
A MODEL FOR PEWORMANCE EVALUATION OF
INTERACTIVE SYSTEMS

Edward A. Stohr
~ e ~ a r t m e n t of Information Systems
Leonard N. Stem School of Business

New York University

Yongbeom Kim
Department of Information Systems and Sciences

College of Business Administration
Farleigh Dickinson University

August 1 3,1997

Workin? Paper Series
Stern #IS-97-1 6

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

A Model For Performance Evaluation Of Interactive Systems

Abstract

We describe a quantitative model for the performance evaluation of interactive computer

systems. The approach involves the development of an "interaction graph" or state

transition diagram to describe the user-machine interaction. Given numerical data on

transition times and probabilities, the model can be used to perform sensitivity analyses of

changes in system parameters and user behavior. To illustrate the model, we use empirical

data from field and laboratory experiments designed to compare a prototype natural

language query system with a formal (relational) query system. The general approach is

applicable in a broad range of other contexts including bibliographic retrieval and the

analysis of web-log data. It should be of interest to both system developers and potential

users of these systems.

1. Introduction

This paper presents a methodology for evaluating interactive computing systems along

two dimensions: what proportion of the users' tasks are successfblly performed? and how

efficiently can the users perform their tasks? The methodology uses test results that might

be obtained by web masters from World Wide Web (W) activity log files, by system

developers from Beta tests or by prospective users from their own evaluation tests. A

graph-based model is then constructed to help evaluate the test results and to perform

sensitivity analyses to determine the results of changes in either the system or user

performance measures. The model can help system designers learn which improvements to

the system will most increase its utility to users. This will help them allocate development

efforts to the most significant areas for improvement. On the other side of the fence,

prospective users can obtain objective measures for comparing alternative systems that

they might purchase.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

The methodology can be used to evaluate any interactive system which involves

repetitive operations and where the results of the user interaction can either end in success

or failure. Many systems fit this description. Examples include W search engines,

bibliographic retrieval systems and workflow systems involving rework. The criteria

generally used to evaluate such systems include bibliographic measures such as recall and

precision ratios [Chu and Rosenthal 19961, response time, percentage of queries

successfhlly answered, and so on. Here we use a mathematical model to develop an

additional criterion that involves both user time and accuracy: namely, the average number

of correct queries per unit time.

Section 2 of the paper provides two examples of interactive systems that can be

analyzed using our methodology. Section 3 discusses criteria for evaluating the

effectiveness of interactive computing systems in general. Section 4 develops a Markov

model of the interaction process that simplifies the computation of the criteria and can be

applied in many situations. Section 5 uses the model to carry-out sensitivity analyses on

data from two database retrieval systems . Finally, Section 6 presents some conclusions

and suggestions for future research.

2. Illustrative Systems

2.1 WWW Search Engines (Yahoo!)

With the tremendous growth of the UfUrW, the ability to search for information

has become a major component of user value in educational applications and one of the

cornerstones of electronic commerce [Kambil97]. Search engines on the world wide web

process millions of searches daily. Obviously, their effectiveness and efficiency is a matter

of major concern and interest.

To attack this problem, we first construct a directed graph ("interaction diagram")

in which each node represents a user or system state and the branches represent

probabilistically determined transitions to other states. The states are system or user

decision or "branch points. For user branch points, the state will usually be associated

with a particular screen display (or a series of similar screens with different information

content.) The transitions represent the actions that are taken and, in general, consume

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

some random amount of time. The idea is best illustrated with a familiar example. Figure 1

shows an interaction diagram for the Yahoo search engine. The first node is associated

with the Yahoo home page and the decision involves the type of search (action) to

undertake - use a search string (keyword search in the figure), search within Yahoo's

predefined hierarchy of subject categories, visit the "cool" sites or search by specific

locations, etc. Assuming the user decides to use keyword search, the decision and transit

time is T12 and we move to the next transition point (Node 2) at which the user decides on

the keywords to be used and enters them in Yahoo's dialogue box. This consumes time

T23 after which we move to a system transition point (Node 3) where the system starts to

retrieve the URLs it deems relevant (good matches) to the query. The associated

transactions are "Stop/Halt" if the system fails or the user aborts the process because it

takes too long or helshe wishes to reenter the query, "No Matches" if the search reveals

no matches, and "Match" if there is at least one matching URL. In the last case, we move

to Node 4 where the user begins to analyze the retrieved list of URLs (by default, Yahoo

presents these in groups of 20.) The transitions from Node 4 include "Click URL",

"Retrieve Next 20", "New Query" and "Give-up." If the first transition is chosen, we

move to Node 5 where the user starts to analyze the information content at the foreign (to

Yahoo) URL. The transitions from Node 5 are "Select Back-arrow", "Success", and

"Give-up." In the first case, we move back to Node 4 and re-examine the list of retrieved

URLs. In the latter two cases, we transition to sink nodes.

