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Abstract 

In his paper "Should the two-headed disk be greedy? - Yes, it should" Hofri defined a "greedy policy" as 
follows. Assuming that the range of disk addresses is [0,1], a request at location x is served by the closest arm while 
the other arm jockeys to a new position, z ,  where z = (1/3)x or z = 2/3 +x/3  depending on whether x is larger or 
smaller than 1/2. Hofri proved that this policy minimizes the expected seek distance for uniform request 
probabilities and conjectured that it stochastically dominates every other policy. Stochastic dominance is of practical 
importance in this context as it guarantees that a policy that optimizes expected seek distance also guarantees 
optimal seek time. The main result of this paper is a proof of Hofri's conjecture. The paper contains two proofs, the 
first establishes the conjecture, and the second shows that if the seek distance is stochastically minimized under a 
repositioning policy, then the policy must be Hofri's greedy policy and the request distribution must be uniform. 
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1. Introduction 

Due to the mismatch between the speed of 
processors and the 1 / 0  subsystem, there are 
many research papers dealing with methods of 
minimizing disk seek times. One common ap- 
proach is to use multiple disk arms, or one arm 
with multiple heads attached to it. A suitable 
policy needs to be devised as to which arm (or 
head) will service the next request. Cases where 
one arm has two heads attached to it with a fixed 
distance between them was analyzed in [I]. The 

* Corresponding author. 

case where the disk arms move independently 
was analyzed in [2], where it was also suggested 
that while one arm services the next request, the 
other one can jockey to a new position to antici- 
pate the next request. In [3] the author suggested 
moving the disk head to an anticipatory position 
between requests to minimize the seek distance. 
In [4], an analysis of optimal anticipation points 
for reading large objects is given. In what follows 
we use the term strategy to refer to the idea of 
allowing a head to reposition in anticipation of 
the next request and the term policy to denote 
where to reposition the head. 

In most of the above work the quantity ana- 
lyzed is the expected seek distance (ESD) rather 
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than the expected seek time (EST). Although seek 
time is an increasing function of seek distance, it 
does not necessarily follow that a policy that 
minimizes the ESD also minimizes the EST. 
However, if policies that minimize the expected 
seek distance also minimize the seek distance in a 
stochastic sense (to be defined below), the ex- 
pected seek time will also be minimized. Assum- 
ing that the range of disk addresses is [0,1], we 
prove in Theorem 1 that Hofri7s greedy policy is 
optimal in the stochastic sense when the requests 
are uniformly distributed on [0,1]. However, as 
shown in Theorem 2, the existence of an optimal 
policy in the stochastic sense in this case implies 
that the request distribution is uniform. We inter- 
pret this result as indicative of the fact that 
policies that are optimal in the stochastic sense 
need not exist in general, and that in practice the 
user is better off seeking to minimize the ex- 
pected value of the travel distance. In prepara- 
tion for the proofs, we give below the definition 
of usual stochastic order and provide an example 
to illustrate its application in our context. 

Definition 1 (see 151). A random variable X is 
said to be smaller in the usual stochastic order 
(sense) compared to another random variable Y, 
denoted by X < ,,Y, if P(X > t) < P(Y > t ), Qt. 

Definition 2. Let Dx be the random variable 
representing the seek distance under policy X for 
some known distribution of requests. A policy S 
stochastically dominates a policy T if Ds < ,,D,. 

Lemma 3 (see [5]). X < ,,Ye E[ f (X) l<  El f (Y )I 
for all non-decreasing functions f (  ) and when the 
expectations exist, where E[ ] denotes the expecta- 
tion of a random uariable. 

By Lemma 3, we also have the implication, 
X < ,,Y * E[X] < E[Y]. Thus minimization in the 
usual stochastic order implies minimization of the 
ETD (and EST too). 

