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A Model For Performance Evaluation Of Interactive Systems 

Abstract 

We describe a quantitative model for the performance evaluation of interactive computer 

systems. The approach involves the development of an "interaction graph" or state 

transition diagram to describe the user-machine interaction. Given numerical data on 

transition times and probabilities, the model can be used to perform sensitivity analyses of 

changes in system parameters and user behavior. To illustrate the model, we use empirical 

data from field and laboratory experiments designed to compare a prototype natural 

language query system with a formal (relational) query system. The general approach is 

applicable in a broad range of other contexts including bibliographic retrieval and the 

analysis of web-log data. It should be of interest to both system developers and potential 

users of these systems. 

1. Introduction 

This paper presents a methodology for evaluating interactive computing systems along 

two dimensions: what proportion of the users' tasks are successfblly performed? and how 

efficiently can the users perform their tasks? The methodology uses test results that might 

be obtained by web masters from World Wide Web (W) activity log files, by system 

developers from Beta tests or by prospective users from their own evaluation tests. A 

graph-based model is then constructed to help evaluate the test results and to perform 

sensitivity analyses to determine the results of changes in either the system or user 

performance measures. The model can help system designers learn which improvements to 

the system will most increase its utility to users. This will help them allocate development 

efforts to the most significant areas for improvement. On the other side of the fence, 

prospective users can obtain objective measures for comparing alternative systems that 

they might purchase. 
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The methodology can be used to evaluate any interactive system which involves 

repetitive operations and where the results of the user interaction can either end in success 

or failure. Many systems fit this description. Examples include W search engines, 

bibliographic retrieval systems and workflow systems involving rework. The criteria 

generally used to evaluate such systems include bibliographic measures such as recall and 

precision ratios [Chu and Rosenthal 19961, response time, percentage of queries 

successfhlly answered, and so on. Here we use a mathematical model to develop an 

additional criterion that involves both user time and accuracy: namely, the average number 

of correct queries per unit time. 

Section 2 of the paper provides two examples of interactive systems that can be 

analyzed using our methodology. Section 3 discusses criteria for evaluating the 

effectiveness of interactive computing systems in general. Section 4 develops a Markov 

model of the interaction process that simplifies the computation of the criteria and can be 

applied in many situations. Section 5 uses the model to carry-out sensitivity analyses on 

data from two database retrieval systems . Finally, Section 6 presents some conclusions 

and suggestions for future research. 

2. Illustrative Systems 

2.1 WWW Search Engines (Yahoo!) 

With the tremendous growth of the UfUrW, the ability to search for information 

has become a major component of user value in educational applications and one of the 

cornerstones of electronic commerce [Kambil97]. Search engines on the world wide web 

process millions of searches daily. Obviously, their effectiveness and efficiency is a matter 

of major concern and interest. 

To attack this problem, we first construct a directed graph ("interaction diagram") 

in which each node represents a user or system state and the branches represent 

probabilistically determined transitions to other states. The states are system or user 

decision or "branch points. For user branch points, the state will usually be associated 

with a particular screen display (or a series of similar screens with different information 

content.) The transitions represent the actions that are taken and, in general, consume 
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some random amount of time. The idea is best illustrated with a familiar example. Figure 1 

shows an interaction diagram for the Yahoo search engine. The first node is associated 

with the Yahoo home page and the decision involves the type of search (action) to 

undertake - use a search string (keyword search in the figure), search within Yahoo's 

predefined hierarchy of subject categories, visit the "cool" sites or search by specific 

locations, etc. Assuming the user decides to use keyword search, the decision and transit 

time is T12 and we move to the next transition point (Node 2) at which the user decides on 

the keywords to be used and enters them in Yahoo's dialogue box. This consumes time 

T23 after which we move to a system transition point (Node 3) where the system starts to 

retrieve the URLs it deems relevant (good matches) to the query. The associated 

transactions are "Stop/Halt" if the system fails or the user aborts the process because it 

takes too long or helshe wishes to reenter the query, "No Matches" if the search reveals 

no matches, and "Match" if there is at least one matching URL. In the last case, we move 

to Node 4 where the user begins to analyze the retrieved list of URLs (by default, Yahoo 

presents these in groups of 20.) The transitions from Node 4 include "Click URL", 

"Retrieve Next 20", "New Query" and "Give-up." If the first transition is chosen, we 

move to Node 5 where the user starts to analyze the information content at the foreign (to 

Yahoo) URL. The transitions from Node 5 are "Select Back-arrow", "Success", and 

"Give-up." In the first case, we move back to Node 4 and re-examine the list of retrieved 

URLs. In the latter two cases, we transition to sink nodes. 