There are a number of modeling issues involved in constructing an interaction

diagram. The first concerns the granularity of the diagram. For example, we chose to use

separate nodes for the cases where there were zero matched URLs (Node 3) and at least

one matched URL (Node 4.). This is because the branches (actions) that are possible in

these two cases are different. However, we (arbitrarily) chose not to distinguish between

the cases when Yahoo finds fewer than 20 URLs as opposed to cases where more than 20

URLs were found. Also, because we are interested in modeling the interactions within the

Yahoo search engine, we represented the (possibly very complex) set of user interactions

at Node 5 by a single node. Obviously, the transition times to Nodes 4, 7 and 8 from this

node will have a high variance. The granularity of the representation is a matter of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Legend:

1. USER: Decide ' .-'. . - --
1 Yahoo! Home Page i

(Other searches) -. . - - - task type - . - -
I \ _.- , ,&-
'- -'

etermine strate

. 10. USER:

......................... @ (f a i l 9
(match) I Yahoo!: Index of i

+ 1 1 2 0 URL 's i
(new auerv)

list of URL's

(back arrow)

0 stat. - State transition
...............

........ Screen associated with state
...............

Figure 1. Interaction Model of Keyword Search in Yahoo!

judgment that depends in part on the objectives of the analysis but might also be dictated

by the available data. In the Yahoo case, it will be possible (with one exception) to analyze

the web log statistics over a period of time (say one week) to determine the frequencies

and times of all transitions in the figure classified by user class and perhaps also by general

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

topic category. The one exception is that it would not be possible to distinguish between

transitions to Nodes 7 and 8 without explicit feedback from the users. For the same

reason, while we might like to do so, it will not be possible to gather data on what goes on

at other W s (Node 5) in the figure.

The user interaction with other search engines such as Excite, Lycos and Alta

Vista can be modeled in a similar fashion. Note that these search engines employ very

different strategies for searching, classifjrlng and indexing the vast amount of information

available on the web and perform differently with respect to different classes of query

[Courtois et al. 1995, Leighton 1995, Gray 19961. For example, [Chu and Rosenthal

19961 evaluates Excite, Lycos and Alta Vista in terms of two criteria, response time for

the first 10 items retrieved and "Precision" defined as the percentage of the first 10

retrieved items that are deemed relevant to the query. (Note that precision is usually

defined relative to the total number of items retrieved - see later.) While the authors found

little difference in response times between the systems, the average precision ratios

between the systems differed by as much as 50%. By diagramming the user interaction and

collecting data on the frequencies and times of execution of the state transitions in graphs

such as Figure 1, we aim to perform a comparative analysis of the various search engines.

We will compare the search engines' performance on different tasks in terms of a number

of criteria such as probability of a successfU1 query and average time to success (or failure)

as well as more traditional information retrieval criteria such as recall and precision. The

graph approach allows a component by component analysis of performance to be carried-

out. For example, what is the impact of a change in the time to perform a system or user

step in the figure? We expect the user steps to be greatly influenced by the volume of data

retrieved as well as by its presentation format. How do changes in the amount of

information presented to users impact performance? Similarly, we can investigate the

impact of changing the probabilities of the various state transitions.

We can also model user behavior. What choices do users make at each point in the

interaction? How is this impacted by the type of task they are performing? How does

user behavior vary over time? How often do they change search strategies? How quickly

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

do they give up if they are not successful? A better idea of actual user behavior will help

inform and guide the system analysis just outlined.

2.2 Database Retrieval Systems

The Iaboratory and field studies [Jarke et al. 1985aJ that form the background for

our second illustration, were aimed at evaluating a natural language system (NLS) for

querying databases. The NLS system contained a base grammar consisting of some 800

language rules and a lexicon of approximately 150 common words such as 'to be', and to

'to have'. An important feature of the system was that English natural language queries

were translated into a formal data base query language, SQL, prior to execution. The

coexistence of the NLS and the formal language system (FLS) led naturally to an

experimental design in which the formal language was used as a standard of comparison

for the NLS. Linked laboratory and field studies employing student subjects were used to

perform the evaluations [Jarke et al. 1985bl. The field experiment provided the data for

the example used in this paper. The experimental application involved a database

containing demographic and donation information for about 25,000 donors to N W ' s

Graduate School of Business Administration. Information retrieval requests from

administrative officers of the school were given to six student "advisors" hired for the

experiment. A typical session lasted anywhere from 30 minutes to two hours. During this

time, the advisors analyzed the overall request, broke the request down into a number of

tasks and entered queries using one of the information retrieval languages in an attempt to

solve each task.

