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On the Semantics of "Now" in Databases 

James Clifford; Curtis Dyreson, Tom& Isakowitz, Christian S. Jensen 
and Richard T. Snodgrass 

Abstract 

While "now" is expressed in SQL as CURRENT-TIMESTAW' within queries, this value cannot be 
stored in the database. However, this notion of an ever-increasing current-time value has been 
reflected in some temporal data models by inclusion of database-resident variables, such as 
"now," "until-changed," "m," "@" and "-." Time variables are very desirable, but their use 
also leads to a new type of database, consisting of tuples with variables, termed a variable 
database. 

This paper proposes a framework for defining the semantics of the variable databases of tem- 
poral relational data models. A framework is presented because several reasonable meanings 
may be given to databases that use some of the specific temporal variables that have appeared 
in the literature. Using the framework, the paper defines a useful semantics for such databases. 
Because situations occur where the existing time variables are inadequate, two new types of 
modeling entities that address these shortcomings, timestamps which we call now-relative and 
now-relative indeterminate, are introduced and defined within the framework. Moreover, the pa- 
per provides a foundation, using algebraic bind operators, for the querying of variable databases 
via existing query languages. This transition to variable databases presented here requires min- 
imal change to the query processor. Finally, to underline the practical feasibility of variable 
databases, we show that database variables can be precisely specified and efficiently imple- 
mented in conventional query languages, such as SQL, and in temporal query languages, such 
as TSQL2. 

1 Introduction 

Now is a noun in the English language that  means "at the present time" [Syk64]. A variable with 
this name has also been used extensively in temporal relational data  model proposals, primarily as 
a timestamp value associated with tuples or attribute values in temporal relations. Yet, the precise 
semantics of databases with this and other current-time variables have never been fully specified. An 
importantgoaI of this paper is to  give a clear semantics for databases with current-time variables. 

Time variables such as now are of interest and indeed are quite useful in  databases, including 
conventional SQL databases, that  record time-varying information, the validity of which often 
depends on the current-time value. Such databases may be  found in many application areas, such 
as banJcing, inventory management, and medical and personnel records. For example, in a banking 
application, it is necessary to  record when account balances for customers are valid. Specifically, 
if a customer opens an account and deposits US$ 200 on January 15 (in some year), the validity 
of that  balance starts when the deposit is made and extends until the current time, assuming no 
update transactions are committed. Thus, on January 16, the balance is valid from January 15 
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until January 16; on January 17, the balance is valid from January 15 until January 17, etc. It 
is impractical to update the database each day (or millisecond) to correctly reflect the valid time 
of the balance. Rather, it would be quite useful to be able to store a variable, such as now, to 
indicate that the time when a balance is valid depends on the current time. In the example, it 
would be recorded on January 15 that the customer's balance of US$ 200 is valid from January 15 
'through now. While SQL-92 [MS93] has a construct CURRENT-TIMESTAMP (as well as CURRENTDATE 
and CURRENT-TIME) for use in queries, one cannot store such a value in a column of an SQL table. 
All major commercial DBMSs have similar constructs, and impose this same restriction. The 
user is forced instead to store a specific time, which is cumbersome and inaccurate. This paper 
shows how database variables such as CURRENT-TIMESTAMP can be precisely specified and efficiently 
implemented in conventional query languages such as SQL-92 and in temporal query languages, 
while having little impact on the underlying data model. 

We knew of no work on storing now in conventional databases, so we turned to the literature on 
temporal databases. In examining the large body of existing temporal data models, it is apparent 
that two different types of models have been proposed. The first type of model essentially accords 
with the view expressed by Reiter that a relational database can be seen as a set of ground first- 
order formulz, for which there is a minimal model [Rei84]. These models have either been presented 
as logical models directly (e.g., [CW83Il[CCT93]), or have been presented in such a way that their 
logical model was clear (e.g., [Cod7O]). 

The second type of model deviates from this tradition. Rather, these models have been pre- 
sented as a set of formulz some of which are ground, but others of which have included one 
or more free, current-time variables. Chief among these current-time variables is "now" (e.g., 
[CC87, Gad88, CT85]), but a variety of other symbols have been used, including "-" [BZ82], "m" 
[Sno87], "@@" [L J881, and "until-changed" [WJL91, WJL931. As already mentioned and exemplified, 
the use of such variables is quite convenient and practical. Thus, these approaches have advantages 
at the implementation level, namely, they are space efficient and avoid the need for updates at  
every moment in time. However, nowhere have we found a clear exposition of temporal variables, 
i.e., nowhere has the semantics of this type of database-a database with current-time variables, 
here termed a variable database-been formally specified so that the logical model represented 
by the database is clear. Rather, the models have relied on the choice of intuitive names for 
the variables to convey their meaning. This has led many to suppose that they understood their 
semantics. However, this reliance on intuition and lack of a clear semantics for databases with 
current-time variables is an unsatisfactory foundation for the development and implementation of 
variable databases, as it is prone to ambiguities and misinterpretations and, therefore, to errors. 

In this paper, we present a framework for the specification of the different semantics that may be 
given to variable databases, which builds on the approach introduced in [CI94]. In the framework, 
the semantics of a variable database is defined by means of an extensionalization mapping from 
a variable database to a fully ground data model. The actual extensionalization mappings for 
valid-time, transaction-time and bitemporal databases with one or more current-time variables are 
given in subsequent sections. This illustrates that the framework is general enough to allow for the 
specification of a wide variety of semantics, an important property of a framework. It  also illustrates 
that the framework can capture the semantics of multidimensional databases in a straightforward 
manner: the multidimensional extensionalization mapping is obtained by a simple, but coordinated, 
combination of the mappings for the constituent one-dimensional databases. 

We also observe that the modeling capabilities of current-time variables are limited. To over- 
come these limitations, two new modeling entities, now-relative and now-relative indeterminate 
timestamps are introduced and defined within the framework. Next, a mechanism for the query- 
ing of variable databases using existing query languages is provided. This mechanism provides 
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added functionality, does not require changes to a query language, and is easily integrated into 
a query processor. I t  is observed that the incorporation of the notion of perspective into query 
languages may provide additional functionality when querying variable databases. Finally, to un- 
derline the practicality of a variable database, compact physical representations for timestamps 
involving current-time variables are provided. These formats can be efficiently manipulated during 
query processing. 

2 Motivation 

To motivate the need for current-time variables in databases with time-varying data, including a 
solid, formal foundation for their use, this section introduces the use of such variables and explores 
some of the perhaps unintuitive, semantic subtleties resulting from their incorporation. Further, 
this section explores the limitations of current-time variables in some realistic situations. 

As the meaning of current-time variables depends on whether the context is valid time or 
transaction time, current-time variables in valid-time and transaction-time databases are considered 
in isolation, followed by a short discussion of current-time variables in bitemporal databases. 

2.1 Storing Valid-time Variables in Databases 

We first exemplify why it is convenient to use the current-time variable now in valid-time databases. 
We then explore three current-time-related situations that illustrate shortcomings of a single vari- 
able now and thus indicate a need for additional current-time modeling entities, which we introduce 
in Section 4. Finally, we informally discuss how the variable nozu complicates query semantics. 

2.1.1 Storing "now" in Databases 

The valid t ime  of a fact denotes the time(s) when the fact is true in the modeled reality [JCE+94, 
SA85]. In the valid-time dimension, a timestamp involving now is commonly used to indicate that 
a fact is currently valid [ABM84, BL92, EWK90, Gad88, NA89, Sar90, Tango, YC911. 

It is possible to explicitly record when facts are valid in both conventional SQL databases and 
in truly temporal, e.g., TSQL2 [Sno95], databases. With SQL databases, the semantics of valid 
time must be implemented in the application programs, while in temporal databases, the semantics 
are built directly into the data model and query language. The discussion of valid time that follows 
is phrased in terms of temporal databases, but applies equally well to conventional databases. 

(a )  / Jane I Assistant 11 June 1 I now i 

FACULTY 

(b) / Jane I Asszstant I/ June I 1 forever / 

NAME 

Figure 1: Describing Jane's employment 

RANK 

( c )  
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VALID TIME 

(from) I (to) 

Jane I Assistant 11 June 1 I July 6 
Jane possiblv ernpbo~~ed as an  Assistant /I Julu 6 1 now 



For example, suppose that a database records that Jane was on the faculty of "State University" 
in some particular year, e.g., 1995; which year is not relevant here. Figure l (a )  shows the relevant 
tuple from the University's employment database (the FACULTY valid-time relation). Jane 
started working as an Assistant Professor on June 1, as indicated by the "from" attribute, The 
value now, appearing as the "to" time in Jane's employment tuple, represents the (later) time 
-when Jane will stop working for State University as an Assistant Professor. Together, the "to" 
and "from" attributes encode the valid time associated with the tuple. For simplicity, we assume 
a timestamp granularity of one day in all examples. 

The informal meaning of this tuple is that Jane is a faculty member from June 1 until the 
current time. Thus, the result of a query that requests the current faculty members will include 
Jane. As the current time inexorably advances, the value of now also changes to reflect the new 
current time. Some authors have called this concept 'hntil changed" [WJL91, WJL931 or "@" 
[LJ88] instead of "now," but the meaning is the same. 

Using the variable now in a timestamp is very convenient. To see why, suppose that instead 
of using the variable as the "to" time, we use a ground time, i.e., a particular date. We start by 
recording a "to" time of June 1. Then as time advances and Jane remains an Assistant Professor, 
the "to" time on Jane's tuple must be updated each day to record when she worked. Hence, the 
"to" time would be updated to June 2, then to June 3, etc. While this representation is faithful to 
our knowledge at any point in time, having to continuously update the "to" time as time advances 
is impractical. It is also unclear who should do the updating, as the database has no indication of 
which tuples have a continuously increasing valid time and which are stable. For these reasons, it 
is better to use the variable now. 

2.1.2 The Pessimistic Assumption 

While using now is convenient, using it as the "to" time of a tuple may lead to an overly pessimistic 
assumption about the modeled reality. The university application introduced in the previous section 
provides such a situation. Specifically, it is reasonable to expect that if an employee is employed 
in a certain position today, that employee will also be employed in that position tomorrow (and 
the next few, following days). However, the FACULTY relation given in Figure l (a)  specifically 
records that Jane will not be employed tomorrow. Assume that today is July 9. Then a query 
asking who will be employed tomorrow (i.e., July 10) will not have Jane in the answer, since the 
"to" time of Jane's tuple is now, or in this case, July 9. This is overly pessimistic. 