There are a number of modeling issues involved in constructing an interaction 

diagram. The first concerns the granularity of the diagram. For example, we chose to use 

separate nodes for the cases where there were zero matched URLs (Node 3) and at least 

one matched URL (Node 4.). This is because the branches (actions) that are possible in 

these two cases are different. However, we (arbitrarily) chose not to distinguish between 

the cases when Yahoo finds fewer than 20 URLs as opposed to cases where more than 20 

URLs were found. Also, because we are interested in modeling the interactions within the 

Yahoo search engine, we represented the (possibly very complex) set of user interactions 

at Node 5 by a single node. Obviously, the transition times to Nodes 4, 7 and 8 from this 

node will have a high variance. The granularity of the representation is a matter of 
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Figure 1. Interaction Model of Keyword Search in Yahoo! 

judgment that depends in part on the objectives of the analysis but might also be dictated 

by the available data. In the Yahoo case, it will be possible (with one exception) to analyze 

the web log statistics over a period of time (say one week) to determine the frequencies 

and times of all transitions in the figure classified by user class and perhaps also by general 
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topic category. The one exception is that it would not be possible to distinguish between 

transitions to Nodes 7 and 8 without explicit feedback from the users. For the same 

reason, while we might like to do so, it will not be possible to gather data on what goes on 

at other W s  (Node 5) in the figure. 

The user interaction with other search engines such as Excite, Lycos and Alta 

Vista can be modeled in a similar fashion. Note that these search engines employ very 

different strategies for searching, classifjrlng and indexing the vast amount of information 

available on the web and perform differently with respect to different classes of query 

[Courtois et al. 1995, Leighton 1995, Gray 19961. For example, [Chu and Rosenthal 

19961 evaluates Excite, Lycos and Alta Vista in terms of two criteria, response time for 

the first 10 items retrieved and "Precision" defined as the percentage of the first 10 

retrieved items that are deemed relevant to the query. (Note that precision is usually 

defined relative to the total number of items retrieved - see later.) While the authors found 

little difference in response times between the systems, the average precision ratios 

between the systems differed by as much as 50%. By diagramming the user interaction and 

collecting data on the frequencies and times of execution of the state transitions in graphs 

such as Figure 1, we aim to perform a comparative analysis of the various search engines. 

We will compare the search engines' performance on different tasks in terms of a number 

of criteria such as probability of a successfU1 query and average time to success (or failure) 

as well as more traditional information retrieval criteria such as recall and precision. The 

graph approach allows a component by component analysis of performance to be carried- 

out. For example, what is the impact of a change in the time to perform a system or user 

step in the figure? We expect the user steps to be greatly influenced by the volume of data 

retrieved as well as by its presentation format. How do changes in the amount of 

information presented to users impact performance? Similarly, we can investigate the 

impact of changing the probabilities of the various state transitions. 

We can also model user behavior. What choices do users make at each point in the 

interaction? How is this impacted by the type of task they are performing? How does 

user behavior vary over time? How often do they change search strategies? How quickly 
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do they give up if they are not successful? A better idea of actual user behavior will help 

inform and guide the system analysis just outlined. 

2.2 Database Retrieval Systems 

The Iaboratory and field studies [Jarke et al. 1985aJ that form the background for 

our second illustration, were aimed at evaluating a natural language system (NLS) for 

querying databases. The NLS system contained a base grammar consisting of some 800 

language rules and a lexicon of approximately 150 common words such as 'to be', and to 

'to have'. An important feature of the system was that English natural language queries 

were translated into a formal data base query language, SQL, prior to execution. The 

coexistence of the NLS and the formal language system (FLS) led naturally to an 

experimental design in which the formal language was used as a standard of comparison 

for the NLS. Linked laboratory and field studies employing student subjects were used to 

perform the evaluations [Jarke et al. 1985bl. The field experiment provided the data for 

the example used in this paper. The experimental application involved a database 

containing demographic and donation information for about 25,000 donors to N W ' s  

Graduate School of Business Administration. Information retrieval requests from 

administrative officers of the school were given to six student "advisors" hired for the 

experiment. A typical session lasted anywhere from 30 minutes to two hours. During this 

time, the advisors analyzed the overall request, broke the request down into a number of 

tasks and entered queries using one of the information retrieval languages in an attempt to 

solve each task. 

