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Abstract. In time series problems, noise can be divided into two categories: dynamic noise 
which drives the process, and observational noise which is added in the measurement process, 
but does not influence future values of the system. In this framework, empirical volatilities (the 
squared relative returns of prices) exhibit a significant amount of observational noise. To model 
and predict their time evolution adequately, we estimate state space models that explicitly include 
observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging 
from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a 
two-dimensional hidden state is required to yield residuals that are consistent with white noise. We 
compare these results with ordinary autoregressive models (without a hidden state) and find that 
autoregressive models underestimate the relaxation times by about two orders of magnitude due to 
their ignoring the distinction between observational and dynamic noise. This new interpretation 
of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic 
volatility models and to GARCH models, and is useful for several problems in finance, including 
risk management and the pricing of derivative securities. 

Data sets used. Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). 
Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years). 
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1 Introduction 

Modeling and predicting the volatility of financial time series has become one of the central areas 

in finance and trading; examples range from pricing derivative securities t o  computing the risk of a 

portfolio. Volatility is usually predicted using generalized autoregressive conditional heteroskedas- 

tic (GARCH) models; Bollerslev, Engle and Nelson (1995) guide through the GARCH literature, 

and Engle (1995) collects some of the key papers. 

Here we present an alternative to GARCH that models the underlying dynamics using a state 

space model. This allows us to describe the hidden process in terms of variables natural for 

a dynamic system, such as decay times for shocks, its spectrum, and the dimensionality of the 

underlying process. Stochastic volatility models (see Shephard (1996) for a review) are a variant of 

the general state space approach presented here. They differ in that the mapping from the hidden 

variable to the observed variable is nonlinear. The interpretation developed in this article can also 

be helpful for understanding and characterizing stochastic volatility models. 

This article is organized as follows: Section 2 discusses observational noise and dynamic noise, 

and reviews intuitions and interpretations for linear systems, important for understanding the 

results in physical terms, such as decay times of volatility shocks. Section 3 defines and explains 

the formalism of state space models. Variations and interpretations that are typical in finance and 

in econometrics are given in Section 4. Section 5 describes the three data sets used for the empirical 

studies. The results are presented in Section 6, and the effect of ignoring existing observational 

noise on the model is discussed in Section 7. Section 8 summarizes the findings and discusses some 

of the applications of this approach for noisy time series in finance. 

2 Some background concepts 

2.1 Observational noise and dynamic noise 

In time series modeling, one crucial question is whether or not observational noise is present in the 

data. Observational noise of a high level can pose a severe problem if it is not treated properly, 

leading to models that underestimate the functional relation between past and future values. A 

typical example of such observational noise is when an astronomer observes a star: fluctuations 

in the atmosphere, or a subway train passing by and shaking a telescope that points to the star, 

will not influence the dynamics of the star. In contrast, a noise component that does influence the 

dynamics of a system is called dynamic noise. For example, in an autoregressive process, the noise 

truly moves the state (sometimes also expressed as "the noise drives the system"), and subsequent 

values are derived from that moved state. 

This article focuses on discrete time dynamics, typically modeled by difference equations or 

maps. The distinction between observational noise and dynamic noise is also important for con- 

tinuous time dynamics, typically modeled by differential equations. 
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2.2 Interpretations of linear systems 

To facilitate the interpretation of state space models (introduced in Section 3), we first review 

autoregressive processes without observational noise, and characterize them from several perspec- 

tives. A simple way of generating a time series is through an autoregressive (AR) process of order p, 

ARb] (Yule 1927, Priestley 1981, Oppenheim and Schafer 1989) 

where ~ ( t )  denotes an uncorrelated Gaussian distributed random variable with mean zero and 

constant variance (r2, N(0, (r2). Through the eyes of a physicist, such a process can be interpreted 

as a combination of relaxators and damped oscillators (Honerkamp 1993). The simplest case is an 

AR[l] process 

It  can be characterized in the time domain as a relaxator by an exponentially decaying impulse 

response, proportional to exp( - t /~ ) ,  with the relaxation time 

1 
'7-=--- . 

log a 

After this time, the amplitude of an impulse will have decayed to  l / e  or 37% of its initial value. 

