sweep, which 
we set to a uniformly distributed 100 points. This 
number can be changed depending on how fine- 
grained a curvc is nccded.' 

3.3. Crea t ing  Confidence B a n d s  f r o m  
Confidence Intervals 

3.3.1. VERTICAL SWEEP 
Vertical swccp can be adapted directly t o  generatc con- 
fidence bands rather than a set of distinct confidence 
intervals. What wc do is t o  consider all the upper 
Ilowerl interval ooints as the ooints makina UD the 

Figure 3. 'ltansforming threshold sweep into confidence 
bands. 

Figwe 4. Transforming radial sweep into confidence hands. 

two confidence intervals. In this paper we chose the 
simplest approach: discount the confidence interval 
for FP and only use the confidence interval for TP. 
Becausc of this, thc bands wc gcncratc turn out to bc 
somewhat conservative and containmcnt probably is 
underestimated. Figure 3 illustrates the transforma- 
tion as well as the drawback. In the figure, we clearly 
see that  some FP intervals reach outside the confidence 
hands (oppositc to thc vcrtical intervals, thc horizon- 
tal intervals will tend t o  be larger for highcr F P  rates). 
We are currently investigating more robust and better- 
performing ways t o  generate confidence bands from 
threshold sweeps. 

3.3.3. RADIAL SWEEP 
As wiili t l~r  vertical sweep method, grnrraliug 111rro11- 
fidence bands from this method is stra~ehtlorward. For - 
each sampled vcctor at angle 0, wc can gcncrate the far 
(near) point from the polar confidence intervals which 
we then map back into ROC spacc t o  gcncrate the 
points for the upper (lower) confidence band. Figure 4 
illustrates how this method is applicd. 

\ - -, 
upper (lower) band. Figure 2 illustrates this method- 4. F,valnatinn - . - . -- - - - - - - - 
o~&Y. For (0.00 through 0.99-1.0 always has ~h~ key question we ask in this paper is how good are 
a T P  of 1-00), wc gcncrate a Of possible these hands? As with confidence intervals on a single 
TPs Curves and generate variable, we would likc t o  bc able t o  say that  givcn a 
the hands based on this distribution. 6. thc bands zcncratcd can bc exocctcd to fullv con- 
3.3.2. THRESHOLD SWEEP tain thc curvcfrom a givcn modcl kith a probability of 
This mcthod is a little more problematic t o  adapt to 1 - 6 (assuming that  new test instances conlc from the 
our framework as thcrc are various ways to dcal with samc distribution). As wc will show, for none of the  

mcthods proposcd abovc docs this hold. Later, we will 
'While this is a free variable that will have some effect introduce an optimization method below for gcncrat- 

on the overall fit of the bands, we do not investigate its 
effect in this paper. ing bcttcr bands, as well as ncw evaluation mcasurcs 

that give a sense of how well the bands do fit. 
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5. Case Study Radial Sweep Bands - Empirical Distribution 
5.1. Data 
Wc now present a casc study using the Covertypc data 
set from the UCI rcpository (Blake & Merz, 1998). 
We chose this data set bccause its large size enabled 
us to do more in-dcpth testing, across a widc range of 
training- and tcst-sct sizcs. The Covcrtype data set 
consists of 581,012 instances having 54 features, 10 
being numerical and the rest being ordinal or binary. 
Whilc it has scvcn cla~sos, thcrc is a largc variation 
in class membership sizcs. To study the ROC curves, 
wc chose cxamples of the two classes with the most 
instances, giving us a data set of 495,141 instances 
(57.2% base error rate). 

5.2. Learning M e t h o d  
We use a modified C4.5R8 (Quinlan, 1993) that gen- 
erates a Probabilily Estiloabion Trcc (PET) (Provost 
& Domingos, 2002). PETS are generated by consid- 
ering thc predictions made for cach lcaf in a dccision 
trcc. If a lcaf match- p positive examples and n neg- 
ative cxamples, thc probability of class membership 
in the posilive cxamplc is +. Furthcr, to produce 
a bcttcr clasu-probability atlmate,  we apply a simple 
Laplacc correction (Niblett, 1987) under the assump- 
tion of uniform class distrihnt,ion & for C clxsses - 

giving us a final probability estimate of a, as wc 
havc 2 classcs. Further, we do no pruning of the trcc; 
as standard pruning does not consider differences in 
scores that  do not affect 011 lass (but may deflate the 
ROC curve) (Provost & Domingos, 2002). 

5.3. B o o t s t r a p b a s e d  Evaluation 
To generate and evaluate confidence hands, we use the 
following mcthod bascd on a bootstrapped empirical 
sampling distribution. 

1. Randomly split the complete data set into a train- 
ing set of 256,000 instanccs and a test sct of 
125,000 instanccs, keeping thcse two sets disjoint. 