Figure 2 shows the interaction diagram for the NLS and/or the FLS database retrieval

systems. Note that the same diagram is used to portray both systems. The major loop in

the graph represents multiple attempts by the user to satisfy a task by submitting different

formulations that end in either success or failure. The path between states 2 and 8, for

example, means that the query was aborted during typing (either because of system noise

or because the user backed-out of the query after recognition of a false start.) Path 3-8

shows that the query submitted by the user did not pass the system check for the FLS or

the syntactic and semantic analysis made by the NLS. Other measurement variables (not

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

described in this paper) gave a detailed break-down of the types of error found and the

reasons for these errors. In particular, typing errors were more prevalent in the FLS as

discussed below. After parsing, and prior to execution of a retrieval, the FLSNLS

displays an estimate of the time it will take to execute the retrieval and allows users to

TASKS

140,O sec (301,O sec)

268,60 sec (327,60 sec) 18,60 sec (3 1, 60 sec)
t

426, 330 sec (659, 165 sec)

(8 1,75 sec)
364, 150 sec (578,75 sec)

(425,44 sec)
179,40 sec (1 53,44 sec)

4, 30 sec 4. USER
Consider time

(6, 30 sec) required

175,30 sec (147, 30 sec)

(41,20 sec)
135,20 sec (106,20 sec)

48,60 sec
Print output

(234,60 sec) (8, 30 see)
110, 30 sec (98,30 sec)

9, 50 sec 83, 50 sec

(15, 50 sec) (52,50 sec)

Figure 2. Query Processing - FLS and (NLS)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

decide whether or not to continue. Path 4-8 represents a choice by the user to abandon the

query. Paths 5-8 and 6-8 show queries that aborted due to either system failure or to user

action during the processes of data retrieval, or printing the reports. The percentage of

times these paths were taken is not high. However, due to poor system capability and slow

equipment, the system was often resident in states 5 and 6 for considerable periods of

time. In state 7, the user evaluates the results of the sub-query. If the query is considered

successfU1, the process ends in state 9 (the task is completed.) Otherwise, the system

moves to state 10 (the user gives up), or to state 1 to try another formulation of the query.

In state 8, the user decides whether to give-up (path 8-10) or to try another query (path 8-

1).

The estimated transit times and the frequency with which each path was used for

the total FLS (NLS) experiment are shown in the figure. The success or failure of each

interaction in the experiment was coded by a panel of judges. Table 1 summarizes the

overall results (see [Jarke et al. 1985bl).

FLS NLS

Number of Tasks
Number of Queries
Average Number of Queries Per Task
Average Number of Words Per Query
Average Time Per Task (minutes)
Average Time Per Query (minutes)
Average Success Rate of Tasks
Average Success Rate of Queries

Table 1. Descriptive Statistics from Experiment

The most striking aspect of this data is the poor performance of both languages at

the query level. Other results, and our own laboratory experiments [Jarke et al. 1985a1,

had predicted an approximately 60% rate of successfiil queries for the FLS. Several

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

physical limitations of the environment affected the design and execution of the field

experiment and can explain at least a part of this difference in performance. In particular,

the users interacted with the system on slow, hard-copy terminals using a communication

system that was unusually 'noisy.' Also, the NLS was a prototype - several language

features were missing or faulty. The coding scheme developed for the experiments was

designed to compensate for some of these deficiencies and to measure the effects of

others. Nevertheless, the conclusions that can be objectively obtained from such an

approach to comparative language evaluation are bound by the state of development of

the languages, the quality of the application design and the skills of the subjects. To

illustrate, for the FLS and NLS systems, paths 5-8 and 6-8, and the proportion of path 2-8

due to typing errors as opposed to syntactic and semantic errors, capture system "noise."

This represents a definite area for potential improvement in both language systems. What

happens to overall system performance if the system "noise" is reduced by half,

A second striking aspect of the data in Table 1 is that the number of queries per

task was lower for the NLS indicating less confidence on the part of users that their

approach would succeed. They tended to "give-up" more easily than their FLS

counterparts. On the basis of this observation and the much lower probability of success

per query, one could conclude that the FLS is superior. However, there is one aspect of

performance which favors the NLS - NLS users spent less time formulating and entering

queries. In part, this is because the average length of queries measured in words was more

than twice as long in the FLS as compared to the NLS. As the users were not expert

typists and the interface characteristics were poor, typing was a major consumer of the

subjects7 time. Since, the idea of the NLS was to assist executive users, the time spent

entering queries is very significant. Thus the percentage of correct queries is not the only

criterion for judging the relative merit of the two languages. Perhaps one can be more

efficient overall using the NLS because of the shorter time to formulate and enter queries.

