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Abstract: The incorporation of digital technologies into the products of diverse industries, accompa- 

nied by a shift to von-Neumann-like platform architectures, while resulting in substantially more valuable 

and flexible products, also leads to increased substitutability across previously distinct markets. This paper 

analyzes the economic implications of this trade-off in technology markets subject to digital convergence. 

We present a new model of imperfect competition that captures flexible platform scope, variability in con- 

sumer requirements, and multiple product purchases. We specify four types of equilibrium configurations 

- local monopoly, kinked, competitive and non-exclusive - that emerge as outcomes of the model, and 

describe how each equilibrium structure characterizes a distinct stage of digital convergence. 

Our analysis establishes that as markets converge, prices always rise initially even as competing products 

become less differentiated. However, when platform scope is largely dictated by exogenous factors, prices 

and profits eventually fall as the stage of convergence progresses, though consumer surplus and total 

surplus rise. Furthermore, while convergence has the expected effect of shifting consumption patterns 

from purchasing multiple specialized products to buying a single general-purpose product, we describe 

examples of equilibria in which consumers may buy multiple general-purpose products, using each for 

a specialized subset of their requirements. Pricing responses to changes in variable costs and consumer 

functionality needs are also discussed. 

When firms can make strategic choices of platform scope, we show that in any subgame perfect equi- 

librium, duopoly prices are always higher than monopoly prices, and industries may sustain high levels of 

profitability even when their boundaries blur. We also establish that as technological progress lowers fixed 

costs, a natural outcome is for unregulated firms to over-invest in platform scope relative to the social 

optimum, and that this outcome is true under both monopoly and duopoly market structures 
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1 Overview and motivation 

Over the last few years, there has been a widespread incorporation of digital technologies into the prod- 

ucts of a number of diverse industries, a phenomenon that has been referred to as digital convergence 

(Yoffie 1997). As product technologies in these industries become increasingly digital, there is typically an 

accompanying shift towards von-Neumann-like architectures, characterized by the use of powerful general- 

purpose hardware, and the reliance on a software platform to implement the actual functionality. This 

often leads to more valuable and flexible products, each offering a broader range of features. However, this 

use of common underlying digital technology can also result in overlapping sets of functionalities being 

provided by products in previously distinct industries. As a result, consumers begin to view products 

across these industries as substitutes (Greenstein and Khanna 1997), which causes boundaries between 

these industries to blur (Yoffie 1997). The primary objective of our paper is to analyze the economic 

implications of this trade-off - between increased value and increased substitutability - in markets subject 

to digital convergence. 

As an illustration, consider the evolution of the mobile telephone and handheld computing industries. 

Cellular handsets used to be designed around fairly rigid and highly optimized product architectures that 

were capable of little more than wireless voice communication. Recently, the Symbian-OS platform has 

emerged as the cornerstone of an 'application software-operating system-hardware' architecture for mobile 

telephony, and in parallel, Microsoft has developed the competing Smartphone platform. The primary 

objective of these platforms is to establish an operating system designed specifically for mobile telephony, 

enabling powerful and flexible IP-based communications applications which are implemented using general- 

purpose digital hardware. However, the architecture shift also makes it feasible to easily add other 

applications suitable for mobile device users. For instance, Nokia's Series 60 software platform facilitates 

the seamless development and deployment of Symbian-OS based applications for personal information 

management, multimedia, and content browsing. 

Correspondingly, in the handheld computing industry, hard-wired devices such as the Sharp Wizard 

have evolved into more sophisticated PalmOS and Microsoft PocketPC-based von-Neumann-like architec- 

tures. These systems are designed primarily for personal information management tasks - maintaining 

schedules, creating address and contact lists, and recording memos - and provide some support for PC- 

based applications as well. However, the shift to a platform-based architecture enables new mobile 

communications functionality in handheld computers, often implemented through application software. 

Converged devices based on these platforms, such as Handspring's Treo, Samsung's Nexio, and Danger 

Research's Sidekick have recently been launched. 
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At their core, the former set of devices are mobile telephones and the latter are handheld computers. 

However, the bilateral shift to a platform architecture has expanded the breadth of functionality each set 

of devices provides. As a consequence, they become more valuable, but simultaneously, consumers start 

viewing cell-phone and PDA products as gross substitutes, which affects pricing and profitability across 

both industries. 

Another recent example of the expansion of the scope of a familiar von-Neumann architecture based 

system is the Media Center PC from Hewlett-Packard, based on the Media Center edition of Windows XP, 

which aims to integrate a competitive level of home-theater functionality (including television viewing, a 

DVD player, and sophisticated digital audio) into a high-end PC. This product is a recent addition to a 

growing set of first-generation converged home entertainment platforms, such as the Moxi Media Center 

from Digeo, and Microsoft's X-Box, that are blurring the boundaries between the home computing and 

consumer electronics industries. Similar convergence trends are prevalent in the cable television, residential 

Internet access and wireline telephony industries. In each of these cases, technological convergence (the 

shift to digital technology and a platform architecture) results in product convergence (an overlap in 

the functionality of products and services provided by distinct industries), which may eventually lead to 

industry convergence. 

While each of these examples illustrates convergence driven by digital technologies, the phenomenon 

itself is not unique to the information age. Ames and Rosenberg (1977) document a similar transforma- 

tion in manufacturing processes across a wide range of industries at the turn of the twentieth century. 

Convergence in that case was at the production-process level, wherein similar production technologies such 

as machine tools were being employed across several industries. A sizeable literature discusses the effect 

of the new generation of such general purpose production technologies, now termed flexible manufacturing 

systems, on technology adoption patterns, and on firms' product and manufacturing strategies (Roller and 

Tombak 1990, Eaton and Schmitt 1994, Johansen et. al. 1995, among others). 

In contrast, the kind of convergence we model is at the product level, wherein products in distinct 

industries are increasingly designed around a common set of general purpose digital technologies - micro- 

processors, memory chips, hard drives, networking chipsets and operating systems. Bresnahan and Tra- 

jtenberg (1995) point out a number of important economic and structural features of industries affected by 

these kinds of general purpose technologies. Consistent with their theory, we treat the underlying digital 

technologies as being supplied by an exogenous upstream technology sector, and focus on competition 

between firms in the downstream converging product markets. 

Thus far, research in information systems and industrial organization economics that studies compe- 
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tition between firms in converging industries is fairly limited. The collection of essays in Yoffie (1997) 

provide some insight into the effect of product convergence on competitive strategy and industry structure 

- in particular, Greenstein and Khanna (1997) predict that convergence at the product level will lead to a 

higher intensity of competition. Katz and Woroch (1997), who focus on the telephone and cable markets, 

observe that convergence can be a source of increased competition if it creates new entry incentives and 

opportunities in each others' markets, and that reduced concentration may result if there are significant 

economies of scale or scope from entering multiple markets. 

However, there have been no substantive models that capture the effects unique to digital convergence, 

or that investigate how this phenomenon affects competition across industries. There are no clear theory- 

based strategic guidelines for firms in these industries, or prescriptions for what their optimal choices of 

platform scope should be. It is not clear how digital convergence affects pricing, demand, profitability or 

welfare. These are the questions that our paper addresses, in the sections that follow. 

In Section 2, we provide an overview of our model, first explaining why digital convergence and varying 

platform scope necessitates a new representation of product differentiation, and then outlining the basic 

building blocks of the model. Section 3 analyzes the case of a single-product monopoly, deriving the optimal 

pricing, production levels and investments in platform scope. The value functions and monopoly demand 

structure derived in this section form the basis for the models of duopoly studied in the subsequent 

sections. In Section 4, we characterize the nature of price equilibria in a converging duopoly model, 

describe the four kinds of equilibrium configurations, and establish the conditions under which each is 

feasible. Section 5 analyzes duopoly with exogenously-specified platform scope, examines how the nature 

of competition, prices, profits and surplus vary as platform scope changes, and studies their sensitivity 

to other exogenous model parameters at each feasible level of platform scope. In section 6, we analyze 

duopoly with endogenous platform scope in a two stage-game, and characterize the subgame perfect Nash 

equilibrium outcomes when firms make costly technology investments in scope. Section 7 examines how 

the model's outcomes are affected when consumers' breadth of functionality requirements is high, and 

discusses some unique outcomes that arise in this case. Section 8 concludes and outlines current research. 

2 Model 

2.1 Overview and general framework 

Traditional economic models of imperfect competition (Dixit and Stiglitz 1976, Salop 1979, Shaked and 

Sutton 1983, Economides 1984) were developed to analyze strategic interaction among functionally sim- 
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ilar products in relatively static environments. In the standard models, products are differentiated 'spa- 

tially'/horizontally with respect to abstract attributes (Salop 1979), or vertically with respect to quality 

(Shaked and Sutton 1983). A primary drawback of applying these models to  converging technology mar- 

kets is that they are based on the assumption that all products are similar in terms of the functionality or 

set of functionalities they provide to consumers. 

Some extensions of these basic models have been developed to study technology markets. von Ungern- 

Sternberg (1988) allows firms to choose the level of transportation costs in a Salop-type model of mo- 

nopolistic competition. Low levels of transportation costs in this model are synonymous with a higher 

degree of scope. Banker et al. (1998) take a different and interesting approach - instead of an explicit 

specification of consumers' product preferences, they extend Dixit (1979) by incorporating product quality 

into the aggregate demand function, which simplifies the model considerably and lends itself to an elegant 

analysis. Barua et al. (1991) use a similar approach to study information technology investments in a 

duopoly model with indirect sources of revenue. 

However, when applied to converging markets, these extensions have the same drawbacks as their 

underlying basic models - they restrict products to providing a similar set of functionalities, and there is 

typically an assumption of exclusionary choice. To get around these problems, and to capture the salient 

characteristics of digital convergence most effectively, we develop a new model of product differentiation, 

which generalizes standard approaches to modeling imperfect competition in a number of important ways. 

First, the standard approach of defining products as points in a product space is inadequate when 

applied to converging platforms of varying scope and effectiveness - it is more natural to think about a 

functionality space rather than a product space. This is because as device hardware becomes more power- 

ful, and operating systems more sophisticated, the scope and flexibility of platforms increases, and a single 

product provides consumers with an increasing range of functionality. In evaluating these increasingly 

general-purpose products, each consumer ascertains how effectively a product satisfies the set of function- 

alities they require. These sets themselves may not change - they are merely fulfilled in a different way, 

possibly using fewer products. To capture this new aspect of converging technology products, we model the 

space of desired functionalities directly, with consumers requiring different sets of functionalities, and with 

different products satisfying different sets of functionalities with varying effectiveness. Our approach bears 

some resemblance to the product characteristics approach pioneered by ~ancaster '  (1966, 1975), though 

we take care to ensure that our model is robust to some standard criticism levied against this approach. 

Second, translated into our context, the single exogenous parameter of misfit or transportation cost in a 

standard spatial model may represent both the breadth/variety of customer functionality requirements, as 
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well as the implied level of scope. In other words, a change in transportation cost could represent a change in 

how effectively a product fulfils a range of customer requirements, or a change in the range of requirements 

themselves. The former is a product characteristic, often influenced by the state of technological progress, 

and sometimes explicitly chosen by a firm. The latter is typically an exogenous characteristic of customers 

in the market. To separate the two effects, we need two variables - an exogenous parameter representing 

breadth of customer requirements, and a possibly endogenous variable representing platform scope - both 

of which directly influence the extent of product differentiation. 

Third, we depart from the traditional assumption of exclusionary choice. As observed earlier, digital 

convergence results in customers evaluating a single product with higher scope in lieu of multiple products 

with more focused functionality. Consequently, a robust model needs to admit both possibilities. We 

assume that a consumer who owns multiple products fulfils a specific requirement by using only the most 

eflective product that she owns, rather than by combining the capabilities of ull relevant products. This 

approach is consistent with a 'quality' or effectiveness interpretation of the value derived from functionality 

(rather than an additive 'quantity of functionality' interpretation), and insulates one from the standard 

criticism levied against the Lancaster-type 'products as a bundle of attributes' models2. 

Beyond this, our model preserves other standard aspects of models of horizontal differentiation. Prod- 

ucts are symmetrically located, 'distance' between a product's core functionality and a consumer's set of 

requirements affects product effectiveness and value, and distance between products continues to contribute 

to the level of product differentiation, thus enabling one to separate decisions about platform scope and 

product similarity3. 

2.2 Basic rnodel 

The basic model is described in four parts: the functionality space, the nature of the product, the distri- 

bution and value functions of consumers, and the production technology available to firms. 

Functionality space: The basis for products and customer preferences is a set of functionalities, 

which are distribut~ed around t,he circumference of a unit circle. Every point on the circle represents a 

specific functionality. Two functionalities which are closer to each other on the circle are more similar in 

terms of the technology needed to realize them, as compared to two functionalities that are further apart. 

Illustrations of points in a sample functionality space are depicted in Figure l(a).  The functionality space 

is exogenous, and is not altered by the choices of the firms or consumers. 

Products: Each product has a core functionality, which is the functionality it provides most effectively. 

In addition, each product has a level of platform scope ( l l t ) ,  which may be endogenously chosen, and which 
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in conjunction with a market-specific exogenous loss function g(.), determine the effectiveness of a product 

in proxriding each non-core functionality. Specifically, the effectiveness with which a product provides a 

functionality located at a distance x E [O,i] from its core functionality is given by u(x) = max{l -tg(x), 0). 

Consequently, an increase in a product's scope (a decrease in t) increases the product's effectiveness at 

providing functionalities away from its core functionality4. This is illustrated in Figure l(b). 