Some temporal data models avoid this problem by limiting valid time to the past, that is, to 
times before now [Gad88, Tan901. For many applications, e.g., the university application, this 
limitation is much too restrictive. 

Other data models have advocated using one of the special (non-variable) valid-time values, such 
as forever, m, or "-" [Sno87, Sno93, BZ82, TK881) instead of now. These symbols (we will use 
forevey) denote the largest representable timestamp value, that is, the one furthest in the future. 
In SQL and in IBM's DB2, forever is about 8,000 years from the present [MS93, DW901; in our 
more liberal proposal, it is approximately 18 billion years from the present time [DS93a]. 

By using a "to" time of forever, as in Figure l(b),  we certainly avoid the pessimistic assumption, 
We are now being overly optimistic. We have indicated that Jane will be employed as an Assistant 
Professor not only tomorrow, but until forever. To assert that Jane will be employed as an Assistant 
Professor until forever is most assuredly incorrect (others have also noted that a "to" time of co, 
or forever, has erroneous implications for the future [NA89]). Another indication that forever is 
inappropriate is that when Jane departs the University, forever must be replaced by the date of her 
departure; but the revised date will be a separate and much earlier time that is inconsistent with 
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forever. Rather than having the new information refine the old information, the new information 
contradicts the old information. Using, instead of forever, some large, application-dependent time 
value earlier than forever (e.g., in the university application, the mandatory retirement date) is 
better than the generic forever, but is still overly optimistic. In Section 4.4, we introduce a new 
type of timestamp that meets these requirements. 

2.1.3 The Punctuality Assumption 

The use of now in timestamps implies a strong assumption about the punctuality of updates. For 
example, the tuple in Figure l (a)  states that Jane will remain an Assistant Professor until the 
current time. The correctness of this tuple is dependent on the correctness of the assumption that 
updates are made ahead of time, i.e., predictively. Thus, changes in Jane's employment status 
and rank are assumed to conform with the punctuality assumption: "changes are recorded in the 
database no later than the instant they take effect." 

This assumption databases is not often satisfied. Rather, information is often recorded after 
the time it became valid, but with a well-specified maximum delay [JS94]. For example, when 
employees change status, it may be that the database is guaranteed to be updated to reflect this 
at most three days after the status is changed. If Jane was promoted on July 8, perhaps it is 
not until July 11 that her tuple is actually updated to reflect her correct status. With this delay, 
the database is known to correctly describe the mini-world only in the past, up until three days 
ago. Within the last three days, it can only be concluded that it is likely, or possible, that Jane is 
employed as an Assistant Professor. In this case, one could interpret the meaning of Jane's tuple in 
Figure l (a)  as of today (July 9) as shown in Figure l(c) that intuitively illustrates the "possible" 
type of information that we would like to be able to record because it more accurately describes 
our knowledge of the mini-world. This cannot conveniently be recorded using now. Sections 4.2 
through 4.4 describe a new kind of timestamp that can be used to address these issues. 

2.1.4 The Problem of Now in Predictive Updates 

Another problem with using the variable now as a "to)' time in a tuple is that in predictive updates, 
the "from" times are after the current time. Thus, the 90" time is before the 'Lfrom" time, 
contradicting the intuition that the "from" should always be before the "to" time. To illustrate 
this use of now, assume that the tuple in Figure l (a)  was inserted on May 25, i.e., the fact was 
recorded prior to when Jane began work. Then, during the remainder of May, the "to" time is 
before the "from" time. 

Some data models do not allow the use of now as a "to" time when its value is before the "from" 
time. Instead a special "to" time value of NULL is used in such situations [EWKSO, NA89, YCSl]. 
This value is replaced by now when the value of now exceeds the "from" time. Tuples with NULL'S 
are ignored in queries. However, there is a subtle difficulty with this solution. Suppose that today 
is ~ a f 2 5  and we record that Jane will be an Assistant Professor from June 1 until now (or NULL 
in this case). We then execute a query that determines who will be employed in June barring any 
changes to the database between now and June. To evaluate this query, we temporarily "observe" 
the database from the perspective of a user in June even though today is May 25. The result should 
include Jane; however, Jane's tuple is ignored since it has a "to" time of NULL. In Section 4 we 
introduce new modeling entities that address these shortcomings, and provide a formal semantics 
for variable valid-time databases. 
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2.2 Queries and Now 

When querying data that involves now, the current time must be clearly specified since the value 
of now depends on this time. To illustrate the kind of ambiguity that can result from unclear 
specification of the current time assume that today is July 9 and that our database is given as 
in Figure l (a) .  Then, consider the query, "Will we agree on July 13 that Jane was employed on 
July l l?"  Suppose that now is interpreted to refer to the time at which the query is asked, in this 
case July 9. Then Jane will not be employed on July 11 and so we would answer "no." But now 
could be interpreted as the time mentioned in the query about which we were asked to agree, in 
this case July 13. Then Jane will be employed on July 11 and so we would answer "yes." 

Another source of ambiguity is that the constant evolution of the current-time variable now 
appears to cause the "same" query to return different results when evaluated at different times, even 
if no updates have occurred. For instance, consider the query, "Is Jane employed on July ll?ll This 
simple query asked on July 10 will yield one answer ("no"), but if we ask the query on July 12 we 
will receive a quite different answer ("yes"). Hence, the querying of variable databases introduces 
new semantic subtleties, not found when querying non-variable databases. 

2.3 Storing Transaction-time Variables in Databases 

The transaction time of a database fact denotes the time when the fact is (logically) current in the 
database [SA85]. It is an orthogonal concept to valid time, in that it concerns the evolution of the 
database, as opposed to the enterprise being modeled. The use of current-time relative variables 
in transaction-time databases introduces a different set of problems. 

While a valid-time timestamp is generally supplied by the user, a transaction-time timestamp, 
an interval from a "start" to a "stop" time, is supplied automatically by the DBMS during updates. 
Insertions initialize the "start" time to the "current time" and the "stop" time to now1. Deletions 
are accommodated by changing "stop" times of now to the "current time." Hence, deletion is 
logical. The information is not physically removed from the relation; rather, it is tagged as no 
longer current by having a "stop" time different from now [YC91]. Updates may be considered 
combinations of deletions and insertions. 

As an example, consider the transaction-time relation in Figure 2(a). The distinct semantics of 
transaction time yields a different interpretation of this relation as compared with the one shown 
in Figure l(a).  The "start" time of June 1 indicates that this tuple was stored in the database on 
June 1, i.e., we first became aware that Jane was an Assistant Professor on that date. The value 
of now for the "stop" attribute indicates that the database still records that Jane is an Assistant 
Professor, i.e., the fact is current. If we learn on July 10 that Jane left State University and thus 
(logically) delete the fact, this is reflected by changing the "stop" time to July 10. 

The problem with using a variable called now in transaction time is that the name "now" 
obscures the use of the variable. Strictly speaking, it implies that every current tuple was deleted 
by the current transaction! In Figure 2(a), if the current time is July 9, then a strict interpretation 
of a "stop" time of now suggests that the "stop" time is July 9. This is not what was intended. 

As with valid time, some data models address this problem by using forever (also called co or 
"-") instead of now, as shown in Figure 2(b) [BZ82, BG89, Sno87, TK881. Using this large value, we 
immediately encounter difficulties. The strict interpretation of this tuple is that some transaction 
executing a (very) long time in the future will logically delete this tuple from the relation. In the 
meantime, it will remain in the database. If, on July 10, it becomes known that Jane has left 

'The transaction processing system must also obey the requirement that the "start" times of tuples be consistent 
with the serialization order of their respective transactions. 
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FACULTY 
TRANS TIME 

(a) I Jane I Assistant 11 June I / now 

(b)  I Jane Assistant I /  June I I Joreuer I 

Figure 2: Describing Jane's employment in a transaction-time relation 

State University, then we logically delete this tuple by changing the "stop" time to July 10. Such a 
change is inconsistent with the previous "stop" time. Put differently, in this scenario the database 
first records that we believe that Jane is an Assistant Professor from June 1 until "forever." The 
subsequent update then contradicts this belief by saying that it is only from June 1 until July 10 
that we believe Jane is an Assistant Professor. 

There is a more fundamental problem with forever in transaction time. By the semantics of 
transaction time, storing future transaction times is equivalent to predicting future states of the 
database, which is a highly problematic proposition. With no crystal ball at  hand, it is customary 
to avoid predictions and require that the right endpoint of every interval be less than or equal to 
the current time. Since the meaning of "now" in the transaction-time dimension differs from its 
meaning in the valid-time dimension, we propose in this paper to adopt the name "until changed" 
for the former. 

2.4 Variables in Bitemporal Databases 

Bitemporal databases support both valid time and transaction time [SA85]. The confusion that 
has arisen in a number of bitemporal data models between the use of the same variable in both 
dimensions (see for example, [CI94]) was a prime motivation for the semantic framework which 
we present below. In order to allow for a completely general treatment of the semantics of these 
variables, we use a different variable in each dimension. In Section 6 we show how the concept 
of a reference time can coordinate the interaction between the current-time variables in both time 
dimensions. 

3 Semantic Framework 

In order to provide a precise semantics for databases with current-time variables, we propose a 
semantic framework for defining the meaning of databases with variables in terms of databases of a 
fully extensional temporal data model. Databases in this latter model are fully ground, i.e., they do 
not admit variables. While the model is not suitable for the implementation of temporal databases, 
it is well suited for capturing the semantics of variable databases. 

3.1 The Temporal Universe 

The framework developed below includes three distinct time dimensions, each with its own temporal 
universe. The framework requires the existence of well-defined mappings between these universes. 
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Although this requirement does not preclude the possibility of different granularities for the uni- 
verses, we choose to avoid such diversions and instead use a single, underlying granularity. This 
yields a homogeneous treatment of all time dimensions and their relationships. 

Since most database researchers have adopted the view that valid time in a database is best 
viewed as discrete, and every database transaction model that we are aware of has this property, we 
adopt a discrete model of time. Let 72 to be the totally ordered set {. . . , -2, -1,0, +1, +2,. . .)u{I 
, T),  where I (bottom) and T (top) are two distinguished elements, which intuitively correspond 
to -cm and cm, respectively. The total order <T- on 72 is the normal order on integers extended 
so that I and and T are, correspondingly a bottom and a top, i.e. 

1. for any two integers z and z', z <T- z' if z < z' (as integers); and 

The only requirement on our temporal universe is that it have the same order structure as T2. 
That is, 7 can be any ordered set of order type 1 + *w + w + 1 ([FBHL73], page 128). For example, 
in most of the examples in this article we chose 7 to be the ordered set of days, extended infinitely 
into the past and the future, with added elements -co and cm. 

