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Abstract 

In many organizations, both business and scientxc, we collect ever increasing amounts 
of data using information technology. Indeed, the technology for collecting data has 
outpaced our ability to analyze and interpret these very large databases. In this pa- 
per, we discuss the interaction of heuristic search and domain knowledge in the AX 
knowledge discovery tool. The search process rests on the use of rule quality measures 
and the organization of domain knowledge. A small loan application database from 
the machine learning repository is used to illustrate the process. 

Keywords: knowledge discovery, machine discovery, domain knowledge, heuristic search. 

1 Introduction 

In many organizations, both business and scientific, we collect ever increasing amounts of 
data using information technology. Whether you do business at a bank, a supermarket, 
or on the stock exchange, an electronic footprint of your passage is left in information 
space. Overall, it has been estimated that the world data supply doubles every 20 months 
[FPSMSl]. Indeed, the technology for collecting data has outpaced our ability to analyze and 
interpret these very large databases. Streams of information such as credit card transactions, 
retail product purchases, and economic data are producing massive pools of information that 
should yield benefits relative to  the expense of collection. How can we deal with these rapidly 

s increasing volumes of data? We do not envision users directly navigating through mind- 
numbing databases, rather we see them employing tools that facilitate the crystallization 
of useful patterns or knowledge. To facilitate this, we need to design computer tools that . support the analysis of very large databases. 

In this paper, we outline the design of the prototype AX discovery system. This tool is 
intended to test some specific discovery techniques as well as provide a flexible infrastructure 
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for future experiments. For this reason, the natural fit between databases and logic program- 
ming made Prolog an interesting language for the implementation. Discovered knowledge 
is represented as rules within the system and some rule quality measures are discussed in 
Section 2. In particular, we compliment the usual conditional probability measure with a 
related measure we call power, as well as rule scope or database selectivity. The system 
is organized around the notion of concept sets, which contain database attributes or views. 
Rule discovery consists of applying various techniques to uncover relationships between indi- 

4 

vidual concepts. New concept sets can be constructed by the user or generated as part of the 
heuristic search process. The search process relies on domain knowledge encoded as concept 
network-generalizations of attribute hierarchies (for instance, see [HCC92]). Currently, 
rule discovery within a given concept set is based on an implementation of abstract-driven 
discovery as outlined in [DT93], see Section 4.1. 

1 .  Knowledge Discovery Tools 

Some of the large business and scientific databases are carefully analyzed by hand. How- 
ever, detailed data analysis can be time consuming and probably occurs infrequently. Most 
processing is accomplished by executing some standard set of queries based in part on past 
in-depth analysis. This may mean that no "unexpected" findings are likely to be discov- 
ered since the search process is static, unaffected by changes in the database or the user's 
perspective, In addition, traditional data analysis is characterized by a one-way flow in 
which data is extracted from a database using a query language, stored in intermediate files, 
and subsequently analyzed using a particular statistical package. Knowledge discovery tools 
(KDTs) integrate database access methods and exploratory data analysis, often relying on 
domain knowledge for direction.' That is, there is a two-way interaction in which the results 
of one analytic step may be used to  guide subsequent steps, possibly modifying the domain 
knowledge itself. Discovery tools are intended to  leverage an analyst's efforts by supporting 
an iterative discovery process. 

Frawley et al. describe a generic discovery tool architecture [FPSMgl]. In this architec- 
ture, the role of domain knowledge, as well as user interaction, in focusing the search process 
is clearly shown. The prototype AX knowledge discovery tool can be usefully viewed from 
this perspective. Domain knowledge, describing meaningful abstractions or database views, 
is explicitly maintained by users. These concepts are then linked together for use in a 
search process that lends some automation to  the discovery tool. Four important aspects of 
knowledge discovery tools derived from the generic architecture include: the language used to  
represent knowledge, the ability to  describe the accuracy or probablistic nature of knowledge, 
measures of the "interestingness" of knowledge, and concerns for eficiency [FPSMgl]. 