Figure 2 shows the interaction diagram for the NLS and/or the FLS database retrieval 

systems. Note that the same diagram is used to portray both systems. The major loop in 

the graph represents multiple attempts by the user to satisfy a task by submitting different 

formulations that end in either success or failure. The path between states 2 and 8, for 

example, means that the query was aborted during typing (either because of system noise 

or because the user backed-out of the query after recognition of a false start.) Path 3-8 

shows that the query submitted by the user did not pass the system check for the FLS or 

the syntactic and semantic analysis made by the NLS. Other measurement variables (not 
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described in this paper) gave a detailed break-down of the types of error found and the 

reasons for these errors. In particular, typing errors were more prevalent in the FLS as 

discussed below. After parsing, and prior to execution of a retrieval, the FLSNLS 

displays an estimate of the time it will take to execute the retrieval and allows users to 

TASKS 

140,O sec (301,O sec) 

268,60 sec (327,60 sec) 18,60 sec (3 1, 60 sec) 
t 

426, 330 sec (659, 165 sec) 

(8 1,75 sec) 
364, 150 sec (578,75 sec) 

(425,44 sec) 
179,40 sec (1 53,44 sec) 

4, 30 sec 4. USER 
Consider time 

(6, 30 sec) required 

175,30 sec (147, 30 sec) 

(41,20 sec) 
135,20 sec (106,20 sec) 

48,60 sec 
Print output 

(234,60 sec ) (8, 30 see) 
110, 30 sec (98,30 sec) 

9, 50 sec 83, 50 sec 

(15, 50 sec) (52,50 sec) 

Figure 2. Query Processing - FLS and (NLS) 
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decide whether or not to continue. Path 4-8 represents a choice by the user to abandon the 

query. Paths 5-8 and 6-8 show queries that aborted due to either system failure or to user 

action during the processes of data retrieval, or printing the reports. The percentage of 

times these paths were taken is not high. However, due to poor system capability and slow 

equipment, the system was often resident in states 5 and 6 for considerable periods of 

time. In state 7, the user evaluates the results of the sub-query. If the query is considered 

successfU1, the process ends in state 9 (the task is completed.) Otherwise, the system 

moves to state 10 (the user gives up), or to state 1 to try another formulation of the query. 

In state 8, the user decides whether to give-up (path 8-10) or to try another query (path 8- 

1). 

The estimated transit times and the frequency with which each path was used for 

the total FLS (NLS) experiment are shown in the figure. The success or failure of each 

interaction in the experiment was coded by a panel of judges. Table 1 summarizes the 

overall results (see [Jarke et al. 1985bl). 

FLS NLS 

Number of Tasks 
Number of Queries 
Average Number of Queries Per Task 
Average Number of Words Per Query 
Average Time Per Task (minutes) 
Average Time Per Query (minutes) 
Average Success Rate of Tasks 
Average Success Rate of Queries 

Table 1. Descriptive Statistics from Experiment 

The most striking aspect of this data is the poor performance of both languages at 

the query level. Other results, and our own laboratory experiments [Jarke et al. 1985a1, 

had predicted an approximately 60% rate of successfiil queries for the FLS. Several 
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physical limitations of the environment affected the design and execution of the field 

experiment and can explain at least a part of this difference in performance. In particular, 

the users interacted with the system on slow, hard-copy terminals using a communication 

system that was unusually 'noisy.' Also, the NLS was a prototype - several language 

features were missing or faulty. The coding scheme developed for the experiments was 

designed to compensate for some of these deficiencies and to measure the effects of 

others. Nevertheless, the conclusions that can be objectively obtained from such an 

approach to comparative language evaluation are bound by the state of development of 

the languages, the quality of the application design and the skills of the subjects. To 

illustrate, for the FLS and NLS systems, paths 5-8 and 6-8, and the proportion of path 2-8 

due to typing errors as opposed to syntactic and semantic errors, capture system "noise." 