In addition to the concepts of valid time and transaction time, we introduce a third time, 
reference time, to represent the relationship between a temporal database and the "real world" 
time at which it is viewed. Thus, three temporal universes are required in the framework, namely 
the reference-time, the valid-time, and the transaction-time universe, and it may be desirable or 
convenient to restrict them to some subset of 7. Therefore, let 

7-j C 7 denote the reference-time universe of our database, 

TVT C 7 denote the valid-time universe of our database, and 

TTT C 7 denote its transaction-time universe. 

3.2 Important Times 

Throughout our discussion of variable databases and queries on these databases, five distinct times 
surface repeatedly. The first of these is called initiation. It  is relative to a specific relation and 
denotes the time when that relation was created. To simplify the discussion that follows, we assume 
that all relations are created at the same time, denoted by to. Once created, we assume that the 
database schema never changes. Schema versioning [Rod921 is orthogonal to most of the issues 
discussed in this paper. 

The second important time, which is new to most readers, is the reference time. The reference 
time is the time of the database observer's "frame of reference," denoted by rt,. Reference time is 
a term,analogous to the indices or "points of reference" in intensional logic [Mon74], and discussed 
more recently in the context of valid-time databases [Fin92]. The reference time facilitates a kind 
of "time travel" by means of which we may observe the database at times other than the present. 

A related time is the query time, or current transaction time, denoted by tmTTent. It  is the 
time at which a query is processed. The reference time, rt,, and current time, tCuTTent, are related, 
but distinct. In general, tmTTent is the time at which a query is initiated, while rt, is the time at 
which the user "observes" the database. In many queries, the user "observes" the database with 
respect to the same frame of reference in which the query was initiated, so the reference time and 
the query time are the same. But the user may choose to "observe" the database from a previous 
perspective; for this kind of query, the reference time is earlier than the query time. For example, 
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if today is July 9 and we wish to observe the database from the perspective of a week ago, then 
t ,,,, nt = July 9, and rt, = July 2. 

The final two times of special interest are the valid timesdice time, vt,, and the transaction 
timeslice time, tt,. These times are important in this paper because, for expository purposes, we 
focus exclusively on various timeslice queries. The valid and transaction timeslice times could both 
be  an instant, an interval, or a set of instants or intervals. The valid timeslice time(s) specifies the 
real-world time about which information is wanted, while the transaction timeslice time(s) is the 
time(s) during which information must be current in the database in order to be of interest for a 
query. For the example queries given in this paper, it is advantageous to choose an instant as the 
valid timeslice and transaction timeslice time in tirneslice queries. Later, we shall see that, while 
these times are distinct concepts, there are important relationships between the valid tirneslice 
time, the transaction timeslice time, and the reference time. 

To illustrate the distinction among these five times, let us consider the following example. A 
temporal database for recording employment information is created on January 11 (as mentioned 
above, the particular year is immaterial). Today (which we assume is July 9), the director of the 
personnel department investigates an apparent discrepancy reported by a co-worker a week earlier, 
while using the database on July 2. The co-worker discovered that the database had mistakenly 
recorded on June 27 that an employee had been hired two weeks earlier, on June 13. The five times 
in this example are as follows. 

1. to is January 11, the day of the creation of the database; 

2. rt, is July 2, the day when the problem was observed; 

3. tarrent is July 9, the day the personnel department director investigates the database; 

4. vt, is June 13, the real-world day of the problematic information; and 

5. tt, is June 27; this is the day for which we axe interested in what was recorded as current 
information in the database. 

By using a reference time of July 2, the director can view the identical database state in existence 
when the co-worker discovered the discrepancy. If a reference time of June 20 had been used instead, 
it is possible that no discrepancy would have been found, because that date was well before tt,. 
Although purposely contrived, the example just presented highlights the differences among the five 
times. Having made this point, this example will not be used in the remainder of this article. 

We have the following constraints on these five times. 

15 rt ,  < T 
.." 
I< vt, < T 

Note that rt, is not bound by tmTrent. This provides the ability to ask "hypothetical now" queries, 
that is, from the perspective of a future valid time (i.e., ten years from now). Such an example is 
given later in Section 6.2. 
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3.3 Extensional and Variable Database Levels 

It  is useful to view the semantics of temporal databases with variables within the context of a 
two-level framework. This section develops such a framework in two steps, by first presenting the 
levels of a theoretical framework. Then this framework is augmented, motivated by the practical 
concerns of easily extending existing data models to admit databases with variables, such as now, 
with minimal impact on the existing query language and query processing engine. 

In order to introduce the two-level framework and discuss the issues related to variable databases, 
we need to adopt the following standard terminology. A relational database consists of a set of 
relations, where each relation is a set of tuples. Each tuple in a relation has a number of application- 
specific attribute values. Temporal databases extend this view by incorporating, in addition, some 
number of timestamp attributes (e.g., "from" and "to", as in Figure l(a),  or "start" and "stop," 
as in Figure 2(a)). In a variable database, the value of the timestamp attributes in any tuple is 
extended to permit instances of one or more current-time variables, as discussed earlier. This gen- 
eral view of a temporal variable database enables us to focus on the issues surrounding the use of 
variables in a temporal database, regardless of the number of variables or the number of temporal 
attributes in a particular data model. 

Most temporal data models, such as the one adopted in TSQL2 [Sno95], have incorporated the 
temporal dimension with temporal attributes whose values, termed timestamps, are represented 
using time intervals (or just intervals for short), rather than instants. Such timestamps are very 
convenient at the conceptual and implementation levels, since they are compact and can represent 
information about a potentially large number of times in a single tuple. 

In the model of time presented in the previous section, instants are points in time and intervals 
are sequences of temporally consecutive points. In general, intervals are uniquely described or 
denoted by two bounding instants, termed the starting and terminating instants. In a valid-time 
interval, the starting instant is the "from" time and the terminating instant is the "to" time, 
whereas transaction-time intervals have "start" and "stop" instants. The use of interval notation 
to denote time intervals is common. When time is discrete, intervals are merely shorthand for a 
finite (or countably infinite) set of instants. Tuples at  the variable level are timestamped with 
intervals whose endpoints can be temporal variables. 

At the extensional level, tuples also have temporal attributes as do tuples a t  the variable level. 
However, there are three key differences. First, no variables are allowed a t  the extensional level. 
The extensional level is fully ground. Second, timestamps are instants, rather than intervals. Third, 
an extensional tuple has one additional temporal attribute, called a reference time attribute. Later 
in this paper we describe the importance of reference time to the meaning of tuples. For now, it 
may be thought of as representing the time at which a meaning was given to the temporal variables 
in the tuple. 

Whereas the variable-database level offers a convenient representation that end-users can un- 
derstand and that is amenable to implementation, the mathematical simplicity of the extensional 
level siipports a rigorous treatment of temporal databases in terms of first order logic. A theoretical 
framework for providing a logical interpretation or "meaning" for a particular variable database, 
i.e., a "translation" from variable to extensional level, may be based on homomorphic mapping 
from variable-level databases to extensional-level databases [CI94]. This mapping is termed an 
extensionalization, and is denoted jll 1. In addition to giving the semantics of variable databases, 
the framework also provides a means for checking the correctness of query languages over variable 
databases. This is illustrated in Figure 3 and explained in the following. 

The top of the figure, labeled the ~uariable database level, represents a database model that allows 
the use of temporal variables in timestamps of tuples. At the top left, we see a particular variable 
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variable database level db 
qV 

qv (db) 

eztensional database level Bdb1 -. qE(W]l) =I i[qv(db)l 
4 

Figure 3: Relationship between variable database and extensional database 

database, db. A query qV is applied to this database, resulting in another variable database, qV(db). 
The bottom of the figure, labeled the extensional database level, represents our fully extensional 
temporal data model, whose semantics is well-specified in the standard tradition of a first-order 
logical framework. Developing a query language in this extensional model is relatively straightfor- 
ward, due to the model's simplicity. In contrast, developing a query language for a more complex 
variable-level data model is error prone. The framework can be used for checking the correctness of 
variable-level query constructs. Specifically, variable-level query constructs must commute with the 
corresponding extensional-level query constructs, as indicated in the figure: qE ([Edb]) = [qv(db)j. 

A particular extensionalization mapping from the top level to the bottom level is defined in 
order to specify the semantics of variable databases. As tuples at the variable database level are 
independent of each other, an extensionalization mapping may treat each tuple in isolation. 

We are concerned in this paper with the practical use of variable databases. In particular, 
we are interested in how to extend existing data models and query languages with the ability 
to allow current-time variables in their temporal dimensions, with as little impact as possible on 
their conceptual model and their associated query processing engines. This is consistent with the 
philosophy of the designers of the proposed temporal extension to SQL-92, termed TSQL2 [Sno95]. 
Thus, we next augment the theoretical framework as shown in Figure 42. 

Tuples after applying bindV contain interval timestamps but no variables. The various existing 
temporal data models, including SQL-92 and TSQL2, that do not permit variable timestamps in 
their databases belong at this level. By mapping variable-level databases to this intermediate level, 
it is possible to reuse existing-or proposed-query engines to query variable databases. This is 
the motivation for augmenting the framework to permit preprocessing of variable databases before 
querying them. 

The preprocessor substitutes each instance of a variable with a specified time, effectively "bind- 
ing" the variables in a variable database (as discussed in Section 7, this occurs during query 
evaluation on a per-tuple basis). The bind operator, bindv, maps a database from the variable to 
the intermediate level, then it is queried with a variable-level query qV. The correctness of this 
mechanism is ensured by providing extensional-level counterparts to the preprocessor and to the 
queries, bzndE and qE respectively, and by demonstrating that the above diagram commutes. 

Consider a database db containing a single relation with the contents of Figure l ( a )  on page 3, 

"n the definitions to follow, bind requires a subscript and takes an optional subscript. We omit these subscripts 
here to simplify the discussion. 
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database 
level 

level 

Figure 4: Preprocessing of variable-level databases 

with now being a variable. Consider the query q, "List the faculty on June 15". Assume this 
query is typed in and evaluated on June 27. To evaluate the query q on database db, we first 
bind the variable now to the reference time, June 27. The result is &ndv(db) =<Jane, Assistant, 
[June 1, June 27]>. The query can then be evaluated on this relation using simple (and already 
accepted) methods, resulting in qv(bindv(db)) = {<Jane, Assistant>). By defining queries qV 
at the variable-level in this way, as a composition of a binding operator and a ground query, we 
conceive a framework where the commutativity of the diagram shorn in Figure 3 holds. While 
the particular binding we exhibit here is very simple, Section 2 showed this not to be the case 
for all temporal databases, and specifically for bi-temporal databases. For this reason, we need a 
precise semantics, provided by the extensionalization mapping and the extensional counterpart to 
the query operators, and a correctness criterion, that is, by demonstrating commutivity. 

