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August 26, 1996 (revised, March 1, 1997) 

ABSTRACT. In a diffusion model of an enterprise with variable scale, suf- 
ficient conditions are given for the maximization of expected profit (expected 
total discounted withdrawals) to lead to eventual bankruptcy with probability 
one. The optimal withdrawal policy is an "overflow policy," in which the with- 
drawal rate is eqcal to zero if the asset level is below a "barrier," and equal 
to the maximum rate if the asset level is greater than or equal to the barrier. 
The optimal policy for the control of the drift (yield) and volatility (risk) of 
the earnings process is derived as the solution of a differential equation, and a 
formula is given for the corresponding value function. The optimality of the 
constructed policy is demonstrated using the standard "Bellman Conditions." 

1. INTRODUCTION. 
In models of an enterprise with "fixed productive capacity," Dutta and Radner (1993), 
and Radner and Shepp (1996), have shown that the maximization of 'Lprofit," i.e., 
expected total discounted withdrawals from cash reserves (retained earnings), leads 
to  eventual bankruptcy with probability one. In these notes I generalize these results 
t o  a model of a firm with variable scale. 

As in the papers cited above, the asset level of the enterprise is modelled as 
a controlled diffusion process. The earnings process is a diffusion whose drift and 
volatility are controlled by the economic agent (owner, entrepreneur, and/or manager) 
within a prescribed constraint set tha t  depends on the current level of assets ( the 
"scale" of the enterprise). Earnings may be retained and reinvested, thus increasing . 

the asset level, or withdrawn and paid to  investors, or divided between the two. The  
enterprise "fails" the first time (if ever) that the asset level, net of sunk costs, falls 
t o  zero. "Profit" is defined to  be the expected total discounted withdrawals. 

For any current level of assets, y, let A(y) denote the corresponding set of feasible 
drift-volatility pairs. The set-valued function A represents the "earnings technology" 
available to  the agent. I make assumptions about A that  express limits on the returns 
to  scale of this technology, and also guarantee that it is mathematically well-behaved. 
For example, it is known that in the case of constant or increasing returns t o  scale 
(suitably defined), the maximum profit is either infinite or zero; hence I limit my 
model to a case of decreasing returns t o  scale. However, scale affects both drift and 
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Profit Maximization with Bankruptcy and Variable Scale 2 

volatility, so the definition of "decreasing returns" adopted here is more complex 
than it would be in the case of certainty. 

With these assumptions, I show that the optimal withdrawal policy is what Dutta 
and Radner (1993) call an "overflow policy," in which, for some suitably chosen 
parameter b, the bam'er, the withdrawal rate is zero if the asset level is below b, and 
equals the maximum permissible otherwise. I deal separately with the two cases in 
which (I)  the admissible rates of withdrawal per unit time are bounded above, and (2) 
the admissible withdrawal rates are unbounded. I also characterize (in each case) the 
optimal earnings control policy as the solution of an ordinary differential equation, 
and give a formula for the maximum profit (as a function of the initial asset level) in 
terms of the optimal earnings control function. For asset levels below the barrier, b, 
the optimal drift and volatility of earnings are both increasing functions of the asset 
level. 

In the unbounded-withdrawals case, the optimal drift of earnings at  the level of the- 
barrier is equal to the maximum possible for that level of assets. In this case, if the 
asset level starts at or below the barrier, it never rises above it; whereas if it starts 
above the barrier then.it jumps down (discontinuously) to the barrier and never rises 
above it again. As a consequence, the enterprise will fail in finite time, almost surely. 

In the bounded-withdrawals case, the asset level may drift above the barrier. If 
the maximum rate of withdrawal exceeds the maximum drift of earnings, then the 
asset level will eventually return to the barrier; a s  a consequence, the enterprise will 
again eventually fail in finite time. On the other hand, if the earnings drift exceeds 
the withdrawal rate, then there is a positive probability that the enterprise will never 
fail. For example, for a fixed withdrawal rate, if the earnings drift is unbounded 
as the asset level increases without bound, then there will be a critical asset level, 
say y*, such that, conditional on the asset level reaching y*,the probability that the 
enterprise never fails is positive. However, given the initial asset level, the probability 
of surviving forever tends to zero as the withdrawal rate increases without bound. 

