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Abstract 

Tree induction and logistic regression are two standard, off-the-shelf methods 
for building models for classification. We present a large-scale experimental 
comparison of logistic regression and tree induction, assessing classification ac- 
curacy and the quality of rankings based on class-membership probabilities. We 
use a learning-curve analysis to examine the relationship of these measures to 
the size of the training set. The results of the study show several remarkable 
things. (I) Contrary to prior observations, logistic regression does not generally 
outperform tree induction. (2) More specifically, and not surprisingly, logistic 
regression is better for smaller training sets and tree induction for larger data 
sets. Importantly, this often holds for training sets drawn from the same do- 
main (i.e., the learning curves cross), so conclusions about induction-algorithm 
superiority on a given domain must be based on an analysis of the learning 
curves. (3) Contrary to conventional wisdom, tree induction is effective at  pro- 
ducing probability-based rankings, although apparently comparatively less so 
for a given training--set size than at making classifications. Finally, (4) the do- 
mains on which tree induction and logistic regression are ultimately preferable 
can be characterized surprisingly well by a simple measure of signal-to-noise 
ratio. 

1 Introduction 

In this paper we show that combining massive experimental comparison of learn- 
ing algorithms with the examination of learning curves can lead to new insights 
into the relative performance of learning algorithms. We aIso show that by 
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comparing algorithm performance on larger data sets we see behavioral charac- 
teristics that would be overlooked when comparing algorithms on smaller data 
sets (such as most in the UCI repository). 

More specifically, we examine several dozen large, two-class data sets, rang- 
ing from roughly one thousand examples to two million examples. We assess 
performance based on classification accuracy, and based on the area under the 
ROC curve (which measures the ability of a classification model to score cases 
by likelihood of class membership). We compare two basic algorithm types (lo- 
gistic regression and tree induction), including variants that attempt to address 
the algorithms' shortcomings. 

We selected these particular algorithms for several reasons. First, they are 
popular (tree induction with machine learning researchers, logistic regression 
with statisticians and econometricians). Second, they all can produce class- 
probability estimates. Third, they typically are competitive off the shelf (i.e., 
they usually perform relatively well with no parameter tuning).l Off-the-shelf 
methods are especially useful for non-experts, and also can be used reliably as 
learning components in larger systems. For example, a Bayesian network learner 
has a different probability learning subtask at  each node; manual parameter 
tuning for each is infeasible, so automatic (push-button) techniques typically 
are used (Friedman and Goldszmidt, 1996). 

Finally, we selected these methods because of a difference of opinion that 
seems to  be manifest (traditionally) between the statistics community and the 
machine learning community. Although it is changing in both communities, 
machine learning researchers and practitioners have preferred nonparametric 
methods such as tree induction, while statisticians have preferred parametric 
methods such as logistic regression. 

Note, interestingly, that until recently few machine learning research papers 
considered logistic regression in comparative studies. (34.5 (Quinlan, 1993) is 
the typical benchmark learning algorithm. However, the study by Lim, Loh, 
and Shih (2000) shows that on UCI data sets, logistic regression beats C4.5 in 
terms of classification accuracy. We investigate this phenomenon carefully, and 
our results suggest that this is due, at  least in part, to  the small size of the UCI 
data sets. When applied to larger data sets, learning methods based on C4.5 
usually are more accurate. 

Our investigation has three related goals. 

1. To compare the broad classes of tree induction and logistic regression. The 
literature contains various anecdotal and small-scale comparisons of these 
two approaches, but no systematic investigation that includes several very 
large data sets. 

2. To compare, on the same footing and on large data sets, different variants 
of these two families, including Laplace "smoothing" of probability estima- 
tion trees, model selection applied to logistic regression, biased ("ridge") 

IIn fact, logistic regression has been shown to  be extremely competitive with other learning 
methods (Lim, Loh, and Shih, 2000), as we discuss in detail. 

2 
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logistic regression, and bagging applied to both methods. 

3.  To compare the learning curves of the different types of algorithm, in 
order to explore the relationship between training-set size and induction 
algorithm. Learning curves allow us to see patterns (when they exist) 
that depend on training-set size and that are common across different 
data sets. 

From the ultimate learning-curve analysis we can draw several conclusions. 

Logistic regression performs better, generally and relatively speaking, for 
smaller data sets and tree induction performs better for larger data sets. 

This relationship holds (often) even for data sets drawn from the same 
domain-that is, the learning curves cross. Therefore, drawing conclusions 
about one algorithm being better than another for a particular d o m a i n  is 
questionable without an examination of the learning curves. 

Tree-based probability estimation models often outperform logistic regres- 
sion for producing probability-based rankings (for which logistic regression 
is the statistical method of choice), especially for larger data sets. 

The domains on which each type of algorithm performs better can be char- 
acterized remarkably consistently by a measure of signal-to-noise ratio. 

The rest of the paper is structured as follows. First we give some background 
information for context. Then we describe the algorithms and their variants that 
we will consider. We then describe the basic experimental setup, including the 
data sets that we will use, the evaluation metrics, the method of learning curve 
analysis, and the particular implementations of the learning algorithms. Next 
we present the results of two sets of experiments, done individually on the two 
classes of algorithms, t o  assess the sensitivity of performance to the algorithm 
variants (and therefore the necessity of these variants). We use this analysis to 
select a subset of the methods for the final analysis. We then present the final 
analysis, comparing across the algorithm families, across different data sets, and 
across different training-set sizes. 

The upshot of the analysis is that there seem to be clear conditions under 
which each family is preferable. Tree induction is preferable for larger training- 
set sizes with lower noise levels. Logistic regression is preferable for smaller 
training-set sizes and for higher noise levels. We were surprised that the re- 
lationship is so clear, given that we do not know of its having been reported 
previously in the literature. However, it fits well with our basic knowledge (and 
assumptions) about tree induction and logistic regression. We discuss this and 
further implications at  the close of the paper. 
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2 Background 

The machine learning literature contains many studies comparing the perfor- 
mance of different inductive algorithms, or algorithm variants, on various bench- 
mark data sets. The purpose of these studies typically is (1) to investigate which 
algorithms are better generally, or (2) to demonstrate that a particular modifi- 
cation to an algorithm improves its performance. For example, Lim, Loh, and 
Shih (2000) present a comprehensive study of this sort, showing the differences 
in accuracy, running time, and model complexity of several dozen algorithms on 
several dozen data sets. 

Papers such as this seldom consider carefully the size of the data sets to 
which the algorithms are being applied. Does the relative performance of the 
different learning methods depend on the size of the data set? 

As we describe in detail below, learning curves compare the generalization 
performance (e.g., classification accuracy) obtained by an induction algorithm 
as a function of training-set size. More than a decade ago in machine learning 
research, the examination of learning curves was commonplace (see, for example, 
Kibler and Langley, 1988), but usually on single data sets (a notable exception 
being the study by Shavlik, Mooney, and Towell, 1991). Now learning curves 
are presented only rarely in analyses of learning algorithms. 

The few cases that exist draw conflicting conclusions, with respect to our 
goals. Domingos and Pazzani (1997) compare classification-accuracy learning 
curves of naive Bayes and the C ~ . ~ R U L E S  rule learner (Quinlan, 1993). On 
synthetic data, they show that naive Bayes performs better for smaller train- 
ing sets and C ~ . ~ R U L E S  performs better for larger training sets (the learning 
curves cross). They discuss that this can be explained by considering the dif- 
ferent biaslvariance profiles of the algorithms for classification (zero/one loss). 
Roughly   pea king,^ variance plays a more critical role than estimation bias 
when considering classification accuracy. For smaller data sets, naive Bayes has 
a substantial advantage over tree or rule induction in terms of variance. They 
show that this is the case even when (by their construction) the rule learning 
algorithm has no bias. As expected, as larger training sets reduce variance, 
C4.5RULES approaches perfect classification. Brain and Webb (1999) perform 
a similar biaslvariance analysis of C4.5 and naive Bayes. They do not examine 
whether the curves cross, but do show on four UCI data sets that variance is re- 
duced consistently with more data, but bias is not. These results do not directly 
examine logistic regression, but the biaslvariance arguments do apply: logistic 
regression (a linear model) should have higher bias but lower variance than tree 
induction. Therefore, one would expect that their learning curves might cross. 

However, the results of Domingos and Pazzani were generated from synthetic 
data where the rule learner had no bias. Would we see such behavior on real- 
world domains? Kohavi (1996) shows classification-accuracy learning curves of 
tree induction (using (34.5) and of naive Bayes for nine UCI data sets. With 
only one exception, either naive Bayes or tree induction dominates (i.e., the 

2 ~ l e a s e  see the detailed treatment by Friedman (1997) 
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performance of one or the other is superior consistently for all training-set 
sizes). Furthermore, by examining the curves, Kohavi concludes that "In most 
cases, it is clear that even with much more data, the learning curves will not 
cross" (pp. 203-204). 

We are aware of only one learning-curve analysis that compares logistic re- 
gression and tree induction. Harris-Jones and Haines (1997) compare them on 
two business data sets, one real and one synthetic. For these data the learning 
curves cross, suggesting (as they observe) that logistic regression is preferable for 
smaller data sets and tree induction for larger data sets. Our results generally 
support this conclusion. 

3 Algorithms for the analysis of binary data 

We now describe tree induction and logistic regression in more detail, including 
several variants examined in this paper. The particular implementations used 
are described in detail in Section 4.4. 