We emphasize that many models, e.g., [CW83] and [CCT93], have been presented completely 
extensionally; they did not present an operational model at the variable level and thus did not 
make use of any variable symbols requiring further interpretation. However, when variables such 
as now are present, some well-specified mechanism is needed to unambiguously interpret variable 
databases. We believe that the framework presented here constitutes such a mechanism. 

4 Valid-Time Databases 

Here we present a semantics for variable valid-time databases by specifying mappings from the vari- 
able to the extensional level. We initially consider the extensionalization mappings for databases 
with ground timestamps and timestamps with the variable now. In order to address the shortcom- 
ings identified in Section 2, we also introduce additional, current-time modeling entities. Specifi- 
cally, we consider now-relative timestamps that allow for positive and negative displacements from 
now. Next, we introduce so-called indeterminate time values which may be used in timestamps 
to indicate an imprecise time. This leads to a further generalization of now-relative instants to 
now-relative indeterminate instants, which are values that are imprecise as well as current-time 
relative. The section concludes with an illustration of the querying of variable databases. 
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4.1 Extensionalization of Valid-time Tuples with Now 

We first consider the extensionalization of tuples with ground timestamps. To do this, it is conve- 
nient to start by defining the meaning, or denotation, of the ground component in a timestamp. 
As other timestamp values are introduced, their denotations will also be defined. 

Definition 4.1 [Denotation of Time Instants] 
The denotation of a valid-time instant t at  a particular reference time rt,, written ((t))Tt*, is defined 
as follows. 

In general, to map a ground valid-time tuple, i.e., a tuple without variables, to the extensional 
database level, the tuple is expanded into a set of tuples, one for each time instant in its associated 
timestamp. Let us consider first the extensionalization of a ground tuple at  a particular reference 
time. We use the notation, [TITt,, to denote the extensionalization of tuple T at a reference time 
of rt*. 

Definition 4.2 [Extensionalization of a tuple at an Instant] 
The extensionalization of a ground tuple T of the form T =< X, [vtl, vt2] >, where [vtl, vt2] de- 
notes the set of times {vt I vtl < vt A vt F: vtz), at reference time rt, is defined as follows. 

Note that each tuple at the extensional level is tagged with the reference time. 

Definition 4.3 [Extensionalization of a tuple at an Interval] 
In the extensionalization mapping, a reference time interval may be used rather than a single refer- 
ence time. The extensionalization of the tuple T over the reference time interval [rt l ,  rt2] is defined 
as follows. 

Definition 4.4 [Extensionalization (Complete)] 
The complete meaning or extensionalization of a tuple T ,  denoted [Tl, is simply the extensional- 
ization of T over all reference times, i.e., UTt,~TRT [TITt,. Equivalently, the general meaning or 
extensionalization of a tuple T is: [TI =df [T]ri,T1 . I 
, 

We have found that a two-dimensional graphical notation makes valid-time concepts easier to 
grasp. In the visualization, reference time corresponds to the X-axis and valid time corresponds to 
the Y-axis. The graphical representation is a plot of the tuple at  the extensional database level. 
Each cell in the plot stands for a particular reference time, RT, and valid time, VT, combination. 
The cells corresponding to the temporal coordinates of tuples in the extensional set of tuples are 
shaded, indicating when a tuple is valid relative to the reference time of an observer. Even though 
our underlying model of time is discrete, we treat each cell as a region rather than a point since 
this results in a better visualization. Several tuples may be plotted in the same graph by using 
different cell colors or patterns. The key, shown below the graph, indicates the explicit attribute 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-96-03 



values of the corresponding tuple. Variations of these graphs have been independently explored 
[JSS94, 3,592, CI941. 

As an example, assume that the academic career of Jane at State University is given by the tuple 
T =< Jane, Assistant, [June 3, June  91 >. Figure 5(a) shows the extensionalization of this tuple 
for a sequence of reference times, June 1 through June 11, that is, [T]i[June . The figure 
illustrates that the valid time of this tuple is reference-time invariant, that is, it is independent 
of the reference time. So for a tuple with a valid-time interval but without variables, it does not 
matter at what time the tuple is observed-it is always valid over exactly the same interval. 

The meaning of a tuple with the variable now, however, is not reference-time invariant. The 
denotation of now makes this dependence explicit. 

Definition 4.5 [Denotation of now] 
The denotation of the current-time variable now at a particular reference time rt, is defined as 
follows. 

This is precisely how reference time enables us to 'materialize' variables in the extensional level. 
While variables per se are not permitted at the extensional level, a valid-time tuple does vary with 
reference time, With this additional timestamp value, the extensionalization of a tuple with now 
as the "to" or "from" time is still given by Definition 4.2. 

As an example, assume that the academic career of Jane at State University is given by the tuple 
T =< Jane, Assistant, [June 1, now] >. Figure 5(b) visualizes the extensionalization of this tuple 
for every reference time between May 30 and June 8. Note that before June 1 the empty interval 
is depicted in the figure. This is because a timestamp with a "to" time that is before the "from" 
time denotes the empty interval. This situation occurs prior to June 1. The valid-time region 
in the figure is "stair-shaped" since the extensionalization of a tuple with variables is dependent 
on the time a t  which we observe the tuple. The stair-shape is a result of the constraint that the 
terminating time in the valid-time interval is bound to the reference time. 

It is our contention that all other valid-time current-time variables currently in use (e.g., "$2" 
[LJ88] and zlntil-changed fMrJL91, WJL931) have the same meaning as now. Thus having covered 
existing variables, we now proceed by proposing new timestamps that address the shortcomings of 
now discussed in Section 2. 

4.2 Now-relative Instants 

In this section we introduce a new type of timestamp, called a now-relative instant, that adds 
flexibility to the variable now. A now-relative instant generalizes the variable now by allowing an 
offset from this variable to be specified. Now-relative times were first introduced in transaction time 
for vacuuming [JM90]. With now-relative instants, we have a means of more accurately recording 
our knowledge of Jane's employment with State University. As an example, if the bound on the 
relationship between transaction time and valid time is known to be three days (all updates are 
made three days after the occurrence of the event), then Jane's employment extends from when 
she was hired (June 1) to three days before now, as shown in Figure 6. 

A now-relative instant includes a displacement, which is a (signed) span, from now. In the 
example given above, the displacement is minus three days. The extensionalization of tuples with 
now-relative instants is formalized as follows. 

Definition 4.6 [Denotation of Now-relative Instants] 
The denotation of a now-relative instant, now OP n days, where OP E {+, -1, at a particular 
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Jane, Assistant Jane, Assistant 

(a) A ground valid-time tuple (b) A valid-time tuple with a variable 

May 30 

Figure 5 :  A graphical representation of the extensionalization of a valid-time tuple 
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VALID TIME 
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Figure 6: Using a now-relative instant 

NAME 

Jane 

reference time rt, is defined as follows. 

( (now OP n days =d.  ((fiow)),t, OP 

RANK 

Assistant 

Even with this additional timestamp value, the extensionalization of a valid-time tuple is still given 
by Definition 4.2. 

Although now-relative instants allow us to relax the otherwise close coupling between valid and 
transaction time found in the punctuality assumption, now-relative instants still suffer from making 
a pessimistic assumption. The use of now - 3 days in the first example is an ultra-pessimistic view 
of the future. Jane would not even be employed now since her employment terminates three days 
prior to now.  To address this potential shortcoming, we next introduce the notion of indeterminate 
timest amp values. 

4.3 Indeterminate Timestamp Values 

(from) 

June 1 

It turns out that support for valid-time indeterminacy [BCTP95, Dut89, GNP92, KF931 can also 
alleviate the shortcomings of now and now-relative instants. This section introduces indeterminate 

(to> 
now - 3 days 
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timestamp values for ground timestamps. 
The next section extends this treatment to indeterminate timestamps with variables. 
Sometimes, the time when an  event occurred is known only imprecisely. For instance, we may 

know that an event happened "sometime in June 1993," which is an imprecise period of 30 days. 
An indeterminate instant is the time of an event, which is known to have occurred, but exactly 
when is unknown [DS93b, Dyr941. 

The times when the event might have occurred is called the period of indeterminacy and is 
delimited by a lower and an upper bound (e.g., the event occurred sometime between June 1 and 
June 30). An indeterminate instant could have an associated probability distribution that gives the 
probability that the event occurred for each time in the period of indeterminacy. For the purposes 
of this paper, we ignore the probability information: every indeterminate instant is treated as 
though it has a distribution that is missing [Dyr94]. A determinate instant may be thought of as 
an indeterminate instant, with identical lower and upper bounds. An indeterminate interval is an 
interval bounded by indeterminate instants. 

By using indeterminate instants, we can more accurately record our knowledge of Jane's em- 
ployment with State University. Instead of using now as the "to" time in Jane's tuple, we can use 
an indeterminate instant. Which indeterminate instant to use depends on our knowledge of the 
situation. If Jane was hired as to work at least two months, we could record this information as 
shown in Figure 7(a). Here two time bounds, July 31 and forever, delimit the "to" indeterminate 
instant. If State University has a mandatory retirement policy, we could decrease the indeterminacy 
considerably, as shown in Figure 7(b). 

( a )  / Jane I Assistant 11 June 1 I July 31 -- forever 1 

FACULTY 

(b) [ Jane I Assistant 11 June 1 I July 31 - January 1, 2028 / 

NAME 

Figure 7: Using indeterminate timestamps for recording Jane's appointment 

Indeterminate instants address the first problem, the pessimistic update assumption, providing 
evidence that Jane might still be employed in the future. They also remove the problem of incom- 
pleteness in the non-timestamp attributes (e.g., possibly employed, as shown in Figure l (c)) ,  and 
ensure that new knowledge acquired later, such as the information that Jane left the company on 
August; 10, is not inconsistent with currently stored information, but rather is a refinement of that 
information. 

There are two bounds on the information represented by an indeterminate interval [Lip79]. The 
first bound is the definite information. The definite information represents all that is definitely 
known about the interval and is the intersection of all of the possible intervals. The second bound 
is the possible information. The possible information represents the maximum possible extent 
of an interval and is the union of all of the possible intervals. The two bounds have different 
extensionalizations. The definite information is given by the definite eztensionalization, presented 
next. 