This represents a definite area for potential improvement in both language systems. What 

happens to overall system performance if the system "noise" is reduced by half, 

A second striking aspect of the data in Table 1 is that the number of queries per 

task was lower for the NLS indicating less confidence on the part of users that their 

approach would succeed. They tended to "give-up" more easily than their FLS 

counterparts. On the basis of this observation and the much lower probability of success 

per query, one could conclude that the FLS is superior. However, there is one aspect of 

performance which favors the NLS - NLS users spent less time formulating and entering 

queries. In part, this is because the average length of queries measured in words was more 

than twice as long in the FLS as compared to the NLS. As the users were not expert 

typists and the interface characteristics were poor, typing was a major consumer of the 

subjects7 time. Since, the idea of the NLS was to assist executive users, the time spent 

entering queries is very significant. Thus the percentage of correct queries is not the only 

criterion for judging the relative merit of the two languages. Perhaps one can be more 

efficient overall using the NLS because of the shorter time to formulate and enter queries. 

It would therefore be interesting to measure the impact of improvements in the probability 

of success on the relative efficiency of the two systems in terms of the average number of 

successfbl queries achievable per unit time. In particular, the ability of the NLS to parse 

natural language queries was quite poor. It is therefore natural to ask how much the 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-97-16 



parsing capability (captured by P34) would need to be improved so that the NLS would 

perform at the level as the FLS. 

The model developed in this paper uses experimental data for calibration but 

attempts to free us from the constraints imposed by the particular circumstances of the 

experiment. Specifically the model provides a means for sensitivity analysis concerning: 

the effects of system 'noise' and the potential benefits to be obtained from various 

language improvements. In essence, we are proposing the development of a mathematical 

model that uses experimental data to calibrate its parameters but then allows sensitivity 

analysis to examine a number of "what-if3" issues. We will return to an analysis of the FLS 

and NLS with regard to the questions raised in this section after the development of the 

analytic model in sections 3 and 4. 

3. Criteria for Comparative Evaluation of Interactive Computer Systems 

Bibliographic systems are often evaluated in terms of two metrics - the recall ratio and the 

precision ratio. The recall ratio, r, is the ratio of number of relevant information items retrieved 

divided by the total number of relevant items in the infbrmation base. Mormation is relevant if 

it is judged usefbl by the user who initiated the search [E3lair and Maron 19851. Pefiect recall, r 

= 1, is an ideal that is hard to attain in large complex systems such as library systems and almost 

impossible on the WWW. Another major problem is that recall is difficult to measure. W e  it 

is often possible to experimentally determine the number of relevant items that have been 

retrieved, estimation of the number of relevant items in the information base that were missed 

by the query may require a combination of extensive search, prior knowledge of an expert 

andlor sophisticated sampling. On the MnNVV, where there are millions of information sites and 

search engines sometimes retrieve as many as 30,000 items for a single request, estimating the 

denominator and numerator of r can be virtually impossible. The precision ratio, p, is the ratio 

of the number of relevant information items retrieved divided by the total number of total 

number of items retrieved. The precision is also difficult to measure when a very large number 

of times is retrieved. If the search engine rank orders the results, the first n items retrieved can 

be used as the base for determining precision as in [Chu and Rosenthal 19961. Recall and 
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precision tend to vary inversely in searching (high precision being associated with low recall 

and vice versa.) Different users will have different requirements regarding recall and precision. 

For example, a user who wants general information on a topic might not have a high recall 

requirement - some general information might suffice. However, a user who wants 

comprehensive information will need high recall. The precision ratio is closely related to the 

user effort expended in information analysis (step 5 of Figure 1). If there is low precision and 

many items are retrieved, users may give up before they find the relevant information. 

In contrast to bibliographic and UrWW applications where r, p and response time 

are the most extensively used system evaluation criteria, most comparative studies of 

languages (for example, [Jarke et al. 1985b, Welty and Stemple 198 11) have used the 

percentage of queries correctly answered as the principle measure of language utility. 

In this paper, we advocate a more general criterion that can be applied to a broad 

range of interactive computing systems including those discussed above. When choosing 

an interactive computer system one must weigh the benefits from the better, more timely, 

decisions that might be made as a result of using the system, against the costs involved in 

acquiring the system, developing the application, training the users and finally, the value of 

the time spent by users in formulating and entering queries and waiting for and analyzing 

results. The query results translate into organization profitability through the value (in 

improved decision-making) of executing each successfUl query or the opportunity cost of 

failing to obtain needed information from the system. While we do not attempt to measure 

the value of information, we advocate an efficiency measure - average time taken to 

execute a successful query - which takes into account both the probability of success and, 

indirectly, the value of user time. As noted above, the probability of a successful query is 

the usual criterion for evaluating query languages. As shown by Table 1, there is a lower 

probability of success per query attempt in the NLS. However, empirical evidence (see 