3.1 Tree induction for classification and probability esti- 
mation 

The terms "decision tree" and "classification tree" are used interchangeably in 
the literature. We will use "classification tree" here, in order that we can distin- 
guish between trees intended to  produce classifications, and those intended to 
produce estimations of class probability ("probability estimation trees"). When 
we are talking about the building of these trees, which for our purposes is es- 
sentially the same for classification and probability estimation, we will simply 
say "tree induction." 

We would like for this paper to be coniprehensible to both machine learning 
researchers and to  statisticians, so we will describe both tree induction and 
logistic regression in detail. A reader knowledgeable in either area can safely 
skip the "basic" material. 

3.1.1 Basic tree induction 

Classification-tree learning algorithms are greedy, "recursive partitioning7' pro- 
cedures. They begin by searchirig for the single predictor variable x, that best 
partitions the training data (as determined by some measure). This first se- 
lected predictor, x,, , is the root of the learned classification tree. Once x,, is 
selected, the training data are partitioned into subsets satisfying the values of 
the variable. Therefore, if x,, is a binary variable, the training data will be 
partitioned into two subsets. 

The classification-tree learning algorithm proceeds recursively, applying the 
same procedure to each subset of the partition. The result is a tree of predictor 
variables, each splitting the data further. Different algorithms use different 
criteria to evaluate the quality of the splits produced by various predictors. 
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Usually, the splits are evaluated by some measure of the "purity" of the resultant 
subsets, in terms of the outcomes. For example, consider the case of binary 
predictors and binary outcome: a maximally impure split would result in two 
subsets, each with the same ratio of the contained examples having y = 0 and 
having y = I. On the other hand, a pure split would result in two subsets, one 
having all y = 0 examples and the other having all y = 1 examples. 

Different classification-tree learning algorithms also use different criteria for 
stopping growth. The most straightforward method is to stop when the subsets 
are pure. On noisy, real-world data, this often leads to very large trees, so 
often other stopping criteria are included (e.g., stop if one child subset would 
have fewer than a predetermined number of examples, or stop if a statistical 
hypothesis test cannot conclude that there is a significant difference between 
the subsets and the parent set). The data subsets produced by the final splits 
are called the leaves of the classification tree. More accurately, the leaves are 
defined intensionally by the conjunction of conditions along the path from the 
root to the leaf. For example, if binary predictors defining the nodes of the 
tree are numbered by a (depth-first) pre-order traversal, and predictor values 
are ordered numerically, the first leaf would be defined by the logical formula: 
(x,, = 0) A (2, = 0)  A . A (z,, = O),  where d is the depth of the tree along 
this path. 

An alternative method for controlli~lg tree size is to prune the classification 
tree. Pruning involves starting at the leaves, and working upward toward the 
root (by convention, classification trees grow downward), repeatedly asking the 
question: should the subtree rooted at this node be replaced by a Ieaf? As might 
be expected, there is a wide variety of pruning algorithms. One of the most 
common approaches is "reduced-error pruning," which replaces a subtree with 
a leaf if the subtree does not improve accuracy (Quinlan, 1987). Assessments 
of improvement are done on the t~aining set, or on a subset of the training data 
held out specially for this purpose. 

Classifications also are produced by the resultant classification tree in a 
recursive manner. A new example is compared to x,,, at the root of the tree; 
depending on the value of this predictor in the example, it is passed to  the 
subtree rooted at  the corresponding node. This procedure recurses until the 
example is passed to a leaf node. At this point a decision must be made as to 
the classification to assign to the example. Typically, the example is predicted 
to belong to the most prevalent class in the subset of the training data defined 
by the leaf. It  is useful to note that the logical formulae defined by the leaves 
of the tree form a mutually exclusive partition of the example space. Thus, the 
classification procedure also can be considered as the determination of which 
leaf formula applies to the new example (and the subsequent assignment of the 
appropriate class label). 

3.1.2 Laplace-corrected probability estimation trees (PETS) 

A straightforward method of producing an estimate of the probability of class 
membership from a classification tree (which will be used here) is to use the 
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frequency of the class at the corresponding leaf, resulting in a probability esti- 
mation tree (PET). For example, if the leaf matching a new example contains p 
positive examples and n negative examples, then the frequency-based estlmate 
would predict the probability of class membership to be &. 

It  has been noted (see, for example, the discussion by Provost and Domingos, 
2000) that frequency-based estimates of class-membership probability, com- 
puted from classification-tree leaves, are not always accurate. One reason for 
this is that the tree-growing algorithm searches for ever-more pure leaves. This 
search process tends to produce overly extreme probability estimates. This is 
especially the case for leaves covering few training examples. 

To produce better class-probability estimates, "smoothing" can be used at 
the leaves. A detailed investigation of smoothing methods is beyond the scope 
of this paper. However, the use of '-Laplacen smoothing has been shown to be 
particularly effective, and is quite simple. 

Specifically, consider the following potential problem with the frequency- 
based method of probability estimation. What if a leaf covers only five training 
instances, all of which are of the positive class? Is it reasonable to use a prob- 
ability estimator that gives an estimate of 1.0 (515) that subsequent instances 
matching the leaf's conditions also will be positive? Perhaps five instances is 
not enough evidence for such a strong statement? 

The so-called Laplace estimate (or Laplace correction, or Laplace smooth- 
ing) works as follows (described for the general case of C classes). Assume there 
are p examples of the class in question at a leaf, N total examples, and C total 
classes. The frequency-based estimate presented above calculates the estimated 
probability as 5 .  The Laplace estimate calculates the estimated probability as 
& N+C. Thus, while the frequency estimate yields a probability of 1.0 from the 

p = 5. N = 5 leaf, for a two-class problem the Laplace estimate yields a prob- 
abiIity of 8 = 0.86. The Laplace correction can be viewed as a form of 
Bayesian estimation of the expected parameters of a multinomial distribution 
using a Dirichlet prior (Buntine, 1991). It effectively incorporates a prior prob- 
ability of & for each class (note that with zero examples the probability of each 
class is 6). This may or may not be desirable for a specific problem: however, 
practitioners have found the Laplace correction worthwhile. To our knowledge, 
the Laplace correction was introduced in machine learning by Niblett (1987). 
Clark and Boswell (1991) incorporated it into the CN2 rule learner, and its use 
is now widespread. The Laplace correction (and variants) has been used for 
tree learning by some researchers and practitioners (Pazzani et al., 1994; Brad- 
ford et al., 1998; Provost, Fawcett, and Kohavi, 1998; Bauer and Kohavi, 1999; 
Danyluk and Provost, 2001), but others still use frequency-based estimates. 

3.1.3 PETs and pruning 

If we're going to compare tree induction to logistic regression using their prob- 
ability estimates, we also have to consider the effect of pruning. In particular, 
the pruning stage typically tries to find a small, high-accuracy tree. The prob- 
lem for PETs is that pruning removes both of two types of distinctions made 
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by the classification tree: (i) false distinctions-those that were found simply 
because of "overfitting" idiosyncrasies of the training data set, where removaI 
is desirable, and (ii) distinctions that indeed generalize (e.g., entropy in fact 
is reduced), and in fact will improve class probability estimation, but do not 
improve accuracy, where removal is undesirable. This is discussed in detail by 
Provost and Domingos (2000), who also show that pruning indeed can substan- 
tially reduce the quality of the probability estimates. When inducing PETS, we 
therefore will consider unpruned trees with Laplace smoothing. 

3.1.4 Bagging 

I t  is well known that trees suffer from high variability, in the sense that small 
changes in the data can lead to  large changes in the t r e e a n d ,  potentially, 
corresponding changes in probability estimates (and therefore in class labels). 
Bagging (bootstrap aggregating) was introduced by Breiman (1996) t o  address 
this problem, and has been shown to  work well often in practice (Bauer and 
Kohavi, 1999). Bagging produces an ensemble classifier by selecting B differ- 
ent training data sets using bootstrap sampling (Efron and Tibshirani, 1993) 
(sampling N data points with replacement from a set of N total data points). 
Models are induced from each of the B training sets. For classification, the 
prediction is taken to be the majority (plurality) vote of the B models. 

We use a variant of bagging that applies to class probability estimation as 
well as classification. Specifically, to  produce an estimated probability of class 
membership, the probability estimates from the B models are averaged. For 
classification, the class with the highest estimated membership probability is 
chosen. 

3.2 Logistic regression 

3.2.1 Basic multiple logistic regression 

The standard statistical approach to modeling binary data is logistic regression. 
Logistic regression is a member of the class of generalized linear models, a broad 
set of models designed to generalize the usual linear model to target variables 
of many different types (McCullagh and Nelder, 1989; Hosmer and Lemeshow, 
2000). The usual (least squares) linear model hypothesizes that an observed 
target value y, is normally distributed, with mean 

and variance cr? That is, the model specifies an appropriate distribution for y, 
(in this case, the normal) and the way that the predictors relate to the mean of 
y, (in this case, the linear relationship (1)). 

Generalized linear models generalize this by separating model specification 
into three parts, which allows the data analyst the flexibility to change the 
specification to be appropriate for the data at  hand: the distribution of the ith 
example of the target variable y, (the random component), the way that the 
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predicting variables combine to relate to the level of y, (the systematic compo- 
nent), and the connection between the random and systematic components (the 
link function). The random component requires that the distribution of yi come 
from the exponential family, with density function 

for specified functions a(.),  b(.) ,  and c( .) .  The parameter 6 is called the canonical 
parameter, and is related to the level of y, while 4 is a dispersion (variance) 
parameter. For the standard linear model f is the normal (Gaussian) density 
with 0 = p and 4 = cr? The systematic component specifies that the predictor 
variables relate to the level of y as a linear combination the predictor values, 

(a  linear predictor). The link function then relates 7 to the mean of y; p, being 
the function g such that g(p) = q (for the standard linear model q = 6 = p). ?b 
train the model, the parameters of the generalized linear model are estimated 
using the method of maximum likelihood; in particular, the parameters are 
chosen to maximize the log-likelihood function 

A particularly simple form of the generalized linear model, with desirable theo- 
retical properties, occurs when the link function satisfies g(p) = 6. This link is 
caIled the canonical link. 