RANK 
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Definition 4.7 [Indeterminate Ground Tuple] 
An indeterminate ground tuple is a ground tuple of the form T =< X, [vtl -- vt2,vt3 -- vt4] >, 
where vtl 5 vt2 and vt3 5 vt4. Here, vtl and vt2 are the lower and upper bound, respectively, of 
the starting instant and vt3 and vt4, are the lower and upper bound, respectively, of the terminating 
instant. I 

Definition 4.8 [Definite Extensionalization of an Indeterminate Tuple] 
The definite extensionalization of an indeterminate ground tuple of the form T =< X ,  [vtl - 
vt2, vt3 N vt4] >, at the reference time rt, is defined as follows. 

The possible information is given by the possible extensionalization. 

Definition 4.9 [Possible Extensionalization of an Indeterminate Tuple] 
The possible extensionalization of a ground indeterminate tuple of the form T =< X ,  [vtl 
vt2, vt3 N vtq] > at the reference time rt, is defined as follows. 

It is always the case that the definite information is a subset of the possible information. Note, that 
if the bounding instants axe determinate, that is, if the lower and upper bounds are the same, then 
the possible and definite extensionalizations yield exactly the same set of tuples. Consequently, for 
the extensionalization of determinate intervals, we omit the possible or definite superscript and use 

D [ Bit*  instead of either [ 12. or [ ITt*. 
Valid-time tuples timestamped with indeterminate intervals have a graphical representation 

similar to the one described above. Both the possible and definite extensionalizations are repre- 
sented. We use different shadings to distinguish the regions in the two extensionalizations. As an 
example, assume that the academic career of Jane at State University is given by the tuple 

< Jane,Assistant, [June 1 - June  3, June  7 - June  101 > . 

Jane's academic career, for the reference times [June 1, June  111, is graphically represented in 
Figure 8(a) that the region of possible information is never smaller than the region of definite 
information and that the valid time is reference-time invariant (just as it is for determinate intervals) 
when the tuple has no variables. 

4.4 Now-relative Indeterminate Instants 

To achieve the full benefit of indeterminate timestamp values, we proceed by introducing now- 
relative indeterminate instants, which may be understood as generalizations of the ground, inde- 
terminate timestamps presented above and of the now-relative instants presented earlier. 

To exemplify and motivate the utility of this new type of instant, assume that today is July 9, 
that Jane is still employed, and that there is at most a three-day lag in recording a fact in the 
database. Jane's tuple in the database should not be that of Figure 7(b), but rather that shown in 
Figure 9(a) which is more accurate. The state on July 10 is shown in Figure 9(b), Note how the 
indeterminacy in the "to" instant has decreased ever so slightly-on July 10 we know that Jane 
was employed on July 7. 
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June 10 

June 8 
June 7 

June 4 
June 3 
June 2 
June 1 

Jane, Assistant 

Jan. 3,2058 
Jan. 2,2058 

Jane, Assistant 

(a) A ground indeterminate valid-time tuple (b) Jane's possible and actual employment 

Figure 8: A graphical representation of the extensionalization of an indeterminate valid-time tuple 

To accurately represent our continuously changing knowledge about Jane's employment, we 
need to combine the best features of now-relative instants and ground indeterminate values, into a 
new kind of instant, which we call a now-relative indeterminate instant. An example is shown in 
Figure 9(c). Here, the the "to" timestamp is such an instant. 

Now-relative indeterminate instants provide a flexible means of precisely capturing our impre- 
cise, but current-time dependent, knowledge of when a fact is valid. For instance, in the tuple 
given in Figure 9(c), we are certain that Jane was an Assistant Professor starting on June 1, but 
our knowledge of when she ceases to be an Assistant Professor is imprecise; all we know is that 
she was definitely an Assistant Professor until three days ago and that it is possible that she will 

( a )  / Jane I Assistant I/ June 1 I July 6 - January 1, 2028 I 

FACULTY 

(b) / Jane / Assistant /I June 1 I July 7 -- January 1, 2028 ! 

NAME 

( c )  [ Jane 1 Assistant I /  June 1 / now - 3 days N January 1, 2028 1 

Figure 9: Using indeterminate and now-relative indeterminate timestamps 

RANK 
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remain an Assistant Professor until retirement on January 1, 2028. The "to" timestamp allows us 
to capture this precisely. Using a now-relative indeterminate instant ensures that continual updates 
are not required, while capturing all of our knowledge of exactly when Jane is employed by State 
University. 

A now-relative indeterminate instant consists of a variable lower bound and a ground upper 
bound. The lower bound cannot exceed the instant's upper bound, consequently the upper bound 
represents a limit on the possible or definite information in the instant, So, for instance, the possible 
or definite information represented by Jane's employment tuple shown in Figure 9(c) cannot extend 
beyond January 1, 2028, even if today is after January 1, 2028. If today is May 9, then the lower 
bound is May 6 and the tuple indicates that we expect Jane to be (possibly) employed from June 1 to 
January 1,2028. If today is January 1, 2050, then the upper bound is January 1, 2028 and the tuple 
indicates that Jane was actually employed from June 1 to January 1, 2028. In short, now-relative 
indeterminate instants capture the semantics of predictive updates. Now-relative, indeterminate 
instants are also able to model the evolutionary character of temporal databases since values in the 
possible extensionalization of a tuple evolve into definite values as the reference time increases. 

Definition 4.10 [Possible Extensionalization of a Now-relative Indeterminate Tuple] 
The possible extensionalization at reference time rt, of the tuple T =< X, [el vtz, e3 -- vt4], > 
where el  and es stand for "expressions using variables", and vt2 and vt4 are ground values, is 
defined as follows. 

[TI;* =df {(X, ~ t ,  r t*) I vt E [mint((eli),t* , ((ut2l),t* 1 ((vt4)),t*I). 1 

Definition 4.11 [Definite Extensionalization of a Now-relative Indeterminate Tuple] 
The definite extensionalization of the tuple T =< X, [el - vt2, e3 vt4], > at reference time rt, 
is defined as follows. 

Note that a tuple with a now-relative indeterminate instant may yield no definite information or 
may have the same possible and definite information content; it all depends upon when we observe 
that tuple. 

The visualization of a tuple at the extensional database level with a now-relative indeterminate 
time is similar to the visualization of a tuple with an indeterminate interval. Both the definite and 
possible regions are plotted on the same graph but using different colors or patterns. Figure 8(b) 
shows a graph of both the possible and definite extensionalizations of the tuple in Figure 9(c) for 
every reference time between May 30 and January 5 ,  2028. Note that for all reference times before 
June 4 the tuple does not contain any definite information, only possible information. The definite 
informgtion gradually increases as the reference time advances. On January 4, 2028, and for all 
reference times thereafter, the possible and definite information for the tuple are the same. 

4.5 Summary of Extensionalizations 

Table 1 summarizes some of the valid-time extensionalizations (the most representative cases). Case 
vl (the v stands for "valid-time" database) specifies the extensionalization of tuple timestamped 
with a determinate interval, case v2 a now-relative interval, case v3 an indeterminate interval, and 
case v4 a now-relative indeterminate interval. Note that the possible and definite extensionaliza- 
tions in cases vl and v2 are the same since the intervals are determinate. 
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Table 1: Extensionalization of valid-time databases 

4.6 Querying Variable Valid-time Databases 

Extensional Database 

[TITt* = {(X, vt, rt,) lvtl 5 vt < vt2) 
[TJjTt, = {(X, vt, r t* )  lvtl < vt < rt, jt n) 

[IT]; ,  = {(X, vt, rt,)/vtz < vt < vts) 
[T]:, = {(X, vt, rt*)Ivtl < vt < vt4) 
[T] :~  = {(X, vt, rt,)lvtl 5 vt < rnin(rt, f n ,  vtz)) 
[TJj:, = {(X, vt, r t , )a t i  < vt < vt2) 

v l  
v2 

v3" 
~3~ 
v4" 
~4~ 

In this section we enhance the query facilities of existing (non-variable) data models to support 
queries on timestamps containing variables. The essential problem is what to do when encountering 
a variable during query evaluation. Below, we describe a solution to that problem. Further, we 
show how the framework may be utilized in defining algebraic operators on variable databases that 
are consistent with the semantics of variable databases. Specifically, we consider the valid-time 
timeslice operation. 

When evaluating a user-level query, e.g., written in some dialect of SQL, it is common to 
transform it into an internal algebraic form that is suitable for subsequent rule or cost-based query 
optimization. As the query processor and optimizer are among the most complex components of a 
database management system, it is important that the added functionality of current-time-related 
timestamps necessitates only minimal changes to these components. 

While many solutions may be envisioned, a solution that meets this requirement and is natural 
in our semantic framework is to eliminate variables before they are seen. More specifically, when 
a timestamp that contains a variable is used during query processing (e.g., in a test for overlap 
with another timestamp), a ground version of that timestamp is created and is used instead. Thus, 
only minimal, incremental changes to the query processor are needed. Existing components remain 
unchanged. Only a new component that substitutes variable timestamps with ground timestamps 
has to be added. 

More specifically, we define a "bind" operator that is added to the set of operators already 
present. When user-level queries are mapped to the internal representation, this operator is utilized. 
Bind accepts any valid-time tuple with variables as defined earlier in the paper. It  substitutes a 
ground value for each variable and thus returns a ground (but still variable-level) tuple. 

Variable Database 
T =< X ,  [vtl, vtz] > 
T =< X, [vtl, now f n days ] > 
T =< X, [atl -- vt2, vt3 -- vt4] > 
T =< X, [vtl -- vt2, ?it3 -- vt4] > 
T =< X ,  [vtl, now * n days -- vtz] > 
T =< X, [vti, now + n days -- vtz] > 

Definition 4.12 [Variable-level Valid-time Bind] 
Given an arbitrary valid-time tuple T =< X, [el - vt2, e3 - vt4] > and a reference time rt,, the 
variable-level valid-time bind operation eliminates all variables and is defined as follows. 

This operation can be extended in the obvious way to an operator on sets of tuples, i.e., relations. 
The superscript, LLv>VT," indicates that this is a variable-level, valid-time operator. Note that two 
tuples that have timestamps "[atl vtl, vt2 -- vt2]" and "[vtl,vt2]," but are otherwise identical, 
have the same extensionalizations. Thus the timestamps are equivalent, and therefore the definition 
above also covers determinate timestamps. 

The outcome of a query on a variable database generally depends on the specific reference- 
time argument given to the bind operator. To provide a foundation for understanding how to use 
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the bind operator when mapping user-level queries to algebraic equivalents, we must explore its 
meaning. 