The loss function g(.) is assumed to be non-negative and strictly increasing. Furthermore, we assume 

that I - tg(i)  2 0. This ensures that every product has non-negative effectiveness on every functionality, 

and imposes a lower bound on scope. We discuss an example that relaxes this assumption - that is, the 

case of very low scope - in section 7. 

Consumers: Each consumer is characterized by an arc on the unit circle. This arc represents the set of 

functionalities that the customer requires. Different customers may require different sets of functionalities, 

and consequently, the arcs of functionality requirements of these different customers are located on different 

segments of the unit circle. We assume that these requirements arcs are uniformly distributed around the 

functionality space, and are all of constant length r E (O,1] .The consumer whose arc of functionality 

requirements is centered at y E [O,l] on the unit circle is referred to as 'the consumer located at 9'. The 

density of consumers5 on the unit circle is S .  
The value obtained by a consumer from a product is computed by summing the effectiveness of the 

product over the set of functionalities that the consumer requires. The gross value that can be obtained 

by a consumer located at y from a product located at z is therefore: 

measured in monetary units. This value function is illustrated graphically in Figure 2(a), for two different 

arcs of funclionality requirements, and for a larger range of requirements in Figure 2(b). 

Consumers can buy none, one or multiple products. If a customer buys no products, they obtain a 

reservation value of zero. If a consumer buys just one product, then they obtain a gross value as specified by 

(1). If a consumer buys two or more products, each functionality that the customer requires is fulfilled by 

the product that provides that functionality most eflectively. In all cases, consumers choose the product(s) 

that maximize their surplus - the total value from the products, minus the total price paid. 

Technology: All firms have the same cost of production C(q,t) = cq + F(t) ,  where q is quantity 

produced, and t is the inverse of platform scope. Recall that an increase in t represents a decrease in scope. 

This separable form implies the following assumptions about C(q, t ) .  
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1. Marginal cost of production is non-negative and constant: Cl (q, t)  > 0, Cll (q, t)  = 0. 

2. Variable cost is independent of scope C12(q, t)  = 0. 

Numbered subscripts to functions represent partial derivatives with respect to the corresponding argu- 

ment. For instance Cl(q, t)  is the partial of C with respect to its first argument, and C12(q7 t) is the cross 

partial of C with respect to its first and second arguments. This notation will be preserved throughout 

the paper. 

In addition, the cost function is assumed to have the following properties: 

3. Fixed cost is non-decreasing and convex in scope: F1(t) < 0, Fll (t) > 0. 

4. Marginal cost is not too high: for all t < &, c < 2 J: --- , u(x)dx. 
2 2 

The fact that marginal cost is constant is a recognition of the fact that in typical electronics and 

computer devices, the production of the hardware component is a commodity that is outsourced to a 

specialist contractor like Solectron or Flextronics. We sometimes consider the case of zero marginal cost 

as a specific example. An increase in platform scope or flexibility is typically achieved by a superior product 

design, an increase in the functionality of the software component, or a combination of the two. Both 

of these may result in increased fixed costs, and do not affect variable production cost substantially, as 

captured in Properties 2 and 3. In section 6.2, we consider the case of Fl(t) = 0, or when the choice of 

scope is a costless strategic variable. Property 4 simply states that in the feasible range of scope, marginal 

cost c is lower than the total value a consumer located diametrically opposite a product derives from it. 

This makes it possible for firms to profitably sell their product to all consumers in the market. 

3 Monopoly 

In this section, we model a monopolist producing a single product. The monopolist chooses platform 

scope by choosing t, and then sets the profit-maximizing monopoly price for the chosen level of t. We 

provide a general characterization of the demand function, and then solve the monopolist's problem with 

a linear loss function. In this section, as in sections 4 through 6, we address the case of T 5 i in detail. 

The analysis for r > i, while similar, has some unique aspects which we explore further in Section 7. 

Without loss of generality, fix the location of the core functionality of the product at 3. This divides 

the consumers into two identical and symmetric halves [0, 31 and [i, I]. At any price, the demand from 

each segment will be identical. We focus our analysis on consumers in one of these segments [ i ,  11. To 

facilitate simpler analysis, we 'unfurl7 the unit circle, and replicate the interval [O, $1 as [ l ,  $1, as shown in 

Figures 2(a) and 2(b). 

Center for Digital Econoiny Research 
Stern School of Business 
Working Paper IS-02-06 



Given this depiction, the value obtained by a consumer located at y E [$, 11 (that is, a consumer whose 

arc of functionality requirements is centered at y )  is given by: 

where 

g ( $  - x) for 0 < x < $; 
1 g ( ~ ) =  g ( ~ - ~ )  f o r $ < x < l ;  

( x )  for 1 5  x 5 j. 
Refer to Figure 2(a)  or 2(b)  for an intuitive understanding of the function g(.).  

3.1 Consumer value functions 

Based on ( 2 )  and (3 ) ;  the value function U ( y ,  t )  in the interval y E [$, I]  has a different functional form in 

each of three successive ranges of y,  which is: 

1 +T r - t [ G ( y  - y )  -I- G ( y  - %)I for $ < y 5 T ;  

u(;rl,t) =: r - t  [ G ( y -  9) - G ( y -  y)] for $ < y < 9, and (4) 

r - t [ 2 G ( i )  - G ( y  - y) - G ( 1 -  ( y  - %))I for 9 5 y I 1, 

where G(x) = f g(x )dx  is defined as the cumulative loss function. Refer to Figure 3 for a graphical sketch 

of the integrals, as well as the integral expressions based on (2 ) .  The following lemma describes some 

properties of U ( y ,  t )  : 

Lemma 1 For a l l y  E [$ , l] , t  E [o,&] 
(a) U ( y ,  t )  is continuous and decreasing in both y and t 

(b)  U l ( y ,  t )  is continuous and is  piece-wise diflerentiable i n  both y and t. 

(c) U11(y;t) -5 0 for $ < Y < ;, U11(y, t )  2 0 for y < y I 1,  and sign[U11(y,t)] = -sign[g11(z)] for 
1-r 

$<Y<T.  

(d) U2(y ,  t )  is continuous and decreasing in y .  

All proofs are provided in Appendix A. Part (a) of the lemma establishes that for a general loss 

function g(.) ,  consumers located closer to the product derive more value from it and that an increase in 

scope increases value for all consumers. Parts (b) and (c) establish some properties about the continuity 

and curvature of the value function. The final part of the lemma indicates that the marginal benefit from 
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an increase in scope is more for consumers located farther away from the product. Stated differently, the 

marginal consumer (that is, the one who gets least value from the product) benefits more than any of the 

inframarginal consumers (the ones who get higher value from the product) when scope is increased. This 

is an important property of the value function for our subsequent analysis. 

3.2 Demand and optimal prices 

The properties derived in Lemma 1 become more significant when one recognizes that the value function 

is identical to a rescaled inverse demand function faced by the monopolist. The reasoning is as follows - if 

the monopolist were to set price p = U(y, t) ,  where y E [$, I], all consumers located between $ and y would 

purchase, resulting in a demand of (y - i): from consumers located in [i, 11, and an identical demand of 

(y - 4); from consumers located in segment [0, $1, for a total demand of n(y - i). 
Define P(q, t)  = U(q + $, t )  as the rescaled inverse demand function - the argument q is the length of 

customers in [$, lj who purchase the product6, and the gross profit function ~ ( q ,  t) = nq(P(q,t) - c) as 

the corresponding total profits before accounting for the fixed costs of platform scope. Also define the net 

profit function II(t) as the fixed cost of scope subtracted from the optimal gross profits at scope level t: 

where q*(t) E argmax.ir(q, t). P(q, t)  is the actual price charged by the firm, and the monopolist chooses 
4 

price, not quantity. However, maximizing profits by choosing q E [O, $1 is mathematically identical to 

maximizing profits by choosing a price that results in demand nq E [0, $1, based on the bijection defined by 

P(q, t); the former approach is adopted for mathematical convenience. For a linear loss function g(x) = x, 

using (4), the gross profit function reduces to the following functional form: 

nq(r - c) - ntq(q2 + f )  for 0 5 q < 5 ;  
n(q,t) = nq(r - c) - ntrq2 for S < q < 9; (6) 

-HI f o r 9  ~ ~ 2 4 .  nq(r-c)-ntq(q(l-q) 4 

Figures 4(c) and 4(d) depict the typical shape of ~ ( q ,  t). Finally, define the gross surplus under monopoly 
'? 

as sM(q,t) = nJ(P(x,t) - c)dx. This is the total of firm profits and consumer surplus (that is, the total 
0 

surplus) before accounting for the fixed cost of scope. 

The following properties axe useful in establishing the profit-maximizing choices of q: 

Lemma 2 (a) For a linear loss function g(x) = x, ~ ( q ,  t)  is strictly concave in q for O < q < 9, and 

therefore has no more than one interior maximum in th in i n t ~ r ~ ~ n l  
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(b) In the inter.ua1 9 5 q 5 4, -n;(q,t) is always maximized at one of its two end-points. That is, 

1-r 1 either ~(9,  t) 2 ~ ( q ,  t) for a11 q E [F, i], or T ( $ ,  t) > ~ ( q ,  t) for all q E iT, 

Based on Lemma 2, for a fixed level of t, we can characterize the optimal choice of price and profits, 

and the resulting optimal demand: 

Proposition 1 For a linear loss function g(x) = x: 

(b) If 9 2 t 2 f i ,  then g*(t) = 2, P(q*(t), t)  = y and a(q*(t), t )  = q, and 

(c) if 2 t 2 0, then q*(t) = i ,  P(q*(t), t) = (r - v), and ~ ( ~ * ( t ) ,  t)  = n (7 - v) 
A number of results are established in Proposition 1. Firstly, as the scope of the product (l/ t)  increases, 

the quantity supplied by the monopolist increases steadily upto a threshold value t" = s, at which 

point it increases discontinuously to ;, and all consumers buy the product. It remains at this level for 

further increases in scope. On the other hand, the corresponding optirnal price rises steadily in scope 

upto a threshold value of t, then remains constant at a value of until the point t" = s. At 

this point, it is profit-maximizing for the monopolist to drop the price to the point where all consumers 

buy the product. A further increase in scope does not change demand, but results in a steady increase 

in price. The variation of price and quantity as scope varies are depicted in Figures 5(a) and 5(b), and 

the corresponding levels of profit and total surplus at the monopolist's profit maxinlizing choice q*(t) are 

depicted in Figures 5(c) and 5(d). 

3.3 Profitability and welfare analysis 

Figure 5(c) depicts that the level of gross profits increases continuously with scope, and the rate of increase 

in profits with scope jumps substantially when q*(t) transitions to $. Correspondingly, total surplus 

increases monotonically upto t", at which point it increases discontinuously (since the entire set of consumers 

now consume the product), and then continues to increase, albeit at a slower rate than profits, as scope 

increases. 

Consumer surplus, which is the difference between total surplus ~ ~ ( ~ * ( t ) ,  t) and gross profits ~ ( q *  (t), t), 

increases monotonically with scope upto the threshold t", and is maximum immediately after q*(t) changes 

discontinuously to 4. It subsequently decreases rapidly as platform scope increases. This pattern is both 

intuitive and consistent with previous research. As platform scope increases, this makes consumers more 

homogeneous with respect to the value they place on the  nroduct. This facilitates higher surrtlus extraction 
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by the monopolist - in fact, at t = 0, the monopolist's profits are equal to the entire total surplus, since 

the product provides identical value to all consumers. This is similar to results derived in the limit for the 

monopoly bundling of information goods (Bakos and Brynjolfsson 1999). Analogous reasoning leads one 

to expect consumer surplus to decrease as the breadth of functionality requirements r increases, and this 

is in fact the case. 

The preceding analysis is with respect to an exogenously specified level of platform scope. Alternately, 

if scope is endogenous, the monopolist will choose t to maximize the function n( t )  as defined in ( 5 ) .  

Correspondingly, a social planner who chooses the socially efficient level of scope, but lets the market set 

prices, would choose t* = arg max (sM (q* (t), t)  - F(t)) . 
t 

Define t i  as the optimal level of t chosen by the monopolist when q*(t) < f (that is, under partial 

market coverage) and t j  as the level of scope chosen by the monopolist when q*(t) = f (under full market 

coverage). The following proposition benchmarks monopoly choices with the social optimum. 

Proposition 2 For a linear loss function g(x) = x, t; > t* and t j  < t*. That is, under partial market 

coverage, the monopolist under-invests in platform scope, and under full market coverage, the monopolist 

over-invests in platform scope as compared to the socially optimal level. 

The results of Proposition 2 are illustrated in Figure 6. Recall that a lower value of t corresponds to a 

higher value of scope. When maximizing net profits II(t), the monopolist equates the marginal increase in 

gross profits 7r2(q* (t), t) to the marginal increase in fixed cost of scope Fl (t). Correspondingly, the socially 

optimal level of scope is where the marginal increase in gross total surplus ~ ~ ( ~ * ( t ) ,  t)  equals the marginal 

increase in fixed cost of scope Fl (t). 

The welfare analysis above is based on prices being chosen by the monopolist after a social planner 

mandates t*. However, even if we consider the first best solution, in which the social planner always 

mandates full market coverage at the socially-optimal level of platform scope, the results of Proposition 2 

still hold. The full-market coverage result is intuitive when one recognizes that when one increases scope, 

Lemma l(d) ensures that the value of the product to the marginal consumer (which determines price) 

increases faster than the value to the average consumer (which determines marginal total surplus). The 

monopolist therefore over-invests in scope. 