Sections 2 and 3 are devoted to the bounded-withdrawals case. In Section 2, 1 * 

present the formal model and outline the method of proof. In Section 3 , I present 
the assmptions, and state and prove the main result. A special case ("multiplicative 
scaling") is analyzed in Section 4, where the notion of decreasing returns to scde is 
given a more intuitive representation. The unbounded-withdrawals case is discussed 
is Section 5, where the notion of an overflow withdrawal policy is made precise, and it 
is shown that the supremum of the profit when all finite withdrawal rates are allowed 
is attained by such a policy. The failure times for both the bounded- and unbounded- 
withdrawals cases are discussed in Section 6. 

Essential references are listed in the final section. Additional references, and a full 
discussion of the topic of profit maximization and market selection, will be found in 
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(Dutta and Radner, 1993). A summary of related results on economic survival will 
be found in (Radner, 1996) 
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2 .  A GENERAL MODEL OF VARIABLE SCALE. 
Let Y(t) denote the assets of the enterprise at time t (not counting sunk costs). I 
shall assume, unless it is mentioned to the contrary, that the initial asset level, Y (0), 
is strictly positive. The agent (entrepreneur, manager) controls two variables, u(t) 
and w(t), where u(t) controls the drift and volatility of the (net) earnings process at 
time t and w(t)  is the instantaneous rate of withdrawal at  time t. (See end of Sec. 3 
for comments on this formulation.) The asset process, Y(t), is a difFusion with 

- 
drift = m[u(t),Y(t)] -w(t) ,  

volatility = v[u(t), Y(t)]. 

Call the function u the earnings control; assume that it takes its values in the unit 
interval,[(), 11. Also, call the function w the u;ithdrawal control; assume that it takes 
its values in the closed interval [0, w*], where w* is a positive parameter. (I shall 
usually think of w* as being "very large.") Note that it is implicit in the above 
description of the asset process, Y(t), that at time t the earnings process has drift 
m[u(t), Y (t)] and volatility v[u(t), Y (t)]. 

[Note: The underlying earnings process is a diffusion that is adapted to some - 
filtration. The controls u and w must be adapted to the same filtration. Furthermore, 
the controls are required to be measurable with respect to the time variable, t > 0.1 

Let T be defined by: 
T = i n f ( t :  Y(t) = 0). 

Call the random variable T the failure time; it could be infinite. I shall say that the 
enterprise survives (forever) if T is infinite; otherwise the enterprise faids. 

The enterprise's (expected) profit is defined to be: 
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where r > 0 is an (exogenously given) interest rate. The controls u and w are optimal 
if they maximize profit. Correspondingly, let P(y)  denote the maximum profit, given 
that Y(0) = y. 

In what follows I shall present assumptions sufticient to guarantee the existence 
of optimal controls. Under these same assumptions, I shall show that the optimal 
withdrawal policy, w, has the following form, which I call an "overflow policy:" the 
withdrawal equals 0 or w* according as  Y(t) is < or 2 0. I shall also "construct" 
the optimal earnings control as the solution of an ordinary differential equation, and 
give a formula for the value function, P(y), in terms of the optimal control functions. 
The optimality of the constructed controls will be demonstrated using the so-called 
"Bellman Optimality Conditions" (see, e.g., Krylov, 1980). 

In fact, I shall now use the Bellman Conditions to motivate the assumptions and 
the construction of the optimal policy. But first, I note that Blackwell's Theorem 
will imply that we may take the optimal controls to be "stationary," i.e., for some 
functions U and W, 

Second, I note that a stationary withdrawal policy is an overflow policy if, for some 
b > 0: 

Suppose that the value function is continuously twice differentiable (which it will be), 
and define the "Bellmanian" function B of the nonnegative variables u,  w,and y, by: 

B(u, w, Y) -. w - rP(9)  + [m(u, Y) - wIP'(y) + (1/2)v(u, y)P1'(y). (3) 

The following three conditions (the Bellman Conditions) will be s f i c i en t  for U 
and W to  be optimal: 

Forevery y > O ,  B[U(y),W(y),y]=O. ( 5 )  

For every y > 0, u in [0,1], and w i n  [O,w*], (6 )  