We represent knowledge or discovered regularities using the language of logic-based rules. 
Predicates are the primitive concepts or database views which are associated in a rule struc- 
ture. For example, a rule from the domain of bank loan applications might indicate that 
"living in a bad neighborhood is associated with loan rejection, despite a lot of savings." 

'Another term for discovery software that is finding favor is siftware. 
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The following section describes our rule representation and several measures of rule quality, 
which address the issue of accuracy. In Section 3, the representation and organization of 
concepts or domain knowledge is discussed. The discovery process based on heuristic search 
is presented in Section 4, including issues relating to "interestingness" and efficiency. 

2 Knowledge as Rules 

The knowledge or patterns we wish to discover are probabilistic relationships between two or 
more concepts. In this Section, we develop a more formal representation for expressing such 
relationships or regularities. We represent such patterns or regularities as rules, adapting 
the form proposed by Dhar and Tuzhilin [DT93]. That is, knowledge is expressed by a rule 
of the following form. 

pl A . . . A pn --+ q [RC, RS, RP]  (2) 
Where p;, i = 1,. . . , n are database relations or user-defined predicates (or their negations), 
and q is a relation, user-defined predicate, or relational operator (=, <, <, 2,  >). Once a 
rule is proposed, how should we assess the quality of the regularity? That is, what does it 
mean to evaluate a rule? The measures of rule quality we use include rule certainty (RC), 
rule scope (RS), and rule power (RP), which can be combined to  form a single measure of 
rule quality. 

Rule certainty, RC, is defined as the conditional probability of the head of a rule being 
true given that the body of the rule is true. That is, the certainty of rule p -+ q is P(q I p). 

Where I p A q I is the number of tuples satisfying conditions p and q and I p I is the number 
of tuples satisfying condition p.2 

While the measure of certainty discussed above is important, it may be misleading if the 
number of tuples "covered" by the rule is small. How useful is a nearly certain rule if it only 
applies to a single tuple? In order to address this concern, we use a measure of rule scope, 
RS, to  indicate how widely the rule is applicable. Scope is defined as P(p), the probability 
of a tuple meeting the premise p. 

Where N is the total number of tuples. A related measure of "support" or frequency has 
been useful in other systems, for instance see [AIS93] [MM93]. We can use RC and RS to 
calculate rule frequency, RF. 

1 

2The symbol p is used here as an abbreviation for the antecedent pl A . . . A p,. 
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Rule power, RP, complements rule certainty, having the same numerator, but the number 
of tuples satisfying the head of the rule as the denominator. 

Where I pA q I is the number of tuples satisfying conditions p and q and I q I is the number of 
tuples satisfying condition q. Intuitively, this measure can be thought of as the proportion 
of the consequent, q, explained by the rule. 

The above measures are used to rank discovered rules, both as single measures and in 
combination as rule quality. Assessing rule quality is important for effectively browsing large 
collections of rules, as well as in the heuristic search process described in Section 4 

Domain Knowledge 

Predicates are the primitive fragments of "knowledge" from which more complex rules are 
constructed. In this section, we will formalize the notion of a predicate as a tool for expressing 
concepts meaningful to a user. How do we define predicates that implement views of the 
underlying data? Once we define a set of predicates, how can the set be organized to support 
the knowledge discovery process? 