There has been a substantial amount of regulatory activity in technology industries subject to conver- 

gence, such as the telecommunications, cable television and software industries. The results of Proposition 

2 may be useful in determining the effectiveness of policies (like mandating universal coverage) prescribed 

to a regulated monopolist. This issue is discussed further in Section 8. 
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4 Duopoly: equilibrium structure 

We next consider two firms A and B, whose products' core functionalities are located diametrically opposite 

each other7, at and 1 respectively. In this section, we characterize demand and payoffs, describe the 

different kinds of feasible price equilibria, and show when each kind is feasible. In Sections 5 and 6, we 

determine and analyze these equilibria when scope is exogenously specified, and when it is endogenously 

chosen. Consistent with our monopoly analysis, we consider the case of r < in detail, and discuss some 

unique and interesting aspects of the case of r > 4 in Section 7. 

4.1 Demand and profit functions 

We refer to a firm's own choices with subscript i and those of its opponent with subscript j .  Given an 

opponent price pj, the inverse demand of duopolist i, denoted Pi(qi, ti, tj, pj) , generally takes one of two 

functional forms. The first form is the monopoly inverse demand function P ~ ( ~ ,  t) = U(q + 4,  t), which 

is simply the inverse demand function of the monopolist The second is the competitive inverse demand 

function, which has the following form, and will be explained shortly: 

When firm j prices its product higher than the reservation value of the customer who values it most, 

the inverse demand function of firm i, at a competitor price p,, is simply the monopoly inverse demand 

function. That is, if p, > ~ ( 4 ,  tj): 

1 
Pi(qi,ti,tj,pj) = ~ " ( ~ i , t i )  for O 5 4. "2 < -. 

f i ( i i j , ~ j )  = p"(qi,ti) for o < qi < 1 - ~ - ' ( ~ ~ , t ~ ) ;  (9) 
1 

= ~ ' ( ~ , , t i , t j , p j )  for 1 - ~ - ' ( ~ , t ~ )  < q. ' -  < - 2' 

where the inverse of U is with respect to its first argument (that is, u(u-' (u, t), t )  = u). 

This is illustrated in Figure 7(a). For values of qi < 1 - U-'(pj, tj), Pi(qi, ti, t j ,pj) is identical to the 

monopoly demand function, since these consumers get no surplus from the purchase of product j .  We call 

this the 'monopoly region'. For values of qi > 1 - u - ' ( ~ ~ ,  t j ) ,  which we term the 'competitive region7, the 

demand function becomes less elastic than the corresponding monopoly demand function. This is because 

in order to sell to each new customer, the duopolist must compensate not only for the reduction in value 
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due to increased distance from her own product's core functionality, but also for an increase in value from 

the competing product, which is now positive and increasing in qi. Accounting for this effect yields inverse 

demand of the form (7). 

The demand function therefore has a kink at the point qi = 1 - u-'(pj7 tj). As the competitor lowers 

price pj , the monopoly region of Pi(qz, ti, t3, p3) shrinks. Finally, when all customers have positive value 

for firm j's product, the monopoly region completely disappears: If pj  Dj U(1, tj): 

1 
Pi (q i , t i , t j , p j )=~c(q i , t i , t j , p j )  for 019- " 2  < -. (10) 

There is also a third kind of region on the duopolist's inverse demand function (the non-exclusive region), 

which occurs only if r > i, is illustrated in Figure 7(b), and is elaborated on in Section 7. 

Let xi (qi, ti, t j ,  pj) represent the gross profit function of the duopolist: 

which has the following useful property: 

Lemma 3 The function ni(qi, ti, tj, pj) has either no interior maximum, or a unique interior maximum 

zn qi. 

We subsequently refer to the portion of the gross profit function which corresponds to the monopoly 

region of Pi(qi, ti, tj, pj) as the monopoly portion of the duopolist's gross profit function, and the portion of 

the gross profit function which corresponds to the competitive region of Pz(qi, ti, tj,pj) as the competitive 

portion of the duopolist's gross profit function 

4.2 Equilibrium configurations 

Depending on the position of each duopolist's equilibrium choice of q on their inverse demand function, 

four different equilibrium configurations are possible for the second-stage pricing game: 

1. Local monopoly equilibrium: At this equilibrium, each firm behaves like a local monopolist 

and prices in the monopoly region of their demand curves. Some customers do not purchase either 

product, and the sum of the equilibrium demand of both firms is less than (that is, at equilibrium, 

qn + qg < 3). This is illustrated in Figure 7(c). The prices and firm profits are generally identical to 

those in the single product monopoly case, but in some instances, one of the prices may be higher. 
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2 .  Kinked equilibriurn: At the kinked equilibrium, both firms price at the kink between the monopoly 

and competitive regions of their respective demand curves, and total equilibrium demand is t .  This 

is illustrated in Figure 7(d). At first glance it might seem as if this equilibrium configuration is a 

knife's-edge case, but it is feasible across a whole range of scope and demand parameters. 

3. Competitive equilibrium: This equilibrium configuration is analogous to the 'standard' equilib- 

rium that one comes across in Salop-like models of imperfect competition. The firms price in the 

competitive region of their demand curves, wherein the firms compete for each others' marginal con- 

sumer. In equilibrium, customers still purchase only a single product, and the total equilibrium 

demand is still ;. This is illustrated in Figure 7(e) 

4. Non-exclusive equilibrium: In this equilibrium, a subset of customers purchase both products, 

and the total equilibriurn demand is greater than T. This is illustrated in Figure 7(f) - since this 

kind of equilibrium occurs only if r > $, we discuss it further in Section 7. 

4.3 Feasible pure-strategy price equilibria 

Given the values of scope (i 1) and its opponent's price p,, firm i chooses a price p, that maximizes its 
t3 

payoff. As in section 3, since choosing q, is mathematically identical to choosing p,, and is analytically 

more convenient, we use q, as the optimization variable. This implies that given p,, t,, and t,, firm i 

chooses q, to maximize rz(q,, t,, t , , ~ , ) .  We establish necessary and sufficient conditions for the existence 

of the different equilibrium configurations and then proceed to compute them8. 

The regions of the parameter space (tA,tB) in which each equilibrium configuration is feasible are 

mapped out by identifying where pairs of actions (i.e., choices of q,) are locally optimal, a necessary 

condition for a candidate action pair to be feasible as an equilibrium. Given t,, we define QM(ti) as the 

interior local maximum, if it exists, on the monopoly profit function of firm i, for each i = A, B. Lemma 

2 ensures that there is at most one interior local maximum. Where an interior local maximum does not 

exist, we set QM(ti) = i. Consequently: 

~ ( x + $ , t , )  - c  
&"(ti) = x : 

1 
= x, if such an x exists in [0, -1 

-UI (x T 4, ti) 2 
1 

= - otherwise. 
2 

Analogously, given ti and tj, we define Qc(ti, tj) as the interior local maximum of the duopoly profit 

function (which, from Lemma 3, is unique if it exists), in the competitive region of the demand function, 
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Table 1: Functional form of QM(ti) in different ranges of ti for a linear loss function 

for a value of pj = U(l - QC(ti, t j) ,  ti): 

U ( x + i , t , ) - c  1 
QC(ti, t i )  = x : = x, if such an x exists in [0, -1 

- [ U I ( ~  + $,ti) + Ul(1 - 2, tj)] 2 (13) 

1 
= - otherwise. 

2 

QC(ti, ti) is the interior local maximum of the competitive profit function qi(Pc(qi, ti, tj7 pi) c ) ,  if it exists, 

at a level of pj such that its maximizing value intersects the monopoly profit function. Since Ul(q, t) < 0 

for all q and t, (12) and (13) imply that QC(ti, t i)  < QM(ti) for all Qc(ti, tj) + 1. 
The quantities QM(ti) and QC(ti,tj) are of interest because they completely define when each of the 

first three equilibrium configurations are feasible: 

Proposition 3 For any t~ and t ~ :  

(a) A local monopoly equilibrium is feasible only if QM(tA) + QM(tB) < i; 
(b) A kinked equilibrium is feasible on19 if QM(ta) + QM (tB) t 1, and Qc(tn, ta) + Qc(tB, tA) -5 4, 

and 

(c) A competitive equilibrium is feasible only if ~ ' ( t ~ , t ~ )  + Qc(tB,tA) 2 4. 

For the linear loss function g(x) = x, Table 1 summarizes the values of QM(t,), along with bounds on 

its value, for different ranges of t,. The derivation of these values is based on (12) above. Analogously, 

Table 2 summarizes the computed values of QC(t,, t3), along with bounds on its value, if any, for different 

ranges of t, and t3: These values are derived based on (13). 

Based on Table 1 and Table 2, we identify the different regions of the (tA, tB) space in which different 

pure strategy price equilibria are feasible. Proposition 3 ensures that a maximum of one equilibrium 

configuration is feasible in each region. Figure 8(a) illustrates this partition, some mathematical details of 

which are presented in Appendix B. 

Figure 8(a) shows that when both products h;l.ii~ lnw c.cnne (hivh t )  then t he  feasible eauilibrium 
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Table 2: Functional form of Qc(ti, tj) in different ranges of ti and t j  

Range of t j  in terms of ti 

t j  > 2 ( 7  -ti) 

2 ( 7 - t i ) > t j > 2 ( - - t i )  

2(- - ti) 2 t j  

2 (A - 2ti + d m )  
t j < ( A - a t i + d = )  

configuration is local monopoly. Both products provide positive but minimal effectiveness on the core 

functionality of their rival product. Therefore, there ends up being no real strategic interaction between 

the price and demand choices of the two firms, and each firm prices like a local monopolist, leaving a 

portion of the market unserved by either. As either firm increases its scope, thereby reducing ti, the gross 

value of the product increases for the non-adopting customers increases faster than price. This gradually 

increases adoption, to the set of points represented by the curve K M  in Figure 8(a), where all consumers 

purchase one or the other product. 

The feasible equilibrium configuration now transitions to a kinked equilibrium. The market is fully 

covered, yet neither firm finds it profitable to try and gain market share when their product's scope increases 

- the benefit of stealing an opponent's customer by dropping prices is outweighed by the corresponding 

loss in profit from their existing customer base. This behavior persists across an entire range of (tA,tB) 

values. 

Finally, when scope is high enough, firms start to compete for each others' customers, thereby entering 

the competitive equilibrium configuration region. Their markets overlap in a strategically relevant way, 

since it is profitable to increase demand at the margin, even after accounting for the losses in revenue 

from one's own customer base. Consequently, under this equilibrium configuration, prices are bilaterally 

Note: A = 4 ( ~  - C) + t i ( l  - T ) ~  

Value of QC (ti, t j)  
4(r-c)-r2ti 

Qc(ti,tj) = JG 
Qc(ti,tj)=- r(2 t i+t j )  

2ti+tj- J(2ti+tj)2-A(3ti+2tj)  
QC(ti,tj> = 2(3ti+2tj)  

Qc(t i , t j )=$ 

reduced, and this is reinforced as platform scope increases, moving one away from the curve CK. 

Bounds on Qc(ti, tj) 

Qc(ti,tj) 5 5 
2 < - Qc(ti,tj) 5 9 

2ti+t 
'-T < Qc(ti, tj) 5 2(3ti+2;j) 2 - 

- 

4.4 Equilibrium demand and prices 

Having identified the feasible pure-strategy Nash equilibria in each region, we now specify their correspond- 

ing equilibrium q pairs. Denote the equilibrium choice of q by firm i as q;*(ti, $). Actual realized demand 

wiIl therefore be nq; (ti, t j)  . 

For the linear loss function g(x) = x, the derived eaililibrit~rn values are summarized in Table 3. These 
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Table 3: Equilibrium quantity values for each equilibrium configuration 

$ - ~ ' ( t ~  ti) L Q"(ti) L 4 - Q"(tj) 2 QC(ti, tj) 

Qhl(ti) 2 $ - ~ ~ ( t j : t i )  2 4 - QA*(tj) 2 Qc(ti,tj) 

M .  . t.) > QM(ti) 2 ~ ~ ( t i , t j )  2 $ - Q (t3) 4 - Q  ( t j , z  - 

Q"(ti) L $ - ~ ~ ( t j y t i )  2  ti, tj) L 4 - QM (ti) 
- 

expressions are obtained by deriving the form of the actual Nash equilibrium (pairs of q that are best 

responses to each other), for each region in the (tA,tB) space, given the feasible equilibrium configuration in 

this regiong depicted by Figure 8(a). When the local monopoly configuration is feasible, Table 3 illustrates 

that there are three sub-segments, each with its corresponding unique optimal q,(t,, t,). Similarly, when 

the competitive equilibrium configuratiori is feasible, there is a unique equilibrium q,(t,, tJ) for each firm i. 

On the other hand, for each pair of t values at which a kinked equilibrium configuration is feasible, there 

is a continuum of equilibrium q pairs, as illustrated (in one case) in Figure 8(b). 

This is easily explained if one refers back to Proposition 3(b). A kinked equilibrium configuration is 

feasible only if QM(t,) + QM(t3) 2 $, and ~ ~ ( t , , t ~ )  + ~ ' ( t , ,  ta) < 4. When these inequalities are strict, 

there is a continuum of pairs qi(tA, ts), q i  (tB, tn) which sum to $, at which payoffs are strictly increasing 

along the monopoly portions of the duopoly gross profit curves of both firms (because QM(t,)+QM(t3) > i), 
and at which payoffs are strictly decreasing along the competitive portion of the duopoly gross profit curves 

of both firms (because ~ '( t , ,  t,) -t- QC(t3, 2,) < 4). Each of these pairs is consequently a Nash equilibrium. 