It would therefore be interesting to measure the impact of improvements in the probability

of success on the relative efficiency of the two systems in terms of the average number of

successfbl queries achievable per unit time. In particular, the ability of the NLS to parse

natural language queries was quite poor. It is therefore natural to ask how much the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

parsing capability (captured by P34) would need to be improved so that the NLS would

perform at the level as the FLS.

The model developed in this paper uses experimental data for calibration but

attempts to free us from the constraints imposed by the particular circumstances of the

experiment. Specifically the model provides a means for sensitivity analysis concerning:

the effects of system 'noise' and the potential benefits to be obtained from various

language improvements. In essence, we are proposing the development of a mathematical

model that uses experimental data to calibrate its parameters but then allows sensitivity

analysis to examine a number of "what-if3" issues. We will return to an analysis of the FLS

and NLS with regard to the questions raised in this section after the development of the

analytic model in sections 3 and 4.

3. Criteria for Comparative Evaluation of Interactive Computer Systems

Bibliographic systems are often evaluated in terms of two metrics - the recall ratio and the

precision ratio. The recall ratio, r, is the ratio of number of relevant information items retrieved

divided by the total number of relevant items in the infbrmation base. Mormation is relevant if

it is judged usefbl by the user who initiated the search [E3lair and Maron 19851. Pefiect recall, r

= 1, is an ideal that is hard to attain in large complex systems such as library systems and almost

impossible on the WWW. Another major problem is that recall is difficult to measure. W e it

is often possible to experimentally determine the number of relevant items that have been

retrieved, estimation of the number of relevant items in the information base that were missed

by the query may require a combination of extensive search, prior knowledge of an expert

andlor sophisticated sampling. On the MnNVV, where there are millions of information sites and

search engines sometimes retrieve as many as 30,000 items for a single request, estimating the

denominator and numerator of r can be virtually impossible. The precision ratio, p, is the ratio

of the number of relevant information items retrieved divided by the total number of total

number of items retrieved. The precision is also difficult to measure when a very large number

of times is retrieved. If the search engine rank orders the results, the first n items retrieved can

be used as the base for determining precision as in [Chu and Rosenthal 19961. Recall and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

precision tend to vary inversely in searching (high precision being associated with low recall

and vice versa.) Different users will have different requirements regarding recall and precision.

For example, a user who wants general information on a topic might not have a high recall

requirement - some general information might suffice. However, a user who wants

comprehensive information will need high recall. The precision ratio is closely related to the

user effort expended in information analysis (step 5 of Figure 1). If there is low precision and

many items are retrieved, users may give up before they find the relevant information.

In contrast to bibliographic and UrWW applications where r, p and response time

are the most extensively used system evaluation criteria, most comparative studies of

languages (for example, [Jarke et al. 1985b, Welty and Stemple 198 11) have used the

percentage of queries correctly answered as the principle measure of language utility.

In this paper, we advocate a more general criterion that can be applied to a broad

range of interactive computing systems including those discussed above. When choosing

an interactive computer system one must weigh the benefits from the better, more timely,

decisions that might be made as a result of using the system, against the costs involved in

acquiring the system, developing the application, training the users and finally, the value of

the time spent by users in formulating and entering queries and waiting for and analyzing

results. The query results translate into organization profitability through the value (in

improved decision-making) of executing each successfUl query or the opportunity cost of

failing to obtain needed information from the system. While we do not attempt to measure

the value of information, we advocate an efficiency measure - average time taken to

execute a successful query - which takes into account both the probability of success and,

indirectly, the value of user time. As noted above, the probability of a successful query is

the usual criterion for evaluating query languages. As shown by Table 1, there is a lower

probability of success per query attempt in the NLS. However, empirical evidence (see

Table 1) shows that the queries are shorter and can be submitted in less time using the

NLS as opposed to the FLS. Hence, the costs of user time per successful query may be

lower with an NLS than an FLS if users can get the NLS to understand what they want in

few enough iterations. This is the motivation for considering costs of user time while

executing queries.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Consider a process such as that shown in Figure 2 where users repeat different

formulations of a query until they get it right. Let P,, be the probability that a user will succeed

to retrieve the target information for the first time at the nth trial, then assuming a stationary

Markovian process, the limiting probability of success is given by:

Note that P* gives an upper bound on performance. In reality, users tend not to repeat queries

endlessly, hence, the probability of success (P,) lies somewhere between PI and P*. Let S(t) be

the number of successfbl queries in t units of time, and p* be the expected time between

successfbl queries. Then, the long-run average number of successes per unit time is given by:

stt> 1 - lim- - -
t-tm t U

(2)

We believe that y* may be a more usefbl criterion for performance evaluation than P,.