Table 1) shows that the queries are shorter and can be submitted in less time using the 

NLS as opposed to the FLS. Hence, the costs of user time per successful query may be 

lower with an NLS than an FLS if users can get the NLS to understand what they want in 

few enough iterations. This is the motivation for considering costs of user time while 

executing queries. 
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Consider a process such as that shown in Figure 2 where users repeat different 

formulations of a query until they get it right. Let P,, be the probability that a user will succeed 

to retrieve the target information for the first time at the nth trial, then assuming a stationary 

Markovian process, the limiting probability of success is given by: 

Note that P* gives an upper bound on performance. In reality, users tend not to repeat queries 

endlessly, hence, the probability of success (P,) lies somewhere between PI and P*. Let S(t) be 

the number of successfbl queries in t units of time, and p* be the expected time between 

successfbl queries. Then, the long-run average number of successes per unit time is given by: 

stt> 1 - lim- - - 
t-tm t U 

(2) 

We believe that y* may be a more usefbl criterion for performance evaluation than P,. 

However, a sufficiently high query success rate is required to obtain system acceptance in 

the first place. 

4. A Model for Evaluating Interactive Computing Systems 

4.1 Performance Evaluation Using Directed Graph Models 

It is dficult to compute the probability of success (P,) and the expected time to 

succeed (p,), for an interaction such as that shown in Figure 1 or 2 because the directed graph 

may consist of many states and the relationships among states can be complicated. To simplifjr 

the problem we make two very strong assumptions that are only true in an average sense but 

can give the designer a good idea of the major relationships in the problem. First, we assume 

that the transitions between states take a fixed period of time to execute - or rather, that the 

transitions, which will in general be random variables, can be approximated by their average 

execution times. Second, we assume that the transitions are Markovian - i.e., that the 

probability of a transition from the current state to another neighboring state depends only on 

the current state and not on the history of prior states that the user has experienced. This is 

obviously an dpproximation as, in particular, the probability of the user taking the path 8-10 

(giving up on the task) is likely to increase with the number of iterations performed to date. 
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The approach we take builds on prior research on signal flow graphs [Shinners 19721 and the 

estimation of program run time [Graham 19771. The usual approach to analyze a graph model 

such as Figure 2 is to utilize transformation rules that reduce complicated directed graphs to 

successively simpler forms and eventually to a single or at least a very small number of arcs 

from which the performance criteria (Ps and p,) can be obtained directly. However graph 

reduction techruques get very tedious and time consuming as the number of paths and feedback 

loops increase. The innovation in our approach II(lm 19971 is to develop generalized formulae 

that permit calculations of success probabilities and expected times almost by inspection. 

We now briefly review the transformation rules for graph reduction. Following this, we 

state our generalized formulae and illustrate them using the data in Figure 2. 

Complex state transition graphs can be reduced to simpler forms using three 

transformations: serial, parallel, and loop. The serial transformation eliminates the middle node 

in a series of three nodes connected by single arcs as shown in Figure 3.  k t  P, represent the 

transition probability from node i to node j, and Ti represent the transition time from node i to 

node j. In the serial transformation, branches (i, j) and ('j, k) and node j are replaced by a single 

equivalent branch (i, k). The transition probability from node i to node k becomes Pipjk, and 

the transition time from node i to node k becomes T, + Tjk. 

Figure 3. Serial Transformation 

The parallel transformation is applicable to a directed graph when there are two 

branches both of which have the same origin node and the same terminal node as in Figure 4. 

The two branches between nodes i and j are reduced to a single equivalent branch in which the 

transition probability from node i to node j becomes Pi + P',, and the equivalent (fixed) 

transition time from node i to node j becomes (P,T;,. + P '~T '~) / (P~  + ~ ' i j ) .  When there are more 

than two branches between two nodes, they can be reduced to a single equivalent branch by 

applying the parallel transformation repeatedly to two branches at a time. 
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4 pi: @ , +-J i pij + P,' 

pij , TIj pi, T,, + P,'T,' 
Pi, + Pi, 

Figure 4. Parallel Transformation 

The loop transformation is applicable to a directed graph when there is a loop at a 

single node that may be executed repeatedly according to some probability, Pii, as in Figure 5. 