4 - Q"(tj) I qf(ti7tj) i Q M .  (kt)  

$ - Q"(ti) I qf (ti,tj) i 4 - Qc(tj,ti) 

QC (ti, t j)  i qf (ti tj) < QA!' (ti) 

QC(ti7 tj)  i @(ti7 tj) < $ 
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Note: at any kinked equilibrium, q>(tA,tB) and q ; ( t ~ , t ~ )  sum to (see Figure 12) 

Equilibrium configuration: Competitive 

Range of values of ti 

All feasible competitive equilibrium values 

Equilibrium qf (ti, t j)  
ti+2t 

qi(ti, t j)  = G(ii+t:) 



Table 4: Equilibrium prices pairs under different equilibrium configurations 

Equilibrium prices Pz(ti, tj) under each equilibrium configuration are summarized in Table 4. 

5 Duopoly: exogenous platform scope 

This section analyzes the duopoly model with an exogenously specified and symmetric scope level +. 
The results of this section apply to a scenario in which the effectiveness of products in fulfilling different 

consumer requirements is not explicitly chosen by the duopolists, but is largely determined by an exogenous 

factor (such as progress in technology in an upstream industry, for instance, as in the case of semiconductor- 

based devices, or in a downstream industry, as in the case of operating system or application software). 

The analysis allows us to examine how the nature of competition, prices, profits and surplus vary as scope 

changes, and their sensitivity to other exogenous model parameters at each feasible level of scope. It also 

serves as a useful benchmark for the results of section 6. 

5.1 Equilibrium 

In each of the equilibria derived in this section, nq,*(t), Pz(t) and ~ : ( t )  denote the equilibrium demand, 

price and payoffs to each of the firms i = A, B. The diagonal of the (tA, tB) graph in Figure 8(a) represents 

the set of feasible equilibria when constrained to symmetric choices of scope. This suggests that as scope 

increases, and t falls, the equilibrium configuration will move from being local monopoly, to kinked, to 

competitive. These equilibria are characterized in the following three propositions: 

Proposition 4 If both products have identical and exogenously specified scope $, a local monopoly equilib- 

rium configuration is feasible if and only if t > 2 ( F ) .  The unique equilibrium outcomes are: 

(a) ~f 2 2 t 2 : demand is nqf (t) = n Jw , p n c e ~  are ~ z ( t )  = (y - -9) , and payofls 

4 r -c  - r2 t  are7if(t) = :J-, f o r i  = A , B  
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(4) If 9 > t > 2 9 :  demand is nq:(t) = 9, prices are PT(t) = F,  and payofls are 

e, f o r i  = A, B. nZ(t) = 47-t 

As one would expect, these equilibrium pairs are identical to the corresponding monopoly outcomes 

under partial market coverage. The variation of demand, price and profits for each firm is as discussed in 

section 3.2. Figure 9(a) and 9(b) plot the variation in demand and price with scope $. The first segment 

of the graphs depicts that in the local monopoly equilibrium, both demand and prices increase as scope is 

increased. 

As t falls below 2 ( 7 ) ,  the outcome transitions to one of a continuum of kinked equilibria: 

Proposition 5 If both products have identical and exogenously specified scope $, a kinked equilibrium 

configuration is feasible if and only i f  ;f(y) < t < 2 ( 7 ) .  For each value o f t ,  there is a continuum of 

equilibrium pairs ( q i  ( t )  , q& ( t ) )  , as specified i n  Table 3. 

(a) In  the unique symmetric equilibrium, q>(t) = q$(t)  =$. Therefore, demand is ng:(t) = f, prices 

are Pr(t) = r ( 1 -  i), and payofls are $( t )  = n ( 7  - s), for i = A, B. 

(b) For each asymmetric pair (q: ( t )  , q> ( t ) )  , equilibrium demand is  nq: ( t)  , equilibrium prices are 

Y(t) = I / ( $  + q$(t) ,  t ) ,  and equilibrium payofs are ~ $ ( t )  = nq: ( t )  [Pi* ( t )  - c],  for i = A, B. 

We choose the sym~netric equilibrium q i ( t )  = q>(t) = $ for further discussion. Apart from being 

symmetric, it is also feasible in all four ranges of ti and t j  specified in Table 3 .  Moreover, among all the 

kinked equilibria, it is the one that maximizes total surplus. As depicted by Figure 9(b), under this kinked 

equilibrium, prices continue to increase as t falls and scope 3 increases. In other words, as the products 

become less differentiated, prices rise rather than fall. Moreover, these prices are not only higher than 

the prices charged when the firms are each local monopolists, but they are higher than the corresponding 

single-firm profit-maximizing prices. 

This unusual equilibrium response is a consequence of the relative slopes of the monopoly and com- 

petitive regions of the duopolist's profit function. In a kinked equilibrium, both duopolists are at the 

transition point between the monopoly and the competitive portions of their respective gross profit func- 

tions. The slope on the monopoly portion is positive, which would induce a monopolist to increase realized 

demand. However, the presence of the rival duopoly firm makes this demand increase impossible without 

reducing profits (because the slope of the competitive portion of the gross profit function is negative). As 

a consequence, the equilibrium response to this tension ends up being an increase in price, rather than in 

realized demand1'. 
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The equilibrium increase in prices in response to a reduction in t is not restricted to the symmetric 

kinked equilibrium. Note that for any kinked equilibrium, P,*(t) = U ( i  + qz(t),t), and since U2(y,t) is 

negative, the equilibrium response to an increase in scope $ is an increase in price, so long as the firms 

stay at the same equilibrium pair1' (q i  ( t )  , q& (t)) . 

Finally, when scope is increased to the point where t falls below $(?), the equilibrium configuration 

becomes competitive: 

Proposition 6 If both products have identical and exogenously specijied scope $, a competitive equilibrium 

configuration is feasible if and only if t < < (7 j. The unique equilibrium outcomes are: demand nq: ( t )  = 2, 
nrt price P: (1) = c + 9, and pay08 .irb (t) = 7, for i = A, B. 

This equilibrium outcome is similar, though not identical, to that of the standard circular differentiated- 

products duopoly. The firms always split the market; as t decreases and scope rises, prices fall as depicted 

in Figure 9(b). The decline in prices is proportionate to t, and rapidly pulls the duopoly prices below the 

corresponding single-firm price. 

5.2 Sensitivity to costs and breadth of consumer requirements 

Inspection of the price expression in Proposition 6 indicates that prices rise as the breadth of functionality 

requirements of customers r increases. This is interesting, because much like an increase in platform 

scope i ,  an increase in r has two effects - it increases the value of each product for all consumers, but 

simultaneously reduces the level of product differentiation. Proposition 6 shows that in a competitive 

equilibrium configuration, the former effect dominates the latter, which is in stark contrast to the effect 

of increasing platform scope. This effect persists across the other two equilibrium configurations as well - 

any marginal increase in r always raises prices and profits. This is not surprising for local monopoly, and 

complements a similar scope effect in the case of the kinked equilibrium. More importantly, it highlights 

the importance of separating changes in product differentiation that are a result of platform scope choices, 

and those that are a result of changes in consumer needs. 

Reducing the unit variable cost c generally does prices - however, the impact varies substantially with 

equilibrium configuration. In the competitive equilibrium configuration, when unit costs fall, the entire 

cost reduction is transferred to the customers, which is reflective of a high degree of competition. Under 

local monopoly, there is a downward price adjustment which raises realized demand, results in the benefits 

being shared by the buyers and sellers, and is consistent with the monopolistic nature of the equilibrium. 

However, in a kinked equilibrium configuration, the entire benefit of the cost reduction is absorbed bv the 
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Table 5: Gross total surplus and consumer surplus with exogenous t 

4 r-c 
2 ( 7 )  2 t > g(T) 
4 r c  > 
T ( r ) - t > O  

duopolists, with no transfer of surplus to the buyers. Beyond these local effects within an equilibrium 

configuration, changes in r and c also affect the relative sizes the of the regions of t under which each 

equilibrium is feasible. It is easily seen that (7) is increasing in r and decreasing in c. Consequently, an 

increase in the breadth of functionality requirements, or a reduction in unit costs both decrease the range 

of scope values in which both local monopoly equilibria and kinked equilibria are feasible, and increases 

the ranges of scope values for which the outcome is a competitive equilibrium. 

5.3 Profits and welfare 

Kinked 

Competitive 

Consistent with a scenario where scope is exogenous, we examine comparative statics of the gross profits 

and surplus as scope varies. As shown in Figure 9(c), gross profits are strictly increasing in scope in the 

local monopoly and kinked equilibrium regions. This reflects increases in both equilibrium prices and 

demand in the local monopoly region, and increases in price at a constant demand of 2 in the kinked 

region. However, in the competitive regions, increases in scope reduce profits - an expected outcome, since 

demand continues to be 2, and prices decrease12. In addition, per-firm duopoly gross profits are lower that 

the corresponding single-firm gross profits in the kinked13 and competitive regions (and substantially so in 

the latter case). 

If both firms choose the same q value, then the duopoly gross total surplus under this choice is: 

and consumer surplus is simply the difference between ~ ~ ( ~ , t )  and total profits. Table 5 summarizes the 

functional forms of gross total surplus and consumer surplus for the different equilibrium outcomes. As 

illustrated in Figure 9(d), gross total surplus in a duopoly is strictly increasing as scope increases. Equilib- 

rium consumer surplus increases with scope across the local monopoly and competitive configurations, but 

falls in the kinked region. Moreover, gross total surplus is strictly higher than the corresponding surplus 

under monopoly. Of course, this comes at the cost of two investments in the fixed cost of scoDe. rather 

? [@ - - z@gl] 
3 [(. - - z@gl] 
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than just one, and our welfare analysis of duopoly with endogenous scope, in Section 6, explores this issue 

further. 

6 Duopoly: endogenous platform scope 

We now analyze the game where firms make simultaneous first stage investments in platform scope, followed 

by a simultaneous choice of prices in the second stage. While we characterize some of the asymmetric 

subgame-perfect equilibria that exist, we fully specify and discuss only the pure strategy equilibria which 

involve symmetric choices of scope. To ensure that the payoff functions for the game are well-defined for 

all out-of-equilibrium action pairs, we restrict the first-stage action spaces of the firms to those values of 

scope for which second-stage pure strategy pricing equilibria exist14. 

6.1 Marginal incentives for scope investments 

In this sub-section, we characterize the marginal impact of a first-stage change in scope, when this change 

leaves firms within the same equilibrium configuration in the second stage. The main result is that within 

an equilibrium configuration, the marginal effect of changing ti on firm payoffs is always strictly monotonic. 

Lemma 4 Consider any pair (tA, tB) for which a pure-strategy price equilibrium exists. If (tA, tB) is such 

that small changes in ti do not change the second-stage equilibrium configuration, then: 

(a) If the equilibrium configuration is local monopoly, $a"q: (ti, t i) ,  i$, t j ,  P; (tj, ti)) < 0. 

(b) If the equilibrium configuration is kinked, $ rYq: (ti, tj) , ti, t j  , P; (tj , ti)) < 0. 

(c) If the equilibrium configuration is competitive, $r"(q (ti, t i )  , ti, ti , P; (tj , ti)) > 0. 

Note that the derivatives in Lemma 4 are total derivatives (which include adjustments for the equilib- 

rium second-stage changes in q: (ti, ti) and P; (tj, ti) that occur when one changes ti). The lemma therefore 

shows that under any first stage choice (tA, tB) for which small changes in ti do not change the resulting 

equilibrium configuration of the second-stage pricing game, each firm can increase their gross profits by 

making appropriate changes in their choice of scope. 

6.2 Equilibrium with zero marginal cost of platform scope 

In this section, we solve for and discuss the subgame perfect pure strategy equilibria for the endogenous 

scope game when firrns can costlessly choose any level of scope - that is, when Fl(t) = 0 for all t. This 
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can be viewed as the limiting case in a scenario where technology progress reduces the cost of platform 

scope. The following proposition characterizes the subgame perfect pure strategy equilibria: 

Proposition 7 (a) When Fl(t) = 0, there is a unique symmetric subgame perfect equilibrium, in which: 

* -  ;c - 4  r - c .  6) tA - tI3 - 3(7)? 

(ii) q2(t>, tk) = q&(t>, t>) = i; 
(iii) Pi(tX,t>) = PI;(t(fj,tL) = y, and 

A *  * t *  B * t* t* 
fiv) 7r (9.l(tA, B), t2, tk ,  P i ( t> ,  tk))  = 7r (qg( B, A ) ,  tk,  t i ,  P;T(t>, t>)) = ;(r - 4. 
(b) In addition, there is a continuum of subgame perfect pure strategy Nash equilibria with asymmetric 

choices of scope. In each of these equilibria, first-stage choices (t>, tk)  result in kinked equilibrium con- 

figurations in the second stage pricing game, and are on the boundary between the regions where kinked 

equilibria and competitive equilibria are feasible - that is, on the curve CK in Figure 8(a). 

Proposition 7 implies that when firms can endogenously and costlessly choose platform scope, the 

choices are such that the equilibrium level of competition is not particularly intense. It is somewhat 

striking (though not surprising) that even when scope is costless, firms limit the value provided by their 

products. An increase in platform scope makes the products more valuable to their consumers and hence 

allows them to charge a higher price. Simultaneously, however, a high level of scope also reduces the level of 

differentiation between the two products, which can result in intense price competition if the second-stage 

equilibrium configuration is competitive. This is the central trade-off presented by digital convergence, 

and the firms' choices are driven by the need to balance these two conflicting incentives. 