B(u,w,y)  < 0. 
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In the presence of (5), condition (6 )  is equivalent to: 

Foreveryy>O,  [U(y),W(y)]maximizes B(u ,w,y) .  ( 7 )  

One can rewrite the Bellmanian (3) as  follow^: 

Frorn this we see that the overflow withdrawal policy (2) satisfies the maximization 
condition (7) provided 

In fact, I shall show that 
PI> 0 ,P"  5 0, (9) 

so that it will be snfficient for b tasatisfy 

With regard to  the earnings control, U, suppose that it satisfies the first-order 
condition for the maximization of the Bellmanian (3); then 

m1[U(y), ylP'(y) + (1/2)v1[U(y), YIPl1(Y) = 0. (10) 

Equations (5) and (10) imply that,  where vl > 0, 

where 
v(u1 y)ml(ul Y) 

9(u, Y) -. mtu1 Y) - 
vl(% Y) 

(12) 

Differentiating (11) with respect to y, and bearing (2) in mind,we obtain, for y # b, 

Equations (10) and (13), together with P' > 0 [cf. (9)], imply, for y # b, that 

91[V(Y): YIU'(Y) - r + g2[U(~) ,  YI - {9[U(Y)> 91 - W(Y))H(Y) = 0, (14) 
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where 

Suppose that gl > 0; then (14) can be solved to for U1(y) to give, for y f b: 

Note that this differential equation in U does not involve the unknown value function, 
P .  For a reason that will become apparent below, I impose the boundary condition: 

where, for each y, 
Y) uo(y) maximizes - 

v(., Y) ' 
(The existence of uO(y) will be guaranteed by the assumptions.) 

Thus far I have sketched how to  construct the optimal controls, provided suitable 
assumptions are made on the functions m and u. I shall now show how, given the 
controls, to calculate the value function, P. Rom (10) and (15) we have: 

A solution of this is 
Y 

P1(y) = expi- 1 IJ[U(x), xldxl. (20) 

Integrating this last, and taking the constant of integration to be 0, we have 

Note that 
P(0)  = 0, P1(y) > 0, P'(b) = 1 

Suppose that, for each y, the function m(u, Y) has a unique maximum in u a t  the 
point u*(y), interior to the unit interval. From (10) and (22) we see that  Pl1(y) < 0 
iff U(y) < u*(y). Hence, we s h d  have constructed an optimal policy if we can find a 
value of the barrier, b, such that the solution to the differential equation (16), with 
boundary condition (17), satisfies, for all y, 

In the next section, I show how this can be done, under suitable assumptions about 
the data of the problem, namely the functions m and u, and the parameters T and 
w*. 
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3. ASSUMPTIONS AND MAIN RESULT 
In this section I shall carry out the program outlined in Sec.2., by stating a set of 
assumptions, and stating and proving the main result. 

I shall call the level of assets, Y ( t ) ,  the scale of the enterprise a t  time t. The first 
set of assumptions describes how the drift and volatility of earnings vary with the 
control variable, u, for each scale y. In particular, they assure that the problem is 
mathematically well-behaved. (See end of this section for further comments.) 

Assumption A l .  
(1) m and v are C2 on [0, I] x [0, co). 
For each scale y, consider m and u as functions of u. 
(2) m is strictly positive and strictly concave. 
(3) v is strictly increasing and (weakly) convex, and v and vl are positive and 

bounded amray from 0. 
(4) For every y, the maximum drift, 

is attained at a unique point, u*(y), and 

0 < u*(y) < 1, ( 2 5 )  
u* is continuous and nonincreasing. (26) 

(5) The ratio m(u, y)/v(u, y) attains a maximum at a unique point, say uo(y), 
such that 

0 < uo(y) < ut(y) < 1; (27) 
Let Z denote the closed "strip" of points (u, y) such that y >_ 0 and 0 5 u 5 u*(y). 

It follows from Assumption A1 that, in C, the ratio ml (u, y)/vl (u, y) is strictly 
decreasing in u. 