In the frequency domain, an AR process can be interpreted as a filter responding to  white 

noise. The power spectrum of an AR[1] process drops off with 

Fbr an AR[2] process, there are two qualitatively different cases, depending on the values of the 

parameters. We can always rewrite a univariate AR[2] model as a vector-valued AR[l] model using 

the transformation 

Its eigenvalues 

characterize the behavior of the AR[2] process. If the eigenvalues are real (a114 + a2 3 O), the 

AR[2] process can be characterized as the superposition of two relaxators, and the spectrum drops 

off monotonically with increasing frequencies. The corresponding decay constants are 

1 
7. - -- 

2 - ( i = 1 , 2 )  . log X i  (7) 

If the eigenvalues are complex, the AR[2] process describes a resonance, corresponding to a hump 

in the spectrum.' In both cases, the spectrum is given by 

l ~ o r  a damped oscillator (the case of complex eigenvalues), the parameters can be expressed through the char- 
acteristic period T and the relaxation time T as 

a ,  = ~ c o s  ($) exp(- l / i )  
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By increasing the model order, an AR[3] process can combine a relaxator with an oscillator, and 

an ARC41 process can describe two oscillators, etc. 

Despite the simplicity and multiple interpretability of AR models, not all processes in the world 

are linear autoregressive. Examples of generalizations without hidden states consist of including 

past q driving noise terms in the dynamics, yielding an autoregressive moving average ARMA[p, q] 

processes,2 as well as including n~nlinearities.~ Here we extend autoregressive models in a different 

direction, by allowing for a hidden state4 The next section introduces the notation and gives the 

formalism of state space modeling. 

3 Formalism of linear state space models (LSSM) 

In Eq. (I)  the z(t) served two roles: it was the variable that was observed, and it was the variable 

in which the dynamics was expressed. However, there are processes where the dynamics cannot 

be observed directly because it is masked by observational noise. Thus, no direct map exists from 

the observed data to the state. This requires the notion of a hidden state. In terms of notation, we 

keep the letter z as the variable that contains the dynamics, and use y(t) for the observed variable. 

The state, characterized by the vector Z(t), captures all the information needed to characterize the 

system a t  time t. 

The key to state space modeling is to split the noise into two parts: 

dynamic noise 2(t) that drives the evolution of the hidden state, and 

observational noise ~ ( t )  that is a non-explainable additive contribution to the measured y(t). 

These contributions have been discussed in intuitive terms in Section 2.1. Their formal role 

can be seen by observing how they enter the two equations that describe a linear state space model 

(LSSM): 

Eq. (9) describes the dynamics. Eq. (10) maps the dynamics to the observation and includes the 

observational noise ~ ( t ) .  

As in the case of the observable linear autoregressive model, discussed in Section 2.2, describing 

the process via physical quantities can yield important insights. The spectrum of a LSSM is given 

2 ~ h i l e  for theoretical reasons ARMALp,p - 11 should be preferred to AR[p] processes for modeling of sampled 
continuous-time urocesses (Phadke and Wu 1974). we find that in practice, differences in the results are small. 

3The linear mapping given by Eq. (1) can he generalized to become a nonlinear mapping. Note that this is fully 
within the autoregressive framework and amounts to simple regression. Nonlinear approaches include radial basis 
functions (Casdagli 1989, Moody and Darken 1989, Poggio and Girosi 1990), neural networks (Lapedes and Farber 
1987, Weigend, Huberman and Rumelhart 1990), and nonparametric kernel methods (Tjostheim and Auestad 1994). 