Consider now the binary (0/1) target variable y of interest here. The ap- 
propriate random component for a target variable of this type is the binomial 
distribution. Since y takes on only the values 0 or 1, the form of the binomial 
is particularly simple here: P(y, = 1) = p,, and P(y, = 0) = 1 -p, ,  with g, and 
y, independent of each other for i # j ,  implying random component 

The canonical link for the binomial distribution is the logistic link, 

The term pi / (1 -pi) represents the odds of observing 1 versus 0, so the logistic 
regression model hypothesizes a linear model for the log-odds. Equation (2) is 
equivalent to 

Equation (3) implies an intuitively appealing S-shaped curve for probabili- 
ties. This guarantees estimated probabilities in the interval (0, l ) ,  and is con- 
sistent with the idea that the effect of a predictor on P (y  = 1) is larger when 
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the estimated probability is near .5 than when it is near 0 or 1. The parameter 
estimates 6 maximize the log-likelihood 

where p, is based on (3). Substituting 6 into (3) gives estimates of p, = P(y, = 
1). Logistic regression also can be used for classification by assigning an ob- 
servation to group 1 if p is greater than some cutoff (for example, .5, although 
other cutoffs might be more sensible in some circumstances). 

3.2.2 Ridge logistic regression 

It is well known that linear regression models, including logistic linear regression 
models, become unstable when they include many predictor variables relative to  
the sample size. This translates into poor predictions when the model is applied 
to new data. There are two general approaches to addressing this problem: (i) 
adjusting the regression estimates, reducing variance but increasing bias, or (ii) 
using a model selection method that attempts t o  identify the important variables 
in a model (with only the important variables used in the analysis). 

Regression estimates are typically adjusted by shrinking the correlation ma- 
trix of the predictor variables towards a fixed point by adding a constant X 
(the ridge parameter) to the diagonal elements of the matrix, reducing ill- 
conditioning of the matrix, and thereby improving the stability of the estimate. 
The method was introduced in the context of least squares regression in Hoerl 
and Kennard (1970), and was adapted to logistic regression in le Cessie and van 
Houwelingen (1992). Hoerl, Kennard, and Baldwin (1975) proposed an auto- 
matic method of choosing X based on Bayesian arguments that can be adapted 
to the logistic regression framework. Taken together, the ridge logistic estimate 
is calculated in the following way: 

1. Fit the logistic regression model using maximum likelihood, leading to the 
estimate ,b. Define 

where s, is the standard deviation of the values in the training data for 
the j th  predictor. Let ,b* equal 6 with the intercept po omitted. 

2. Construct the Pearson X2 statistic based on the training data, 

3. Define 
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4. Let Z be the N x (p - 1) matrix of centered and scaled predictors, with 

Let R = Z'VZ, where V is diagB;(l -pi)], the N x N diagonal matrix 
with ith diagonal element p i ( l  - pi). 

Then the ridge logistic regression estimate equals (@, DR), where 

and 

3.2.3 Variable selection for logistic regression 

Variable selection methods attempt to balance the goodness-of-fit of a model 
with considerations of parsimony. This requires a measure that explicitly quan- 
tifies this balance. Akaike (1974) proposed AIC for this purpose based on 
information considerations. The "best" model among the set of models being 
considered minimizes 

AIC = -2(maximized log-likelihood) + 2(number of parameters). 

More complex models result in a greater maximized log-likelihood, but at  the 
cost of more parameters, so minimizing AIC attempts to find a model that 
fits well, but is not overly complex. In the logistic regression framework the 
maximized log-likelihood is L from (4), while the number of parameters in the 
model is p + 1, the number of predictors in the model plus the intercept. 

In theory one could look at  all possible logistic regression models to find 
the one with minimal AIC value, but this becomes computationally prohibitive 
when p is large. A more feasible alternative is to use a stepwise procedure, where 
candidate models are based on adding or removing a term from the current 
"best" model. The stepwise method used here is based on the stepAIC function 
of Venables and Ripley (1999). The starting candidate model is based on using 
all of the predictors. Subsequent models are based on omitting a variable from 
the current candidate model or adding a variable that is not in the model, with 
the choice based on minimizing AIC. The final model is found when adding or 
omitting a variable does not reduce AIC further. Note that this is not the same 
as controlling a stepwise procedure on the basis of the statistical significance of 
a coefficient for a variable (either already in the model or not in the model), 
since AIC is based on an information measure, not a frequentist tail probability. 
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3.2.4 Bagging logistic regression models 

Bagging has been applied widely to machine learning techniques, but it has 
rarely been applied to statistical tools such as logistic regression. This is not 
unreasonable, since bagging is designed to address high variability of a method, 
and logistic regression models (for example) are generally much more stable than 
machine learning tools like tree induction. Still, that does not mean that bagging 
cannot be applied to methods like logistic regression, and for completeness we 
include bagged logistic regression in our set of variants of logistic regression. 
Application to logistic regression is straightforward, and parallels application to 
probability trees. That is, one creates B random subsamples with replacement 
from the original data set and estimates for each of them the logistic model. The 
prediction for an observation is the mean of the B predictions. More details are 
given in Section 4.4.2 

4 Experimental setup 

As mentioned above, the fundamental analytical tool that we will use is the 
learning curve. Learning curves represent the predictive accuracy of the models 
produced by a learning algorithm, as a function of the size of the training 
set. Figure 1 shows two typical learning curves. For smaller training-set sizes 
the curves are steep, but the increase in accuracy lessens for larger training- 
set sizes. Often for very large training-set sizes this standard representation 
obscures small, but non-trivial, gains. Therefore to visualize the curves we will 
use two transformations. First we will use a log scale on the horizontal axis. 
Second, we will start the graph at the accuracy of the smallest training-set size 
(rather than at zero). The transformation of the learning curves in Figure 1 is 
shown in Figure 2. 

We produce learning curves based on 36 data sets. We now describe these 
data sets, the measures of error we use (for the vertical axes of the learning 
curve plots), the technical details of how learning curves are produced, and the 
implementations of the learning algorithms and variants. 

4.1 Data sets 

The 36 data sets in this study were selected to help achieve our goal examining 
learning curves for tree induction and logistic regression, using classification 
accuracy and probability estimation. In order to get a reasonable learning curve, 
each data set was required to have at  least 700 observations. 

We chose many of the larger data sets from the UCI data repository (Blake 
and Merz, 2000) that represent data drawn from real domains (we avoided syn- 
thetic data). The rest were obtained from practitioners with real classification 
tasks with large data sets. The appendix gives source details. 

We only considered tasks of binary classification, which facilitates the use of 
logistic regression and allows us to compute the area under the ROC curve, de- 
scribed below, which we rely on heavily in the analysis. Some of the two-class 
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Learning Curve of Californian Housing Data 

0.9 

s-le Size 

Figure 1: Typical learning curves 

data sets are constructed from data sets originally having more classes. For 
example, the Letter-A data set and the Letter-V data set are constructed by 
taking the UCI letter data set, and using as the positive class instances of the 
letter "a" or instances of vowels. Finally, because of problems ericountered with 
some of the learning programs, and the arbitrariness of workarounds, we avoided 
missing data for numerical variables. If missing values occured in nominal val- 
ues we coded them explicitly. (34.5 has a special facility to deal with missing 
values, coded as "?". In order to keep logistic regression and tree induction com- 
parable, we choose a different code and modeled missing values explicitly as a 
nominal value. Only two data sets contained missing numerical data (Downsize 
and Firmreputation). In those cases we excluded rows or imputed the missing 
value using the mean for the column. For a more detailed explanation see the 
appendix. 

Table 1 shows tlie specification of the 36 data sets used in this study, includ- 
ing the maximurn training size, the number of variables, the number of nominal 
variables, the total number of parameters (1 for a continuous variable, number 
of nominal values minus one. for each nominal variable), and the classification 
prior (the proportion of positive class instances in the training set). 
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Figure 2: Log-scale learning curves 
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Table 1: Data sets 

Data set 
Abalone 
Adult 
Ailerons 
Bacteria 
Bookbinder 
CalHous 
Car Eva1 
Chess 
Coding 
Connects 
Contra 
Covertype 
Credit 
Diabetes 
DNA 
Downsize 
Firm 
German 
Int Censor 
IntPrivacy 
Int Shopping 
Insurance 
Intrusion 
Letter-A 
Letter-V 
Mailing 
Move 
Mushroom 
Nurse 
Optdigit 
Pageblock 
Patent 
Pendigit 
Spam 
Telecom 
Yeast 

Variables 
8 

Nominal 
0 

Total 
8 

Prior GI 
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4.2 Evaluation rnetrics 

We compare performance using two evaluation metrics. First, we use classifica- 
tion accuracy (equivalently, undifferentiated error rate): the number of correct 
predictions on the test data divided by the number of test data instances. This 
is the standard comparison metric used in studies of classifier induction in the 
machine learning literature. 