However, a sufficiently high query success rate is required to obtain system acceptance in

the first place.

4. A Model for Evaluating Interactive Computing Systems

4.1 Performance Evaluation Using Directed Graph Models

It is dficult to compute the probability of success (P,) and the expected time to

succeed (p,), for an interaction such as that shown in Figure 1 or 2 because the directed graph

may consist of many states and the relationships among states can be complicated. To simplifjr

the problem we make two very strong assumptions that are only true in an average sense but

can give the designer a good idea of the major relationships in the problem. First, we assume

that the transitions between states take a fixed period of time to execute - or rather, that the

transitions, which will in general be random variables, can be approximated by their average

execution times. Second, we assume that the transitions are Markovian - i.e., that the

probability of a transition from the current state to another neighboring state depends only on

the current state and not on the history of prior states that the user has experienced. This is

obviously an dpproximation as, in particular, the probability of the user taking the path 8-10

(giving up on the task) is likely to increase with the number of iterations performed to date.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

The approach we take builds on prior research on signal flow graphs [Shinners 19721 and the

estimation of program run time [Graham 19771. The usual approach to analyze a graph model

such as Figure 2 is to utilize transformation rules that reduce complicated directed graphs to

successively simpler forms and eventually to a single or at least a very small number of arcs

from which the performance criteria (Ps and p,) can be obtained directly. However graph

reduction techruques get very tedious and time consuming as the number of paths and feedback

loops increase. The innovation in our approach II(lm 19971 is to develop generalized formulae

that permit calculations of success probabilities and expected times almost by inspection.

We now briefly review the transformation rules for graph reduction. Following this, we

state our generalized formulae and illustrate them using the data in Figure 2.

Complex state transition graphs can be reduced to simpler forms using three

transformations: serial, parallel, and loop. The serial transformation eliminates the middle node

in a series of three nodes connected by single arcs as shown in Figure 3. k t P, represent the

transition probability from node i to node j, and Ti represent the transition time from node i to

node j. In the serial transformation, branches (i, j) and ('j, k) and node j are replaced by a single

equivalent branch (i, k). The transition probability from node i to node k becomes Pipjk, and

the transition time from node i to node k becomes T, + Tjk.

Figure 3. Serial Transformation

The parallel transformation is applicable to a directed graph when there are two

branches both of which have the same origin node and the same terminal node as in Figure 4.

The two branches between nodes i and j are reduced to a single equivalent branch in which the

transition probability from node i to node j becomes Pi + P',, and the equivalent (fixed)

transition time from node i to node j becomes (P,T;,. + P '~T '~) / (P~ + ~ ' i j) . When there are more

than two branches between two nodes, they can be reduced to a single equivalent branch by

applying the parallel transformation repeatedly to two branches at a time.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

4 pi: @ , +-J i pij + P,'

pij , TIj pi, T,, + P,'T,'
Pi, + Pi,

Figure 4. Parallel Transformation

The loop transformation is applicable to a directed graph when there is a loop at a

single node that may be executed repeatedly according to some probability, Pii, as in Figure 5.

The transition probability from node i to node j becomes Pi I (1 - Pi;), and the transition time

from node i to node j becomes Ti + Pii Tii 1 (1 - Pi;).

Pj, Ti, Pjj 1 (1 -Pk)

P..T..
11 11

Tjj + -
1 - Pii

Figure 5. Loop Transformation

While it is possible to apply the above transformation rules to a complicated directed

graph and to reduce it to one containing only a source node (which has only outgoing

branches) and a sink node (which has only incoming branches), this process can be time-

consuming as it requires repeated applications of the transformation rules until the final

(simplest) graph is obtained.

To state generalized formulae that simplifjr the computation of the two criteria P, and

b, we first define some terminology. Without loss of generality we can assume that the

interaction graph has a single source and at least two sink nodes representing success and

failure, respectively. A forwardpath is a path that originates from a source and terminates at a

sink and along which no node is encountered more than once. Touching loops are loops that

have at least one node in common. Non-touching loops are loops that have no node in

common. The most general directed graph model has multiple forward paths containing

multiple touching and non-touching loops. For example, in Figure 1, there are five forward

paths (1 -2-3- 1 1, 1-2-3-9- 10, 1-2-3-4- 12, 1-2-3-4-5-7, and 1 -2-3-4-5-8), three touchg loops

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

(2-3-4-2,4-6-4 and 4-5-4) and two pairs of non-touching loops (2-3-9-2 & 4-6-4 and 2-3-9-2

& 4-5-4.)