4 ~ h i s  article explores the idea of a continuous hidden state, characterized by a scalar x(t) or a vector Z(t). The 
dynamics is expressed in terms of that unobserved state, and the state is subsequently mapped to the (conditional 
expectation of the) observed quantity. In contrast, Hidden Markov models (Rabiner 1989, Eraser and Dimitriadis 
1994, Hamilton 1994, Bengio and Frasconi 1995, Shi and Weigend 1997) assume the hidden state to be discrete: 
for each of these hidden states, there is an "agent" or "expert" (e.g., expressed as an autoregressive model) that 
generates the next data point. This introduces a second level of dynamics that is described by the transitions 
between the hidden states. This level of dynamics is absent in a pure autoregressive framework. 
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T The superscript (.) denotes transposition. The spectra of AR processes, Eq. (8), are a subset 

of Eq. (11). Note that LSSM spectra include shapes that cannot be generated by AR processes. 

An important example of such a shape is a spectrum where for low frequencies the power drops 

similarly to an AR[1] process (see Eq. (4)), but for higher frequencies the power remains constant 

and does not continue to fall, as an AR model would require it to. This can be interpreted as 

a low-frequency process whose spectral energy decreases as the frequency increases, until it is 

masked by a noise floor of a noise source with a flat spectrum. This low-frequency signal above a 

flat noise floor is the crucial spectral signature of a LSSM that cannot be emulated by an ordinary 

autoregressive model. 

While parameter estimation in AR models is well established (e.g., by the Burg or the Durbin- 

Levinson algorithms), it is more cumbersome in the case of state space models. A standard 

approach uses the expectation maximization (EM) algorithm (Dempster, Laird and Rubin 1977), 

a general iterative procedure for estimating parameters for models with hidden variables. In the 

E-step, it is assumed that the parameters of the model are known, and the hidden variables are 

estimated. In the M-step, the estimates of the hidden variables are taken literally and the values 

of the parameters are adjusted. This approach was first applied to LSSM by Shumway and Stoffer 

(1982). 

Specifically for the case of the LSSM, the first E-step starts from the initial values of the 

parameters A ,  Q, C ,  R ,  and estimates the hidden dynamic variable Z(t) using a Kalman filter. 

With the following definitions 

ztlt, := the predicted value of a quantity z(t) based on the data y(l) ,  ..., y(t1), 

Rtltt := the covariance matrix of the estimated rc'(t), and 

Atlt ,  := the variance of the prediction errors (y(t) - ytlt ,):  

the equations for the Kalman filter are (Kalman 1960, Gelb 1974, Sorenson 1985, Harvey 1989, Aoki 

1990, Bomhoff 1994, Hamilton 1994, Mendel 1995): 

There is a crucial difference between the first four equations and the last three. The first four 

equations, Eq. (12-15), do not contain the data, they only describe relations between the param- 

eters A ,  Q ,  C ,  R, R, A, and K. Their purpose is to find the value of K (the Kalman gain) that 
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subsequently enters Eq. (18). K gives the appropriate weight to the added term originating in the 

error between the actual observation y(t) and prediction ytjt-l. 

For true prediction, i.e., when y ( t )  has not yet been observed, Eq. (16) has to be used for the 

unobserved state variable, and Eq. (17) for the observable. For model parameter estimation, on 

the other hand, the entire training data can be used, and an improved estimate of can be 

obtained by the following three equations (Harvey 1989): 

This concludes the E-step. 

In the subsequent M-step, the parameters A ,  Q, C ,  R are updated; the derivation of the equa- 

tions can be found in Honerkamp (1993). The iterative model fitting process ends when a conver- 

gence criterion is met. This concludes the description of how the model parameters are updated 

in the M-step. 

Once a model has been built, its quality can be evaluated by several different criteria, including: 

Predictive accuracy. True out-of-sample predictions are generated using Eq. (17) on a test 

set that comes after the training period. The accuracy of the predictions can be compared 

to competing models by different evaluation criteria, such as squared errors or robust errors. 

Whiteness of the prediction errors. The model should explain all temporal correlations 

in the data: a perfect model takes the signal and turns it into white noise. Statistically, the 

question is whether we can reject (at a certain level of significance) the null hypothesis that 

the residuals are uncorrelated. Following Brockwell and Davis (1991), we use a Kolmogorov- 

Smirnov test to determine whether the periodogram of the residuals is consistent with a flat 

white noise spectrum. 