From the definition of g, one calculates its partial derivative with respect to u to  
be: 

v(m1v11 - mllvl) > in C 
91 = 

(%I2 
(28) 

(The positivity of 91 in C follows from i\ssumption Al.) Note also that 

9 b * ( ~ ) l  = m*(y). (30) 

With Assumption A1 we can now justify all of the calculations of Section 2 except 
for the analysis of the differential equation (16) for the optimal earnings control, U. 
For latter, we need some further assumptions. 
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The next assumption expresses a li~nit on cLret8urn~ to scale." The intuitive inter- 
pretation of the particular form of this assumption will become clearer in the next 
section. Note that the assumption places a condition on both the drift and volatility 
functions. 

Assumption A2. 
r- g2(u, y) is strictly positive and bounded away from zero in C. 
The final assumption expresses the condition that the parameter w* be "suffi- 

ciently large;" it also implicitly places a further limit on returns to scale. 
Assumptzon A3. 
For all y > 0, and all u < uO(y), H(u,  y)w*+g2(u, y) - T is strictly positive. 
I turn now to the analysis of the differential equation (16) on the strip C. It will 

be convenient to define the two functions, 

With this notation, we can write the differential equation (16) in two parts as: 

Ui(y) = G[U(y),y] for Y 2 b. 

We also have the two boundary conditions, 

First, I shall show that in the first regime (y < b), the solution U(y) is increasing, 
and in fact would eventually reach u*(y) if b were large enough; call this "Curve 1." 
Second, considering the differential equation in the second regime t o  be defhed for 
all y > 0, I shall show that there is a solution, U(y), for some initial value, U(O), 
that remains in the interval, 0 < U(y) < u*, for all y > 0; call this "Curve 2." The 
optimal value of b is then the value of y a t  which Curve 1 (first) crosses Curve 2. 

Concerning the first regime, first note that g(u, y) > 0 for u > uo(y), and 
H(u,  y) > 0 for u < u*(y). Hence, by Assumptions 1 and 2, F ( u ,  y) > 0 (and is 
in fact bounded away from 0) for uo(y) < u < u* (y). Furthermore, 

u b ( ~ )  = - g2[uo(y)1y1 < F [ u ~ ( ~ ) ,  y]. 
S ~ [ ~ O ( Y ) ,  YI 
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Hence the solution to the first regime remains above uo(y), is strictly increasing, and 
eventually reaches u*(y) at some finite y. 

Concerning the second regime (without regard to the boundary condition (I?)), 
&st note that, from (37) and Assumption A3, 

and G(u, y) < 0 for u < uo(y). Hence, for any initial condition U(0) 5 uo(0), the 
solution to the second regime is strictly decreasing, and will eventually reach 0 at 
some finite y. On the other hand, H[u*(y), y] = 0, so that 

(the last inequality by Assumption A2). Hence, for some number E > 0, if u*(0) - E 2 
U(0) < u*(O), then the solution to the second regime will be strictly increasing, and 
will reach u*(y) at  some finite y. 

- 

Continuing with the analysis of the second regime, fix x > 0. For each initial 
value U(0) = u, one of two things can happen: 

(1) The solution, U(y), reaches the lower boundary of C ,  U(y) = 0, or the upper 
boundary, U(y) = u*(y), at  some y < x; in this case set X(u) = y. 

(2) For all y < x, 0 < U(y) < u*(y), and hence 0 5 U(x) 5 u*(x); in this case 
set X(u) = x. 

Still fixing X, define the mapping, C,, by C,(u) = {U[X(u)], X(u)).  Define C(x)  
to be the "truncation" of C at  x, i.e.e, the subset of Z: for which y < x. From the 
previous paragraph, we see that the mapping C, takes its values only in the upper, 
lower, and right boundary of C(x). 

Lemma. For each x, the mapping C, is continuous from the interval [O, u*(O)] t o  

C ( 4 .  
[The Lemma can be derived using Wasewski's Theorem (Hartman, 1982, pp. 250 

ff.). However, see the Appendix for a self-contained proof.] 
Let D(x) denote the (closed) interval, [O,u*(x)] x {x) , i.e., the right boundary 

of C(x),  and let I (x )  denote the set of initial values u such that C,(u) is in D(x). 
In other words, I (x)  is the set of initial values for the second regime such that the 
solution does not reach 0 or u*(y) before y reaches x. For u < uO(0),C,(u) is in 
the lower boundary of C(x) ,  whereas for u sufficiently close to u*(O), C,(u) is in the 
upper boundary. Since C, is continuous, there exists a u such that C, is in D(x), so 
that I(x) is not empty. 