The transition probability from node i to node j becomes Pi I (1 - Pi;), and the transition time 

from node i to node j becomes Ti + Pii Tii 1 (1 - Pi;). 

Pj, Ti, Pjj 1 (1 -Pk) 

P..T.. 
11 11 

Tjj + - 
1 - Pii 

Figure 5. Loop Transformation 

While it is possible to apply the above transformation rules to a complicated directed 

graph and to reduce it to one containing only a source node (which has only outgoing 

branches) and a sink node (which has only incoming branches), this process can be time- 

consuming as it requires repeated applications of the transformation rules until the final 

(simplest) graph is obtained. 

To state generalized formulae that simplifjr the computation of the two criteria P, and 

b, we first define some terminology. Without loss of generality we can assume that the 

interaction graph has a single source and at least two sink nodes representing success and 

failure, respectively. A forwardpath is a path that originates from a source and terminates at a 

sink and along which no node is encountered more than once. Touching loops are loops that 

have at least one node in common. Non-touching loops are loops that have no node in 

common. The most general directed graph model has multiple forward paths containing 

multiple touching and non-touching loops. For example, in Figure 1, there are five forward 

paths (1 -2-3- 1 1, 1-2-3-9- 10, 1-2-3-4- 12, 1-2-3-4-5-7, and 1 -2-3-4-5-8), three touchg  loops 
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(2-3-4-2,4-6-4 and 4-5-4) and two pairs of non-touching loops (2-3-9-2 & 4-6-4 and 2-3-9-2 

& 4-5-4.) 

Figure 6 shows a somewhat simpler graph with both touching and non-touching loops 

that will be used to illustrate the definitions. 

Figure 6 - Illustrative Interaction Diagram 

In Figure 6, loops 2, 3 and 4 form a set of touching loops while loops 1 and 5 are non- 

touching loops with respect to each other and the set of touching loops 2 , 3  and 4. As in 

control theory, the "gain", G, of a loop is the product of the probabilities of all the arcs on the 

loop. We define LI as the sum of the gains of all the loops in the graph, L2 as the sum of the 

products of the gains of all pairs of non-touching loops, L3 as the sum of the gains of all 

mutually non-touching triples of loops, and so on. (In Figure 6, for sink node 1, L1= GI + G2 + 

G3 + G4 + G5 , L2 = G1'G2 + G1'G3 + G1.G4 + GI-G5 +GZ.G5 +G3.G5 +Gd.Gs, and L3 = 

G~.G~.Gs + G I . G ~ - G ~  + G1.G4.G5, where Gi is the gain on the ith loop.) The determinant, D, of 

the graph is then given by: 

D = 1 - L, + L, +-.-+ (-1)P Lp (3) 

where p is the size of the largest mutually non-touching set of loops. 

Let Fk be the product of the probabilities of all the arcs on the kth forward path to a given sink. 

(In Figure 6, there are two forward paths to the sink 1.) Assuming that there are w forward 

paths to a sink, s, the probability of reaching the s i i  P, can be computed as follows: 
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Where Di: is the value of D remaining when the nodes and arcs of the kth forward path are 

removed from the graph. (In Figure 6 for sink 1, letting the first forward path consist of nodes 

a, b, c, d, k and 1, the second forward path consist of nodes a, f, g, h, i, j, k and 1, and the third 

forward path consist of nodes a, f, h, i, j, k and 1, we have D = 1 - (GI + G2 + G3 + G4 + G5) + 

(G1-G2 + G I G  + Gi-G4 + Gi.G5 + G2eG5 + G3'G5 + G4sG5) - (GI-GTG~ + GI-G3-G5 + 

GI.G4-G5), Di = 1 - (G2 + G3 + G4) + (G2.G5 + G3'G5 + G4'G5), and Di = 1 - G, .) 

To calculate the expected transaction time to a given sink, we need a number of 

definitions. First, let Tn, be the sum of the transition times for the kth forward path to the sink. 