Generating data from the model. The distribution of a certain feature can be derived 

from realizations of the model and compared with that feature as directly computed from 

the observed data. 

For linear models, two additional criteria are useful: 

Behavior in the time domain (relaxation times). The parameters in linear models are 

related to relaxation times of the corresponding oscillators and relaxators. When the relax- 

ation times are too small (of order of one time step), they usually only fit noise, indicates 

that the order of the model is too large. 

Behavior in the frequency domain (spectrum). The spectrum of the linear process can 

be computed from the parameters of the estimated models through Eq. (11). Since the 

spectrum of the model should correspond to the expectation of the periodogram of the data, 

comparing the spectrum to the periodogram is another important qualitative criterion. 
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The suggestions listed here are just some of the useful general criteria that will be used in this 

article. Fbr any specific problem, there are additional, more specific smoke alarms and sanity 

checks. 

4 Applications of state space models to  finance 

This section discusses two common applications of state space models in financial data, and com- 

pares them to our approach. Fbr simplicity of notation, this discussion is written for the case of a 

scalar x(t): 

The dynamic equation, Eq. (22), is characterized by the single AR[l] coefficient a; t ( t )  is the 

dynamic noise that drives the dynamics. The observation equation, Eq. (23), maps the unobserved 

state x(t) to the observed variable by scaling it with c. The added observational noise, ~ ( t ) ,  does 

not enter the dynamics. 

4.1 Smoothing 

The first approach decomposes the variance and results in a smoother series. It  can be interpreted 

as a method for trend estimation. Here, parameter a is not estimated from the data to characterize 

the dynamics (as in our approach), but rather set to unity. Without loss of generality we can also 

set c t o  unity, yielding 

x ( t ) - x ( t - 1 )  = t(t) (24) 

Y(t) = x(t) + rl(t) * (25) 

Eq. (24) interprets t ( t )  as the first difference of the series. Reducing the variance of t(t) by moving 

some of it onto q(t) results in x(t) as a smoothed version of y(t). The variance of the original data 

y(t) is thus decomposed into observational noise, q(t), and a smoother signal, x( t ) .  This can be 

expressed in a Bayesian framework as a prior on the smoothness of the time series, as discussed by 

Kitagawa and Gersch (1996). Note that Eq. (24) resembles Brownian motion. However, it is not 

to be interpreted that way here, but as a smoothing constraint for the undisturbed signal instead. 

The smaller t(t), the smoother x(t). 

This smoothing approach is taken in most state space applications in finance. Bolland and 

Connor (1996) add to  this approach a second non-constant part that is a linear function of the 

difference of the last two values of the state. This is effectively adding a constraint on the second 

differences (curvatures) of x(t),  in addition to the first differences. Moody and Wu (1996), Moody 

and Wu (1997a), and Moody and Wu (199713) use two variations of the simple smoothing model 

with a = 1, and use the term "true price" for the smoothed version of the observed prices. 

4.2 Variable parameter AR processes 

The second variation of the state space model also uses the state equation to model a slowly varying 

quantity as in Eq. (24), but the interpretation of the observation equation changes substantially. 
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The constant c from Eq. (23) is replaced by y(t - 1). The equation then becomes 

representing an AR[1] process. x(t) has become an autoregressive parameter that slowly varies with 

time, and the former observational noise ~ ( t )  now acts as dynamic noise (Wells 1996), whereas we 

assume the parameters that characterize the system are constant over time. 

4.3 Modeling noisy linear systems 

The two cases above do not do justice to the dynamic structure of Eq. (22). In contrast, this article 

focuses on estimating the full hidden dynamics from the data. This allows us to characterize the 

process as a linear damped system of relaxators and oscillators, driven by dynamic noise, and 

observed through a veil of added observational noise. 

In the econometric literature, stochastic volatility models have been used to describe the dy- 

namic structure of returns, see Shephard (1996) for a recent review. In the notation of the present 

article, a stochastic volatility model can be expressed as 

The idea behind using exp(x(t)) is to model the skewed distribution of squared returns found 

for the empirical data. Parameter estimation in this mode1 is cumbersome due to  the log-normal 

distribution of exp(x(t)). It is usually based on the generalized method of moments, quasi-likelihood 

estimation or Markov chain Monte Carlo methods. In contrast to stochastic volatility models, we 

apply a static transformation to the data that will be introduced in the next section in order to 

make the distribution of squared return approximately normal. This allows us to use as standard 

maximum likelihood framework for the parameter estimation. 