Classification accuracy obviously is not an appropriate evaluation criterion 
for all classification tasks (Provost, Famicett, and Kohavi, 1998). For this work 
we also want to evaluate and compare different methods with respect to their 
estimates of class probabilities. One alternative to classification accuracy is 
to use ROC (Receiver Operating Characteristic) analysis (Swets, 19881, which 
compares visually the classifiers7 performance across the entire range of proba- 
bilities. For a given binary classifier that produces a score indicating likelihood 
of class membership, its ROC Curve depicts all possible tradeoffs between true- 
positive rate (TP)  and false-positive rate ( F P ) .  Specifically, any classification 
threshold on the score will classify correctly an expected percentage of truly 
positive cases as being positive (TP)  and will classify incorrectly an expected 
percentage of negative examples as being positive ( F P ) .  The ROC curve plots 
the observed TP  versus FP for all possible classification thresholds. Provost 
and Fawcett (Provost and Fawcett, 1997, 1998) describe how precise, objective 
comparisons can be made with ROC analysis. However, for the purpose of this 
study, we want to evaluate the class probability estimates generally rather than 
under specific conditions or under ranges of conditions. In particular, we will 
concentrate on how well the probability estimates can rank cases by their likeli- 
hood of class membership. There are many applications where such ranking is 
more appropriate than binary classification. 

Knowing nothing about the task for which they will be used, which prob- 
abilities are generally better for ranking? In the standard machine learning 
evaluation paradigm, the true class probability distributions are not known. In- 
stead, a set of instances is available, labeled with the true class, and comparisons 
are based on estimates of performance from these data. The Wilcoxon(-Mann- 
Whitney) nonparametric test statistic is appropriate for this comparison (Hand, 
1997). The Wilcoxon measures, for a particular classifier, the probability that 
a randorrily chosen class 0 case will be assigned a higher class 0 probability 
than a randomly chosen class 1 case. Therefore higher Wilcoxon score indicates 
that the probability ranking is generally better (there may be specific condi- 
tions under which the classifier with a lower Wilcoxon score is preferable). Note 
that this evaluation side-steps the question of whether the probabilities are well 
~a l ib ra t ed .~  

Another metric for comparing classifiers across a wide range of conditions 

3An inherently good probability estimator can be skewed systematically, so that although 
the probabilities are not accurate, they still rank cases equivalently. This would be the case, 
for example, if the probabilities were squared. Such an estimator will receive a high Wilcoxon 
score. A higher Wilcoxon score indicates that, with proper recalibration, the probabilities 
of the estimator will be better. Probabilities can be recalibrated empirically, for example as 
described by Sobehart et al. (2000) and by Zadrozny and Elkan (2001). 
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is the area under the ROC curve (AUR) (Bradley, 1997); AUR measures the 
quality of an estimator's classification performance, averaged across all possible 
probability thresholds. The AUR is equivalent t o  the Wilcoxon statistic (Hanley 
and McNeil, 1982), and is also essentially equivalent to the Gini coefficient 
(Hand, 1997). Therefore, for this work we will report the AUR when comparing 
class probability estimators. 

It  is important to reiterate that AUR judges the relative quality of the entire 
probability-based ranking. It may be the case that for a particular threshold 
(e.g., the top 10 cases) a model with a lower AUR in fact is desirable. 

4.3 Learning Curves 

In order to obtain a smooth learning curve with a maximum training size Nmax 
and test size T we take the following steps 10 times and average the resulting 
curves: 

(1) Draw an initial sample Sail of size Nmax + T from the original data set. 
(We choose the test size T to be between one-quarter and one-third of 
the original size of the dataset.) 

(2) Split the set Sail randomly into a test set Stest of size T and keep the 
remaining Nmax observations as a data pool Strain-source for training 
samples. 

(3) Set the initial training size N to approximately 5 times the number of 
parameters in the logistic model. 

(4) Sample a training set Strain with the current training size N from Strain-source 

(5) Remove all data from the test set Stest that have nominal values that 
did not appear in the training. Logistic regression requires the test set 
to contain only those nominal values that have seen been previously in 
the training set. If the training sample did not contain the value "blue" 
for the variable color, for example, logistic regression cannot estimate a 
parameter for this dummy variable and will produce an error message 
and stop execution if a test example with color = "blue" appears. In 
comparison (34.5 does some probability estimation based on the average 
of nodes on the path, for details see Quinlan (1993). We therefore remove 
all test examples that have new nominal values from Stest and create 
S t e s t , ~  for this particular N .  The amount of data rejected in this process 
depends on the distribution of nominal values, and the size of the test and 
current training set. However, we usually lose less than 10% of our test 
set. 

(6) Estimate all models on the training set Strain and obtain their predictions 
for the current test set S t e s t ,~  set and calculate the various evaluation 
criteria for all models. 
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(7) Repeat steps 3 to 6 for increasing training size N up to Nmax 

All samples in the outlined procedure are drawn without replacement. After 
repeating these steps 10 times we have for each method and for each training-set 
size 10 observations of all evaluation criteria. The final learning curves of the 
algorithms in the plots connect the means of the replicated evaluation criteria 
values for each training-set size. We use the standard deviation of the replicated 
value as a measure of the inherent variability of each evaluation criterion across 
different training sets of the same size, constructing error bars at each training- 
set size representing f one standard deviation. In the evaluation we will consider 
two models as different for a particular training-set size if the mean for neither 
falls within the error bars of the other. 

We decided to estimate all models on the same training data in order t o  re- 
duce variation in the performance measures due to sampling of the training data. 
Based on this argument we also use the same test set for all different training- 
set sizes, as this decreases the variance and thereby increases the smoothness of 
the learning curve. 

It  is important to note that since the evaluation criteria are based on a 
randomly sampled test set, any time structure that is in the data is ignored in 
the evaluation. That is, none of the results reported here relate to performance 
of these methods in a forecasting situation, where observations from earlier 
points in time are used to predict values from later time periods. This is a very 
different situation from the one studied here, since in the forecasting context 
the possibility of the underlying relationships in the population changing over 
time is an important concern. 

4.4 Implementation 

4.4.1 Tree induction 

To build regular decision trees (for classification) we used C4.5 (Quinlan, 1993) 
with the default parameter settings. To obtain probability estimates from these 
trees we used the frequency scores at  the leaves. Our second algorithm, C4.5- 
PET (Probability Estimation Tree), uses C4.5 without pruning and estimates 
the probabilities as Laplace-corrected frequency scores, as discussed in Section 
3.1.2. The third algorithm in our comparison, BPET, performs a form of bagging 
(Breiman, 1996) using C4.5. Specifically, averaged-bagging estimates 10 trees 
from 10 bootstrap subsamples of the training data and predicts the mean of the 
pr~babilities.~ Details of the implementations are summarized in Table 2. 

4 ~ h i s  is in contrast to standard bagging, for which votes are tallied from the ensemble 
of models and the class with the majority/plurality is predicted. Averaged-bagging allows 
us both to perform probability estimation and to perform classification (thresholding the 
estimates at 0.5). 
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4.4.2 Logistic Regression 

Logistic regression was performed using the SAS program PROC LOGISTIC. 
A few of the data sets exhibited quasicomplete separation, in which there exists 
a linear combination of the predictors P'x such that P'x, 2 0 for all i where 
y, = 0 and P'x, 2 0 for all i where y, = 1, with equality holding for at  
least one observation with y, = 0 and at  least one observation with y, = 1. 
In this situation a unique maximum likelihood estimate does not exist, since 
the log-likelihood increases to a constant as at  least one parameter becomes 
infinite. Quasicomplete separation is more common for smaller data sets, but 
it also can occur when there are many qualitative predictors that have many 
nominal values, as is sometimes the case here. SAS stops the likelihood iterations 
prematurely with an error flag when it identifies quasicomplete separation (So, 
1995), which leads to inferior performance. For this reason, for these data 
sets the logistic regression models are fit using the glm() function of R (Ihaka 
and Gentleman, 1996), since that package continues the maximum likelihood 
iterations until the change in log-likelihood is below a preset tolerance level. 

For bagged logistic regression, similarly to  bagged tree induction, we used 
10 subsamples with replacement of the same size as the original training set. 
TVe estimated 10 logistic regression models and took the mean of the probability 
predictions on the test set of those 10 models as the final probability prediction 
for the test set. The issue of novel no~ninal values in the test set again creates 
problems for bagged logistic regression. As was noted earlier. logistic regression 
requires all levels of nominal variables that appear in the test set to  have also 
appeared in the training set. In order to guarantee this for each of the 10 sub- 
training sets, a base set was added to the 10 sub-training sets. This base set 
contains at least two observations of each nominal value appearing in the test 
set. 

The variable selection variant and the ridge logistic regression were imple- 
mented in R. Due to  computational constraints such as memory limits, these 
variants do not execute for very large data sets and so we can only report the 
basic logistic regression for those cases. Details of the implementation are sum- 
marized in Table 2. 

5 Variants of methods: Learning curve analysis 

In this section we discuss the results of investigation into the usefulness of the 
different variants of the algorithms discussed in Section 3. We first focus on 
probability trees and then consider logistic regression. 

5.1 Variants of probability estimation trees 

We compare the learning curves to examine the effects of pruning, the Laplace 
correction, and bagging. Our results are consistent with expectations. 
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Table 2: Implementation Details 

I Narne / Description of Probability Estimation 
Frequency estimates on pruned tree 

C4.5-PET Laplace corrected frequency estimates on unpruned tree 1 :::T 1 10-fold averaged-bagging of Laplace corrected frequency es- 

Pruning was introduced (and improved upon) in order to increase the ac- 
curacy of unpruned classification trees. Accuracy-based pruning (as in C4.5) 
can hurt probability estimation based on trees, because it eliminates distinc- 
tions in estimates that would not affect classification. For example, two sibling 
leaves with probability estimates of 0.8 and 0.9 both would yield a positive 
classification; however, the different scores may improve ranking performance 
significantly. 