Interestingly, the equilibrium prices are higher than they would be under monopoly provision of a 

product with the same scope. In fact, if one refers back to Figure 9(b), the equilibrium choice of t is at the 

point where prices are as high as is possible under any symmetric second-stage equilibrium. Moreover, a 

reduction in marginal costs lead to lower equilibrium choices of platform scope. As a consequence, reduced 

variable costs c do lead to lower prices15, although firms pass on only a small fraction of the savings to the 

consumers. Recall from Section 5 that under a kinked equilibrium configuration with exogenous platform 

scope, the duopolists did not reduce prices when c was reduced - the effect of changes in c on price in this 

endogenous case is therefore entirely indirect, through the equilibrium change in the choice of scope. 

When Fl(t) = 0, the welfare maximizing choice is to provide infinite scope, or to set t = 0. The 

equilibrium level of scope chosen by the duopolists is thus socially insufficient. At the socially efficient 

level of platform scope, each product satisfies every functionality requirement of the consumer perfectly, 

thus resulting in the highest amount of surplus possible h11t alsn makinrr t h e  nrnr l~ l r t s  nerfert s i~hs t i t i~ t e s  
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and leading to Bertrand competition. Interestingly, a single product (or multiproduct) monopolist would 

find it optimal to provide an infinite level of scope in her products, achieving the first best outcome. 

However, the monopolist would also end up appropriating the entire value created, leaving no surplus to 

the consumers. 

6.3 Equilibrium with costly platform scope 

When E;i(t) < 0, firms may find it profitable to choose a level of scope lower than the equilibrium value 

derived in Proposition 7. In this section, we discuss some such cases in which a unique subgame perfect 

symmetric equilibriurn exists. 

In the first stage, firm i's net profit function, after accounting for the cost of scope, and the second-stage 

equilibrium choices of q and price, is: 

I'12(tt,t,) = n2(9,*(t2,t,), tt,t,, Pj"(t,,tZ)) - F(tt). 

Since Fl(t) < 0, it is clear from Lemma 4(c) that II;(t,, t,) > 0 for any pair (tA,tB) that results in a 

competitive equilibrium configuration in the second stage. As a consequence, such a pair can never be 

an equilibriurn choice. Since we look for equilibria with symmetric choices of scope, the problem therefore 

reduces to finding values of t such that for i = A, B: 

IIi(t,t) = 0, and (16) 

rIL(t,t) < 0. (17) 

4(r-c) If such values of t do not exist, we examine the value of IT:@, t) at the end-points t = 7 and t = 2. 

In general, the outcome of the game is crucially dependent on the slope of the fixed cost curve Fl(t). 

If there is a unique point t; which satisfies (15) - (17), then this is the unique symmetric equilibrium. 

The curves (b) and (c) in Figure 10(a) illustrate this situation, when this point of intersection is in the 

local monopoly and kinked equilibrium regions respectively. Alternately, the curves (a) and (d) in Figure 

10(a) illustrate the outcome if there is no point satisfying (15) and (16). If I;i(t) lies entirely above the 

second-stage equilibrium marginal profit curve, then the unique symmetric subgame perfect equilibrium 

is tz = $(v). This is the same outcome as obtained in section 6.2, and strengthens that result, to the 

extent that Proposition 7 continues to hold if the cost of scope is non-zero but increases slowly with scope. 

On the other hand, if Fl(t) lies entirely below the second-stage equilibriurn marginal profit curve, then 

the unique symmetric subgame perfect equilibrium is t*, = 2. This outcome is driven entirelv bv our 
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restriction on the permissible range of t, and so we do not interpret it further. If there is a unique value 

t i  that satisfies conditions (15) and (16), but not (17), then it is a local minimum. In this case, both 

end-points are candidate equilibria. Very little can be said in the case where there are multiple points 

which satisfy (15) and (16). 

In a duopoly market structure, the socially optimal level of scope t* (with the firms then choosing 

equilibrium prices at this level of scope) satisfies: 

t* = arg max ~ ~ ( ~ * ( t ) ,  t) - 2F(t). 
t 

Under each of the interior outcomes depicted in Figure 10(a), the following proposition holds: 

Proposition 8 If there exists a unique symmetric equilibrium value t i  satisfying (15) - (17), then 

(i) If ti; > then ti; > t*. 

(ii) If t i  < then t i  < t* 

Proposition 8 establishes that for any unique interior solution, the duopolists under provide scope as 

compared to the social optimum if the equilibrium configuration in the second stage is local monopoly, 

and over-provide scope if it is a kinked equilibrium. The similarity of this result to the one established in 

Proposition 2 becomes obvious once one recognizes that under a local monopoly equilibrium in the second 

stage of the game, the market is only partially served, while under a kinked equilibrium regime, the market 

is fully served. This is discussed further in Section 8. 

7 Higher breadth of functionality requirements 

The analysis in sections 3 through 6 assumed that r < $ - in this section, we outline some unique features of 

the model when 7. > $. We describe the changes in the inverse demand function and the resulting variation 

in monopoly outcomes. Next, we discuss the existence and properties of the fourth kind of duopoly 

equilibrium configuration - the non-exclusive equilibrium. Finally, we illustrate how when platform scope 

is low and r is close to  1, outcomes where consumers purchase both products can occur even when the 

equilibrium configuration is local monopoly. 
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Table 6: Duopoly equilibrium configurations and outcomes for r  > 0.5 

Range of values of t 

4 > t > a  

> t 2 4(r  - e )  4r -6r+3 - 

4 ( r c ) > t t =  

- > t > 0  2-7- 

W 2 t r X $ 3 e  2-r 

7.1 Monopoly 

When one admits higher values of r ,  the value function derived in ( 4 )  changes. For r  > $, this function 

U ( y )  is: 

Equilibrium configuration 

Local monopoly 

Local monopoly 

Kinked 

Competitive 

Non-exclusive (for high r )  

r - t [ G ( y - y ) + ~ ( y - y ) ]  f o r i < y <  9; 
( - t [ 2 G ( ) + G (  y - ( 1 - ( -  for < y  < 9 (19) 

r  - t [2G($)  - G ( y  - 9) - G ( l  - ( y  - + ) ) I  for 9 < y  < 1 

This new value function shares all the properties presented in Lemma 1,  except that s ign[ l i l l ( y , t ) ]  = 

s ign[gl l (z )]  for 9 < y  < H. Proceeding as in section 3.1, the gross profit function with a linear loss 

function can be derived: 

Demand per firm 

n 4(r-c)-t(2r-1)) 
n ~ * ( t )  = ( 8 1 ( 1 - ~ )  

nq*( t )  = 2 
nq*(t)  = 2 
see Table 8 

n q ( r - c )  - n t q ( q 2 + $ )  for 0 < q <  9; 
2r-1 " (4 ,  t )  = nq(r  - c) - n tq (q (1 -  r )  + 7) for + 5 Y I ;; (20) 

nq(r  - c )  - n tq (q (1 -  q)  - v) for f I Y < 4. 

Equilibrium prices 

p* ( t )  = 2 3 s  3 - 2.i 6 

P*(t) = 4(r+c)-t(2r-1) 
8 

P*(t) = r ( 1 -  $) 
t ( ~ - T )  P * ( t ) = c +  

see Table 8 

While the ranges of q values are different, reflecting the fact that > 9 for r  > i, the actual functional 

form of ~ ( q ,  t )  is the same in two of the three segments. Results analogous to Lemma 2 and Proposition 

1,  are obtained for the optimal demand, price and profits. The main effect of increasing r  beyond $ is 

that full market coverage becomes increasingly more likely. This is illustrated most starkly when marginal 

costs are zero. In this case, full market coverage is always optimal. That is, when c  = 0 ,  for any r  > $, 
and for any value of t 5 2,  q*(t)  = i, P(q*( t ) ,  t )  = ( r  - w) , and n(q*( t ) ,  t )  = n (5 - 

7.2 Duopoly: non-exclusive and incremental purchases 

For high enough price levels, the structure of the inverse demand curves remain as described in (8), ( 9 ) ,  
1 and (10) of Section 4,  though the expressions are now based on the U ( y , t )  functions in (19) ,  since r  > ?. 
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Table 7: Incremental value function I(y, t) 

Range of values of r 

L < r < j  
2 - 

3 + < 1  4 - 

The first three equilibrium configurations - local monopoly, kinked, and competitive - continue to be 

feasible, and when a symmetric level o f t  is exogenously specified to both firms, exactly one of these three 

configurations occur in each segment of the permissible range of t  value. Though the ranges themselves are 

different, the basic structure derived in Section 5 is preserved - as t decreases, the equilibrium transitions 

from local monopoly to kinked, and then from kinked to competitive. Table 6 summarizes the relevant 

ranges of t ,  and the corresponding outcomes. At r = i, the results coincide with the corresponding results 

derived in Section 5, and there is therefore no discontinuity. Directionally, the comparative statics discussed 

in Section 5 are preserved, except those relating to the impact of changing r .  

More importantly, the fourth kind of equilibrium configuration described in Section 4.2 is feasible for 

r > $. It arises when prices fall to the point where, rather than trying to get consumers to  switch products, 

incremental demand is driven by inducing them to buy a second product. As a consequence, the inverse 

demand function of firm i is determined not by the difference in total value between the two products, but 

by the incremental value that product i provides to a consumer who already owns product j .  

Incremental value function I(y, t)  

I(Y, t) = f o r i < y < y  

I(y, t)  = t [ i  - t(y - 9 ) 2 ]  f o r y < y < q  

I(y, t)  = t ( Y  - Y)2 f o r y < y < y  
5-2r 

I (y, t )  = t [ ( y  - y)2 + (y - e)2] 4 for -a < y < 1 

I(y, t)  =: jj for i < y < y  

I(y, t) = t [ i  - t(y - yq2] f o r y < y < y  

I(y, t) = t ( Y  - y)2 for 9 < y <  
3+2r 5-2r 2 

I (y, t )  = - yI2 + (Y - I for Y < y < l  

Under symmetric scope across products, let I(y, t)  be the incremental value function, which specifies 

the additional value that the consumer located at a distance q t [0, i] from product i obtains from product 

i if she already owns product j .  The function is defined recursively as: 

Figures 11 illustrate the function I(y, t). The function becomes economically relevant when neither product 

dominates the other on all of a consumer's desired functionalities16. 

Table 7 summarizes the algebraic expressions of I(y, t) for the linear loss function. For r 2 i, I(y, t) 

is monotonicalIy decreasing in y, but positive everywhere. Under svmmetric scope. the consumer who 
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Table 8: Equilibrium outcomes under the non-exclusive equilibrium configuration 

has the highest incremental value from a second product will be located at y = 2. This consumer will 

be indifferent between the two products when their prices are equal. If pJ 5 I(:, t ) ,  the inverse demand 

function changes slope discontinuously from its value in the competitive region and a third region, which we 

term the non-exclusive region, emerges. The demand function in this non-exclusive region is more elastic 

than in the corresponding competitive region, and actually has the same slope as the monopoly inverse 

demand function. This is depicted in Figure 7(b). In summary, for pJ < 1(2, t): 

1 1 
= I (q i f l , t i , t j )  for q ~ ~ < q i < -  2 '  

where ~ N E  is defined using the equation 1(1 - ~ N E ,  t) = pj.  

For a high enough value of r ,  a symmetric non-exclusive equilibrium always exists. Table 8 summarizes 

the equilibrium outcomes for different values of r, when marginal costs are zero. Figure l l (c)  and l l (d)  

illustrate these outcomes, depicting the equilibrium demand nq*(t) and prices P*(t) as a function of r .  

Given the diametrically opposite location of firms at 4 and 1, an equilibrium demand of nq > 2 implies 

that the markets start overlapping in the middle, and that consumers located at y E [l - q, 4 4- q] buy both 

products. 

Of particular interest is the case of r 2 g, where every consumer in the market buys both products, 

and prices drop to the incremental value of the consumer who values the product the least. This price is 

far lower than the actual value that any consumer gets from the product she buys, and is also lower than 

the corresponding competitive equilibrium price at the same level of scope. As a result, the consumer 

surplus will be much higher under the non-exclusive equilibrium. Interestingly, total surplus is also strictly 

higher than under the competitive equilibrium configuration at the same level of scope, because a fraction 

(sometimes all) of consumers buy both products, and use the more eficient of the two products to satisfy 

their functionality requirements. 
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Table 9: Equilibrium demand and prices for very low scope levels 

Range of values of r 

1 - 2 < , 5t-2-Jt2-4t+20 
t - 4t 

st-2- Jt2-4t+20 t2-2 5 4t 

t2-2 < r < 1 T -  

7.3 Duopoly: very low platform scope 

Finally, we discuss a market in which products have very low scope - when t > 4 With a linear loss 
c, . . - .  

Equilibrium demand per firm 
n(2rt-4+Jrt(rt-4)-28) 

nq*(t) = 6t 

2+t 1-r t-2 
nq*(t)=* 

nq*(t) = 

function, the fraction of functionalities a product covers is f and hence t > 4 implies that each product 

covers less than half the functionalities demanded in the market. Clearly, there is no overlap in the set 

of functionalities provided by the two products. Each firm is a local monopolist, and prices accordingly. 

However, at very high levels of r, both products may provide some consumers with positive value, on 

distinct subsets of their desired functionalities. 

We consider a specific example, where t > 4, 1 - $ 5 r 5 1, and the loss function g(z) = z. Under 

these constraints, the consumer's value function id7: 

Equilibrium prices 
24-(rt-2)2+(rt-2).\/rt(rt-4)+28 

P*(t)  = 36t 

2+t 1-r)(t-2) 
P * ( t ) =  ( qt 

2-t(1-~))2 
P*(t)  = ( 4, 

1 1: f o r - <  <Ifr-1.  
t 2 - 3 -  2 t '  

1 l+r l + t (  - W ) )  for&- l<  < I ? z T - 1  
- 9 -  2 Y  2 

U(y , t )=  
2 t - 9 -  2 t 

- 1 - r ) ( + t ( - 9 ) )  f o r y - L <  < &  t - Y -  2 

1 - (1 - ) + ( 1  - ) + ( )  for 9 5 y 5 1 

Refer to Figure 12 for the intuition underlying the derivation of U(y, t). 