2. Sample with replacement from each of these two 
sets to generate a training set, multiple "fitting" 
scts, and multiple test scts: 

(a) Fix the training size, sample a training set of 
that size, and learn a classifier. 

(b) Fix the test size and repeatedly generate "fit- 
ting" sets of that  size. For each fitting set, 
gencrate an ROC curvc for the model. Thc 
result is a set of ROC curves, one per fitting 

125 instances - 
625 instances 

1250 instances 
12500 instances - 

False Positive 
Figure 5. ROC Bands using various test sizes. 

ROC curves fall completely within the gcn- 
erated confidence bands. 

This methodology has thrcc parameters: thc training 
sizc, the tcst sizc, and thc number of sampling runs 
used in step (h) t o  generate the confidencc curvcs. We 
examinc the sensitivity to cach of these parameters in 
the next sectlon. Note that  for this paper, we do not 
considcr variancc in curvcs duc to thc training set 
only confidence bands on the ROC curve of a partic- 
ular (learned) classifier However, a similar methodol- 
ogy would apply to the generation of confidence bands 
for a lcarning algorithm. 

5.4. Trends i n  Confidence B a n d s  
In this section wc cxamine the experimental paramc- 
ters identified above, and choose values for our eval- 
r~atinn. Unless stated othcrwisc, wc will nsc the  ra- 
dial sweep mcthod under the empirical distribution 
assumption for the figures presented. All other sweeps 
and distributions had similar performances, though 
this combination is the best performer among the 
methods described thus far. 
5.4.1. TRAINING SIZE 
This paramctcr is thc lcast interesting for this particu- 
lar casc study. As the  training sizc increases, the ROC 
curves become higher as would bc expected. Howcver, 
while this has some effect on the width of the confi- 
dence bands, it is more a matter of considering differ- 
ent lcarncd modcls than of how t o  generate good bands 
for a given modcl. As such, we do not consider this t o  
he an important dimension for furthcr discussion here 
and fix the training size t o  1000 instances. 
5.4.2. TEST SIZE 

set. ' k t - se t  size should have an obvious effect on the bands 
(c) Generate confidence bands based on the ROC generated. We fixed the test size to 125. 625, 1250, 

curves generated in the fitting step (b). 6250.12500 and 25000 instanccs 10.1%. 0.5%. 1%. 5%. . . . 
(d) Do 1000 sampling runs. For each run we pick 10%) and 20%, respectively, of the complctc tcst set). 

a test set using the samc sizc as in (h), from As the test-set size increases, the approximate confi- 
which we thcn generate an ROC curve. \Ve dcncc intervals gcnerated by any of our swccp mcthods 
thcn calculate how many of the resulting 1000 become narrower and therefore so do our confidence 
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Radial Sweeo Bands --- Em~iricat Distribution binomial 

Table 1. How many ROC curves fall within the bands 

1 of each method using a given distribution for generating 
bands? 6fittinP is the percentaae of samples used to pener- 

I 1 0 4  tk// ate the bandsand 8,.., is the percentage of samples ;raw" 
. 

C. afterwards IOmns - 
100 NnS 

1000 runs - 

False Posltive 
0.2 014 0.6 0.8 I 

Figure 6. ROC Bands using varying number of sampling 
runs. 

bands. This is a general statistical property ---with too 
few samples, the estimate of the confidence interval 
t.ends to be inaccurate and biascd t o  be too wide. Thc 
same thing is happcning in the ROC space. Figure 5 
illustrates this effect clearly. 

To limit our presentation for this paper, we fix the test 
size to 12500, though the  results hold for other sizes 
as well. 

5.4.3. NUMBER OF SAMPLING RUNS 
Tho number of sampling runs used t o  create the em- 
pirical distribution (step 2(b) in Section 5.3) is the 
last free parameter tha t  we consider. In order t o  gen- 
erate thc ROC bands, wc nced to have a sample of 
ROC curvcs from which to generate these bands. Thc 
question to answer is how many such ROC c u r v e s ~ ~  
t,he nrlmber of sampling runs--are needed t o  generate 
reasonable bands. While the effect of this variable is 
not as  intuitive as the test or training size, it still does 
have an effect as can be seen in Figure 6. While the 
lower band is fairly stable we scc that  the upper band 
widens with more sampling runs. (This would bc  ex- 
~ e c t e d  from a distribution with a long tail.) - 

As we ohscrvc from Figurc 6, the upper bands bctwecn 
using 1000 and 5000 sampling runs were very similar. 
Based on this observation, we fix the number of sam- 
pling runs t o  1000, though our results hold for other 
valucs as well. 