5 Data 

This article reports results on the following data sets: 

High frequency DEMIUSD foreign exchange rates.5 We began with eight years of data 

(through June 29, 1995) spaced apart 30 minutes in 8-time (Theta-time). We dropped 

all points with missing values, and then took every fourth of the remaining points for our 

analysis, effectively downsampling to two hours in d-time removes daily and weekly 

seasonality: times of day with a high mean volatility are expanded, and times of day and 

weekends with low volatility are contracted (Dacorogna, Gauvreau, Muller, Olsen and Pictet 

1996). 

5We thank Michel Dacorogna (Olsen & Associates, Zurich) for the high frequency DEM/USD exchange rate 
data. 

6Whether half-hour or two-hour intervals in @-time are taken does not change the results reported here, since 
the time scale of the dynamics that we find is two orders of magnitude slower than the sampling interval. For larger 
changes in the sampling time, Brown (1990) shows that the estimated (unconditional) volatility decreases by 13% 
as the sampling interval of S & P 500 Index futures is changed from one minute to  one hour. 
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Daily stock indices. We use two stock indices: 

- Nikkei 225 index (40 years of daily data, through October 15,1996,12288 points t ~ t a l ) , ~  

- Dow Jones Industrial Average (25 years of daily data, through October 16, 1987, 6252 

points total) .' 

I I I I 5 I 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Theta time (Jan 2, 1995 - June 29, 1995) [2 hour intervals] 

-0.015 I I I I I I I I 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Theta time (Jan 2, 1995 -June 29,1995) [2 hour intervals] 

Theta time (Jan 2, 1995 - June 29, 1995) [2 hour intervals] 

Figure 1: This figure displays a six-month window of the high frequency foreign exchange data, 
sampled at  two hour intervals in 8-time. The top panel shows the prices, the middle panel shows 
the relative returns, and the bottom panel shows the series used in our analysis, i.e., after applying 
the logarithm and scaling it to zero mean and unit variance. 

The top panel of Fig. 1 graphs the level of DEM/USD for the first half of 1995. Its periodogram, 

shown in the left panel of Fig. 2, drops to first approximation as the spectrum of a random walk 

whose l/ f line is also indicated. ( f  denotes the frequency.) The signature of observational noise- 

a noise floor masking the signal at  high frequencies-is absent: the periodogram continues to drop 

?We thank Morio Yoda (Nikko Securities, Tokyo) for the Nikkei 225 stock index data. 
sThe Dow Jones Industrial Average data set is described in LeBaron and Weigend (1998) and available through 

www.stern.nyu.edu/-aweigend/Research. 
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to  the highest time scale. The result is that price levels p(t) of financial instruments do not exhibit 

significant observational noise; all the "noise" on prices is dynamic, i.e., it re-enters the dynamic 

equation. 

The central panel of Fig. 1 shows the difference of the logarithm of the price levels 

p(t) P(t) - ~ ( t  - 1) logp(t) - logp(t - 1) = log - = 
~ ( t  - 1) p(t - 1) 

This quantity can be interpreted as the logarithm of the geometric growths, i.e., as the logarithm of 

the ratio of the prices. Using the fact that the logarithm Taylor expands around 1 as log E z 1 + E, 
it can also be interpreted as the returns normalized by the levels, i.e., the relative returns. Note in 

the central panel of Fig. 1 that the width of the "band" varies over time; regimes with larger shocks 

(positive or negative) alternate with regimes with smaller widths. The corresponding periodogram 

of the relative returns is shown in the right panel of Fig. 2. Note that it is essentially flat: the 

subsequent returns on the two-hour time scale in d-time appear to be (linearly) uncorrelated. 