The profit function is similar to the monopoly profit function - there is at most one interior maximum, 

and profits are maximized either at this interior point, or at full market coverage. For c = 0, the optimal 

(local monopoly equilibrium) choices for the symmetric duopolists are summarized in Table 9. Even 

though the firms are local monopolists and do not influence each others prices or profits, it is clear that in 

equilibrium, there is some overlap in the consumers served by both products18. As the span of consumers' 

functionality requirements increases, a larger fraction of the consumers buy both products. For values of 

r sufficiently close to 1, all consumers in the market buy both products. 

This example is particularly interesting when contrasted with the other non-exclusive equilibrium de- 

scribed in Section 7.2. It suggests that as digital technology progresses, equilibrium outcomes may be such 

that consumers start by buying multiple specialized products, then switch to a single general-purpose prod- 

uct, and then finally buy multiple products again, using the additional powerful general-purpose products 

Center for Digital Econoiny Research 
Stern School of Business 
Working Paper IS-02-06 



as if they were specialized. We discuss this further in Section 8. 

8 Discussion 

We have developed and presented a model that provides a careful and detailed representation of how 

technology platforms fulfil diverse consumer functionality requirements, how the effectiveness of these 

products varies with platform scope, and how this affects product value and differentiation. The model is 

a new contribution to the economics of information technology, and we hope it will enable deeper analysis 

into some of the issues we have raised. 

Moreover, since we have solved the model comprehensively, characterized the structure of the equilibria, 

and derived the usual measures of interest (prices, demand, profits and surplus), this enables us to explain 

some unique aspects of digital convergence in product markets, to predict likely outcomes, and to provide 

prescriptions for the relevant firms, and for policy makers. 

8.1 Product differentiation, platform scope and price trends 

Any standard model of product differentiation would suggest that as differentiation falls, so do prices. 

Our analysis shows that in the case of converging technology products, this is not always true. In fact, as 

markets that were distinct begin to overlap, prices rise in response to reduced differentiation. Subsequently, 

at a critical level of platform scope, the cost of increased substitutability outweighs the benefit of increased 

value, and prices do fall. This trend is consistent with the recent convergence in the mobile telephony and 

handheld computing industries. Following the launch of flagship and mainstream converged devices from 

both industries (the Palm-based Handspring Treo, and the Symbian-based Nokia Communicator), average 

prices for these devices are actually higher than those that prevailed when the flagship products from each 

of these device makers was more specialized. This is despite an evident increase in the overlap in their 

functionality. Our model predicts this phase, and indicates that while it will sustain for a while, it will 

be followed by rapid price declines across both industries, when technology progresses to the point where 

they enter the competitive equilibrium configuration. 

8.2 Strategic choices of platform choice 

If firms in converging technology markets can decide the level to which they should expand their platform 

scope, our analysis prescribes that after a point, their choices should be determined purely by strategic 

considerations. As described in section 6, even when expanding platform scope is costless, firms that 
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make strategically sound decisions will limit the extent to which they fulfill customer needs, even if more 

extensive fulfillment is technologically viable. 

In addition, a firm's choice of platform scope may also be influenced by competition from within 

one's industry (rather than the fear of overlapping with an adjacent provider). A shortcoming of our 

existing model is that we do not explicitly consider this effect. However, our analysis in Section 5, which 

characterizes outcomes when firms cannot explicitly control the scope of their platforms, becomes more 

relevant in this context. By explaining how firms will behave when they are forced to vary scope, and 

when the only strategic variable they can control is price, we can predict that if there are intra-industry 

competitive factors that dictate platform scope choices, converging markets will eventually transition into 

the competitive equilibrium configuration, with prices falling as platform scope increases. 

In fact, converging into a different industry may be a strategic response to increased competition (this 

may explain, for instance, why Handspring chose to incorporate voice communication into their product 

via the Springboard). A more precise analysis of competition within each duopolist's location, as well as 

the threat of convergence-driven overlap from a neighboring industry, remains research in progress. 

8.3 Welfare and policy implications 

We find that the market generally does not provide the socially efficient level of scope. What is surprising 

is the direction in which the market errs. Intuitively, under complete market coverage, when there is no 

incentive to  recruit new consumers, one would expect firms would slacken on their provision of platform 

scope. However, we find that this is precisely the scenario under which firms provide a level of scope 

which is socially excessive. Correspondingly, when only a subset of the consumers in the market purchase 

the product, the firms underprovides scope. This result is independent of market structure - it persists 

under both single-product monopoly and duopoly, and we can easily show that it holds for multi-product 

monopoly as well. 

It is likely that universal access will become a social priority for mobile telephony and Internet access, 

as the use of these services supersede wireline telephony as the primary mode of access to  emergency police 

or medical services, or simply if public policy dictates equitable access to electronic forms of commerce and 

work. Our results establish that as progress in the underlying digital technologies reduces the marginal cost 

of platform scope, these social objectives can often be achieved without resorting to regulatory intervention 
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8.4 Non exclusive choice and technology cycles 

The analysis of Section 7 suggests an interesting trajectory of consumption that accompanies the steady 

increase in platform scope driven by progress in the underlying digital technologies. For a sufficiently wide 

span of functionality requirements, consumers initially purchase multiple products to satisfy their needs, 

since each product offers low scope. As platform scope increases, firms increase prices and consumers shift 

to buying a single general-purpose product, as expected. However, at very high levels of scope, consumers 

may switch to buying multiple products again. The first instance of non-exclusive purchases is driven by the 

inability of a single product to fulfill the entire span of consumer functionality requirements satisfactorily. 

At the high end of scope, while each product is very effective at satisfying a consumer's entire span of desired 

functionalities, consumers still purchase multiple products, and employ these general-purpose products as 

if they were specialized. 

If one examines the Windows-Mac market, there are indications that the prices have dropped to the 

point where something resembling a non-exclusive equilibrium is emerging. Dedicated Mac users have often 

bought PC's for their 'office' needs. Currently, more dedicated Windows users are buying Macs for specific 

functionality needs - DVD viewing, digital photography, and video editing being common examples. Both 

products are powerful, general-purpose machines, capable of fulfilling all the functionality requirements 

described above. Clearly, these multi-product purchases are being driven by incremental value. 

The trajectory we have described may in fact be cyclical. As the power of any generation of technology- 

based products increases, and consumers get used to the level of performance provided by the general- 

purpose products they are using as specialized devices, they may 'revise' their partial-equilibrium utility 

functions to ones that expect a higher level of effectiveness. This could result in firms' platform scope choices 

as being perceived as specialized again, after which when the next generation of technology emerges, the 

cycle repeats. Incorporating this kind of effect into a formal model remains work in progress. We have 

also made some progress on a more precise representation of how intra-industry competition may dictate 

platform scope choices. We hope to complete this work in the near future. 
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'In Lancaster's models, consumption is represented by a process in which products are inputs, characteristics are outputs, 

and the preferences of consumers are specified over these characteristics. Preferences over products are derived from these 

preferences over characteristics, depending on the specific characteristics provided by each product. 

2~owever, this precludes value from a lower-quality 'backup product7, or from combining the capabilities of multiple 

products for a specific functionality requirement. It also does not capture possible technological complementarities from 

co-location of functionality within a device, or performance degradation from having multiple tasks competing for the same 

device resources. We analyze some of these issues explicitly elsewhere (Mantena and Sundararajan, 2002). 

3For a fixed set of customer needs, a product may be more differentiated from its competitors due to the fact that its 

scope (and that of its competitors) is lower, or because its core functionality is more distinct (further away) from that of its 

competitors. 

*To simplify exposition, we sometimes use the phrase 'a product located at z' rather than the more cumbersome 'a product 

whose core functionality is located at z'. 

5Assuming a density of 2 and not n leads to simpler algebraic expressions. 

 herefo fore, the realized demand corresponding to an inverse demand of P(q7t)  is nq - which is why we define it as the 

'rescaled' inverse demand function, and is also why we choose 2 rather than n as the market size. For expositional simplicity, 

we subsequently drop 'rescaled', and refer to it as the inverse demand function. 

7Since we focus on the effect of product scope, the products' locations are fixed by assumption. The diametrically opposite 

location (or equivalently maximal differentiation) assumed here is standard in spatial models (Salop, 1979, Grossman and 

Shapiro, 1984). 

'we adopt this approach because the best response functions involve a number of different cases, are often discontinuous 

and provide little intuition or tractability in terms of either proving the existence of equilibria or characterizing them. 

 his analysis, while straightforward, is very lengthy - a copy is available on request. 

'O~his effect is analogous to Salop's result of prices increasing as costs reduce - the source of tension is similar (an inability 

to increase realized demand as a consequence of the presence of the rival firm). 

"For small changes in t ,  this pair will continue to be a feasible kinked equilibrium so long as it is not at one of the end-points 

of the q:(t)  intervals specified in Table 5 .  

I 2 ~ h i s  also suggests that under endogenous and costless choices of scope, the level of scope at the boundary between the 

kinked and competitive regions is a likely symmetric equilibrium. This is explored further in Section 6. 

1 3 ~ h e  fact that profits are strictly lower is due to our choosing the kinked equilibrium with symmetric scope. However, 

one can use Proposition 3(b) to show that in the kinked equilibrium most favorable to a firm, that firm's profits are bounded 

above by (though sometimes equal to) the corresponding monopoly profits. 
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'*More precisely,there are portions of the (ta,  t ~ )  space (where the values of t a  and t~ are substantially different) in which 

no pure strategy equilibrium pairs of q may exist. It is possible that mixed-strategy equilibria do exist, but their derivation 

is beyond the scope of this paper. A simple way around this problem (used by Economides 1984, for instance) is to set the 

payoffs of both firms to zero for these pairs of values. Note that pure-strategy equilibria always exist for all symmetric pairs 

t a  = tg ,  and these are the equilibria we discuss in most detail. 

1 5 ~ h i s  is in contrast with the unusual result obtained under the kinked equilibrium in Salop (1979), where prices rose as 

marginal costs fell. 

161f product j provides a higher quality than product i on the entire range of functionalities that a consumer cares about, 

then this incremental value is simply zero. If on the other hand, product i is superior to product j on the entire relevant range 

of functionalities, the incremental value is simply the difference between the gross values provided by the two products. In 

either of these cases, under symmetric prices, consumers have no incentive to buy both products. 

17~nterestingly, with non-overlapping functionalities provided by the two products, a product's value function is identical to 

the incremental value function that was used in deriving the non-exclusive equilibrium in the last section. 

18 At the margin, with t = 4 and r = 1 - 2 = $, q*( t )  E 0.29 > a. 
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(a) Examples of products and their core functionalities 

(b) The effectiveness of a product across its different functionalities 

Figure 1: Depicts typical products, their core functionalities, and the effectiveness of the product across its 
functionalities. The circle is 'unfurled' in figure l(b), illustrating how product effectiveness degrades as one moves 
from the core functionality at -$ to the opposite functionil'- -- ' '- "' " 1 ,-., 1 . .  1 P . 

G(yl is also illustrated. For mathematical convenience, th, Center for Digital Econoiny Research 
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Total value for consumer I1 
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(a) Total value obtained by two candidate consumers, for r < 0.5 

Total value for consumer I11 

(b) Total value obtained by a candidate consumer, for r > 0.5 

Figure 2: Depicts the value obtained by consumers located at different points in the market, for different values of 
r. A consumer is identified by the midpoint of their interval of desired functionalities, which then span r/2 on 
either side of this midpoint. The total value therefore dpnnnAc nn +ha 1nnnt:nn n G  th;c -;Ann;-+ m l n + ; * r n  tn thnt -4 

the product's core functionality, and is equal to the shadt 
Center for Digital Econoiny Research 
Stern School of Business 
Working Paper IS-02-06 



Figure 3: This illustrates the derivation of the consumer 
the product covers segments of consumer functionality r~ 
above), thus resulting in three different integral expressic 

Center for Digital Econoiny Research 
Stern School of Business 
Working Paper IS-02-06 



(a) Inverse demand curve for r ~ 0 . 5  

(c) Gross profit function under partial-market coverage 

1+r - 1-L I 
2 9++ 2 

(b) Inverse demand curve for e 0 . 5  

% 
f: Ire 4: Inverse demand and revenue functions for a single-product monopolist. The structure of the demand curve is largely independent of the shape of 
0 

- it starts out convex and ends up concave. This results in two candidate maxima for the profit function, as depicted in (c) and (d). Again, independent of 
the profit function has, at most, one interior local maximum. 
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Figure 6: Depicts the relative values of the monopolist's optimal choice o f t  and the socially optimal choice o f t  
for two different convex fixed cost functions. When F(t) is strictly convex, the F, (t) curves slope upwards. 
Therefore, when the marginal cost of scope is relatively low, the monopolist's optimal choice of scope occurs in 

the full-market coverage region, where the marginal gross profit curve n2jq*(t),t) is below the marginal gross 

partial-market coverage region, the marginal gross prof 

marginal cost of scope is high, the monopolist's choice o 
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(a) Inverse demand function with higher prices 
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(b) Inverse demand function with very low prices 
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(c) Local monopoly equilibrium configuration 
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(d) Kinked equilibrium configuration 
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(f) Non-exclusive equilibrium configuration 