The bind operator with reference-time argument rt, replaces each variable by its denotation or 
value at  time rt,. Put differently, the operator replaces each variable timestamp with a ground 
timestamp that has the special property of having the same denotation, or value, as the vari- 
able timestamp at the reference time rt,. At other reference times, the original and the ground 
timestamps will generally not have the same denotation. This semantics may be expressed at the 
extensional level as follows. 

Definition 4.13 [Extensional-Level Valid-time Bind] 
Given an arbitrary set S of extensional-level valid-time tuples of the form (X, vt, r t )  and a reference 
time rt,, the extensional-level valid-time bind operation is defined as follows. 

bindZvT(s) =,g {(X, vt, r t )  1 (X,  vt, rt,) E S A r t  E TRT) 

~h~ " ~ ' 9  in the operator's superscript indicates that this is an extensional-level operator. At the 

extensional level, the bind operator chooses the meaning of a tuple at the indicated reference 
time and propagates that meaning over every possible reference time, resulting in a reference-time 
invariant meaning. To prove that this definition is correct vis-6-vis the required commutativity of 
the left side of the diagram shown on the left side of Figure 4 on page 12, we need to show that 

V V T  given a tuple T, and a reference time rt,, [bind,; (T)] = bindZvT([T]). This follows directly 
from the definitions. For brevity, we omit the proof. 

Intuitively, the bind operator sets the perspective of the observer, i.e., it sets the reference time 
as described in Section 3.2. Existing query languages generally assume that the perspective of a 
user observing the database is the same as what we termed the query time or current time and 
denoted tmrrent in that section. However, as we shall see, a bind operator provides a basis for 
added functionality. 

Recall that the definition of query operators at  the variable level is complex and that current 
temporal data models have not satisfactorily resolved the complex problems involved. In our 
approach, we first preprocess the variable-level database by binding timestamps to rt,, effectively 
removing the variables. We can then apply any algebraic operators from an existing temporal query 
language. It  should be clear from the discussion above that the composition of bind with any of 
these algebraic operators is well-defined, and the timestamps have the appropriate meaning. 

To show how operators are defined within the semantic framework, we now define several times- 
lice operators. Valid-time timeslice is a fairly standard operation; some variant of tirneslice is a 
component of virtually all temporal algebras. Standard definitions of determinate and indetermi- 
nate timeslice operators are given below. Note that these do not have to contend with variables; 
because of the use of the bind operator, they can be defined solely on ground tuples. 

~efini t ion 4.14 [Variable-level Definite Valid-time Timeslice] 
Let S be a set of tuples at the variable database level, i.e., a set of tuples of the form T =< X ,  [vtl - 
vt2, vt3 vt43 >, where the vti are ground values. The definite valid-time tirneslice of S at valid 
time vt, is defined as follows. 

D ,V, V T  n,,, (S) =dj {< X, [ ~ t , ,  vt,] > / 3 T < X, [vtl -- vt2, vt3 - ~ t 4 ]  > E S (vt* E [vt2, vtg])) I 

Definition 4.15 variable-level Possible Valid- time Timeslice] 
Let S be a set of tuples at  the variable database level, i.e., a set of tuples of the form T =< X, 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-96-03 



[vtl -- vt2, vt3 N vt4] >, where the vti are ground values. The possible valid-time timeslice of S at 
valid time vt, is defined as follows. 

The superscript "DyV,VT" of the first operator indicates that it considers only the definite informa- 
tion contents, that it belongs at the variable level, and that it is a valid-time timeslice. Also, recall 
that definite timestamps are special cases of indeterminate timestamps, which are then also covered 
by the definition. The straightforward extensions of the operator to slice on valid-time intervals 
and to take as input a set of tuples (i.e., a relation), are omitted for brevity. A timeslice operator 
at the extensional level that satisfies the correctness criterion of the framework, as illustrated in 
Figure reffig:vdb-ext on page 11, specifically, I'IzVT([~] D, = (T ) ] ,  is given next. The 
proof of this statement is omitted for space considerations. 

Definition 4.1 6 [Extensional-level Valid-time Timeslice] 

Since there is no indeterminacy at the extensional database level, there is no need for two timeslice 
operators; one suffices. At the extensional database level, the valid-time timeslice of a set S con- 
sisting of tuples of the form (X, vt, r t )  is defined as follows. 

We are now in a position to explore the inteqaction of the important times (Section 3.2) by using 
the new bind operator and existing (variable-level) timeslice operators. We generally consider only 
the definite version of the timeslice operator. 

The bind operator sets the perspective and is combined with timeslice to formulate queries. In 
the first two example queries given below, we assume that the database is to be observed from the 
perspective of June 5, i.e. r t ,  = June 5. For all examples, the query time is assumed to also be 
June 5, i.e. t ,,,, ,t = June 5. 

Who is employed on June 5? 

IID,V,VT(bindV,VT 
June 5 J U ~ ,  5 (Faculty) 

Who will actually be employed on June 7? 

I-~,V,VT V,VT 
June  7 (bindJune 5(FacuEt~))  

Typles with a "to" time of now will not be in the result. 
** 

Discounting future (and as yet unknown) employee hirings or firings, who do we expect to be 
employed on June 7? 

Our "expectation" is that current employees (i.e., those employed now) will remain employed 
through June 7. We make this expectation concrete by adopting a June 7 perspective of the 
database. Then all tuples with a "to" time of now will contribute to the result. 
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Making no assumptions about the future evolution of the database, who will possibly be 
employed on June 7? 

We limit the future evolution of the database by adopting a June 5 perspective, and query 
about a possible future from that perspective. Tuples with intervals with a "to" time of 
now - June 7 (or a later upper bound) will be in the result, although those with a "to" time 
of now will not be in the result. 

We have seen that the binding of now impacts the meaning of query results and that query 
results must be interpreted with respect to  a particular perspective. Existing query languages, 
e.g., TSQL2 [Sno95], generally assume that the perspective and the query time coincide. This 
assumption leads to a restriction in functionality, but it also simplifies the interpretation of answers. 

5 Transaction-time Databases 

The use of a current-time variable in the transaction-time dimension is not as fraught with problems 
as its use in the valid-time dimension. The reason for this lies in the different meaning of transaction 
time in a database. The valid time of a tuple indicates when it is considered valid, and, as such, 
valid timestamps of tuples are generally provided by the users. In contrast, transaction timestamps 
are supplied by the database management system itself. This is a consequence of the meaning of 
transaction time: the transaction timestamp indicates when the tuple is current in the database. 

Although several variable names, e.g., forever and now, have been used, it is our contention that 
they all have the same meaning. Specifically, they are all employed as a "stop" timestamp that 
indicates that the tuple stamped is current (from the "start" time) until the database is updated 
to indicate otherwise. However, the various names used do not convey the intuitive semantics of 
the variable in this dimension. A term more precise than now or forever for this meaning of "not 
yet logically deleted or updated" is until changed-a fact is current in the database until changed. 
It has no counterpart in valid time. Using until changed instead of now avoids also potential 
confusion with now in valid time, although some authors have used until changed in valid time 
[WJL91, WJL931. Unlike the (valid-time variable) now, until changed can only be used as the 
"stop" time; it is meaningless to use it as the "start" time. 

5.1 Extensionalization of a Ground Transaction-time Tuple 

We first examine the meaning of a tuple without variables in transaction time. The extensionaliza- 
tion of a transaction-time tuple without variables differs from its valid-time counterpart, because 
the semantics of transaction time does not allow future transaction times to be recorded in the 
database. Hence, the extensionalization of such tuples must be restricted to ensure that no matter 
when we look at the database, we can never see a "future" transaction time. Since the future de- 
pends on when we observe the database, the reference time is used to constrain the transaction-time 
in the expanded set of tuples. 

In Definition 4.1, the denotation at any reference time of a ground valid-time instant was given 
to be the instant itself. The same applies to ground transaction-time instants. 

Definition 5.1 [Transaction-time Extensionalization of a Ground Tuple] 
The transaction-time extensionalization of a tuple of the form T =< X ,  [ttl,tt2] >, where X is 
some set of attribute values and ttl and tt2 are transaction-time instants, at the reference time rt,, 
where t o  < r t*  5 tmTrent, is defined as follows. 
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We use a superscript to differentiate this mapping from a valid-time extensionalization. 
The visualization of a transaction-time tuple is similar to that of a valid-time tuple. Again, a 

two-dimensional graph is used. The X-axis of the graph is the reference time, while the Y-axis is 
the transaction time. However, unlike a valid-time tuple without variables, the transaction-time 
interval for a tuple is not independent of the time at which we observe the tuple. Figure 10 depicts 
the extensionalization of the transaction-time tuple < Jane,Assistant, [June 5 ,  June 81 > for a 
sequence of reference times, June 1 through June 11. Note that the depicted region has a "stair 
shaped" feature which is a result of the constraint that the transaction time cannot exceed the 
reference time. 

June 11 

June 10 

June 9 

Jane, Assistant 

Figure 10: Graphical representation of a transaction-time tuple 

5.2 Semantics of "Until Changed" 

The current-time variable in transaction time indicates that the associated fact is current in the 
database until the fact is changed by a subsequent update. Substituting transaction time for valid 
time in our running example yields the relation shown in Figure 11. 

Definition 5.2 [Denotation of Until Changed] 
The denotation of the transaction-time variable until changed at a particular reference time rt,, 
where to  < r t ,  < tmTTent, is defined as follows. 

((until changed)),t* =df r t ,  1 

The extensionalization of a transaction-time tuple with the vafiable until changed as the value 
of its "stop" time is obtained by generating tuples for each instant in the ground interval that 
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FACULTY 1 
I I TRANS TIME 

Figure 11: Using until changed in a transaction-time relation 

NAME 

/ Jane 

results from substituting until changed by rt,. Thus, Definition 5.1 also applies when until changed 
is allowed as a "stop" time. 

Table 2 summarizes the extensionalizations presented for transaction time. Case t l  (the t 
stands for "transaction-time" database) applies to tuples with fully ground timestamp values only, 
whereas Case t2 covers the case where until changed is the "stop" time. 

RANK 

Assistant 

Table 2: Extensionalization of transaction-time databases 

5.3 Querying Variable Transaction-time Databases 

(start) 

June 1 

Extensional Database 
= {(X, t t ,  rt,)lttl I t t  I min(tt2, rt,)) 

I[TjITt = {(X, t t ,  rt,)lttl < t t  < rt,) 

t l  
t2 

The "bind" operator for transaction time eliminates occurrences of until changed in the "stop" 
component of timestamps. 