Figure 6 shows a somewhat simpler graph with both touching and non-touching loops

that will be used to illustrate the definitions.

Figure 6 - Illustrative Interaction Diagram

In Figure 6, loops 2, 3 and 4 form a set of touching loops while loops 1 and 5 are non-

touching loops with respect to each other and the set of touching loops 2 , 3 and 4. As in

control theory, the "gain", G, of a loop is the product of the probabilities of all the arcs on the

loop. We define LI as the sum of the gains of all the loops in the graph, L2 as the sum of the

products of the gains of all pairs of non-touching loops, L3 as the sum of the gains of all

mutually non-touching triples of loops, and so on. (In Figure 6, for sink node 1, L1= GI + G2 +

G3 + G4 + G5 , L2 = G1'G2 + G1'G3 + G1.G4 + GI-G5 +GZ.G5 +G3.G5 +Gd.Gs, and L3 =

G~.G~.Gs + G I . G ~ - G ~ + G1.G4.G5, where Gi is the gain on the ith loop.) The determinant, D, of

the graph is then given by:

D = 1 - L, + L, +-.-+ (-1)P Lp (3)

where p is the size of the largest mutually non-touching set of loops.

Let Fk be the product of the probabilities of all the arcs on the kth forward path to a given sink.

(In Figure 6, there are two forward paths to the sink 1.) Assuming that there are w forward

paths to a sink, s, the probability of reaching the s i i P, can be computed as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Where Di: is the value of D remaining when the nodes and arcs of the kth forward path are

removed from the graph. (In Figure 6 for sink 1, letting the first forward path consist of nodes

a, b, c, d, k and 1, the second forward path consist of nodes a, f, g, h, i, j, k and 1, and the third

forward path consist of nodes a, f, h, i, j, k and 1, we have D = 1 - (GI + G2 + G3 + G4 + G5) +

(G1-G2 + G I G + Gi-G4 + Gi.G5 + G2eG5 + G3'G5 + G4sG5) - (GI-GTG~ + GI-G3-G5 +

GI.G4-G5), Di = 1 - (G2 + G3 + G4) + (G2.G5 + G3'G5 + G4'G5), and Di = 1 - G, .)

To calculate the expected transaction time to a given sink, we need a number of

definitions. First, let Tn, be the sum of the transition times for the kth forward path to the sink.

Next, we form groups of forward paths to the sink as follows. A set of loops is a "touching

collectiony' if each pair of loops in the collection has at least one node in common. (In Figure 6,

loops 2,3 and 4 form a collection.) All the forward paths to the sink that contain at least one

arc &om such a collection are said to form a group, q. Note that a forward path with no loops

does not participate in a group, while a forward path with at least one loop participates in a

group - either by itself or with other forward paths. (in Figure 6, with respect to sink I, paths a-

f-g-h-i-j-k-1 and a-f-h-i-j-k-1 form one group, while a-b-c-d-k-1 forms another.) Next, we

partition the loops associated with a group of paths, q, into m(q) clusters of mutually non-

touching sets of loops. Let the ith cluster consist of n(i) touching loops, j, j = 1, 2, . . . , n(i). (In

Figure 6, the group of paths a-f-g-h-i-j-k-1 and a-f-h-i-j-k-1 has two cIusters (loops 2, 3 and 4)

and (loop 5) .) Finally, let GqG be the gain from the jth loop from the ith cluster of loops in the

qth group of forward paths and Tkij be the corresponding sum of transition times. Then the

expected transition time from the source to the given sink is given by:

where

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Proofs of the above formulae are in Kim's unpublished note [Kim 19971. Note that values from

the above two generalized formulae give upper bounds (because an infinite number of trials is

assumed) on both the probability and expected time to reach a sink node.

4.2 Illustration of the Computations for the FLS and NLS Retrieval Systems

For illustrative purposes a simplified interaction diagram for the FLS database retrieval

system is shown in Figure 7. This is derived from Figure 2 by collapsing the sequential paths

for states 2 through 6 and using the transformation formulae in figures 3 through 5 above. The

transition probabilities are computed from the recorded frequencies on each branch. The

transition times (which were not collected in detail in the experiment) are estimated but are

consistent with the overall session times (see Table I), other time data that was collected in the

experiment and with our overall judgment as to relative times of the various transitions. (For

example, we assume that it takes 50% longer to formulate a query in the FI,S than in the NLS,

that FLS queries take twice as long to type, that the NLS system takes 10% longer to parse a

query and that the average data retrieval time is 20 seconds.)