Now let x increase. For each x, the set I (x )  is a nonempty closed subset of 
[O, u*(O)], and x' > x implies I(x') C I(x). Hence, by the Heine-Bore1 Theorem there 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-96-07 



Profit Maximization with Bankruptcy and Variable Scale 10 

exists some 212 that is in I(x)  for every x > 0. Furthermore, us > uo(0) (here we use, 
in particular, Assumption A3). 

We can now determine the optimal barrier, b. Let Ul denote the solution to 
the first regime, (33), subject to the boundary condition, Ul(0) = uo(0), and let U:! 
denote the solution to the second regime, (34), subject to the boundary condition, 
U2(0) = u2. Note that, by the choice of u2, 

Let b be smallest solution to the equation, 

and define U by: 6 
U(y) = Ul(y) or U2(Y) as y < or 2 b. 

The function U satisfies the differential equation (16-17-), and the condition (23), and 
hence is an optimal control. Hence I have proved: 

Theorem. Under Assumptions A1-3, the earnings control U defined by (42), to- 
gether with the withdrawal control W defined by (2), are optimal, and the optimal 
profit function, P ,  is given by (20-21). 

I conclude the section with some comments about Assumption A1 and A2. Per- 
haps a more natural formulation of the model would have started with assumptions 
about the sets A(y) of feasil.de drift-volatility pairs for each scale y. For example, 
following Dutta and Radner (1993), I might have assumed that A(y) is a compact, 
convex set, with smooth boundary, in which (1) there is a point with positive drift, 
and (2) there is no point with zero volatility. Anticipating that the optimal value 
function, P ,  will be strictly increasing in the scale, y, we infer born the Bellmanian 
function (3) that, for each scale y, the drift will be the maximum possible in A(y), 
given the optimal volatility. Hence we could parametrize the control by the volatility, 
v. However, the range of v varies with the scale y, so it is more convenient to para- 
metrize the control by some variable u that has a fixed range, say the unit interval, 
and is a strictly increasing function of u for each scale. For example, let v'(y) > 0 be 
the minimum value of v for (m, v) in A(y), let vN(y) be the maximum value, and let 
u = [v - v'(y)]/[vu - v1(y)]. Solving this for v yields a function, u(u, y), and setting 
the drift equal to the maximum given v and y yields a function, m(u, y). However, 
other parametrizations are possible; for example, by making u a suitable nonlinear 
function of v, one could force the function u*(y) to  be a constant. 

Center for Digital Economy Research 
Stem School of Business 
Working Paper IS-96-07 



Profit Maximization with Bankruptcy and Variable Scale 11 

4 .  EXAMPLE: MULTIPLICATIVE S C A L I N G  
Suppose that the drift and volatility functions take the form: 

I shall call this the "mulitplicative scaling model." Corresponding to Assumption 1 
of Section 3, I assume: 

Assumption 1MS. 
( 1 )  M and V are C2 on [O, 11; R and S are C2 on [0, m). 
(2) On (0, I ) ,  M is strictly positive and strictly concave, and M(u) att,ains its 

maximum at a (unique) point u* such that 

(3) On [0,1], V is strictly increasing and (weakly) convex, and V and V' are 
positive and bounded away horn 0. 

( 4 )  R and S are strictly positive, and nondecreasing (and hence bounded away 
horn zero). 

( 5 )  The ratio hl(u)/V(u) attains a maximum at a unique point u0 such that 
0 < uo < u*. 

Let 

then 

Note also that uo and u* are independent of y, and satisfy 

Furthermore, 
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Define 
h(u) = 2M'(u)/Vt(u); 

then 
H('11, Y) = ~ ( ~ ~ R ( Y ) / S ( Y ) I ,  

and the differential equation for the optimal earnings control U can again be written 
in the form (33-34). 

Corresponding to Assumption -42 of Section 3, I assume: 
Assumption A2MS. 