To exploit this observed structure in the absolute values of the relative returns, we square the 

relative returns, i.e., ignoring their signs. The distribution of the squared returns is very skewed. 

To make it less skewed, we take their logarithm, 

The logarithm of the squared relative returns, y(t), is shown for the DEM/USD data in the the 

bottom panel of Fig. 1. 

The squared relative returns can be interpreted as independent realizations of a random variable 

with a slowly changing mean. If the relative returns logp(t)/p(t - 1) were normally distributed 

with unit variance, their squares would follow a Xf distribution. The variance of this x2distribution 

is twice its mean, implying that the realizations are very noisy indeed! This is the source of the 

observational noise for volatility. On empirical data, it is well known that the relative returns 

logp(t)/p(t - 1) are not normally distributed, but have fatter tails. However, the spirit of the 

explanation for the observational noise still applies; see also Diebold and Lopez (1995). 

Fig. 3 shows this effect. The periodogram of the data contains most of its power a t  low 

frequencies. Subsequently, as the frequency increases, it begins to drop. Finally, it flattens out 

as the signal gets masked by this "observational noise," stemming from the noisy realizations of 

the slowly changing means of the squared returns. Note the absence of a daily or weekly peak in 

this periodogram: while present for data in chronological time, it has been successfully removed by 

Olsen's projection of the data onto d-time. This periodogram is simiIar to figures in Schnidrig and 

Wiirtz (1995) and in Andersen and Bollerslev (1997). However, neither of these papers interpret 

the signature as evidence for observational noise, nor do they use a state space model to explain 

the data. 

The key features of the periodogram-a drop over many orders of magnitude for price levels, 

a roughly constant level for returns, and a low frequency signal disappearing into observational 

noise at  higher frequencies for squared returns-hold for all the financial data sets we analyzed, 

including six other currencies on different time scales, as well as several stock indices. The next 

section gives detailed results for DEM/USD and Nikkei 225, as well as brief results for the DOW 

Jones industrial index. 
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6 Results 

Table 1 summarizes the results for the high frequency DEM/USD data, comparing linear state 

space models with ordinary AR models. The linear state space models differ crucially from the 

AR models in the decay times r: while the decay times of the state space models are significant, 

they are negligible for the AR models where the processes typically decay within one time step. 

Since the state space model is fitted to y(t) as defined in Eq. (30), the decay times characterize 

when the logarithm of the squared relative returns has decayed to 37% of its initial value. 

For first order models describing a single relaxator, there is a huge difference in decay time 

Periodograrn of Prices Periodograrn of Relative Returns 

1 o - ~  1 o" 
Frequency 

Figure 2: Periodogram of the DEM/USD prices (left), and of the relative returns (right). Expressed 
in l/time, the leftmost points correspond to 1/(8 years), 1/(4 years), lI(2.6 years), 1/(2 years). 
To guide the eye, we also plotted the l/ f drop in spectral power of a random walk over six orders 
of magnitude. The periodogram of the returns on the right hand side is essentially flat. Neither 
the prices nor the returns indicate the presence of observational noise, in contrast to Fig. 3. 
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between 156 time steps for the LSSM in contrast to insignificant 0.45 time steps for the AR process. 

The eigenvalues of the second order models, given by Eq. (6), turn out to  be real; the process thus 

corresponds to the superposition of two relaxators. The slower one of the two relaxators settles 

to  around 240 of the 2-hour steps and corresponds to 20 days, whereas the slower AR relaxator 

still decays in a single time step. Using third and fourth order, oscillators emerge whose resonance 

frequencies 1 /T  correspond to about one day. They might indicate a tiny amount of periodicity 

left after the transformation of the raw data to d-time, but they do not contribute significantly to 

the dynamics since their relaxation times are of the order of a few time steps only. 

1021 ' ' " " "'  I I 1 I 
1 o - ~  I o - ~  10-1 1 00 

Frequency 

Figure 3: Periodogram ("i-") of the DEM/USD exchange rates, and spectra of the estimated state 
space models (SSM) of order one (dashed line) and higher orders (solid lines). 
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Table I:  Results for the volatilities of the DEMjUSD exchange rates. While linear state space 
models (LSSM) of order two and above fit the data well, ordinary AR models cannot explain the 
structure of the data. 