The notion of being smaller in the usual 
stochastic order can be quite use%l in the present 
context. To illustrate this fact we consider a disk 
with four cylinders and one head and look at 
policies which minimize the seek time to service 

Fig. 1. 

the next request by repositioning the disk head 
between requests as in [3]. The request probabili- 
ties for the four cylinders are 0.21, 0.30, 0.45 and 
0.04 (see Fig. 1). Denote the travel distance to 
service the next request measured in cylinders as 
D. We consider two policies S and S' for posi- 
tioning the disk head between requests. Under S 
we position it at cylinder #2 and under S' at 
cylinder #3. It is easy to verify that under policy 
S, the expected distance to service the next re- 
quest is 0.74 which is smaller than the expected 
distance of 0.76 under Sf. However, the travel 
distance is not minimized stochastically under 
this policy. This is because when the head is at 
cylinder #2, the probability that D is equal to 
zero is 0.3 (written as P(D = 0) = 0.3) whereas by 
repositioning the head at cylinder #3, P(D = 0) 
= 0.45. As a consequence, if the seek time is 
given by (which is a reasonable choice as the 
time to travel is often a concave function of the 
distance traveled), then the expected seek time 
under S is (0.21 + 0.45 + 0.04 X 2°.5) = 0.7166, 
whereas under S' it is (0.21 X 2O.' + 0.30 + 0.04) 
= 0.637. This reversal cannot happen if the repo- 
sitioning strategy minimizes the distance in the 
usual stochastic order, see Lemma 3. 

2. The disk model 

We first describe Hofri7s model of a two headed 
disk. In this model, each head can move indepen- 
dently but there is only one data path, i.e., only 
one head can read at a time. As one of the heads 
services the current request, the other head can 
jockey to any position at zero cost. One head has 
to go to attend to this request, and the nearest 
head should go to x (this is the reason why we 
say that the policy is greedy). The other head is 
allowed to jockey in anticipation of the next re- 
quest. Let it be repositioned at y. We allow cross 
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over of the two heads, so y can take any value in 
[O, 11. Let D(x, y) be the random distance to be 
traveled to attend to the next request. Hofri [2] 
showed that the jockeying policy 

minimizes the expected travel distance and con- 
jectured it also minimizes the travel distance in 
distribution (which is equivalent to saying that the 
travel distance is the smallest in the usual 
stochastic order). We prove this conjecture in 
Theorem 4. Denote the probability that D(x, y) 
is greater than a as P(D(x, y) > a), a E [O, 11. 
Due to symmetry we need only analyze the re- 
quests which occur at x, x < 1/2. 

Theorem 4. P(D(x, y) > a) is minimized by Hofn"s 
policy for a two headed disk, when the head not 
attending the current request jockeys to position y ,  
when requests do not interfere with one another, 
and the distribution of requests is i.i.d. and uni- 
form on [O, 11. 

Proof. As discussed above, assume without loss of 
generality that x < 1/2. First we prove that repo- 
sitioning should be done at y > x. We show this 
through contradiction. Let y < x. Call this policy 
I. Consider an alternate policy 11, that sets y' = 

1 -y. Under the alternate policy the two heads 

are at locations (x, 1 -y). For 11, consider the 
suboptimal policy of attending the next request as 
given below: 
(i) Head at (1 - y )  attends to all requests in the 

region [ l  - (x + y)/2, 11. 
(ii) Head at x attends to all requests in the 

region [0, 1 - (x + y)/2]. 
Under policy I, use the nearest head policy for 
attending the next request. Thus we have: 
(iii) Head at y attends to all requests in the 

region [0, (x + y)/2]. 
(iv) Head at x attends to requests in the region 

[(x + y)/2, 11. 
These policies are depicted in Fig. 2. 

Let Z be the location of the next request. 
Denote equality in distribution by 2 . From (i), 
(iii), and symmetry (see Fig. 21, the conditional 
distributions: 

Thus (i) and (iii) can be set off against one 
another. In (ii) and (iv) the common region is 
[(x + ~ ) / 2 ,  1 - (x +y)/2], see Fig. 2. This im- 
plies 

So we are left to compare attending requests in 
[0, (x + y)/2] (using the head at x) under I1 

( x+y ) l 2  
(iv) (iii) : 

t t  f 
1 /->:/--= 1 

x common y k- - -  - - - - - - - - - - - - ->* 
(ii) (i) 

f : t 
1 

X : (1-Y) 

(I-(x+yf/?) 