- R is concave, S is convex, and 

- 
This assumption is clearly interpretable as a limit on returns to scale. Since k is 
increasing, k(u*) = M(u*), and R' is nonincreasing; it follows that, for all u < u* 
and y > 0, 

-k(u)R1(y) + r > 0, (59) 

so that Assumption A2 is satisfied. 
Corresponding to Assumption A3 we have: 
Assumption A3MS. 
For all u < ug and y > 0, 

Again, this expresses the assumption that w* is "large enough," but also places 
a further limit on returns to scale. This form brings out more clearly than does 
Assumption A3 that the limitation on returns to scale involves the volatility as well 
as the drift. For example, it would not be unusual for R1(y) to  approach 0 as y gets 
large ("decreasing returns to scale"), in which case the assumption requires that the 
ratio R(y)/S(y) be bounded away from zero. This would be the case, for example, if 
both R(y) and S(y) approached limits as y became large ("bounded scale"). 

If both R and S are independent of y, we might say that the enterprise has 
"constant size." (This was the case treated in Dutta and Radner, 1993, and Radner 
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and Shepp, 1996, but by somewhat different methods.) One can verify that, in this 
case, the solution U2 in (42) is actually a constant, i-e., 

U2(y) = U2(b ) for y 2 b. (61) 

(I omit the details.) 

5. UNBOUNDED ?VITHDRAWALS 
I now consider the case in which the rate of withdrawal, w(t), is unbounded but 
finite. MJe shall see that the supremum of the profit in this case is attained by a 
policy that is not in this class, but is an overflow policy in which the withdrawal rate 
is zero when the asset level is below the barrier, b, and "infinite" when it is above the 
barrier. (This u7ill be made more precise below.) With such a policy, the asset level, 
Y(t),  never rises above the barrier, although it  may start above the barrier a t  time 
zero. As we shall see, with a withdrawal policy of this type, the firm will fail in finite 
time, almost surely (see Sec. 6). Optimality will be proved using a simpler form of 
Assumption A3. 

For the optimal policy, a t  asset levels below the barrier, both the drift and the 
volatility will be increasing functions of the asset level, and at the barrier, the drift 
will equal the maximum possible for Y(t) = b. Since Y(t) will not spend any (positive 
amount of) time above the barrier, it will not be necessary to specify the optimal 
control of earnings in that region. 

To define the overflow policy, i t  is convenient to denote the underlying cumulatiue 
earnings process by X(t).  The drift, m(t), and the volatility, v(t), of the cumulative 
earnings process are controlled through the control variable, u(t), as in Section 2, 
and X(0) = 0. Let R(t) denote the cumulative withdrawals up through time t .  In 
the case of a policy with a finite withdrawal rate, w(t), the cumulative withdrawal is 
defined by 

The asset level at time t is defined by 

Y(t) = Y(0) + X ( t )  -R(t). 

I shall define the overflow policy with barrier b by 

R*(t) = sup{[Y(O) + X(S) - b]+JO < s < t) ,  (64) 

where for any number z, z+ = max{z, 0). (For a discussion of this type of policy, see 
Harrison, 1985, pp. 19 ff.) As noted above, if Y(0) < b, then Y(t) < t for all t > 0, 
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whereas if Y (0) > b, then SZ*(O) = Y(0) - b, Y (OS) = b, and Y (t) 5 b for all t > 0. 
Thus, if Y(0) > b, then Y h a  a downward jump of Y(0) - b at time 0. I note that 
the overflow policy with barrier b is a stationary policy. - 

Since the asset level, Y(t), never exceeds b for t > 0, the optimal control corre- 
sponding to the overflow policy with barrier b need be defined only for Y ( t )  5 b. This 
(optimal) control will be determined by the differential equation, 

where the function F is given by equation (31) in Section 3. The optimal barrier b, 
will be the smallest number b that satisfies 

Hence U(y) is strictly increasing for 0 < y < b. 
Let n(m) denote the overflow policy with barrier b just described, and let P 

denote its corresponding profit function. It is clear that for y > b, 

P(y) = P ( b )  + y - b. (68) 

For y < b, the profit function P is determined by the equations (19)-(21) of Section 
3, together with 

and hence (22) is satisfied. ktherrnore,  note that, since H[u*(y), y] = 0, it follows 
that P1'(b) = 0, so that P is C2. 