Figure 7: Inverse demand functions and equilibrium configurations under duopoly. The kinks in the inverse demand 
curves reflect first the influence of a competing product with non-zero surplus, and then a competing product such that 
the seller's product has non-zero incremental surplus. There are - .  four equilibrium configurations feasible -. under these . . 
demand curves. In the local monopoly equilibrium, a pc - -  - 
split evenly in the kinked and competitive equilibria, 
r>0.5, a fraction of customers buy both products. Center for Digital Econoiny Research 
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(a) Feasible equilibrium configurations for different duopoly scope pairs 

Figure 8: Illustrates the regions of the (tA, tB) space in which different equilibrium configurations occur, showing 
that as scope increases, the feasible configuration shifts frc 
CK, which is the entire curve separating the kinked and 
Proposition 7. In (b), the continuum of kinked equilibrium 
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(b) Illustration of multiplicity of kinked equilibrium outcomes 

.i 

Feusible kmkd 
equilrbriumpurrs 

Working Paper IS-02-06 

9~ 
1 

, 
> k~ 
: % 

j >.\ , . 
I '> \  

i - ~ ~ Y t E )  9.4 



scope (1 11) b 

(a) Realized demand 

1 - r2 .-L.- - 2 
CO 

r-c 2(r-c/ 4(r-c) 

scope ( I / t )  w 

scope (I/t) 

(b) Price 

5 (c) Gross profits (d) Total s~rplus 
b m  p y E 
o 6 e 9: Depicts the duopoly outcomes as a function of scope (Ilt), for symmetric scope. Demand rises steadily in the local monopoly region, after which it o \ E  0 

, 
stant at 0.25. Prices continue to rise in the kinked region, before falling rapidly in the cotnpetitive region. Gross profits increase with scope in the 
)oly and kinked region, before falling in the competitive regions - they are always lower than the corresponding monopoly profits. Total surplus is 

% J increasing across all scope values and equilibrium configurations. This is because product value increases for all customers as scope increases. 
m 
2 brium consumer surplus (the difference between the duopoly total surplus and duopoly profit curves in (d)) increases across the local monopoly and s- 

:titive regions, but falls slightly in the kinked region, in response to the rapid increase in price. In addition, gross total surplus is strictly higher under 
ly than under monopoly - even under full market coverage in both regimes, there are two products in duopoly, and hence total value created is higher. 



(a) Change in optimal scope investments as the fixed cost function varies 

(b) Comparison with social optimum 

Figure 10: Depicts equilibrium scope investments for different costs of scope, when there is a unique solution. 
(a) equilibrium duopoly scope increases as the marginal cost of platform scope Fl(t) falls. When this curve lies entirely 

above the marginal gross profit curve q(q* ( r ) , t ) ,  the result of Proposition 7 continues to hold. 
(b) When the solution is unique and in the interior, partial 

coverage to over-investment - which is identical to the out Center for Digital Econoiny Research 
Stern School of Business 
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(a) Incremental value function for rc0.5 (b) Incremental value function for e 0 . 5  

breadth of functionality requirements I' 

(c) Realized demand under non-exclusive equilibrium 
breadth offunctionality requirements r 

(d) Prices under non-exclusive equilibrium 
*$ 

F 
g gure 11: Depicts the incremental value function and its corresponding non-exclusive equilibrium outcomes. When r is sufficiently higher than 0.5, the 
m :remental value is high enough to induce equilibrium in which some consumers buy both products. As r increases, the number of non-exclusive purchases 
s- ;o increase, until after a critical value, when all consulners buy both products. However, prices are substantially lower than the correspondiiig competitive 

uilibrium prices, as depicted in (d) 



F 
W ire 12: Depicts the value function for products with very low scope, focusing on parameter values such that I -f  1 r 1 1  . The integral expressions are 
fi 

lar to those in Figure 3 (though not identical). The products are completely distinct in the set of functionalities that they cover with positive effectiveness. 
e r is high, while a subset of customers only derive value from one or the other product, a majority of them place a positive value on both products. 



A Appendix: Proofs 

Proof of Lemma 1 

Define 

U1(y,t) = r - t  [ 

This implies that 

(a) It is easily verified that 

u l (+, t )  = ~ ~ ( 9 ,  t) = T - tG(r), 

and that 
3 2-r u2(+, t )  = U (T,t) = r - t[G(i)  - G( i  - r)], 

which establishes that U(y, t) is continuous in its arguments. Also, differentiating both sides of equation (23) with 

respect to y yields: 

and with respect to t yields: 

Since both G(x) and g(x)  > 0, and noting from equation (24) the ranges of y in which each function is active, this 

establishes that U is decreasing in y and in t 

(b) Using equation (27), it is easily verified that 

and that 
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This establishes that Ul(y, t)  is continuous. Inspection of (27) establishes that it is piece-wise differentiable with 

respect to both its arguments. 

(c) Differentiating both sides of equation (27) with respect to y yields: 

Since g(x) is strictly increasing, gl(x) > 0, which, in conjuction with equations (31) and (33), establishes that 

U,', (y, t )  < 0 and that U& (y, t) > 0. Finally, if gll (z) > 0, then 

which along with equations (32) implies that U;l(y, t) < 0. Conversely, if gll(x) < 0, then 

and equations (34) and (35) imply that U&(y, t)  > 0. 

(d) Differentiating both sides of equation (28) with respect to y yields: 

Now, g(x) > 0, and noting from equation (24) the ranges of y in which each of the U functions is active, this 

establishes that U2(y, t)  is decreasing in y. This completes the proof. 

Proof of Lemma 2 

Recall that: 

and 

4 4 ,  t)  = nq(P(q, t)  - 4. 
(a) Differentiating both sides of equation (37) with respect to q yields: 

Pl(4,t) = U1(q+ ;,t) 

which in conjuction with equation (27) establishes that if r > 0: 

Pl(q,t) < 0 for 0 5 q < 9. 
Furthermore, differentiating both sides of equation (39) with respect to q yields: 

P l ~ ( q , t )  = U I I ( Q + $ , ~ ) .  
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From Lemma l(c), we know that if g(y) is linear, Ull(y, t) < 0 for all i < y < 9, which implies that: 

Pll(q, t) < 0 for 0 < q < 9 
Now, differentiating both sides of equation (38) twice with respect to q yields 

xll(q, t)  = 2nP1(q, t) + nqP11(q, t) 

Equations (40), (42) and (43) establish that 

x11(q,t) < 0 for 0 < q < 9 .  

(b) Recall that for 9 < y < $: 

and therefore: 

By direct comparison of the expressions on the RHS on equations (46) and (47), it can be established that: 

( t )  > x ( i , t )  for t > t l ,  

x($,t)  > x ( 9 , t ) f o r t L t l .  

where 

Next, for q > 9, direct comparison of the expressions on the RHS on equations (45) and (46) establishes that 

x ( 9 , t )  > x(q,t) for t > t2,  (51) 

where 

Comparing the expressions on the RHS of (50) and (52) establishes that: 

r 
t2 < t l  for q > -. 

2 

Equations (48), (51) and (53) establish that 

x ( 9 , t )  > ~ ( $ , t )  =+ x(%,t)  > x(q,t) for all q > 9 .  

Similarly, direct comparison of the expressions on the RHS on equations (45) and (47) establishes that 

where 
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Comparing the expressions on the RHS of (50) and (55) establishes that: 

1 - r  
t3 >t l  for q > - 

2 .  

Equations (49) ,  (54) and (56) establish that 

n ( 4 , t )  2 x ( F , t )  + ~ ( 5 , t )  > ~ ( q , t )  for all q 2 9, 
which completes the proof. 

Proof of Proposition 1 

Recall that 
n q ( r - c ) - n t q ( q 2 + $ )  for0 < 9 < $; 

~ ( q ,  t )  = nq(r - C )  - ntrq2 for $ 5 q 5 9; 
nq(r - C )  - ntq(q(1-  q)  - q) for 9 < q < 4 .  

Lemma 2 has established that over the range q E [ 0 , 9 ] ,  the function n(q,  t )  is strictly concave and has at most 

one interior maximum, and that over the range q E [F ,  41, it is maximized at one of its end-points. Since 9 
is contained in [O,+], to find the global maximum of n(q ,  t ) ,  all one needs to do is to compare the value of the 

maximum of ~ ( q ,  t )  over q E 10, q] with the end-point value n( i ,  t )  . 

The interior maximum in q E [O,Y] could occur in either [0, $ 1 ,  or in [$, 91 - the functional form of n(q ,  t )  is 
different in each of these intervals. There are therefore three candidate maxima. 

(1 )  Interior maximum in [O, $ 1 :  this value q: solves nl (q:, t )  = 0 ,  which, based on (57),  reduces to: 

and is relevant only if q: < $. Using (58),  this condition simplifies to: 

(2 )  Interior maximum in [$, 91: this value q; solves nl(q;,  t )  = 0,  which, based on (57),  solves to: 

and is relevant only if $ 5 q; < 9. Using (60) ,  this simplifies to: 

(3 )  End-point maximum at 4: This is relevant only if n(;, t )  > n ( 9 ,  t ) ,  which we know from (50) occurs only 

when 
4(r  - c) 

t < r ( 3  - 2r)  ' (s2> 
Now, for r < 4 ,  it is easily verified that a < 7. In conjunction with (61) and (62),  (59) establishes that q: 

is the global maximizing value for t > 7. 
Comparing n(4, t )  to n(q;, t )  yields: 
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Again, it is straightforward to verify that e. 5 for all r < 1. Therefore, ~ ( 4 ,  t) 2 rr(q6, t) only in the 

region where n(% , t) 2 n ( 9 ,  t) . Finally, for r < 2 .  

r - c  2(r-c) - 7'-c 
2- 

r2 ' r ( 2 - 6 )  r(1-r)' 

Therefore, ql is the global maximizer for 9 > t 2 m, after which ~ ( q ,  t)  is maximized at its end-point 4. 

Substituting these q values into the inverse demand function and into the profit function completes the proof. 

Proof of Proposition 2 

The slope of the gross total surplus function sM(q*(t), t) with respect to t, can be computed to be: 

Similarly, the slope of the gross profit function with respect to t, can be shown to be: 

Using r < 4, 0 < t < 2 and c < ~ ( 4 ,  t)  establishes the following: 

Note from Proposition 1 that for 0 < t < fi, full market coverage is optimal and hence the corresponding 

optimal level of product scope will be t j .  For fi < t < 2, partial market coverage is optimal and hence the 

optimal level of scope is given by t;. 

Now, the socially optimal level t* satisfies: 

while the profit-maximizing levels t j ,  t; satisfy 

Since Fl(t) is strictly increasing (because F is strictly convex), (67) - (71) imply that t j  < t* and t; > t*, thus 

establishing the result. 

Proof of Lemma 3 

Define: 

RM(q, t )  = q(PM (q, t) - c), 
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and 

RC(qi,ti,tj ,pj) = qi(pC(qi,ti,tj!pj) - c).  (73) 

The function .iri(qi, ti, t j  ,pj), i = A, B, therefore takes either the form ~ ~ ( ~ i ,  ti) or the form ti, tj, pj). The 
former is simply the monopoly profit function, which has already been shown to have at most one interior maximum, 

and from (7) the latter can be expanded to: 

Since -Ul(l - qi, t j) > 0, the function [qi(U(l - q,, tj) - pj)] is increasing and convex in qi for all qi. Therefore, the 

function R ~ ( ~ ~ ,  ti, t j ,  pj) also has no more than one interior maximum, and it is also strictly concave for qi < F. 
Now, suppose .iri(qi, ti, t j ,  pj) has an interior maximum q* in its monopoly region, implying that Rj"(q*, ti) = 0. 

Based on (74), 

~ f ( q i , t i , t j , ~ j )  = ~ y ( q i > t i )  - [u(l -qi,tj) -pj] fqiUl(1 -qittj). (75) 

Since R r ( q i ,  ti) < 0 for qi > q*, and U1(l - qi, tj) < 0 for all qi, and by definition, U(l  - qi, tj) - pj  > 0 for any qi 
in the competitive region of the duopolist's profit function, the RHS of (75) is strictly negative, and hence if there is 

an interior maximum in the monopoly region, there cannot be one in the competitive region. 

Similarly, if .iri(qi,ti, tj ,pj) has an interior maximum q* in its competitive region, based on (75) this means that 

ntf(q*, ti) = [U(l - q*, t j)  - pj] - q*U1(l - q*,tj) > 0, (76) 

which means that xj" (qi, ti) > 0 for any qi < q* , which in turn implies that ni (qi, ti, tj, pj) cannot have an interior 

maximum in its monopoly region. The result follows. 

Proof of Proposition 3 

Let the demand for firm A and firm B under a candidate pure strategy Nash equilibrium be nq; and nq; 

respectively. Let the corresponding prices be p$ and pg. We continue to use the functions defined in (72) and (73). 

(a) Under a local monopoly equilibrium configuration, we know that q ~ +  q~ < 4. In a feasible Nash equilibrium, 

qa has to be a local maximizer of $(qi, ti, t j ,  pj). Since q5 is in the monopoly region of .iri(qi, ti, tj ,  pj), and we 

know that the unique local maximizer in this region, if it exists, is QM(ti),the only possible value of qa is QM(ti). 

Consequently, the local monopoly equilibrium configuration is feasible only if QM (tA) + QM (tg ) < 4. 
(b) Under a kinked equilibrium configuration, we know that q$+ q; = i, and that qa is at the kink of the duopoly 

inverse demand curve of firm i. Given firm j's strategy, there should be no incentive for firm i to deviate from its 

choice of qi. Locally, that means that in any kinked equilibrium, either a small decrease or a small increase should 

not increase firm i's payoff, or that 

RY(qg, t,) > 0, (77) 

and that 

~ f ( q f , t i , t j , p ; )  < 0. 