(stop) 
until changed 

Variable Database 
T = < X , [ t t l , t t 2 ] >  
T =< X ,  [ttl, until changed] > 

Definition 5.3 [Variable-level Tkansaction-time Bind] 
Given a tuple T =< X ,  [ttl, e2] >, where tt l  is a ground transaction time and e . ~  is until changed 
or a ground transaction time, the variable-level transaction-time bind operation is defined as follows. 

Again, this operation can be extended in the obvious way to relations. Transaction-time bind is very 
similar to valid-time bind, but diEers in one important respect. The bindV>TT operator does not 
accept any time argument, but always binds until changed to the query time or current transaction 

time, t,,,ent. 
Since the bindvTT operator lacks a time parameter and is always applied before any other 

operator, it is feasible to omit the operator and instead build it into the transaction timeslice 
operatpr, as has been done in some variable-level transaction-time algebras [JM92]. However, it 
would also need to be built into any additional operators, so to preserve the parallel with Section 4.6, 
we choose not to do this. The definition of the extensional-level bind for transaction time is omitted 
because it is very similar to  Definition 4.13. 

Definition 5.4 [Variable-level Transaction-time Timeslice] 
Let S be a set of tuples at the variable database level, i.e., a set of tuples of the form T =< 
X, [ttl, tt2] >, where tt l  and tt2 are ground transaction times. The transaction-time timeslice of S 
at transaction-time tt, is defined as follows. 

nz*TT(s) =df {< X, [tt,, tt,] > / 3 T = < X, [ttl, tt2] > E s (tt, E [ttl, tt2])) I 
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Definition 5.5 [Extensional-level Transaction-time Timeslice] 
At the extensional database level, the transaction-time timeslice of a set S consisting of tuples of 
the form (X, t t ,  rt) is defined as follows. 

The definitions of transaction-time binding and slicing conform to the framework we set up in 
V T T  Section 3.3, specifically to Figure 4 on page 12, i.e. IllII,; (S)] = II:;TT([db]. The proof, which 

follows from the definitions, is omitted for brevity. 
As with valid-time queries, a combination of bind and timeslice supports transaction-time 

queries. When asking queries about a transaction-time database, there are two important times 
to consider: (i) the transaction-time tirneslice time, tt,, indicating that information is sought that 
was current in the database at time tt,, and (ii) the query time, tmrTent, the time at which the 
query is asked. 

As an example, we consider several tirneslice operations on the tuple, T ,  depicted in Figure 2(a) 
on page 7. For the following queries, it is assume that t,,rr,,t is June 11. 

KTT (bindVTT(T)) yields an empty result because the interval associated with T is before '~une 11 
the tirneslice time-tuple T ceased to be current starting on June 9 and was not current on 
June 11. 

V,TT (bindVTT(T)) yields tuple T, but with "start" and "stop" times of June 7. This is so '~zlne 7 
because the information recorded by T was current on June 7. 

6 Biternporal Databases 

A bitemporal relation supports both transaction and valid time [CI93, JCEi94, SA851. The com- 
bination of these two temporal dimensions empowers the database to record time-dependent infor- 
mation as well as earlier database states. Bitemporal databases thus combine the advantages of 
valid-time and transaction-time databases. Yet, this greater flexibility comes at a cost: increased 
complexity derives from the interactions between the two temporal dimensions which must be care- 
fully considered. The logical framework we have presented for current-time variables has been 
designed to make it relatively straightforward to obtain the semantics of bitemporal databases. 
The interaction between the current-time variable for valid time, now, and transaction time, un- 
til changed, is coordinated through the reference time. We demonstrate one possible (and, we 
think, reasonable) semantics for this combination, but we emphasize that the framework is general 
enough to allow the definition of other, alternative semantics for the interaction of these variables. 

6.1 Extensionalization of Bite~nporal Databases 

The timestamp of a bitemporal tuple contains both a valid-time and a transaction-time component. 
Since the valid-time component may be indeterminate, it is necessary to distinguish between a 
definite and a possible extensionalization, [ ]zyD and [ f z y p ,  respectively. 

Definition 6.1 [Definite Extensionalization of a Bitemporal Tuple] 
The definite extensionalization of a bitemporal tuple T of the form T =< X, [vtl, vta], [ttl, tta] >, 
where X is some set of attribute values and the timestamp [vtl, vt2], [ttl, tt2] may contain any of 
the variables introduced earlier, at the reference time rt, is defined as follows. 
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BT,D - 
[ T I T , *  -df 

V T ,  D {(X, ut, t t ,  r t*)  / (X,vt,  r t*)  E [ < X ,  [ I J ~ I ,  7lt2] > ITtr A (X, tt, 7%) E [ < X, [ttl, it2] > ]z} I 
Definition 6.2 [Possible Extensionalization of a Bitemporal Tuple] 
  he possible extensionalization of a bitemporal tuple T of the form T =< X, [utl, vt2], [ttl, tt2] > 
at the reference time rt, is defined as follows. 

BT,P - 
I T *  -df 

{(X, vt, it, r t*)  / (X, vt, rt,) E [ < X, [ v t ~ ,  vt2] > I,",:~ A (X, tt, rt,) E [ < X ,  [ttl, tt2] > ] z y }  I 
The definitions show that the framework has been constructed so that the extensionalization of 
bitemporal tuples is the combination of the extensionalizations for valid and transaction time. It 
also shows how the reference time rt ,  serves as an essential coordination mechanism between the 
valid and transaction time components of the timestamp: the same reference time appears in the 
valid-time and in the transaction-time denotations. Although, it is possible and may be interesting 
to consider situations where the two reference times differ, we have found that for all practical 
purposes this coordination is desirable. Nevertheless, other kinds of coordination through the 
reference time are possible. For example, instead of the standard Cartesian product used here, a 
coordination mechanism that utilizes a step-wise cross product of the two temporal dimensions is 
possible [CI94]. 

Another feature of the framework is that the uniform and component-wise treatment of time 
dimensions makes it easy to include additional dimensions. To specify the semantics of a variable 
database with additional dimensions, it is necessary to first specify the semantics of the variables 
and tuples in that new dimension, e.g., as is done for the transaction-time dimension in Section 5 .  
Subsequently, the new dimension can be easily integrated with the other dimensions in a definition 
similar to the one above. Thus, our framework can be extended to encompass multidimensional 
temporal databases, for example temporally generalized [JS94], indexical [Cli93], parametric [GN93] 
and spatio-temporal [ASS941 databases. 

Tables 1 and 2 may be combined to cover the bitemporal extensionalizations. The combination 
of Case v l  from Table 1 and Case t l  from Table 2 gives the bitemporal extensionalization for 
a tuple timestamped with a determinate valid time interval, [utl, vt2], and a transaction time 
interval, [ttl, tt2], both without variables. Note that the transaction time in this case is restricted 
to the "past" relative to the reference time, just as in transaction-time tuples. For example, the 
extensionalization at reference time June 2 of the tuple 

< Jane,  Assistant, [June 3, June  101, [June 1, June  31 > 

is ' 

{(Jane, Assistant, ut, t t ,  June 2) / vt E: [June 3, June  101 A t t  E [June 1, min(June 2, June  3)j). 

In this example, the terminating transaction time, June 3, is constrained by the reference time, 
June 2. 

The graphical representation of bitemporal tuples is three-dimensional; transaction time is the 
X-axis, valid time is the Y-axis, and reference time is the Z-axis. To this point, the reference time 
has been the X-axis, but making the reference time the Z-axis in the three-dimensional visualization 
results in a better picture. The graph is displayed so that the Z-axis goes "into" the page. The 
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three-dimensional picture of a bitemporal tuple allows us to represent the passage of time as a 
spatial displacement, and provides a visual representation for interesting phenomena such as history 
changes and predictions about the future, as well as incorporating the viewpoint of an observer into 
these phenomena. As we will see below, the graphical representation shows the subtle interaction 
between now, until changed, and the reference time. 
+ Examples of the combinations of the extensionalizations presented in Tables 1 and 2 are graph- 
ically depicted in Figures 12 and 13. The dotted line vectors in the graph represent directions 
of growth as either the reference time, valid time, or transaction time extends to T. Only one 
generic example tuple is depicted in each case. The evolutionary nature of temporal databases, a 
key concept, comes through very clearly in the figures. Notice how the shaded areas grow as refer- 
ence time increases, most prominently for tuples containing variables, indicating an accumulation 
of knowledge stored in the database. Note also how information in later reference times is always 
consistent with that in earlier reference times. 

I - E%EJ 
Atnibute V: 

Case v l  x t l  

I / i  l Amibute Values 

- 
2- 1s 

Cases ~3~ x t2 and ~3~ x t2 

I / i  i Attr~bure Values 

Case v2 x t l  Case v2 x t2 

Figure 12: Examples of the bitemporal determinate cases 

Figure 12 illustrates the determinate cases. For example, the lower right corner of Figure 12 
depicting the v2x t2 case, shows how now and until changed are bound to an increasing reference 
time, resulting in a three-dimensional stair-shaped pattern. The tuple's extensionalization grows 
as time passes encompassing more points. In contrast, case v l  x t l  depicts constrained growth, 
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Cases v3" x t l  and ~3~ x t l  Cases v3" x t 2  and ~3~ x t 2  

I / i i i i Attribute Values 

Cases v4" x t l  and ~4~ x t l  Cases v4" x t 2  and ~4~ x t 2  

Figure 13: Examples of the bitemporal indeterminate cases 

as the tuple ceases to exist beyond transaction time t t 2 .  Note that, unless a tuple is known to 
have been deleted from the database, its "transaction-stop time" is until changed, and hence it 
has unlimited growth in the transaction-time dimension. This is true for the determinate cases 
shown in Figure 12 as well as for the indeterminate cases of Figure 13. Notice for example, how 
the possible and definite extensionalizations in cases v3" x t 2  and ~3~ x t 2 ,  the upper right-hand 
corner of Figure 13, remain constant in the valid-time dimension while growing in transaction-time. 
In contrast, case ~4~ x t 2  illustrates constrained growth, i.e., constant evolution up through time 

6.2 Querying Variable Biternporal Databases 

The existing bind and timeslice operators, developed for valid-time and transaction-time databases, 
are easily generalized to apply to bitemporal databases. A bitemporal tuple differs from a valid- 
time tuple by having a transaction time interval in its timestamp. The valid-time operators are 
generalized to corresponding bitemporal operators by simply ignoring this extra timestamp. For 
example, the definite bitemporal valid-time timeslice is defined by generalizing Definition 4.14 as 
follows. 
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Definition 6.3 [Variable-level Definite Bitemporal Valid-time Timeslice] 
Let S be a set of tuples at  the variable database level, i.e., a set of tuples of the form T =< X, 
[vtl -- vt2,vt3 N vt*], [ttl, tt2] >, where T is ground. The definite bitemporal valid-time timeslice 
of S at valid time vt, is defined as follows. 