5.5. H o w  G o o d  Are The Bands? 
Having fixed our experimental parameters, let us now 
ask our main question: do the 1 - 6 confidence bands 
actually contain 1 - 6 of the cmpirical distribution? 
Our mechanism allows us to ask two variations on t l~ i s  
question: do the bands contain 1 - 6 of the "fitting" 
distribution? Do the hands contain 1 - 6 of the "test" 
distribution? 

As per our bootstrap-bascd methodology, we randomly 

125 in*- - 
621 inswncsr 

1250 inunar  
12100 hmnocr -- 

F a l r  Posldre F a l x  Po~larc  

Figure 7. Comparison of bands generated under the empir- 
ical and normal distribution assumptions. 

sampled test sets of size 12,500 with rcplaccment from 
the original tcst w t  of 125,000 and counted how many 
of the 1000 ROC curves fcll within cach band. Wc 
did this for caeh of our thr: ~ ~ ~ c t l ~ o r l s  lising cach of 
the three distribution assumptions. Table 1 shows how 
many ROC curves fall within the hands of cach mcthod 
using n. given distrih~ttion nssurnpt.ion for generating 
the bands. dfitting is the percentage based on the "fit- 
ting" samples that  wcrc uscd t o  generate the bands 
and 8,..,, is thc percentage of ROC curves based on 
samples drawn after the bands had becn generated. 

Snrprisingly, none of the bands get anywhere near the 
95% that  we would expect. In particular, we sec that 
the binomial distribution assumption generates very 
bnd hands and that neither thc vcrtical sweep nor 
threshold swccp methods perform as well as the radial 
sweep method.~ntcres t ingly ,  bands generated under 
the normal distribution assumption did not pcrform as  
well as the hands gcneratcd under the empirical dis- 
tributiun. Figurc 7 SIIOWS the b w d s  generated undcr 
these two distribution assumptions sidc by sidc. Note 
tha t  they are vcry similar in shape, though the em- 
pirical distribution bands arc much more jaggcd. The 
cmpirical hands are noticcably widcr (on tlic "high" 
side). Worlld one axpect ROC curves t o  be distributcd 
normally with rcspcct t o  the vertical, threshold, or ra- 
dial dimensions? We do not have a good answer, but  
the empirical bands do seem to fit better. 

\%%at remains t o  be addrased is the poor containment 

2 ~ e c a l l  that the bands generated by the threshold sweep 
method are overly conservative and that better bands may 
be found with a better connecting method. 
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e thod  I 6fittinp. I 
opt-radlal 1 98.8% / 86.2% 

Table 2. Percentwe of curves contained within the bands 
generated by the optimized radial sweep method. 

of the bands. While the radial swccp method produced 
the b e t  fit,, it still fell far short of the expected con- 
tainment of the empirical distribution of ROC curves. 
Is it possible to producc better bands? Is there a bet- 
ter way to evnluate ROC bands? Thc rest of the paper 
presents first steps toward answering these questions. 

6. Optimized ROC Bands 
None of thc mcthods pcrformcd as cxpected, cven on 
the ROC curves (the fitting curves) that were used to 
generate the bands in the first place. We propose to 
rcvisit the way in which these bands were generated 
and optimize them such that they fit the empirical 
distribution of curves bcttcr. To do so, we use the 
following optimization methodology: 

1. Gcncratc an cmpirical distribution using a 
method appropriate for thc problem domain (e.g., 
our bootstrap mechanism). 

2. Select a method for generating bands (e.g., ra- 
dial swcep) based on somc underlying distribution 
(e.g., the cmpirical distribution). 

3. Optimizc the bands with respect to an objective 
function that is suitable for thc problem domain. 

We instantiate this methodology by generating the 
sampling distribution as given before. Because the 
radial swccp mcthod performed well using the cmpiri- 
cal distribution, we choose thcsc as the basclinc from 
which we will optimize. For thc uptintisaliol~ step, lor 
this paper we adopt a very simple mcthod. 

1. For each sampling in thc radial sweep generatc a 
sct of polar coordinates. Let 0, be thc angle of 
the vector uscd to draw this sample, and lct N be 
the number of ROC curves in the distribution. 

2. Sort the values by icngth, giving us thc sorted sct 
le ..,I < ... < ~ B , , N .  

3. Starting at  the outermost bands ( L  = 1 and U = 
N), wedefine the candidate lower band as the set 
of points l e . , ~  for i = 1 . . . N and the candidate 
t~pper band as the sct le.," for i = 1 . . . N. Sct 
W to the number of curves in our sample that fall 
completely within (or lie on) these bands. 

4. Increase L by 1 and dccrcase U by one and recal- 
culatc W. 

5. Continllc until the candidate bands contain fcwer 
than 1 - 6 of the "fitting" curves and use U + 1 
and L - I to generate the final bands. 