Fig. 2. 
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versus attending requests in [ l  - (x + y)/2, 11 us- 
ing the head at x under I, see the heavy lines in 
Fig. 2. From the assumptions follows 

x -  ( x + y ) / 2 =  ( x - y ) / 2 <  1 - ( x + y ) / 2 - x  

a s 2 x < 1  
and 

x < l - x  a s 2 x < 1 .  
This implies that the point x is closer to each 
point in the strip 10, (x  + y)/2] than to the corre- 
sponding point in the strip [ l  - (x + y)/2, 11. (The 
correspondence is that a point t in [0, (x  + y)/2] 
gets mapped to the point (1 - (x  + y)/2 + t )  in 
the other strip.) So policy I1 is better than I (in 
the usual stochastic order). Now consider y >x.  
We obtain 

P(D(x7 Y )  > a )  

= ( ~ - a ) + + 2 ( ( ~ - ~ ) / 2 - a ) +  

+ ( I  - y  - a ) + ,  (1) 

P ( D ( x ,  2/3 +x/3) > a )  

= ( x  - a ) + +  3(1/3 -x/3 - a ) + ,  (2) 
where (z)+ is the positive part of z. Whenever a 
is greater than or equal to (1/3 -x/3), (2) is not 
larger than (1). So assume that a is less than 
(1/3 - x/3). We need to consider several cases: 

Case (i) ( y - x ) / 2 < a :  ( 1 - y - a ) - ( 1 - x -  
3a) = (2a - ( y - x)) > 0 by hypothesis for this 
case. This implies, (1 - y - a)+ 2 (1 -x  - 3a)+- 
2((y -x)/2 - a)*+(l  - y - a)+& 3(1/3 - x/3 
-a)+=. (1) > (2). 

Case (ii) (a): ( y - x)/2 2 a and (1 - y ) 2 a. In 
this case it can be verified that (1) = (2), as 

2 ( ( y - x ) / 2 - a )  + ( l - y - a )  = I - x - 3 a .  

Case (ii) (b): (y -x)/2 2 a and (1 -y) < a .  (1) 
- ( 2 ) = y - x - 2 a - ( l - x - 3 a ) = ( - l + y + a )  
> 0 by hypothesis for this case. C] 

We next show that the "only" continuous dis- 
tribution on [0, 11 that has this property (of mini- 
mizing the travel distance for a two headed disk 
in the usual stochastic order) is the uniform dis- 
tribution, and the only policy that has this prop- 
erty is the greedy policy. The qualification on 
"only" is made clear below. 

Theorem 5. Let f (x)  d x  be the probability that a 
request for a record will be made in the interval 
[x,x + dx]. Let it be gicen that f(x)  is continuous 
and f (x)  > 0, Vx E [0, 11. Assume that the nearest 
head attends the next request and the other head 
will be repositioned to minimize the expected travel 
distance for the subsequent request. If this policy 
stochastically minimizes the travel distance, then 
f (x)  must be constant on LO, 11, and the policy 
must be the greedy policy. 

Proof. Assume without loss of generality that the 
current request is made at location x 2 +. De- 
note the travel distance for the subsequent re- 
quest as D. Then we first claim that the reposi- 
tioning of the free head has to be done at loca- 
tion x/3. To prove this first assume that the head 
is repositioned at y > x. But this can not happen, 
because P(D > 1/2) > 0 under this policy, 
whereas this probability is equal to zero when 
y = x/3. Therefore y < x. Next consider the non- 
decreasing function g(d)  = [ d  - x/3]+. The repo- 
sitioning policy stochastically minimizes the travel 
for the subsequent request, therefore E[g(D)] 

Common 

I 0  I A 4- -  - -) 
T T I I 1  

x/3 x (x+x/3) 

EXTRA 
b 

x/3 Common '<. - - - -> 
A A ,<- - - - - 
T T I 1 
Y x (x+x/3) 

Fig. 3. 
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must be minimized under it. Let y =x/3 for 
policy I, and x/3 # y < x  for policy 11. Denote 
the position of the next request as the random 
variable Z, I{A) to be the indicator of the set A,  
and the expectations under the two policies by 
E,[ ] and E,,[ 1. Then, referring to Fig. 3, we must 
have 

E , [ ~ ( D ) ]  = E[((z -x) -x /~)+I{z  ax}]  

<E,,[g(D)l.  
This leads to a contradiction that policy I1 
stochastically minimizes the travel distance, and 
shows that the optimal policy must be Hofri's 
greedy policy. 

We now show that the request distribution 
must be uniform. If the repositioning is done at 
y, then the expected travel distance is given by 

As E[D] is minimized under the optimal policy, 
the first derivative of the expression in (3) with 
respect to y must be zero at y =x/3. Using the 
rule for differentiation under the integral sign: 

Leading to: 

[F(Y) - (F((x+y) /2)  -F(y))lylx/3 = O  

The last relation given in (5)  leads to the conclu- 
sion that F(x) is linear in x. 
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