The calculations for the FLS are as follows. For the success sink node in Figure 6,

there is one forward path (k = 1 and q = 1) and two touching loops (i = 1 and j = 1,2).

F, = 1.0 x 0.258 x 0.755 = 0.195

D = 1 - (1.0 x 0.742 x 0.848 + 1.0 x 0.258 x 0.163) = 0.329

q = 1

The probability of successfbl completion of a task, Ps is:

The transition time for the forward path is:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Tasks

0.848 60 sec 0.163 60 sec (0.3 16 60 sec)

I (0.583 60 sec)

c_.l. I

& 0 Y (1.0 165 set)

8. Determin 0.742 195 sec 2-6 Type and
strategy (0.85 1 1 18 sec)

I I 1 0.152 60 sec 1 0.258 270 sec (0.149 198 sec) I
0.417 60 sec)

10. Stop 0.082 50 sec 7. Analyze 0.755 50 sec
failure

Figure 7. Query Level Interaction Diagram - FLS (NLS)

The transition time for two touching loops is:

1.0 x 0.742 x 0.848 x 585 + 1.0 x 0.258 x 0.163 x 660
TLI = = 1203 seconds 1 - (1.0 x 0.742 x 0.848 + 1.0 x 0.258 x 0.163)

The expected time given that the task is successllly completed, k is given by:

k = 650 + 1203 = 1853 seconds or 30.88 minutes. Similarly, the probability of failure and

the expected query completion time given that the interaction ends in a failure are given

by: Pf = 0.407 and yf = 1798 seconds. The expected total interaction time for a task, p., is

the probability mixture of y, and yf:

y = 0.593 * 1853 + 0.407 * 1798 = 183 1 seconds or 30.5 1 minutes.

Finally, we can compute our second criterion, p, the expected time between successll

task completions by p = pJP, = 52.07 minutes.

Note from Table 1, that we have reproduced the actual probability values, P, and

Pf from the experiment. The computed task time, y. does not exactly match the empirical

figure because we estimated some of the transition time data. However, it is satisfactorily

close for our purposes. Table 2 summarizes the calculations for the FLS and NLS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Table 2. Sensitivity Analysis: Effects of System Noise, and NLS Query Parsing

The "Base Case" corresponds to the data from the experiment as shown in Figure 2. It can

be seen that the FLS is superior to the NLS on both criteria (P, and p). However, because

it is easier to type queries in the NLS, p*, the mean time between successes, is not all that

much worse than that for the FLS (79 minutes versus 52 minutes.)

Case 3:
Improved NLS
PS4 = 0.40
NLS

0 306

1083min

0 694

11 58 min

11 35min

35 39 min

2 03

5. Sensitivity Analysis

Ps

k

p f

Pf

P

P

nt

We can now use our model to do some sensitivity analysis concerning the questions that

Case 2:
Less system noise

were posed at the end of Section 2. First, we might wish to investigate the impact of a

faster and more stable computer system on both the NLS and the FLS performance. (After

all, the conditions under which the experiment was run were "unfair" to both systems!)

Referring to Figure 2, suppose we reduce the system transition times T34, T56 and T67 and

the probabilities P48, P58 and P68 to 50% of their former values. Note that we keep P38,

FLS

0 662

2646min

0 338

22 88 min

2525min

39 97 min

2 63

Base Case:
Empirical data

which measures the parsing capability (a software attribute), the same while decreasing

NLS

0 214

1028min

0 786

12 19min

11 78min

48 04 min

2 14

FLS

0 593

3088min

0 407

29 97min

3051 min

52 07 rnin

3 04

T34, the time to complete the parse. This scenario gives the results in columns 3 and 4 in

Table 2. Both systems perform better in terms of our criteria, P, and p*. The improvement

NLS

0 173

1381min

0 827

12 75 min

1293min

79 83 min

2 19

in p* is more dramatic - of the order of 25% - because it reflects the improvement in both P,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

and ps One possibly unexpected insight from the model is that improving the hardware, ceteris

paribus, improves the probability of success. This is because a reduction in system noise allows

more queries to complete. Note that the FLS is still superior to the NLS on all counts.