The Laplace correction makes up for errors in scores due to the smaller 
samples at  the leaves of unpruned trees, and due to the overly extreme bias in 
the probabilities, as discussed earlier. Bagging reduces variance, which leads to 
estimation errors as well as classification errors (Friedman, 1997). 

The ability of Laplace correction and bagging to improve probability esti- 
mation of induced trees has been noted previously. Bauer and Kohavi (1999) 
show similar results evaluating probability estimates using mean-squared error 
from the true (0/1) class; Provost, Fawcett, and Kohavi (1998) present ROC 
curves that show similar results, and Provost and Domingos (2000) show similar 
results using AUR. 

LR 
AIC 

Ridge 
BLR 

Pruning ((34.5 versus PET) 

timates on unpruned tree 
Multiple logistic regression 
Logistic regression with variable selection based on minimal 
AIC 
Ridge logistic regression 
10-fold averaged-bagging of ordinary logistic regression 

For classification accuracy, pruning5 improves the performance in ten cases (win- 
tie-loss tally: 10-25-1). However, the improvements are small in most cases. The 
top plot of Figure 3 shows a typical case of accuracy learning curves (Spam data 
set). 

The performance comparison of C4.5 and C4.5-PET is systematically re- 
versed for producing ranking scores (AUR). The Laplace transformation im- 
proves the AUR in twenty-two cases and is detrimental in only two cases (Int- 
Priv and IntCensor) (win-tie-loss: 22-12-2). The lower plot of figure 3 shows 

5Recall that the Laplace correction will not change the classification decision, so the only 
difference between C4.5 and (24.5-PET for classification is pruning. 
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this reversal on the same data set (Spam). Notice that, in contrast to accuracy, 
the difference in AUR is considerable between C4.5 and (34.5-PET. 

Bagging (BPET versus C4.5) 

Averaged-bagging often improves accuracy, sometimes substantially. The win- 
tie-Ioss tally is 10-21-5 in favor of bagging over C4.5. In terms of producing 
ranking scores (AUR), BPET was never worse than C4.5, with a 24-12-0 result. 

Bagging (BPET versus (24.5-PET) 

The only difference between BPET and C4.5-PET is the averaged-bagging. 
Both use Laplace correction on unpruned trees. BPET dominates this com- 
parison for both accuracy and probability estimation (16-18-2 for accuracy and 
15-19-2 for AUR). The two data sets where bagging hurts are Mailing and 
Abalone. However, looking ahead, in both these cases decision trees did not 
perform well cornpared to logistic regression. 

Based on these results, for the comparison with logistic regression in Sec- 
tion 6, we will use two methods: C4.5-PET (Laplace corrected and not pruned) 
and BPET. Keep in mind that this may underrepresent C4.5 '~  performance 
slightly when it comes to classification accuracy, since with pruning regular 
C4.5 typically is slightly better. However, the number of runs in Section 6 is 
huge. Both for comparison and for computational practicability it is important 
to limit the number of learning algorithms. Moreover, we report surprisingly 
strong results for C4.5 below, so our choice here is conservative. 

5.2 Variants of logistic regression 

In this section we discuss the properties of the three variants of logistic regres- 
sion that we are considering. We first note that model selection using AIC can 
sometimes result in improved performance relative to using the full logistic re- 
gression model, particularly for smaller sample sizes. Evidence of this occurs, for 
example, in the Adlilt, Bacteria, Mailing, Firm, German, Spam, and Telecom 
data sets. Figure 4, which shows the logistic regression accuracy learning curves 
for the Firm data set, gives a particularly clear example, where the AIC learn- 
ing curve is consistently higher than that for ordinary logistic regression, and 
distinctly higher all the way up to sample sizes of at  least 1000. Corresponding 
plots for AUR are similar. 

Unfortunately, model selection also can lead to poorer performance, as it 
does in the CalHous, Coding, and Optdigit data sets. Further, as was noted 
earlier, implementation of the Venables and Ripley (1999) AIC-based selector 
is based on the package R, and use of this package becomes infeasible for very 
large data sets (there is also a version for the package S-Plus, but this package 
is also not feasible for massive data sets). Since we are particularly interested 
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Figure 3: Accuracy and AUR learning curves for Spam data set, illustrating 
performance of variants of probability estimation trees. 
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Figure 4: Accuracy learning curves of logistic regression variants for Firm rep- 
utation data set, illustrating stronger performance of model selection-based 
logistic regression for smaller sample sizes. 
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Figure 5: Accuracy learning curves of logistic regression variants for Internet 
shopping data set, illustrating a situation where ridge logistic regression is ef- 
fective for small sample sizes. 

in performance for very large data sets, we will not include results for model 
selection-based logistic regression in the con~parisons in the next section. 

The story for ridge logistic regression is similar, but less successful. While 
ridge logistic regression was occasionally effective for small samples (see, for 
example, Figure 5, which refers to the Intshop data set), for the majority of 
data sets using it resulted in similar or poorer performance compared to  the 
full regression. We will therefore not discuss it further. Note, however, that we 
used one particular method of choosing the ridge parameter A; perhaps some 
other choice would have worked better, so our results should not be considered 
a blanket dismissal of the idea of ridge logistic regression. 

We also found, perhaps surprisingly at  first, that bagging is systematically 
detrimental to performance for logistic regression. In fact, in contrast to the 
observation regarding bagging for trees, for logistic regression bagging seems 
to shift the learning curve to the right! Upon further consideration, this is 
not surprising. Bagging trains individual models with substantially fewer data 
(approximately 0.63n distinct original observations, where n is the training- 
set size). Therefore when the learning curve is steep, the individual models 
will have considerably lower accuracies than the model learned from the whole 
training set. In trees, this effect is more than compensated for by the variance 
reduction, usually yielding a net improvement. However, logistic regression has 
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Figure 6: Accuracy learning curves for Californian housing data set, illustrating 
the negative impact of bagging on logistic regression performance. 

~. .... . ... .~.. .... . ... . .. . . . . .  . 

little variance, so all bagging does is to average the predictions of a set of poor 
models (note that bagging does seem to result in a small improvement over the 
accuracy produced with 63% of the data). 

In sum, our conclusion for logistic regression is quite different from that for 
tree induction (in the previous section). For larger training-set sizes, which are 
at  issue in this paper, none of the variants improve considerably on the basic 
algorithm. Indeed, bagging is detrimental. Therefore, for the following study 
we only consider the basic algorithm. It  should be noted, however, that this 
decision has no effect on our conclusions concerning the relative effectiveness of 
logistic regression and decision trees, since for the smaller data sets the ranking 
of the basic logistic regression algorithm compared to  decision trees is the same 
as that of the variants of logistic regression. 

One other general property of logistic regression learning curves is illustrated 
well by Figure 2 - the leveling off of the curve as the size of the data set 
increases. In virtually every example examined here, logistic regression learning 
curves either had leveled off at  the right end, or were in the process of doing 
so. This is exactly what would be expected for any parametric model (including 
logistic regression). As the data set gets larger, eventually the parameters of the 
model are estimated as accurately as they can be, with standard error (virtually) 
zero. At this point additional data will not change anything, and the learning 
curve must level off. 

0.78 
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6 Differences between tree induction and logis- 
tic regression: Learning curve analysis 

We now present our main experimentaI analysis. We compare the learning 
curve performance of the three chosen methods, C4.5-PET (Laplace-corrected, 
unpruned probability estimation tree), BPET (bagged (24.5-PET), and multiple 
logistic regression, as tools for building classification models and models for 
class probability estimation. Here and below, we are interested in comparing 
the performance of tree induction with logistic regression, so we generally will 
not differentiate in summary statements between BPET and PET, but just say 
"C4". In the graphs we show the performance of all the methods. 

Table 3 summarizes the results for our 36 data sets. As indicated by the 
first column, each row corresponds to a data set. The second column (Winner 
AUR) indicates which method gave the best AUR for the largest training set. 
If the mean for one algorithm falls within the error bars for another, a draw 
is declared (denoted "none"). The next column (Winner Acc) does the same 
for classification accuracy. The third column indicates the maximum AUR for 
any method on this data set. We will explain this presently. The final column 
summarizes the comparison of the learning curves. "X dominates" means that 
a method of type X outperforms the other method for all training-set sizes. "X 
crosses" indicates that a method of type X is not better for smaller training-set 
sizes, but is better for larger training-set sizes. "Indistinguishable" means that 
at the end of the learning curve with maximal training set we cannot identify 
one method (logistic regression or a decision tree variant) as the winner. 

One data set (Adult) is classified as "Mixed". In this case we found different 
results for Accuracy (C4 crosses) and ACR (LR dominates). We will discuss 
the reason and implications of this result more generally in Section 6.3. 

As described above, the area under the ROC curve (AUR) is a measure 
of how well a method can separate the instances of the different classes. In 
particular, if you rank the instances by the scores given by the model, the 
better the ranking the larger the AUR. A randomly shuffled ranking will give an 
AUR of (near) 0.5. A perfect ranking (perfectly separating the classes into two 
groups) gives an AUR of 1.0. Therefore, AUR can be considered an estimated 
"signal-to-noise ratio," with respect to the modeling methods available. If no 
method does better than random (Max AUR = 0.5), then for our purposes 
there is no signal (and it doesn't make sense to compare learning algorithms). 
If some method performs perfectly (Max AUR = 1.0), then for our purposes 
there is no noise. AUR is better than classification accuracy for this purpose, 
because it is comparable across data sets. For example, it is not affected by 
the marginal ("prior") probability of class membership. A data set with 99.99% 
positive examples should engender classification accuracy of at  least 99.99%, 
but still might have an AUR = 0.5 (there is no signal to be modeled). The data 
sets in Table 3 are presented in order of decreasing Max AUR-the easiest at  
the top, and the hardest at  the bottom. 