Predicates such as "bad neighborhood" are meaningful abstractions on the underlying 
data. We call these abstractions concepts, a term used in the machine learning literature. 
The "knowledge" we are attempting to uncover is expressed as rules relating two or more 
concepts. Therefore, we need a representation scheme for defining concepts, which are similar 
to relational views [U1188]. Dhar and Tuzhilin [DT93] propose user-defined predicates as 
a means of representing concepts. User-defined predicates are disjunctions of conjunctive 
clauses, VEl(l\j",, pij), where each term, p;j, is either a database relation, relational operator, 
or another user-defined predicate. For example, the concept rich(Person) may be defined in 
terms of the underlying CREDIT relation, a previously defined large-estate concept, and 
restrictions on savings and salary. 

rich(Person) t CREDIT(Person ,  . . . , Loan) A 

large-estate(Per8on) V 

[Savings > 75 r\ Salary > 1001 (7) 

Vocabularies of user-specified concepts have two levels of organization. A single predicate 
is defined as a disjunction of conjunctive clauses and can be viewed as an AND/OR-tree. This 
structure offers a limited form of new concept "discovery" since the intermediate AND-nodes 
can be named by machine and used as concepts themselves. The vocabulary of user-defined 
predicates can be further organized as higher-level structures-called concept networks. A 
fragment of a vocabulary is defined below to  make the discussion more concrete. 
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[Savings < 75 A Savings > 251 (8) 
poor(Person) t CREDIT(Person, . . . ,Loan) A Savings < 25 (9) 

upper-middle-class(Person) t middle-class(Person) A Savings > 60 (10) 

lower-middle-cEass(Person) t middle-class(Person) A Savings < 40 (11) 

othermiddEe~cEass(Person) c middle-class(Person) A 

 upper-middle-class(Person) A 

llower-middle-class(Person) (12) 

large-estate(Person) t CREDIT(Person, . . . , Loan) A 

Property > 1000 (13) 

small-estate(Person) t CREDIT(Person, . . . ,Loan) A 

Property < 100 (14) 

other,estate(Person) t CREDIT(Person, . . . ,Loan) A 

[ilarge-estate(Person) A 

ismall-estate(Person)j (15) 

3.1 Concept Networks 

Dhar and Tuzhilin [DT93] propose a classification hierarchy for user-defined predicates, based 
on a partial order derived from logical implication. We can incorporate class~cation hierar- 
chies in a more complex structure-a concept network. The nodes in a concept network are 
user-defined predicates, which represent meaningful user-level concepts. These concepts are 
interconnected using three types of links. 

1. Classification links form a classification hierarchy, they indicate that a concept may 
be unambiguously classified by a mutually ezclusive set of child concepts, and are 
represented as solid lines.3 A complete taxonomy can be ensured by assuming an 
implicit default category defined as the negation of the original child concepts. 

2. Composition links indicate that a given concept is composed, at least in part, of some 
set of underlying concepts (represented as dashed lines). A concept is "composed of" 
other user-defined concepts if they appear on the "right hand side" of the definition. 

3. Association links indicate that a particular concept is simply associated with other 
A 

concepts, and are represented as dotted lines. This type of link allows users to make 
explicit associations that seem appropriate. 

* 
3Classification schemes must be exclusive, but it should be noted that a given tuple may classified using 

many different schemes. If the classifkations are not mutually exclusive, there may be problems of "double 
counting" tuples. 
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Concept networks are general graphs rather than strict hierarchies or tree structures. 
Therefore, we can explore a region of related views around a given concept by visiting ad- 
jacent or "nearby" concepts in multiple hierarchies. We will use these structures in our 
attempts to introduce the capability for autonomous exploration into our knowledge discov- 
ery systems, an aspect which is discussed in Section 4. 

Figure 1 represents a simple network of loan-related concepts, some of which were 
defined were defined above. The concept middle-class can be classified (solid lines) as 

1 

upper,middle-class, lower-middle-class, or an implicit concept othermiddle-class. The 
concept rich is composed (dashed line) in part by estatesize. Lastly, wealth is connected 
to the related neighborhood concept by a user-specified association link (dotted line). 