I now replace Assumption -43 of Section 3 with: 
Assumption A3*. 

d 
-m*(y) < r for y > b. 
dy 

(70) 

Theorem. Under Assumptions 1, 2, and 3*, the supremum of profit for unbounded 
withdrawal rates is given by the profit function P defined above, with the corre- 
sponding control U, and the overflow policy with barrier b determined by equation 

(67)- 
[Note: For the Theorem, we need only the assumption that u* be continuous, but 

not that it be nonincreasing as in Assumption A1(4).] 
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Proof of Theorem. By construction of the control U, the Bellman optimality 
conditions are satisfied for y 5 b, just as in the proof of Theorem of Section 3. For 
y > b, we have P1(y) = 1 ,  P"(y)  = 0, and hence the Bellmanian function (see ( 3 ) )  is 
given by 

I first want to show that the profit function P rnajorizes the profit from any 
policy with a bounded withdrawal. For this it suffices to show that the Belhanian 
corresponding to the profit function P is nonpositive. From (3), (5 ) ,  (67), and (69), 

and hence 
B 2 -m*(b) + r ( y  - b) + m*(y).  (73) 

But by ( T O ) ,  for y > b, 
m*(y)  < m*(b) + T(Y - b), (74) - 

and so B < 0. 
I t  remains to show that the profit function P can be approximated arbitrarily 

well by bounded-withdrawal policies. As above, let b be the optimal barrier for the 
unbounded case. Fix w > 0, and define the bounded-withdrawal policy W ( y ;  w )  by 
(2), with w* replace by w. Let the earnings control be that for the unbounded case, 
for y < b, and equal to u*(y) for y > b. Call the combined policy ~ ( w ) ,  and let 
P ( y ;  w )  denote the corresponding profit function. I shdl show that 

lim P ( y ;  w )  = P(y) .  
W + M  (75) . 

Since the policy 7i(w) coincides with the unbounded-withdrawal policy ~ ( m )  for 
y < b, I first consider the case y > b. The profit function - P ( y ;  w )  satisfies the 
differential equation, 

where M ( y )  and V(y)  are the drift and volatility functions prescribed by the policy 
~ ( w ) ,  and PI, P" denote derivatives with respect to the variable y. Dividing this last 
by w, we get, 

V ( Y >  M ( y )  l ]P1(y ;  w) + -PU(y; w )  = 0. 1 - ( r / w ) P ( y ;  w )  + I--&- - 2w (77) 
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Letting w --, m,  we get 
lim P1(y; w) = 1. 

w-52 (78) 
For y < b, the policies ~ ( w )  and ~ ( m )  coincide; furthermore, 

- P1(b+; w). P'(b-; w) - (79) 

Hence, for all y, 
lim P1(y; w) = P1(y). 
w-02 

In addition, 
P(b-; w) = P(b+; w), 

so that 
lim P(y;w) = P(Y), 
w-CO 

which completes the proof of the Theorem. 

6. FAILURE - 

In the case of unbounded withdrawals (see the preceding section), the enterprise will 
almost surely fail in finite time (T < m ) ;  in fact, the expected time to failure is finite 
(see, e.g., Harrison, 1985, p. 87). - 

The case of bounded withdrawals is more complex. In the special case of "constant 
size" (see the end of Section 4), the enterprise will almost surely fail in finite time 
provided that w* is large enough; for example, it suffices that w*> M(u*),  which 
in turn implies that the drift of the asset level, Y(t), is strictly negative whenever 
Y(t) > b. Roughly speaking, whenever Y(t) is above the barrier b, it will eventually 
return to the interval 10, b], and whenever it is in that interval there is a positive 
probability that it will reach 0. Hence Y(t) will eventually reach 0. 

In the more general case of variable scale, the drift can increase with the asset 
level. For example, consider the Multiplicative Scaling Model of Section 4, and assume 
that: 

(1) the scale function R is increasing and unbounded, whereas S is independent 
of scale; 

(2) the minimum of M ( u )  on [0,1] is strictly positive. 
If follou~s that for any (finite) w* and any barrier b there is a scale y*> b such that, 

for any control function U ,  for all Y(t) > y*, the drift of Y(t) will be positive and 
bounded away from zero. In this case (since the volatility is bounded and bounded 
away from zero), the conditional probability that the enterprise never fails, given that 
Y(0) 2 y*, is strictly positive. 