We have separated the results in Table 3 into three groups, indicated by 
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Table 3: Results of learning curve analyses. 

Coding I C4 
German 1 LR 

Data set 
Nurse 
h4ushrooms 
Optdigit 
Letter-V 
Letter-A 
Intrusion 
DNA 
Covertype 
Telecom 
Pendigit 
PagebIock 
CarEval 
Spam 
Chess 
CalHous 
Ailerons 
Firm 
Credit 
Adult 
Connects 
Move 
Downsize 

Diabetes 
Bookbinder 
Bacteria 
Yeast 
Patent 
Contra 
Int Shop 
IntCensor 
Insurance 
IntPriv 
Mailing 

Winner AUR 
none 
none 
none 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
none 
C4 
C4 
C4 
none 
LR 
C4 
LR 
C4 
C4 
C4 

LR 
LR 
none 
none 
C4 
none 
LR 
LR 
none 
LR 
LR 

Winner Acc 
none 
none 
none 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
C4 
LR 
C4 
C4 
none 
C4 
C4 
C4 
LR 
LR 
LR 
C4 
n.0n.e 
C4 
none 
LR 
LR 
none 
none 
none 
LR 

Max AUR 
I 
1 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.98 
0.98 
0.98 
0.98 
0.97 
0.95 
0.95 
0.95 
0.93 
0.93 
0.9 

0.87 
0.85 
0.85 
0.85 
0.8 
0.8 
0.8 

0.79 
0.78 
0.73 
0.73 
0.7 
0.7 
0.7 

0.66 
0.61 
0.56 

Result 
Indistinguishable 
Indistinguishable 
Indistinguishable 
C4 dominates 
C4 crosses 
C4 dominates 
C4 dominates 
C4 crosses 
C4 dominates 
C4 dominates 
C4 crosses 
C4 crosses 
C4 dominates 
C4 dominates 
C4 crosses 
C4 crosses 
LR crosses 
C4 dominates 
Mixed 
C4 crosses 
C4 dominates 
C4 crosses 
C4 crosses 
LR dominates 
LR dominates 
LR crosses 
C4 crosses 
Indistinguishable 
C4 crosses 
Indistinguishable 
LR crosses 
LR dominates 
Indistinguishable 
LR crosses 
LR dominates 
LR dominates 
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Samgle Size 

Figure 7: AUR learning curves for Optdigit data set, illustrating situation where 
all methods achieve high performance relatively quickly. 

horizontal lines. The relative performance of the classifiers appears to be fun- 
damentally different in each group. 

The topmost group, comprising Mushroom, Nurse. and Optdigit, are three 
situations where the signal-to-noise ratio is extremely high. All methods quickly 
attain accuracy and AUR values over .99, and are indistinguishable. The learn- 
ing curves for AUR for Optdigit are shown in Figure 7. For purposes of com- 
parison, these data sets are "too easy," in the sense that all methods isolate 
the structure completely, very quickly. Since these data sets do not provide 
helpful information about differences in effectiveness between methods, we will 
not consider them further. 

Remarkably, the comparison of the methods for the rest of the data sets 
can be characterized quite well by two aspects of the data: the level of noise 
in the data, and the size of the data set. As just described, we measure the 
level of noise using Max AUR. We split the measure to reflect a high/low split: 
AUR < .8 (lower signal-to-noise) versus AUR > .8 (higher signal-to-noise). 
The AUR split is reflected in the lower, horizontal division in the table. 

6.1 Data with high signal-to-noise ratio 

The higher signal-to-noise ratio situation (AUR > .8) is clearly favorable for 
the trees. Of the 21 high-signal data sets, in 19 C4 is clearly better in terms 
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Figure 8: Accuracy learning curves for Letter-V data set, illustrating situation 
where C4 dominates. 

of accuracy by the time the learning curve reaches its highest estimation point 
(C4's win-tie-loss record is 19-1-1). In some cases the tree dominates from the 
start; Letter-V is a good example of this situation, as shown in Figure 8. 

Here the logistic regression learning curve is initially slightly steeper than 
that of the tree, but the logistic regression curve quiclcly levels off, while the 
tree keeps learning, achieving far higher accuracy than the logistic regression. 
Move, Pendigit, and Spam are roughly similar. 

In the other situations, logistic regression's advantage for smaller data sets 
extends further, so that it is clearly better for smaller data sets, but eventually 
tree induction surpasses logistic regression both in terms of accuracy and AUR. 
Ailerons, Coding, Covertype, and Letter-A provide good exarriples of this sit- 
uation. The AUR curves for Covertype are shown in Figure 9. Interestingly, 
in all of these cases the crossover point is in the range of a training-set size 
of 1000-3000 observations. Thus, our results suggest that for higher signal-to- 
noise situations, past a few thousand observations, it is unlikely that logistic 
regression will outperform probability trees. 

It is natural to ask whether there are clear differences between the dominat- 
ing cases and the cases of crossing. We do not have a definitive answer, but it 
seems to be a combination of two factors. First, how "linear" is the problem. If 
there are few non-linearities and there is little noise, then logistic regression will 
do well from the beginning (relative to  the number of parameters, of course); 
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Figure 9: AUR learning curves for Covertype data set, illustrating situation 
where logistic regression is initially a better performer, but trees eventually 
dominate. 
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tree induction needs more data to reach the necessary complexity. Second, it 
simply depends on where you start looking: what is the smallest training-set 
size in relation to  the number of parameters. If you start with a relatively high 
number, trees are likely to dominate. 

Are there differences between the curves for classification (accuracy) and 
probability rank ordering (AUR) for this group of data sets? Table 3 shows that 
logistic regression is a bit more competitive for AUR than for accuracy (AUR 
win-tie-loss for (34.5 is 17-2-2). Generally, the shapes of the learning curves 
with respect to accuracy and AUR for a given data set are similar, but the 
accuracy curves are shifted to the left: (24.5 needs fewer data for classification 
than for probability estimation (again, not surprisingly). Therefore, when the 
C4.5 curve crosses the logistic regression curve, the crossover point for accuracy 
comes at the same point or later than the crossover point for AUR, but not 
earlier. An alternative view is that logistic regression apparently is better tuned 
for probability ranking than it is for classification. Given that the method 
is specifically designed to model probabilities (with classification as a possible 
side-effect of that probability estimation), this also is not surprising. 

Evidence of this can be seen in Adult, Ailerons, and Letter-A, where the 
crossover point of the AUR learning curves has not been reached (although the 
trajectories of the curves suggest that with more data the tree would eventually 
become the winner). The cases for Adult for both accuracy and AUR are shown 
in Figure 10. 

6.2 Data with low signal-to-noise ratio 

The lower signal-to-noise ratio situation (AUR < .8) is slightly more compli- 
cated. Sometimes it is impossible to distinguish between the performances of 
the methods. Examples of this (italicized in Table 3) include Contraception, 
Insurance and Yeast. For these data sets it is difficult to make any conclusions, 
in terms of either accuracy or AUR, since the curves tend to be within each 
other's error bars. Figure 11 illustrates this for the Contra data set. 

When the methods are distinguishable logistic regression is clearly the more 
effective method, in terms of both accuracy and AUR. Ten data sets fall into 
this category. Logistic regression's win-tie-loss record here is 8-1-1 for AUR and 
6-2-2 for accuracy. Examples of this are Abalone, Bookbinder, Diabetes, and 
the three Internet data sets (IntCensor, IntPrivacy, and IntShopping). Figure 12 
shows this case for the IntCensor data set. 

As was true in the higher signal-to-noise situation, logistic regression fares 
better (comparatively) with respect to AUR than with respect to accuracy. 
This is reflected in a more clear gap between logistic regression and the best 
tree method in terms of AUR compared to accuracy; see, for example, the results 
of IntPriv and the Mailing data where logistic regression wins for AUR, but not 
for accuracy. 

6This also suggests that logistic regression may outperform naive Bayes, comparing these 
results to those presented by Kohavi (1996) for the Adult data set. 
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Figure 10: Accuracy and AUR learning curves for Adult data  set, illustrating 
the later crossover of the tree curves past the logistic regression curves for AUR 
compared to  accuracy. 
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Figure 11: AUR learning curves for Contra data set, illustrating low signal-to- 
noise and indistinguishable performance. 

6.3 The Impact of Data Set Size 

The Patent data set is an intriguing case, which might be viewed as an exception. 
In particular, although it falls into the low signal-to-noise category, C4 is the 
winner for accuracy and AUR. This data set is by far the largest in the study, and 
at  an extremely large training data size the induced tree becomes competitive 
and beats the logistic model for accuracy. As shown in Figure 13, the curves 
cross when the training sets contain almost a million examples. This is consistent 
with the common view that machine learning tools are better suited for large 
rlat,a sets than staiistical tools, but note that in this case "large" means truly 
massive from the perspective of statistical analyses. 

The impact of data-set size on these results is twofold. First, in this study 
we use the maximum AUR as a proxy for the signal-to-noise ratio. However, 
even with our large data sets, in almost no case did the AUR learning curve 
level off for tree induction. This suggests that we tend to underestimate the 
signal-to-noise ratio. 