The superscript "D>VjVT>BT" indicates that the operator considers only the definite information in 
the tuple, belongs at the variable level, performs a tirneslice in the valid-time dimension, and is 
applicable to bitemporal tuples. In addition to this operator, the subsequent discussion uses the 
operators I I ~ ~ ~ > ~ ~ > ~ ~ ,  T T ~ ~ ~ , ~ ~ ,  bindyVTIBT, and bindvTT>BT which are all similar generalizations 
of previous definitions. 

As with valid-time and transaction-time databases, queries are evaluated by combining bitem- 
poral timeslice and bind operations. Also as before, valid and transaction times must be bound 
before the bitemporal valid-time timeslice or bitemporal transaction-time timeslice, respectively, 
can be applied. 

To explore the interaction of times in queries on bitemporal databases, we consider a number 
of queries on the simple database depicted in Figure 14 which shows that Jane's employment tuple 
was added to the database on June 2. Note that it contains an now-relative indeterminate "to" 
time and "until changed" as the "stop" time. For the purpose of the example, we assume that 
today is July 9. Thus, the transaction-time bind operator binds until changed to July 9 in all 
queries. The first four queries all include Jane in the result. 

Using the current database state, who was possibly a faculty member on July 7? 

P,V,VT,BT (bindV7VT,BT (nV,TT,BT (bindV,TT, BT 
=JULY 7 J U ~ Y  9 J U ~ Y  9 (Facul td ))I 

In this query, we transaction timeslice to get only the most current information. The valid- 
time bind ensures a perspective of today, and the valid tirneslice retrieves those tuples that 
were valid two days ago (on July 7). 

Using the current database state, who was definitely a faculty member on July I? 

As before, the lower bound of the "to" time is ground to July 6 (July 9 - 3 days). The 
difference is solely in the valid timeslice; we require definite information, and so we use a 
definite timeslice. Since July 1 is before July 6, Jane is in the result. 

Using the database state on July 1, who was definitely a faculty member on June 15? 

n",V,VT,BT (bindV,VT,BT~nV,TT,BT (bindV,TT,BT 
June  15 J u l y  1 July  1 (Faculty 1) 1 ) 

The transaction timeslice retrieves the information current on July 1. The valid-time bind 
adopts this day as the perspective of the subsequent valid tirneslice which retrieves information 
about June 15. Since Jane's tuple was current on July 1 and June 15 is more than three days 
before July 1, Jane will be in the result. 
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Using the current database state, who will we say on July 12 is possibly a faculty member on 
September l ?  

We first consider only current information. Then we adopt a valid-time perspective of July 12 
to examine the database as it will appear on July 12 if no updates are made, i.e., our best 
guess as to what will be current information on July 12. Finally, using that perspective, we 
ask about possible information on September 1. Jane will thus be in the result. 

I VALID TIME TRANS TIME 1 

Figure 14: A bitemporal relation 

NAME 

Jane 

In contrast to the queries above, the following three queries do not include Jane in the result. 

Using the current database state, who was definitely on the faculty of State University on 

RANK 

Assistant 

July 7? 
D,V,VT, BT V,VT,BT V,TT,BT 

(bind,,,, 9 (n,,,, , (bind 
V,TT, BT 

~ J U I Y  7 (Faculty)))) 

Here, the valid-time bind operation yields a ground "to" time of July 6 - January 1, 2028. 
Since July 7 is after July 6, Jane is possibly, but not definitely, on the faculty. 

(from) 

June 1 

Using the database as of July 1, who was definitely a faculty member on July l? 

(to) 
(now - 3 days) -- January 1, 2028 

(start) 

June 2 

Using the current database state, who will we say on July 12 is definitely a faculty member 
on September l ?  

(stop) 
until changed 

In most of the examples above, the transaction timeslice time and the valid-time bind time, or 
reference time, are the same. Indeed, this is the typical and most useful scenario as the following 
example makes clear. Suppose that today, July 9, we execute a transaction-time timeslice with 
time argument February 1 (that is, the preceding February 1). This operation chooses the most 
up-to-date information as of February 1, and disregards information that was not up-to-date on 
February 1 or was recorded at a later time. The user's perspective for subsequent operations using 
this information should naturally switch to the frame of reference of the chosen information. Hence, 
for this example, it would be natural to also bind now to February 1. 

Yet, two of the queries given above illustrate that this in not a necessary restriction. Lifting it 
leads to increased functionality, but also to queries that are conceptually more involved. Existing 
query languages generally enforce this restriction. 
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7 Timestamp Implementation 

This paper has proposed four new current-time-related timestamps; namely, until changed, now, 
now-relative instants, and now-relative indeterminate instants. Elsewhere we show how these times- 
tamps may be efficiently represented [DS93a, DS93c, CDI+94, Dyr941. For example, a non-relative 
timestamp can be encoded as a datetime value coupled with a one-bit flag differentiating it from 
a ground timestamp. Consequently, the timestamps proposed in this paper impose little space 
overhead. 

We also proposed adding bind operations for valid time, transaction time, and bitemporal 
databases; no other operations are needed to support current-time-related modeling entities. The 
bind operations have no significant impact on the run-time efficiency of a temporal database. The 
transaction-time bind is very efficient. I t  simply replaces until changed with the current transaction 
time. The valid and bitemporal bind operations are only slightly less efficient. For now-relative 
instants (and now-relative indeterminate instants) these operations replace now with the reference 
time and then displace that reference time by a span. The displacement costs one integer addition 
operation. 

Now-relative instants also add an extra comparison to interval constructors. As we observed 
in Section 2.1.4, predictive updates could insert into the database intervals that end before they 
start. Fbr a tuple without variables, such intervals can be detected and eliminated when the tuple 
is first inserted into the database. But a tuple with a variable might initially end before it starts, 
and only later evolve into a valid interval. Consequently, during run-time each interval involving a 
variable must be tested to ensure that the starting instant is before the terminating instant. This 
test needs be performed only once per interval per query. 

8 Summary and Research Directions 

The overall conclusion of this paper is a recommendation that timestamps involving current-time 
variables, that is, now, until changed, now-relative, and now-relative indeterminate timestamps, 
be allowed to be stored as values of columns, for conventional and temporal databases, as well as 
implicit valid and transaction timestamps, for temporal databases. 

This paper makes a number of contributions. First, it provides a formal basis for defining the 
semantics of databases with variables. The use and generality of the framework was demonstrated 
by giving a semantics for conventional, valid-time, transaction-time and bitemporal databases with 
all existing variables. Apart from specifying reasonable semantics for such databases, this exercise 
demonstrates two important properties of the framework. The first property is that it is capable 
of capturing the semantics of a wide range of variables. We provide the semantics of variables of 
all kinds of time currently identified [JCE+94]: user-defined time, valid time, and transaction time. 
The second is that the semantics of a multidimensional database may be specified as a coordinated 
combination of the semantics of the constituent one-dimensional databases. The reference-time 
dimension in the framework provides the coordination mechanism. For example, the semantics of 
variable bitemporal databases was specified very easily by using the already specified semantics for 
valid-time and transaction-time databases. This property makes it relatively easy to specify the 
semantics of multidimensional databases. It also makes it easy to add further kinds of time that 
may emerge in the future, as well as other dimensions, such as space, again, in all their various 
combinations. 

Second, without current-time variables, temporal databases provide inadequate support for their 
applications. The paper demonstrates that existing variables, such as now and until changed, are 
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indispensable in temporal databases. It also identifies situations were even these variables are inad- 
equate, and introduces new now-relative and now-relative indeterminate instants that provide the 
desired support. The semantics of databases with variables are also defined within the framework. 

Third, a foundation for the querying of variable databases from existing temporal query lan- 
guages was presented. The paper provides algebraic "bind" operators for valid-time, transaction- 
time, and bitemporal databases, and it shows how these are used in order to permit existing query 
languages to access variable databases. As a first step during query processing, the bind opera- 
tion is applied to variable databases, thus temporarily replacing all variables with ground values 
appropriate for the processing of the query at hand. What are appropriate ground values follows 
quite easily when the semantics of the variable databases have been defined within the framework. 
This approach encapsulates the handling of variables in a single operator. I t  also requires only 
minimal changes to the query processor: support for one new operator has to be added, but all 
other components remain unchanged. 

These three observations provide the rationale for the conclusion that variable databases are 
viable. A number of secondary, but noteworthy, contributions also deserve mention. The paper 
resolves the meaning of the use of variables in existing temporal data models. A graphical notation 
with two or three dimensions used throughout the paper proved to be helpful when describing the 
semantics of variable databases. The complex interactions of current time, reference time, transac- 
tion time, and valid time within queries and variable databases were investigated in detail. These 
interactions were not thoroughly understood or explicated in existing bitemporal data models. The 
concept of "perspective" within queries was illustrated. Perspective adds the ability to bind the 
valid-time variable now to times other than the current time. Supporting this notion within a 
query language enhances its functionality when querying variable databases. 

This framework has implications for database query language design. The user-defined time 
types available in SQL-92 can be easily extended to store now-relative and indeterminate non- 
relative variables as values in columns. The TSQL2 language [Sno95] does so, and also supports 
those variables for valid and transaction time. In TSQL2 the "bind" operation is implicit; NOBIND 
is provided to store variables in the database. 

There are several directions for future research, The precise semantics of several temporal 
models proposed in the literature could profitably be examined in light of the framework presented 
here. In defining the semantics for bitemporal databases, we have chosen but one possible way of 
combining the semantics of valid-time and transaction-time databases; other possible combinations 
of these two temporal dimensions might also prove useful. In addition, the use of the graphical 
representation of temporal relations at the user interface-for displaying the results of queries and, 
e.g., for the assertion of temporal integrity constraints-seems to us a promising one for further 
research. The impact of stored variables on database storage structures and access methods is 
an open problem. It also presents an opportunity, e.g., if the optimizer knows (through attribute 
statistics) that a large proportion of a tuples have a to time of now, then it may decide that a 
sort-merge temporal join will be less effective. Finally, new kinds of variables, such as here for 
spatial and spatio-temporal databases, should be investigated, as an extension of the framework 
introduced in this paper. 
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