The decay constants presented here are defined for the logarithm of the squared relative re- 

turns. Nonlinear transformations do not allow for an amplitude-independent interpretations of 

decay times in general. However, fitting state space models directly to the absolute or squared 

relative returns (without taking the logarithm) yields similar decay constants. This implies that 

our characterization also hold for stochastic volatility models. 

ENMS 

0.960 

0.957 

0.957 

0.957 

0.988 
0.984 

0.982 

0.979 

The fourth column in Table 1 shows that the residuals of the state space model of order 

one are not consistent with white noise, implying that a first order LSSM does not describe the 

data adequately. However, all higher order LSSMs produce residuals consistent with white noise 

at  a significance level of 0.05 for the Kolmogorov-Smirnov test on the whiteness of the residuals 

(Brockwell and Davis 1991). None of the residuals of the AR models are consistent with white 

noise. This is another indication that AR models are not an adequate model class for volatility. 

Prob 
white 
noise 

0 

0.72 

0.57 

0.70 

0 
0 

2e-6 

7e-4 

Models 
DEM/USD 

LSSM(1) 

LSSM(2) 

LSSM(3) 

LSSM(4) 

AR(1) 

AR(3) 

AR(4) 

I h e  last column gives the nc)rmalleerl mean sqllared error, .&NMS, Detween tne ODservea ykt) 

and the predictions obtained via Eq. (17). Whereas for LSSM, the error drops quickly to a constant 

T (decay times) 
1 step = 2 hours 

156 

240, 1.09 

236 
IT = 17 T = 1.61 

243,l.l  
[T = 8.5 T = 101 

0.45 
0.85, 0.64 
1.25 
[T = 6.5 T = 0.861 
1.8,1.2 
[T = 4.1 T = 1.21 

level of 0.957 at  order 2, it decreases for AR models at  a much slower rate, and also remains at  a 

higher level. In an AR(10) model, for example, ENMs takes the value of 0.973, still significantly 

AR coefficients 

0.994 
0.996 0 
0 0.399 
0.966 0 0 
0 0.507 -0.188 
0 0.188 0.507 
0.996 0 0 0 \ 
0 0.411 0 0 
0 0 0.666 -0.612 
0 0 0.612 0.666 ) 

0.107 
0.100 0.066 

0.097 0.062 0.044 

0.095 0.058 0.039 0.049 

above the value of the second order LSSM. 

We now turn to the power spectra. The curves in Fig. 3 are the power spectra of the state 

space models.' They are computed using Eq. (11). There is a clear difference between the first 

order spectrum and the higher order spectra. The higher orders (3 2) are very similar, indicating 

that the second order state space model is indeed sufficient. The spectra of the state space models 

gThe spectra and the periodogram are normalized. For the lowest 200 frequencies, all periodogram points are 
plotted. Above this frequency, they are logarithmically thinned out for the sole reason to keep the files reasonably 
small for the on-line version. The visual impression in the printed version does not change. 
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correspond well to the periodogram of the data. Note that the spectra are not obtained by some 

direct smoothing of the periodogram in frequency space, but are the spectra of the state space 

models which were fitted in the time domain. 

Table 2: Results for the volatilities of the Nikkei 225 stock index. While linear state space models 
of order two and above fit the data well, ordinary AR models cannot explain the structure of the 
data. 

The results for the second data set, the logarithm of absolute values of the relative changes 

of the daily Nikkei 225 level, are summarized in Table 2. The key point is the large decay time 

of about 3 1/2 months, revealed by the state space models of order two and above, as well as the 

failure.of AR models, very similar to the DEM/USD data set discussed. 