The second impact of data-set size concerns conclusions about which method 
is superior. We have 15 cases where one method crossed the other as the 
training-set size increases, and some of the mixed cases show that one method is 
dominated for small training size but later reaches the same performance level. 
In all of those cases the conclusion about which method is better would have 
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Figure 12: AUR learning curves for IntCensor data set, illustrating situation 
where logistic regression dominates. 

been different if only a smaller sample of the data had been available. 

7 Discussion and Implications 

It is clear from these results that considering training-set size in a comparison 
of classifier induction algorithms (i.e., examining learning curves on large data 
sets) can help us to understand differences in performance. In this study of 
two learning methods, each the de facto standard in statistics or in machine 
learning, we can see clear criteria for when each algorithm is preferable: C4 for 
low-noise data and logistic regression for high-noise data. 

Curiously, the two clear exceptions in the low signal-to-noise case (the cases 
where C4 beats logistic regression), Patent and Bacteria, may not be exceptions 
at all; it may simply be that we still do not have enough data to draw a final 
conclusion. For both of these cases, the C4 learning curves do not seem to be 
leveling off even at the largest training-set sizes. Figure 14 shows this for the 
Bacteria data set. Therefore, given more training data, the maximum AUR 
may well exceed 0.8-in other words, these data may actually fall into the high 
signal-to-noise category. If that were so, the C4-tie-LR record for accuracy for 
the high-signal data sets would be 21-1-1, and for the (large-enough) low-signal 
data sets 0-2-6. 
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Figure 13: AUR learning curves for Patent data set, illustrating situation where 
tree curves approach surpass logistic regression for extremely large training-set 
size. 
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Figure 14: AUR learning curves for Bacteria data set. The AUR of Bacteria 
has already reached 0.79 and decision trees have not leveled off. One could 
speculate that BPET will surpass LR and reach AUR>0.8. 
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Let us consider these results in the context of prior work. The most compre- 
hensive experimental study of the performance of induction algorithms (that we 
know of) was done by Lim, Lob, and Shih (2000). They show that averaged over 
32 data sets, logistic regression out-performs C4.5. Specifically, the classification 
error rate for logistic regression is 7% lower than that of C4.5. Additionally, 
logistic regression was the second best algorithm in terms of consistently low 
error rates: it is not significantly different from the minimum error rate (of the 
33 algorithms they compare) on 13 of the 32 data sets. The only algorithm that 
fared better (15133) was a complicated spline-based logistic regression that was 
extremely expensive computationally. In comparison, C4.5 was the 17th best 
algorithm in these terms, not differing from the minimum error rate on only 
seven of the data sets. 

Our results clarify and augment the results of that study. In particular, Lim 
et al. concentrate on UCI data sets without considering data-set size. Their 
training-set sizes are relatively small; specifically, their average training-set 
size is 900 (compare with an average of 60000 at  the right end of the learning 
curves of the present study; median=12800). Although C4.5 would clearly win 
a straight comparison over all the data sets in our study, examining the learning 
curves shows that C4.5 often needs more data than logistic regression to achieve 
its ultimate classification accuracy. 

This leads to a more general observation, that bears on many prior studies 
by machine learning researchers comparing induction algorithms on fixed-size 
training sets. In only 14 of 36 cases does one method dominate for the entire 
learning curve (and therefore training-set size does not matter). Thus, it is not 
appropriate to conclude from a study with a single training-set size that one 
algorithm is "better" (in terms of predictive performance) than another for a 
particular domain. Rather, such conclusions must be tempered by examining 
whether the learning curves have reached plateaus. If not, one only can conclude 
that for the particular training-set size used, one algorithm performs better than 
another. 

Why is there a connection between relative performance and noise level? At 
this point, we can only speculate. The world is probably a pretty nonlinear 
place. When noise is low, the highly nonlinear nature of tree induction allows it 
to identify and exploit complex structure that logistic regression misses. On the 
other hand, when noise is high, the massive search performed by tree induction 
algorithms leads them to identify noise as signal, resulting in a deterioration of 
performance. It  is a statistical truism that "All models are wrong, but some 
are useful" (Box, 1979, p. 202); this is particularly true when the data are too 
noisy to allow identification of the 'korrect" relationship. 

How can these results be used by practitioners with data to analyze? The 
results show convincingly that learning curves must be examined if experiments 
are being run on a different training-set size than that which will be used to 
produce the production models. For example, a practitioner typically experi- 
ments on data samples to  determine which learning methods to use, and then 
scales up the analysis. These results clearly show that such a practice could be 
misleading for most data sets if the relative shapes of the learning curves also 
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Figure 15: Accuracy learning curves for a hybrid model on the California Hous- 
ing data set. 

are not taken into account. 
We also believe that the signal-to-noise categorization can be useful, in cases 

where one wants to reduce the computational burden of comparing learning 
algorithms on large data.? In particular, consider the following strategy. 

1. Run C4.5-PET with the maximally feasible training-set size. For exam- 
ple, use all the data available or all that will run well in main memory. 
C4.5 typically is the fastest induction alternative (cf., Lim, Loh, and Shih, 
2000). 

2. If the resultant AUR is high (0.8 or greater) quit there, or explore other 
tree-based (or other nonparametric) options (e.g., BPET). 

3. If the resultant AUR is low, try logistic regression. 

Another strategy is t o  build a hybrid model. Figure 15 shows the perfor- 
mance of tree induction on the California Housing data set, where tree building 
takes the probability estimation from a logistic regression model as an addi- 
tional input variable. Note that the hybrid model tracks with each model in its 
region of dominance. In fact, around the crossing point, the hybrid model is 
substantially better than either alternative. 

7For example, we found during this study that, depending on what package is being used, 
logistic regression often takes an excessively long time to run, even on moderately large data 
sets. 
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One limitation of this study is that by focusing on the AUR, we are only 
examining probability ranking, not probability estimation. Logistic regression 
could perform better in the latter task, since that is what the method is designed 
for. 

8 Conclusion 

In this paper we have used learning curves to study the effectiveness of tree 
induction and logistic regression for classification and probability ranking. In 
the introduction we stated three related goals of our investigation involving 
comparing tree induction and logistic regression, using learning curve analysis. 
By using real data sets of very different sizes, with different levels of noise, 
we have been able t o  identify several broad patterns in the performance of the 
methods. 

In particular, we see that the highly nonlinear nature of trees allows tree 
induction to exploit structure when the noise level in the data is low. On the 
other hand, the smoothness (and resultant low variance) of logistic regression 
allows it to perform well when noise is high. 

Within the logistic regression family, we see that once the training sets are 
reasonably large, standard multiple logistic regression is remarkably robust, in 
the sense that different variants we tried do not improve performance (and bag- 
ging hurts performance). In contrast, within the tree induction family the differ- 
ent variants continue to make a difference across the entire range of training-set 
sizes: bagging usually improves performance, pruning helps for classification, 
and not pruning plus Laplace smoothing helps for scoring.' 

We also have shown that examining learning curves is essential for compar- 
isons of induction algorithms in machine learning. Without examining learning 
curves, claims of superior performance on particular "domains" are question- 
able at  best. To emphasize this point, we calculated the C4-tie-LR records 
that would be achieved on this (same) set of domains, if data-set sizes had been 
chosen particularly well for each method. For accuracy, choosing well for C4 we 
can achieve a record of 22-13-1. Choosing well for LR we can achieve a record 
of 8-14-14. Similarly, for AUR, choosing well for C4 we can achieve a record 
of 23-11-2. Choosing well for LR we can achicvc a record of 10-9-17. There- 
fore, it clearly is not appropriate, from simple studies with one data-set size (as 
with most experimental comparisons), to  draw conclusions that one algorithm 
is better than the other for the corresponding domazns. Similarly, it is not nec- 
essarily the case that the apparent superiority of one method over another for 
one particular sample size will "scale up" if the method is applied to new data 
(from the same domain) of a different (presumably larger) size, since that is 
effectively comparing the two methods on the basis of only one point on two 
learning curves, rather than on the entire curves. 

8 0 n  the other hand, the tree-learning program ((24.5, that is) IS remarkably robust when 
it comes to running on different data sets. The logistic regression packages require much more 
hand-holding 
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Finally, before undertaking this study, we had expected to see crossings in 
curves-in particular, to  see the trees' relative performance improve for larger 
training-set sizes. We had no idea we would find such a clean-cut characteriza- 
tion of the performance of the learners in terms of the data sets' signal-to-noise 
ratios. Neither did we expect such clear evidence that the notion of how large 
a data set is must take into account the noisiness of the data. Looking forward, 
we believe that reviving the learning curve as an analytical tool in machine 
learning research can lead to other important, perhaps surprising insights. 

We thank Batia Wiesenfeld, Rachelle Sampson, Naomi Gardberg, and all the 
contributors (and librarians) to the UCI repository for providing data. We also 
thank Tom Fawcett for writing and sharing the BPET software, Ross Quinlan 
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ing probability estimation models, and IBM for a Faculty Partnership Award. 
PROC LOGISTIC software is copyright, SAS Institute Inc. SAS and all other 
SAS Institute Inc. product or service names are registered trademarks or trade- 
marks of SAS Institute Inc., Cary, NC, USA. 
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A Data sets 

Adult 

This census income database was donated by Ron Kohavi to the UCI repository. 
The task is to predict whether income exceeds $50K/yr based on census data. 
We have selected a subset of 14 variables with the main goal to reduce the 
complexity of the problem but not with specific attention towards the predictive 
power of a variable. 

Ailerons 

This data set addresses a control problem, namely flying an F16 aircraft. The 
attributes describe the status of the airplane, while the goal is to predict the 
discretized control action on the aileron of the aircraft. This data set can be 
obtained from the RT homepage at h t t p  : //www . ncc .up .  pt/-ltorgo/RT. 