To investigate how we can improve the NLS to match the FLS, note that P34, the

probability of being able to correctly parse a query, is much lower in the NLS than in the

FLS (0.265 versus 0.492). Suppose the language designers believe they can improve the

understanding capabilities of the NLS so that P34 = 0.40. What will be the impact on the

relative performance of the FLS and NLS? To examine this question, we assume the

improved system capabilities of case 2 but keep other system parameters (such as user

typing and query composition capabilities) the same. As can be seen from the last column

in the table, the NLS still performs relatively poorly with regard to the probability that a

query attempt will be successful. However, it is now superior to the FLS in terms of the

second criterion, p*, the expected time between successful queries. Thus, if the users are

willing to put up with a lot of trial and error, they should be able to satisfy their retrieval

tasks faster with the NLS than with the FLS.

In the above illustration, we used empirical data from an experiment with a real

system to calibrate the model prior to performing sensitivity analyses. If it were not

possible to gather real data - perhaps because the system to be investigated is in the design

stage - it might be possible to develop the interaction diagram with estimated probabilities

and transition times.

6. Conclusion

As the whole world goes on-line so-to-speak, the relative efficiency of information

retrieval becomes increasingly important. In this paper, we have outlined a general

approach to the analysis of interactive computing systems that we hope will be helpful to

system designers and others who are considering various design changes and the relative

merits of different approaches and systems.

The paper makes two distinct contributions. The first is the streamlined method for

computing the probabilities and transition times in directed graphs that was outlined in

section 4. This method was then applied to the analysis of "interaction graph

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

representations of human interaction with a computing system. In this context, the

mathematical model is an approximation to the real nature of the interaction process.

However, it is an approximation that can provide some significant insight. One

generalization of the model that we are investigating involves making the probability of the

user "giving-up" dependent on the number of previous unsuccessful trials (presumably,

this probability would be a monotonically increasing function of the time already spent on

the query.) Other generalizations, and other approaches such as visual simulation, are also

being investigated. While simulation models are somewhat time-consuming to build, they

have an advantage over closed-form mathematical models of the type described in this

paper in that they allow analysis of the stochastic properties of a system as well as its

average performance.

The second contribution of the paper is the overall approach to evaluation of

interactive systems that we are proposing. Namely, the development of interaction graphs

and the use of quantitatively-based sensitivity analysis to determine the impact of changes

in system parameters and/or user behavior. We hope in the near future to adapt this

approach to the analysis of web-log data at a major commercial Internet site.

References

Blair, D. C., and Maron, M. E. An Evaluation of Retrieval Effectiveness for a Full-Text
Document-Retrieval System. Communications of the ACM, 28, 3 (March 1985), 289-299.

Chu, H., and Rosenthal, M. Search Engines for the World Wide Web: A Comparative
Study and Evaluation Methodology.
http://www. asis. org/annual-96/ElectronicProceedings/chu. html, 1 996.

Courtois, M. P., Baer, W. M., and Stalk, M. Cool Tools for Searching the Web: A
Performance Evaluation. Online, 19, 6 (November/December 1995), 14-32.

Graham, R. M., Performance Prediction. in Software Engneering: An Advanced Course
Bauer, F. L (ed.) Springer-Verlag, 1977.

Gray, T. How to Search the Web: A Guide to Search Tools.
http://www.palomar. edu/Library/TGSEARCH.HTM, 1996.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

Jarke, M., Turner, J. A,, Stohr, E. A., Vassiliou, Y., m t e , N. H., and Michaelson, K. A Field
Evaluation of Natural Language for Data Retrieval. IEEE Transactions on Software
Engineering, 1 1, 1 (January 1985a), 97-1 14.

Jarke, M., Krause, J., Vassiliou, Y., Stohr, E. A,, Turner, J. A,, and White, N. H. Evaluation
and Assessment of a Domain-Independent Natural Language Query System. IEEE Database
Engineering, (September 1985b).

Kambil, A,, Doing Business in the Wired World. IEEE Computer. 30, 5 (May 1997), 56-61

Kim, Y., Formulae for Performance Evaluation of Interactive Computer Systems. (unpublished
private note), 1997.

Leighton, H. V. Performance of Four World Wide Web (WWW) Index Services:
Infoseek, Lycos, Webcrawler and UrWWWorm.
http://www. winona.msus. edulis-Qlibrary-Vwebind. htm, 1995.

Shinners, S. M. Modern Control System Theory and Application. Addison-Wesley, 1972.

Welty, C., and Stemple, D. W. Human Factors Comparison of a Procedural and a
Non-Procedural Query Language. ACM Transactions on Database Systems, 6 ,4 (December
198 I), 626-649.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-16