Next, we form groups of forward paths to the sink as follows. A set of loops is a "touching 

collectiony' if each pair of loops in the collection has at least one node in common. (In Figure 6, 

loops 2,3 and 4 form a collection.) All the forward paths to the sink that contain at least one 

arc &om such a collection are said to form a group, q. Note that a forward path with no loops 

does not participate in a group, while a forward path with at least one loop participates in a 

group - either by itself or with other forward paths. (in Figure 6, with respect to sink I, paths a- 

f-g-h-i-j-k-1 and a-f-h-i-j-k-1 form one group, while a-b-c-d-k-1 forms another.) Next, we 

partition the loops associated with a group of paths, q, into m(q) clusters of mutually non- 

touching sets of loops. Let the ith cluster consist of n(i) touching loops, j, j = 1, 2, . . . , n(i). (In 

Figure 6, the group of paths a-f-g-h-i-j-k-1 and a-f-h-i-j-k-1 has two cIusters (loops 2, 3 and 4) 

and (loop 5) .) Finally, let GqG be the gain from the jth loop from the ith cluster of loops in the 

qth group of forward paths and Tkij be the corresponding sum of transition times. Then the 

expected transition time from the source to the given sink is given by: 

where 
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Proofs of the above formulae are in Kim's unpublished note [Kim 19971. Note that values from 

the above two generalized formulae give upper bounds (because an infinite number of trials is 

assumed) on both the probability and expected time to reach a sink node. 

4.2 Illustration of the Computations for the FLS and NLS Retrieval Systems 

For illustrative purposes a simplified interaction diagram for the FLS database retrieval 

system is shown in Figure 7. This is derived from Figure 2 by collapsing the sequential paths 

for states 2 through 6 and using the transformation formulae in figures 3 through 5 above. The 

transition probabilities are computed from the recorded frequencies on each branch. The 

transition times (which were not collected in detail in the experiment) are estimated but are 

consistent with the overall session times (see Table I), other time data that was collected in the 

experiment and with our overall judgment as to relative times of the various transitions. (For 

example, we assume that it takes 50% longer to formulate a query in the FI,S than in the NLS, 

that FLS queries take twice as long to type, that the NLS system takes 10% longer to parse a 

query and that the average data retrieval time is 20 seconds.) 

The calculations for the FLS are as follows. For the success sink node in Figure 6, 

there is one forward path (k = 1 and q = 1) and two touching loops (i = 1 and j = 1,2). 

F, = 1.0 x 0.258 x 0.755 = 0.195 

D = 1 - (1.0 x 0.742 x 0.848 + 1.0 x 0.258 x 0.163) = 0.329 

q = 1  

The probability of successfbl completion of a task, Ps is: 

The transition time for the forward path is: 
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Tasks 

0.848 60 sec 0.163 60 sec (0.3 16 60 sec) 

I (0.583 60 sec) 

c_.l. I 

& 0 Y (1.0 165 set) 

8. Determin 0.742 195 sec 2-6 Type and 
strategy (0.85 1 1 18 sec) 

I I 1 0.152 60 sec 1 0.258 270 sec (0.149 198 sec) I 
0.417 60 sec) 

10. Stop 0.082 50 sec 7. Analyze 0.755 50 sec 
failure 

Figure 7. Query Level Interaction Diagram - FLS (NLS) 

The transition time for two touching loops is: 

1.0 x 0.742 x 0.848 x 585 + 1.0 x 0.258 x 0.163 x 660 
TLI = = 1203 seconds 1 - (1.0 x 0.742 x 0.848 + 1.0 x 0.258 x 0.163) 

The expected time given that the task is successllly completed, k is given by: 

k = 650 + 1203 = 1853 seconds or 30.88 minutes. Similarly, the probability of failure and 

the expected query completion time given that the interaction ends in a failure are given 

by: Pf = 0.407 and yf = 1798 seconds. The expected total interaction time for a task, p., is 

the probability mixture of y, and yf: 

y = 0.593 * 1853 + 0.407 * 1798 = 183 1 seconds or 30.5 1 minutes. 

Finally, we can compute our second criterion, p, the expected time between successll 

task completions by p = pJP, = 52.07 minutes. 

Note from Table 1, that we have reproduced the actual probability values, P, and 

Pf from the experiment. The computed task time, y. does not exactly match the empirical 

figure because we estimated some of the transition time data. However, it is satisfactorily 

close for our purposes. Table 2 summarizes the calculations for the FLS and NLS. 
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Table 2. Sensitivity Analysis: Effects of System Noise, and NLS Query Parsing 

The "Base Case" corresponds to the data from the experiment as shown in Figure 2. It can 

be seen that the FLS is superior to the NLS on both criteria (P, and p). However, because 

it is easier to type queries in the NLS, p*, the mean time between successes, is not all that 

much worse than that for the FLS (79 minutes versus 52 minutes.) 