E N M ~  

0.906 
0.905 

0.905 

0.905 

0.975 
0.959 

0.951 

0.940 

Models 
Nikkei225 
LSSM(1) 
LSSM(2) 

LSSM(3) 

LSSM(4) 

AR(2) 

AR(3) 

AR(4) 

The third data set, the logarithm of absolute values of the relative changes of the daily Dow 

Jones Industrial Index, reveals a decay time of 117 days or about 5 months. In that case, a one 

dimensional hidden state already generates residuals that are consistent with white noise. As in 

the other two examples, no ordinary AR model in the observed variable explains the data. This 

effect will be clarified in the next section. 

7 Ignoring observational noise 

r (decay times) 
1 time step = 1 day 
63.1 
81.8,1.45 
81.2 
[T = 8.7 r = 6.91 
81.7,1.46 
[T = 8.4 r = 101 
0.54 
1.20,0.82 
1.85 
[T = 6.6 T = 1.051 
2.93,1.59 
[T = 4.15 T = 1.611 

The failure of AR models shown in the previous section is a consequence of the observational noise 

that is present in the volatility data. Whereas linear state space models include the observational 

noise explicitly in the model, autoregressive models assume that the data is free from observational 

noise. We use a simple first order process to demonstrate the consequences of ignoring observational 

noise on the autoregressive parameter. 

In an AR[1] model, x(t) = ax(t - 1) + ~ ( t ) ,  the parameter a can be estimated without bias as 

Prob of 
white noise 

0.004 
0.56 

0.64 

0.57 

0 
0 

7e- 7 

0.002 

If, however, the dynamics is covered by observational noise 
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the expected value (denoted by < . >) of 2, estimated in analogy to Eq. (31) from y(t), now becomes 

Thus, the larger the variance R of the observational noise, the worse the parameter a will be 

underestimated. This effect is known from linear regression as the problem of errors-in-variables 

(Fuller 1987). It was first mentioned in time series context by Kostelich (1992), see also Konig and 

Timmer (1997). The underestimation of the functional relation between past and present values 

carries over to more general models, including nonlinear models (Carroll, Ruppert and Stefanski 

1995, Weigend, Zimmermann and Neuneier 1996). 

8 Summary and Applications 

This article showed the important distinction between observational and dynamic noise. When ob- 

servational noise is present, an autoregressive approach cannot model the data adequately-a state 

space approach is needed to  capture the hidden dynamics. In finance, neither prices nor returns 

tend to have observational noise. However, volatilities do exhibit signature of observational noise 

in the periodogram: for low frequencies, there is structure above the noise floor of observational 

noise. 

We showed on three representative financial data sets that a linear state space model with full 

dynamics can describe volatilities well. We also showed that the resulting models can be nicely 

interpreted, both from the perspective of physics as a superposition of two simple relaxators, and 

from the perspective of finance as volatility clustering with a decay time of about three weeks (for 

DEM/USD), 3 1/2 months (for Nikkei 225), and 5 months (for Dow Jones Industrial Average). 

These results are in strong contrast to AR models that ignore observational noise and consequently 

have a bias toward too small coefficients, as shown in Section 7. The more promising modeling 

approach using state space models over AR models for volatility suggests several applications in 

financial markets, including 

Estimating risk. Knowing the evolution of the volatility is important for determining the 

risk associated with a position on a financial instrument: the volatility can be interpreted as 

the conditional standard deviation of the returns. 

Pricing derivative securities. Using financial theory, discrepancies between the predicted 

volatility and the implied volatility can be translated into mispricings, which can in turn be 

exploited in trading. 

Information for regime switching models. The predicted volatility can be an important 

input for trading models based on the "gated experts" architecture (Weigend, Mangeas and 

Srivastava 1995). In this case, the hidden state is offered as an additional input to the gate 

to help determine the current region. 

In summary, we discussed the signature of observational noise in the frequency domain and 

showed on three data sets that volatilities exhibit that signature, but not the prices or returns. We 

showed that allowing for a hidden process with two or more degrees of freedom, and modeling the 
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full dynamics of this process, gives interpretable results yielding residuals consistent with white 

noise. We are currently evaluating on several time horizons the performance for true volatility 

predictions of state space models in comparison to an approach using historical data (Figlewski 

1997), to  GARCH (Bollerslev et al. 1995), and to stochastic volatility models (Shephard 1996). 
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