In other words, at a large enough scale, the ezpected rate of earnings [per unit 
time) of the enterprise is greater than the maximum rate of withdrawal. On the other 
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hand, the larger is w* the larger will be the critical level y*, and the smaller will be 
the probability that the enterprise will never jail (T = m). (I omit the details.) 
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Appendix 

Proof of t h e  Lemma of Sec. 3 

Fix x throughout the proof. There is a bounded set, say Ct,which is 
open in R+ x R, contains the strip C ( x ) ,  and in which the function G in 
(32)  is C2. Let J be the open in tend  of points u such that (0, u )  is in C'. 
The differential equation (34)  for the second regime has a solution for ail 
initial conditions u in J, and by the "Continuity Theorem" this solution is 
continuous in the sup-norm topology, as a function of the initial condition 
(see, e.g., Arnold (1973), p. 221, Corollary 31.8). In other words, for any 
initial condition u in J, let U be the corresponding solution of the differential 

- equation (34)  with U ( 0 )  = u ;  then for any E > 0 there exists an E' > 0 such 
that, if u' E J, with 

- - U - E ' < U ~ < ~ + E ' ,  
( 1 )  

and V is the solution of (34)  with initial condition u', then for all [y ,  V ( y ) ]  
in C', - 

I ~ ( Y )  - U(y) l  L E.  ( 2 )  
I shall consider four cases: 
Case 1. C ,  (u)  is in the upper boundary of C(x),  and  X ( u )  y  * < x .  

In this case, 

(the latter by (39)) .  For some nonempty interval K centered on y*, there is 
a y > 0 such that U r ( y )  > y for ail y in K. Let 

E 
92 " y*. + (-); Y (6)  

then for E suf%ciently small, yl and y2 are in K ,  and 

U ( y 1 )  + & L U ( y * )  - y(y* - y l )  + E = u*(y*),  (7) 

~ ( Y P )  - E 2 U(Y*)  + y(y2 - y*) - E = u*(y*). ( 8 )  
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(See Fi,we.) 
Let u' and V be as above, with lu' - u1 < E', and E sufficiently small so 

that [y2, V(y2)] is in C'; then 

Hence, since u*(.) is nonincreasing, (7) and (8) above imply that 

From this, and the continuity of u* and V, there is some y3 between yl and 
g2 such that 

V(y3) = u*(y3). 

Furthermore, recall that U(y) < u*(y) for all y < y*. The strip C(x) is 
compact, and both U and u* are continuous, so if E is sufficiently small, then 

U(Y) + E < U*(Y), for all y < yl. (14) 

Hence 

V(Y> < u*{Y), for d l  y < yl. (15) 

First, from (13) and (15), 

hence, by (5) and (6) ,  we can make IX(ut) - X(u)  1 = IX(ul) - y*l as small 
as we like by taking E sufficiently small. Second, note that 

By (2), the first term in the right-hand side of the above does not exceed E, 
whereas by the continuity of U, we can make the second term as small as we 
like by making IX(u') - y*l sufficiently small. Hence we can make the left- 
hand side as small as we like by taking E sufficiently small. This completes 
the proof that, in Case 1, C, is continuous at u. 

Case 2. C,(u) is in  the lower boundary of C(z ) ,  and X(u) < z. In this 
case use an argument symmetric t o  that of Case 1, with u*(.) replaced by 
the constant function, u = 0. (Recall that G(0, y) < 0.) 
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Case 3. CZ(u) is in the interior of the right-hand boundary, D(x), of 
E(x) :  i-e., 

In this case, the Continuity Theorem implies that, for u' sac ien t ly  close to 
u (using the notation of Case I), V(x) is also in the interior of D(x ) ,  and 
hence C, is continuous at u. 

Case 4. C,(u) is at one of the endpoints of D(x). In this case one 
combines the arguments of Cases 1 (or 2) and 3. I omit the details. 

This completes the proof of the Lemma. 
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Figure. Appendix, Case 7. Lb) = ~b*)+yb-y*) 
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