Case 3: 
Improved NLS 
PS4 = 0.40 
NLS 

0 306 

1083min 

0 694 

11 58 min 

11 35min 

35 39 min 

2 03 

5. Sensitivity Analysis 

Ps 

k 

p f 

Pf 

P 

P 

nt 

We can now use our model to do some sensitivity analysis concerning the questions that 

Case 2: 
Less system noise 

were posed at the end of Section 2. First, we might wish to investigate the impact of a 

faster and more stable computer system on both the NLS and the FLS performance. (After 

all, the conditions under which the experiment was run were "unfair" to both systems!) 

Referring to Figure 2, suppose we reduce the system transition times T34, T56 and T67 and 

the probabilities P48, P58 and P68 to 50% of their former values. Note that we keep P38, 

FLS 

0 662 

2646min 

0 338 

22 88 min 

2525min 

39 97 min 

2 63 

Base Case: 
Empirical data 

which measures the parsing capability (a software attribute), the same while decreasing 

NLS 

0 214 

1028min 

0 786 

12 19min 

11 78min 

48 04 min 

2 14 

FLS 

0 593 

3088min 

0 407 

29 97min 

3051 min 

52 07 rnin 

3 04 

T34, the time to complete the parse. This scenario gives the results in columns 3 and 4 in 

Table 2. Both systems perform better in terms of our criteria, P, and p*. The improvement 

NLS 

0 173 

1381min 

0 827 

12 75 min 

1293min 

79 83 min 

2 19 

in p* is more dramatic - of the order of 25% - because it reflects the improvement in both P, 
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and ps One possibly unexpected insight from the model is that improving the hardware, ceteris 

paribus, improves the probability of success. This is because a reduction in system noise allows 

more queries to complete. Note that the FLS is still superior to the NLS on all counts. 

To investigate how we can improve the NLS to match the FLS, note that P34, the 

probability of being able to correctly parse a query, is much lower in the NLS than in the 

FLS (0.265 versus 0.492). Suppose the language designers believe they can improve the 

understanding capabilities of the NLS so that P34 = 0.40. What will be the impact on the 

relative performance of the FLS and NLS? To examine this question, we assume the 

improved system capabilities of case 2 but keep other system parameters (such as user 

typing and query composition capabilities) the same. As can be seen from the last column 

in the table, the NLS still performs relatively poorly with regard to the probability that a 

query attempt will be successful. However, it is now superior to the FLS in terms of the 

second criterion, p*, the expected time between successful queries. Thus, if the users are 

willing to put up with a lot of trial and error, they should be able to satisfy their retrieval 

tasks faster with the NLS than with the FLS. 

In the above illustration, we used empirical data from an experiment with a real 

system to calibrate the model prior to performing sensitivity analyses. If it were not 

possible to gather real data - perhaps because the system to be investigated is in the design 

stage - it might be possible to develop the interaction diagram with estimated probabilities 

and transition times. 

6. Conclusion 

As the whole world goes on-line so-to-speak, the relative efficiency of information 

retrieval becomes increasingly important. In this paper, we have outlined a general 

approach to the analysis of interactive computing systems that we hope will be helpful to 

system designers and others who are considering various design changes and the relative 

merits of different approaches and systems. 

The paper makes two distinct contributions. The first is the streamlined method for 

computing the probabilities and transition times in directed graphs that was outlined in 

section 4. This method was then applied to the analysis of "interaction graph 
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representations of human interaction with a computing system. In this context, the 

mathematical model is an approximation to the real nature of the interaction process. 

However, it is an approximation that can provide some significant insight. One 

generalization of the model that we are investigating involves making the probability of the 

user "giving-up" dependent on the number of previous unsuccessful trials (presumably, 

this probability would be a monotonically increasing function of the time already spent on 

the query.) Other generalizations, and other approaches such as visual simulation, are also 

being investigated. While simulation models are somewhat time-consuming to build, they 

have an advantage over closed-form mathematical models of the type described in this 

paper in that they allow analysis of the stochastic properties of a system as well as its 

average performance. 

The second contribution of the paper is the overall approach to evaluation of 

interactive systems that we are proposing. Namely, the development of interaction graphs 

and the use of quantitatively-based sensitivity analysis to determine the impact of changes 

in system parameters and/or user behavior. We hope in the near future to adapt this 

approach to the analysis of web-log data at a major commercial Internet site. 
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