Figure 1: A Network of Loan-related Concepts 

4 Discovering Regularities 

In the previous two sections, we have considered how to define predicates and their com- 
binations in the form of rules. The heuristic search process is responsible for exploring 
potentid relationships among user-defined concepts. That is, finding the rules that de- 
scribe these relationships in an automated fashion. However, the space of possible rules can 
be immense-depending on the type of rules sought and the complexity of the underlying 
database. Therefore, we approach the problem of transforming concepts into discovered 
knowledge in a stepwise fashion. Three stages can be identified in this process: sets of con- 
cepts are formed (by the user and/or search process), rules are generated from the concept 
sets, and each rule is evaluated with respect to  the underlying database. 

The search process begins with the selection of a group of "interesting" concepts-a 
concept set. We can assume that the user makes the initial selection or a collection of "seed" 
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concept sets are generated automatically, say all two-concept sets. The initial concept sets 
serve as the starting points for the exploration of the search space of concept sets, which is 
developed through the interplay of heuristic techniques and user intervention. Each node 
in the search space-a concept set-may give rise to  a large number of rules. Section 4.1 
presents some methods for generating rules from concept sets. 

The classification, composition, and association links in the user-defined concept networks 
give rise to  a group of concept set operators. Classification links define both generalization 
and specialization operators, depending on the traversal direction. Decomposition and com- 
position operators are derived from composition links. An association edge is typed and 
currently supports both substitute and compliment relationships. A substitute concept calls 
for replacement, while a compliment concept is added to the set. Lastly, we can include 
concept deletion and concept addition as operators. These eight operators can be used to 
develop the search space, with their application guided by heuristics and user in te r~en t ion .~  
The search tree fragment in Figure 2 is based, in part, on the previously presented concept 
networks and the application of the above operators (indicated on each edge). 

(loan-outcome, wealth, purche-item} 
.-... -- ; --- -...-- 

_._.--a- --...._. .. specialization .-....--* --- association *-.-_ :, deletion ....-- ...- .... 
{loan-outcome, p~chase~item} r -.- --.. 

-.-.._. {loan-outcome, neighborhwd, p~rchase~item} 
-.-. 

[Iwn_outcome, rich, purche-item} '.; deletion 

decomposition :, {lmn-outcome, neighborhod} 

{lmn-ou fcome, estate-size, p u r c h e - i w  

Figure 2: An Example Search Tree 

The heuristic search process entails selecting the best concept set which still offers oppor- 
tunities for the application of concept set operators. Concept sets are ranked by the quality 
of the associated rules. The operator application strategy favors less expensive operations, 
such as deletion and generalization, that make use of existing summary tables as described 
in Section 4.1. The decision whether to  generalize or specialize a particular concept is guided 
by the number of domain values, controlled by user-specified thresholds (see [HF94]). Lastly, 
the addition operator can be used t o  extend a given concept set. 

4.1 Deriving Rules from Abstracts 
4 

Once a concept set is selected, either by the user or by application of the operators discussed 
above, our system must generate and evaluate the candidate rules. Each concept set can 

4 give rise to  a large number of rules-representing discovered knowledge. 

4The search space may actually be a cyclic graph since duplicate concept sets may be formed through 
alternative paths. However, by marking duplicates we can manipulate the search space as a tree. 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-95-1 1 



NY U/S t  ern Working Paper 8 

One mechanism we propose using is based on abstracts or summaries of the underly- 
ing database with respect to  a given concept set (see [DT93] for an in-depth discussion of 
abstracts). An abstract is derived from the concepts and an aggregation principle, which 
determines how the data will be grouped. Examples of aggregation principles include sum- ? 

mation, averaging, maximizing, minimizing, and most commonly counting. 
Furthermore, we can employ two types of abstracts. A complete abstract which summa- 

rizes all the data, and a sampled abstract based on some type of statistical sampling-thereby 
b 

improving performance [KM94]. 
Rules can be derived from abstracts by using statistical tools, such as cluster analysis, 

or by non-statistical techniques. Dhar and Tuzhilin propose several methods for deriving 
rules. One algorithm (we term the FFA algorithm) is based on "fixing" all attributesexcept 
one, the "free" attribute, and comparing across the values of the free attribute. Using the 
abstract in Table 1, we can fix loan-outcome (say to  "approved") and allow purchase i t em  
to vary. We then fix loan-outcome to "rejected7' and repeat the process. The following rules 
are representative of the derivation process, where the associated "quality" vector includes 
rule certainty, scope, and power as defined in Section 2. 