Table 2 shows thc pcrforlnancc of this Optimized Ra- 
dial Swcep mcthod, opt-radial, using thc samc cvalua- 
tion as hcfore with samc paramcter settings. As wc can 
sw, this method was nhlo 7.0 generate bands that had 

Figure 8. Example of point outside the curve 

a better containment than thc non-optimized meth- 
ods. However, it still did not fit the test set as well as 
expected. 

7. Evaluation Revisited 
One possible explanation for the below-expected con- 
tainmcnt cven of thc optimized method is that maybe 
there is no good way to generate bands that fit well 
due to the chaotic behavior often found in ROC curvcs 
where they crisscross many times (as seen in Figure 6). 
With curves such as  thesc it may be unlikely to be able 
to do any better than the convex hull in order t o  get 
thc expected containment. Looking morc closely, the 
convex hull of the fitting samples used to generate the 
bands might still not be enough. If even one point 
falls outside thc convcx hull as shown in Figure 8, the 
complete curve is not contained. If the fitting samples 
are chaotic and crisscross many timcs, why wonld ncw 
samples behave differently? They may be very likely 
havc at  least one point outside the bands found in thc 
original samplcs. Maybe wc should not require the 
bands fillly contain an ROC curve, but instead to con- 
tain "almost all" of the ROC curve. If we can quantify 
"almost all" then wc can evaluate how well the bands 
fit the data with respect to this measure. 

The measure we use for this evaluation is based the 
percentage r of the points of an ROC curve that falls 
outside the bands. For a set of confidence bands, we 
calculate r for cach of the ROC curves in the cmpirical 
distribution, and idcntify i such that 1 - 6 of all the 
curves have t 5 i. To use such 6.6 confidence bands, a 
new ROC curve would be considered statistically dif- 
ferent if more than 3 of its points fall uutsidc the bands. 
We can then evaluate the fitness of a type of band by 
assessing its i. 

8. Case Study Revisited 
Wc now revisit our casc study and compute the Z's 
for cach mcthod. Figure 9 graphs, for our four sweep 
mcthods using the empirical distribution, thc pcrcent 
of curves contained as we increase r.  The vertical 
line is 95% (1 - 6) containment. As is clear from the 
graph, the optimizcd radial swccp outperformed all the 
othcr methods though all methods were able to achicve 
95% rantainment a t  varying rs. Tablc 3 shows the i's 
needed by each mcthod using thc normal and empiri- 
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cal d i~ t r ibu t ions .~  For example, the optimized swccp 
completely contained (by construction) tho 95% of the 
fitting curves, and required r = 0.02 to contain 95% of 
the twl  curvcs. The othcr methods required considcr- 
ably higher r values t o  achicvc 95% containment. 

9. Discussion and Limitations 
In this papcr we evaluated various methods for gcn- 
erating confidence bands for ROC curves. We in t ru  
duced a new radial sweep method for generating con- 
fidence bands around the ROC curve and developed 
a ~ c n c r a l  framework for optimizing such bands using 

Table 3. What r's are nceded to achieve a 95% contain- 

empirical 
itrain itar 
0.0000 0.0208 
0.1765 0.1250 
0.2843 0.2500 
0.5588 0.5417 

bootstrapping tcchniqnes. Wc showed that  methods 
based on existine tcchniaues ~roduccd bands that  wcrc 

normal 
Ptrain ZL..L 
- - 

0.2353 0.2083 
0.2451 0.2245 
0.5588 0.5306 

- . . 
far too narrow. Thc optimized method performed con- 
siderably better, but still was too narrow. We then in- 
troduced a new measure to evaluate the contaillmcnt 
of ROC confidence bands and showed how our opti- 
mizcd radial swcep method required relatively little 
leeway t o  achieve proper containment. 

However, although wc introduced the radial swcep 
method t o  approxin~ate confidence bands that  are nor- 
mal to an ROC curve a t  any given point, a bcttcr 
technique might yicld improved results. One question 
that we did not investigat,~ here w w  hnw wnnitivc the 
bands are t o  the numbcr of points samplcd along the  
sweep. Furthm, alll~ough wc i~ltroduccd t l ~ c  notion 01 
optimiaing thc bands, we only considered a straight- 
forward and simplistic optimization in this papcr. Fi- 
nally, it is still an open question wh~t.her thc bands 

3 ~ o t e  that we hnvn dropped the comparison to the  13- 
nomial distribution as it performed so badly in the previous 
evaluation 

found are too loose in ccrtain regions of the curvc and 
ton tight in others. These are all issnm that  we hope 
to investigate further. 

We hope this work takes a significant step toward more 
robust comparisons of mnchinc lcnrning mcthods using 
ROC analysis. 
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