Since R r ( q ,  ti) < 0 for q > QM(ti), it follows from (77) that 

Define qK(pj) as the value of q at the kink in the inverse demand function, for any opponent price pj. From this 

definition of qK ( ~ j ) ,  we know that 
U(1- qK(n:\ t - 1  = nl (80) 
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Differentiating both sides of (80) with respect to pj and rearranging yields: 

Substituting in the expression for RY(qi, ti) into (75) yields: 

Also define sK ( ~ j )  as the value of Rf(qi, ti, ti, pj), evaluated at the kink qK ( P ~ )  , as a function of opponent price pi. 

(80) and (82) yield: 

Differentiating both sides of (83) with respect to pj  yields: 

From (81), we know that qf(pj) > 0. Since Ul(q, t )  < 0 for all q, and based on Lemma 1, ~ l l ( q ~ ( p j ) ,  ti) < 0, and 

Ull(l - qK(pj), tj) > 0 so long as qK(pj) 5 9, it follows that 

In other words, the slope of the competitive profit function, evaluated at the kink, is decreasing in pj. 

Now, by the definition of qK and of QC(ti, t j ) ,  

and 

RF(QC(ti,tj),ti, t j ,  ~ ( 1  - QC(ti, t j ) : t j))  = 0, 

which in conjunction with (78) and the fact that s r (p j )  < 0, establishes that 

(81), (86) and (88) together imply that 

Qc(ti,tj) < qK(pj*). (89) 

Since the candidate equilibrium is at the kink, it follows that qt = qK(p~) .  Therefore, 

and the result follows. 

(c) If the candidate equilibrium is in the competitive region, it follows that the corresponding q values occur after 

the kink, or that 

qzT 2 qK(pj*). (91) 

Also, since qt is part of a candidate equilibrium in this region, it must be the case that it occurs at a local maximum 

of ~ ~ ( q ~ , t , , t ~ , p ; ) ,  or that: 

~ f ' ( q ~ , t i , t i ,  P?) = 09 (92) 
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which in conjunction with (91) implies that 

Based on (85) and the definition of Qc(ti, tj), (93) implies that 

qK(p:) > QC(ti, tj).  

from (94), it follows that 

~ ~ ( t ~ ,  tg) + Q ~ ( ~ B ,  t ~ )  L 91 + 9;. 

Since q1 + q; = , the result follows. 

Proof of Proposition 4 

Based on Proposition 3(a), a necessary condition for a local monopoly equilibrium to exist is that 

Based on the bounds on QM(t) in Table 1, it is easily seen that when r < i, this is always true in the region 

2 > t 2 y. Also, based on the derived values of QM(t) in Table 1, this condition holds in > t > - SO long 

which reduces to 
2 ( ~  - C) 

t>-. 
r (98) 

Therefore, a local monopoly equilibrium exists if 2 2 t > v. Substituting in the appropriate values of q and 

prices from Tables 3 and 4, and computing the corresponding profits completes the proof. 

Proof of Proposition 5 

Based on Proposition 3(b), necessary conditions for a kinked equilibrium to exist are 

and 
1 

2QC(t,t) < 5 .  

Following the proof of Proposition 4, (99) reduces to: 

For (100) to be true, it must be the case that QC(t,t) < 9. Therefore, it can easily be seen that for symmetric t, 

given (101), and the fact that r < i, the relevant range of values is the set in the second row, corresponding to 

Substituting (102) into (100) for symmetric t and rearranging yields: 
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(101) and (103) establish that the range of values in which kinked equilibria exist i s F  2 t > w. For 

q; = qf, = i, substituting into the price function from Tables 3 and 4, and computing profits at this value completes 

the proof. 

Proof of Proposition 6 

Based on Proposition 3(c), the necessary condition for a kinked equilibrium to exist is that: 

which we know from (103) is true if: 

for QC(t, t )  < 9, and is always true if QC(t, t )  > y, since r _< $. Substituting in the relevant q and price values 

from Tables 3 and 4, for symmetric t: and computing profits at these values completes the proof. 

Proof of Lemma 4 

The proof uses the following properties of the functions R ~ ( ~ ,  t) and RC(q, ti, tj,pj) defined in (72) and (73): 

1 
~ : ( q , t i , t ~ , p ~ )  = qUz(q + - t . )  < 0, and 

2' " (1 08) 
1 1 

~f72(q,t i , t j ,pj)  = qU12(q + - t . )  + U2(q + - t ) < 0. 2' 2'  (109) 
(a) The form of the profit function for local monopoly equilibria is the same as the one given by equation (6). A 
straightforward application of the envelope theorem yields 

Note that an application of the envelope theorem is valid here as the equilibrium values are local maxima in q, - 

moreover, q: is a function of t, alone, and Pj"(t,, t,) is independent of t,. 

(b) The argument is based on analyzing the impact of a small increase in t,, to t, + c. To case exposition, let 
(42, qf,) be the equilibrium q pair under the original value of t,. 

If the pair (q;, qg) continues to be a feasible kinked equilibrium pair after t, increases to t, + E ,  we assume that the 

firms stay at this q pair. In a kinked equilibrium, firms still price on their own monopoly inverse demand functions, 

and hence a change in the value of t, while holding t, constant does not change p3. Therefore, firm i's new profits 

are R ~ ( ~ : ,  t, + E), which based on (106) is strictly less than RM(q:, t,). 

If the pair (q2, qlT,) is no longer a feasible kinked equilibrium, we assume that the firms move to the closest pair 

(45, q5). The proof then consists of the following steps: 

(i) q,E < q:: Assume the converse, i.e., that q,E > q:. Since q: is part of a kinked equilibrium at the original scope 

value t,, we know that: 

R?(q:, t,) > 0. (110) 
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and 

~?(qi* , t i , t j ,p j )  5 0 .  

Similarly, since q% is part of a kinked equilibrium at the new scope value ti + E, we know that: 

R:*(~:, ti + E) 2 0. (112) 

and 

R?(q,~,ti + ~ , t j , ~ )  < 0. 

(107) and (112) imply that if q; > qz: 

~ y ( ~ i * : t ;  + E )  > 0. 

Since qf is not a kinked equilibrium for ti + E, (114) must mean that 

which in conjuction with (111) contradicts (109). Therefore, we have established that in any new candidate q pair, 

q,f < q;. (116) 

(ii) Profits reduce: Given (112) and (114), (116) implies that: 

Also, at the fixed level of quantity qz, (107) implies that 

since the increase in ti only reduces firm i's own price, without changing firm j's price or quantity. (117) and (118) 

imply that: 

R"(qz,ti) > ~ ~ ( q ; , t i  + E), (119) 

which establishes that even when a small increase in ti necessitates a change in the equilibrium q values, it still 

reduces profits. As a consequence, we can now conclude that for any kinked equilibrium, 

(c) The simplicity of the price and q values makes direct computation of the equilibrium profit function and its 

total derivative straightforward in this case. Substituting in these values from Tables 3 and 4 , we get: 

nr(ti + 2tj)2 
~ ~ ( ~ ~ ( t ~ , t j ) , t ~ , t j ,  P;(tj, ti)) =L 

36(ti + t j)  ' 

Differentiating both sides with respect to ti yields: 

which establishes the result. 

Proof of Proposition 7 
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According to Lemma 4, at any first-stage candidate pair (tA, tB), under local monopoly and kinked equilibrium 

configurations, firms have an incentive to change their choice of ti if it leaves them in the same equilibrium configura- 

tion. At the set of (tA, tB) pairs which border the local monopoly and kinked regions in the (tA, tg) space, the payoff 

functions are continuous and decreasing in ti even at the point of transition. Therefore, these cannot be supported 

in an equilibrium. 

However, at the set of feasible (tA, tB) pairs which border the kinked and competitive regions in the (tA, tB) 

space, an increase in ti takes the firm into the kinked region and strictly reduces payoff, according to Lemma 4(b). 

Likewise, a decrease in t, takes the firm into the competitive region and strictly reduces payoff, according to Lemma 

4(c). As a consequence, for this set of pairs at which a second stage pure strategy price equilibrium exists, given firm 

j's choice of tj, firm i has an incentive not to deviate from its choice t,. This ensures that any pair (tA, tB) along 

the CK border for which a pure-strategy second stage equilibrium exists is part of a subgame perfect equilibrium, 

and proves part (b). 

Note that for symmetric values of scope, a pure strategy price equilibrium always exists in the second stage. 

Thus, the symmetric value of t that forms the point of transition between the kinked and competitive equilibrium 

regions is at: 

3(tA+tB) - 7" - 
(%A + tB)(tA 2tB) 2(r - C) ' (IZ3) 

and substituting t~ = t~ = t ,  we have t = $(?). From Table 3, any kinked equilibrium for values of product scope 

t~ = tB = $(?) has to satisfy: 
r - c 1 r - c  - < q * < - - -  
3rt - " 2 3rt 

Substituting the value of t reduces this to i 5 q5 < - ifor i = A, B, or q> = qg = a. Since firms price in the 

monopoly region of their demand curves, 

1 4  r - c  c + 2 r  
= P*B = P (-, -(-)) = - 4 3  r 3 

Substituting the values of t and q$ into the payoff functions yields the following gross profits: 

which completes the proof. 

Proof of Proposition 8 

The slope of the gross total surplus curvc t), evaluated at the duopolists' optimal quantity, is: 

-* for < t 5 2(rr-cl 
48 

~ f ( ~ * ( t ) , t )  = -n($ + w) for < t < 7 
- 2n(2(r-c)+r%) 4 r-c -r2t 

9t 4- for 7 < t 5 2. 

Correspondingly, the slope of the gross profit function is: 

-IK for s t <  W 
16 r 

n2(q*(t),t) == --) for %A 5 t 5 
- n ( ~ ( r - e ) + v z t )  12t J-, for 7- r - C  < t - < 2 

The socially optimal level t* satisfies: 

t* = a r g m a x ~ ~ ( ~ * ( t ) , t )  - 2F(t), 
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which reduces to: 

Fl(t*)  = s?(q*(t*), t * )  
2 , 

and the duopolists' optimal level tfi satisfies: 

Fl (tfi) = 7r2 (q* (ti), ti). 

Straightforward algebraic manipulation establishes the following: 

@(Q* ( t)  , t )  4(r - C )  2(r - c) 
7r2 (4* ( t ) ,  t )  < for - <t<-; 

2 3r r 
s?(q* ( t ) ,  t )  2(r - c) r -C  

7r2 (q* ( t ) ,  t )  > for ------- < t < -  , and 
2 r r2 

7r2 (q* ( t ) ,  t )  > s?(q*(t), t )  for 5 5 t 5 2 .  
2 r2 

Since Fl( t )  is strictly increasing, conditions (130) - (134) establish that: 

4(r - c) 
If - t* < 2(r - c)  

d-- , then t* > t i ,  
3r r 

and that: 
2(r - c) 

If - 5 tfi < 2, then tfi > t*,  
r 

which completes the proof. 

B Appendix B 

Note the following about the bounds on QM(t i )  and Qc(ti, t j )  in Tables 1 and 2. Since r < a, 
r 1 1 - r  1 

2(-)  < - and 2(-) > 2 
2 - 2  2 

From proposition 3, a local monopoly equilibrium is feasible only if 

Fkom column 3 in Table 1 and (135), it is clear that condition (136) is always satisfied for 2 > t A ,  t B  > 7 and 

never satisfied for > t ~ ,  t~ . In the region 7 > t ~ ,  t~ > -, condition (136) is satisfied iff 

r - c  r - c  1 t ~ + t g  r -+- < -  or-<-. 
2rtA 2rtg 2 t ~ t ~  r - c 

If 2 > ti  > 7, - 2 t j  > for i ,  j = A, B, from column 2 in Table 1, we need the following for (136) 

to be satisfied: 

which simplifies to: 
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The conditions (137) and (139) are each tighter than the other in their respective regions of the ( t ~ ,  t B )  parameter 

space and hence a conjunction of the two conditions defines the MK curve that partitions the local monopoly region 

and the kinked region. 

Now consider the condition: 
1 

Q ~ ( ~ A , ~ B )  + QC(tg,t.4) < 2 

From column 3 of Table 2 and (135), it is clear that condition (140) will never be satisfied if 2t, + t, < 
i ,  j = A ,  B .  From columns 1 and 2, if 2 ( 7  - t,) > t, > 2 ( m  - t,), i, j = A ,  B, then condition (140) will only be 

satisfied if 

Once again from columns 1 and 2 of Table 2, if for i, j = A ,  B ,  t j  > 2 ( 7  - ti) and 2(* - ti) 2 t j  2 
( A  - 2ti + d m )  where A = 4(r  - c) + t,(l - T ) ~ ,  then condition (140) will only be satisfied if 

It can be verified that each of conditions (141) and (142) have to be binding in their respective regions of the 

parameter space for condition (140) to be satisfied. Therefore a simple conjunction of conditions (141) and (142) 

yields the KC curve that separates the kinked equilibrium region from the competitive equilibrium region. It is 

straightforward to verify that every point ( t A ,  tB )  which satisfies ti E [0,2] ,  i = A ,  B ,  and satisfies (137) and (139),  

also satisfies condition (141) and (142). Thus, the region between the M K  and the KC curves corresponds to the 

kinked equilibrium region. 

Center for Digital Econoiny Research 
Stern School of Business 
Working Paper IS-02-06 