loan-outcome purchase-item count I 
approved home-furnishings 
rejected home furnishings 
approved luxury 
rejected luxury 
approved medical 66 
rejected medical 12 
approved transportation 23 - - 

I rejected 
- 

transportation 36 1 

Table 1: An Example Abstract 

4.2 Interestingness 

The choice of which concept sets to  explore is central to  the heuristic search process. Our 
measures of "interestingness" allow us t o  tradeoff search quality against brute force effort. 
Furthermore, we can consider interestingness from two perspectives-the perspective of the 
user and the richness of the  data. 

Every user will have a different perspective on the interestingness of discovered knowledge. 
This will be reflected in the  specification of any initial concept sets as well as subsequent 
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guidance. In particular, we allow the user to mark concept sets as "hot spots" that can serve 
as primary areas of focus, as well as mark individual rules as important examples. These 
user actions can serve as the basis for some measures of interestingness. For instance, the 
distance from a focal concept set can be used to attenuate "raw" measures of interest. The 
user may also wish to indicate individual concepts of particular interest, thereby making 
certain concept sets more interesting. That is, the user may partially specify the type of 
rules desired. 

The underlying data is the ultimate determinant of the quality of rules that can be derived 
from a given concept set. The number of rules, as well as their strength, are obvious factors 
in assessing the merit of a given concept set. For those concept sets yet to be explored, 
the member concepts can be used to estimate interest. Individual concept merit reflects the 
current crop of rules in which it serves as a component. 

4.2.1 Rule Quality 

We can combine the rule certainty, rule frequency, and rule power measures to form a 
rule quality metric, RQ. This measure can be used to rank derived rules and guide the 
search process. A three-dimensional quality space can be formed using the above measures, 
(RC, RF, RP).  The origin is the lowest possible quality score, corresponding to / p A q I =  0. 
That is, when no tuples satisfy the rule. The best quality score is obtained when all measures 
are equal to one, yielding a maximum of a. Rule certainty and power can only equal one 
simultaneously if the sets described by p and q are identical. This is the very "interesting" 
case of both the antecedent and consequent corresponding exactly. The rule frequency di- 
mension simply indicates that the more tuples supporting the rule, the better (holding other 
factors constant). So, RQ is at a maximum if the antecedent and consequent sets coincide 
and cover the entire database. Therefore, rule quality can be interpreted as a distance in 
three-dimensional space, defined as follows. 

This measure is zero when the antecedent and consequent are disjoint, and satisfies two other 
principles of rule interest proposed by Piatetsky-Shapiro [PS91]. That is, RQ monotonically 
increases with I p A q  I and monotonically decreases with I p I or I q I ,  holding other parameters 
constant. Rule quality may then be used in conjunction with other interest measures, for 
example see [PS91]. 

5 Conclusions 

In summary, this paper outlines the heuristic search process being developed in the AX 
< 

knowledge discovery tool. The search process rests on explicit domain knowledge, represented 
as user-defined predicates or concepts, organized as concept networks. In addition, the 

4 search process is conducted at  the level of concept sets, using abstract-driven discovery to 
evaluate individual rules [DT93]. Three important rule quality measures are used within the 
system: rule certainty (conditional probability), rule scope, and rule power. In particular, 
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the interaction of rule certainty and power provides an indication of how closely the rule 
antecedent and consequent correspond. These three measures define a three-dimensional 
interest space which can be used to rank rules, and thereby guide the search process. An 
example loan application database served to illustrate the process, and was obtained from • 

the machine learning repository maintained at the University of California at  Irvine. 
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