Bacteria 

This data set is extracted from a hospital information system in a municipal 
hospital, which includes information about clinical environments, names of de- 
tected bacteria, and characteristics of detected bacteria. This data was used in 
the KDD Challenge 2000 at the Fourth Pacific-Asia Conference on Knowledge 
Discovery and Data Mining (PAKDD2000) and was donated by Dr. Shusaku 
Tsumoto from the Department of Medical Informatics, Shimane Medical Univer- 
sity. We selected a subset of 10 variables since most of the original 161 variables 
contained many missing data, and predict whether bacteria were found or not. 

Bookbinder 

This data set comes as an example with the Marketing Engineering Software 
by G. Lilien and A. Rangaswamy ( h t t p  : //www . mktgeng . com). The task is to 
predict the choice of a customer based on previous shopping activity. 

Californian Housing 

This data can be found on the RT homepage by L. Torgo. The original task 
is t o  predict the price of a house with a given specification. We discretized the 
output variable in t o  > $130000 and < $130000 to form a classification task. 

Car Evaluation 

This UCI data set is special since it has for each possible combination of nomirlal 
values of the variables (all six are categorical) exactly one output, acceptable or 
not acceptable. I t  was derived from a simple hierarchical decision model. 
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Chess 

This is a UCI data set that represents chess end-games. It has six nominal 
attributes and the classification task is t o  predict whether the player won or did 
not win. 

Coding 

The protein coding region (PCR) data set (courtesy of Craven and Shavlik, 
1993) contains DNA nucleotide sequences and their binary classifications (coding 
or noncoding). Each sequence has 15 nucleotides with four different values per 
nucleotide. If the 15 nucleotides represent 5 codons which are part of a known 
protein, the sequence is labeled coding. 

Connect 

This data set was donated to  the UCI collection by John Tromp. The task is to 
classify from legal 8-ply positions of a connect-4 game whether the player wins 
or loses. We excluded the 3rd class of draw from the original data set as well as 
nominal variables with fewer than 10 instances for a particular nominal value. 

Contraception 

This data set is a subset of the 1987 National Indonesia Contraceptive Preva- 
lence Survey and is available from the UCI collection. The subjects are married 
women who were either not pregnant or did not know if they were pregnant 
at  the time of interview. The problem is to predict the current contraceptive 
method choice (no use or use) of a woman based on her demographic and so- 
cioeconomic characteristics. 

Covertype 

This is one of the largest UCI classification data sets with originally more than 
500,000 observations. The data were donated by Jock A. Blackard and Colorado 
State University. The goal is to classify the forest cover type (tree type) based 
on cartographic variables. We keep only the two main classes of the original 
seven tree types in our sample: Spruce-Fir and Lodgepole Pine, which together 
accounted for 85% of the data. 

Credit 

This UCI data set is the shortest of our study with 690 observations. It  was 
donated by J.R. Quinlan and can be obtained from the UCI repository or from 
the StatLog project under the name Australian Credit Approval. The goal is to 
predict credit approval. There is no detailed information about the rneaning of 
the input variables available, all attribute names and values have been changed 
to meaningless symbols to protect confidentiality of the data. 
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Mailing-KDD Cup 98 

This data set was used in the 1998 KDD Cup and is available from UCI. The 
objective of the analysis is to identify response to a fundraising campaign by a 
nonprofit organization. For our study we selected a preprocessed subset of nine 
dernograpbic and historical response variables based on the reports of the Cup 
winners. 

Diabetes 

This data set was used in the StatLog project and can be found at 
http: //www. liacc .up.pt/ML/statlog/data sets .html. The task is to pre- 
dict whether a patient tests positive for diabetes based on eight personal and 
clinical variables. 

DNA 

This data set was originally called Splice and is part of the UCI Molecular 
Biology data set. The goal is to classify a sequence of 60 nucleotides as boundary 
elements or nonboundary. There are two types of boundary elements: donors 
and acceptors which we combined for our classification goal into one category. 
The 60 nucleotides are coded as 3 binary dummies for the 4 possible nucleotides. 

Downsize 

This data set was created for a study by Wiesenfeld, Brockner, and Martin 
(1999) on the perception of fairness in organizational downsizing. We use a 
subset of 15 questions about the perceived procedural justice of the downsizing 
with response levels from 1-7 ("very little" t o  "a great deal") to predict the 
response of general job satisfaction. The predictors are treated as numerical 
variables. Records with more than three missing values where excluded. For up 
to three missing values per record we substituted the mean of the record, based 
on the observation that there was a high correlation between the variables. 

Firm Reputation 

The data set from the RQGold 2000 survey was sponsored by the Reputation In- 
stitute and conducted by Harris International (Fombrun, Gardberg, and Sever, 
2000). The classification task is to predict whether the response to the overall 
reputation rating of a company is greater than 3 given a scale from 1 (equals 
"very bad" reputation) to 7 (equals "very good" reputation). As independent 
variables we used the responses to 17 questions that classified the company in 
terms of innovation, competitiveness, profitability and so on. Those variables 
were on a 1-7 scale from "Does not describe the company" to "Describes the 
company very well". As was the case for the Downsize data, we treated the vari- 
ables as numerical and replaced up to three missing values by the observation 
mean. 
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German Credit 

This StatLog data set is similar to the Credit data set, where a classification of 
credit approval is based on personal information, banking information, purpose 
of credit, and previous credits. 

Insurance 

The Insurance Company Benchmark was used in the COIL 2000 Challenge and 
contains information on customers of an insurance company. The data consists 
of 86 variables and includes product usage data and socio-demographic data 
derived from geographic codes. The classification task is to predict whether a 
customer would be interested in buying a caravan insurance policy. 

Internet Censor 

This data was derived from parts of a survey conducted by the Graphics and 
Visualization Unit at  Georgia Tech from October 10 to November 16, 1997. The 
full details of the survey are available at  
http://www.cc.gatech.edu/gvu/usersurveys/survey-l997-10/. The task 
is to predict the subject's position on Internet censorship based on personal 
information and political position. 

Internet Privacy 

This data set comes from the same survey as Internet Censor but from a different 
section with focus on use of personal data provided by the visitor of a site for 
personalization and direct marketing. 

Internet Shop 

This is another data set derived from the 1997 Internet survey from GVU. The 
focus of this section was the willingness to use online shopping based on browsing 
behavior and general use of the Internet for information, news, financial services. 

Intrusion/KDD Cup 99 

This data set was used for The Third International Knowledge Discovery and 
Data Mining Tools Competition, and is available from the GCI repository. The 
competition task was to classify computer connection into the internal system 
into bad connections, called intrusions or attacks, and normal connections. 

The objective of this UCI data set is to identify one (A) of the 26 capital letters 
in the English alphabet based on 16 mathematically derived features of the 
digital image. 
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This is the same data set as Letter--A but now the task is to identify vowels. 

Move 

This data set was originally used by William Cohen at AT&T. The task is to 
classify video game moves as random or not random. A more detailed descrip- 
tion can be found in Cohen (1995). 

Mushrooms 

This UCI data set classifies mushrooms into definitely edible or potentially poi- 
sonous by combining the original three classes of definitely poisonous, unknown 
edibility and not recommended into potentially poisonous. The independent 
variables are n~usfiroom features such as color, size, and shape. 

Nurse 

The Nursery data set was derived from a hierarchical decision model originally 
developed to rank applications for nursery schools based on occupation of par- 
ents and child's nursery, family structure and financial standing, and social and 
health picture of the family. The data are available from the UCI repository. 

Opt digit 

The UCI optical digit recognition data were modified to a binary classification 
task by categorizing the output as 0 or other. The data. are based on normalized 
bitmaps of hand written digits. 

Pageblock 

The problem in this UCI data set consists of classifying all the blocks of the 
page layout of a document that has been detected by a segmentation process. 
Originally the problem had five classes: text, pictures, graphic, horizontal, and 
vertical lines. The binary classification task is to distinguish between text and 
nontext sections based on heights, length and area of the block, and measures 
of the distribution of black pixels. 

Patent 

This data set is the most complex and with two million observations the largest 
one used for this study. The data are issued by the U.S. Patent and Trademark 
Office to Micropatent. It contains the information from the front page of every 
patent granted since 1975. We selected a subset of the availabIe variables: 
year, country origin, number of assignees, U.S. classification code, and number 
of US references. To reduce the complexity we grouped the country of origin 
into six categories: U.S., Europe, Canada, Australia, Japan and Other. The 
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classification task is to predict whether this patent has received international 
references. 

Pendigit 

This UCI data set is similar to the Optdigit data. The goal is to classify hand- 
written digits as 0 or not 0 based on sampled x and y input coordinates from a 
pressure sensitive table. 

Spam 

This collection of e-mails is also part of the UCI collection. The goal is to build 
a spam filter that identifies spam mail like advertisements, chain letters and 
pornography based on features like: frequent words, consecutive capital letters, 
total number of capital letters and so on. 

Telecom 

This is a commercial application described in Weiss and Indurkhya (1995). The 
data describe a telecommunication problem and can be found at 
http : //www . cs . su. oz . au/--nit in. They are also available from the RT home- 
page. In order to obtain a classification task we discretized the continuous out- 
put into class 0 for y = 0 and class 1 for y > 0. All independent variables are 
continuous and there is no further information available. 

Yeast 

This UCI data set was donated by Paul Horton and the task is to predict 
the cellular localization sites of proteins based on eight continuous variables 
from various biomolecular models and an access number to the SWISS-PORT 
database. 
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