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Abstract 

More and more application domains, from financial market analysis to weather 
prediction, from monitoring supermarket purchases to monitoring satellite images, are 
becomingly increasingly data-intensive. The result is massive databases that are grow- 
ing at a rapid rate - it has been estimated that the world7s electronic data almost 
doubles every year. With this rate of data explosion, there is a pressing need for com- 
puters to play an increasing role in analyzing these huge data repositories which are 
impossible to penetrate manually. The challenge is to ferret out the regularities in the 
data that will prove to be interesting to the user. 

A group in the Information Systems department at the NYU Business School has 
been working in this area for a number of years. The focus of our project is now on the 
discovery of patterns from time series data. In this paper we give an overview of the 
kinds of databases we are "miningJ7 and the kinds of temporal patterns and rules which 
we are attempting to discover. In the first phase of this research, we have demloped a 
taxonomy of patterns as a way to organize our research agenda. We wish to share the 
taxonomy with the research community in the "knowledge discovery in databases" area 
since we have found it useful in classifying the universe of regularities or patterns into 
distinct types, that is, patterns which differ in terms of their structure and the amount 
6f search effort required to find them. Although the primary focus of our project is 
on time series data, and the examples we will present are chosen from this arena, the 
taxonomy is general enough to apply to any type of data. 
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Motivation and Goals 

More and more application domains, from financial market analysis to weather prediction, 
from monitoring supermarket purchases to monitoring satellite images, are becomingly in- 
creasingly data-intensive. The result is massive databases that are growing at a rapid rate 
--it has been estimated that the world's electronic data doubles every 20 months [FPSMSl]. 
With this rate of data expIosion, there is a pressing need for computers to play an increasing 
role in analyzing these huge data repositories which are impossible to penetrate manually. 
NASA observation satellites, for example, send back a terabyte of telemetry data daily 
[FPSMSl]. Large financial institutions collect hundreds of gigabytes of data every day. Like- 
wise there is an abundance of medical data on a variety of virologic, cancer, and other kinds 
of diseases that is growing rapidly. Ferreting out interesting patterns from large amounts of 
this data must be done by the computer. 

The focus of our group is on time series data. This is because much of the data that are 
flowing into large databases, whether they be business, medical, or scientific, are inherently 
temporal. Not surprisingly then, interesting patterns often tend to be temporal. Consider, 
for example, the set of time-series plots shown in Figure 1. Many interesting patterns lie 
hidden in such temporally rich databases, such as the fact that interest rates and the large 
capitalization stock index tend to move in the same direction, or that humidity tends to  
become very volatile after periods of low rainfall. 

'4' w 
I "head and shoulders" : 

5/11/88 6/3/88 81'1 5/88 I0/12/88 time 

ECONOhXETRIC AGRICULTURAL 
A 1 : Large Cap Industrial Index B1: Amount of Rainfall in Rio de Janeiro 

iEGENDS: A2: Number of Housing Starts B2: Size of Coffee Crop 
A3: Interest Rate B3: Temperature 
A4: Small Cap Industrial Index B4: Humidity 

Figure 1: Some Typical Time Series Functions 

Although our focus in this research project is on time series data, our framework for 
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classifjring patterns is general enough to apply to data with any kind of ordering (other than 
time) and also to cross-sectional data. 

The Type of Data to Be Explored 

Let us consider the line graphs in Figure 1, which show four variables plotted over time. The 
legends (A and B) show two possible sets of labels for the graphs, one in an econometric and 
the other in an agricultural domain. In the agricultural application, the items of interest 
are the amount of rainfall in some area (say, Rio de Janeiro), along with its temperature, 
coffee crop, and humidity, all plotted over time. Appropriate scales can be chosen on the 
vertical axis. The second labeling, from the econometric domain, has as  its corresponding 
data a large capitalization industrial index (a weighted average of large capitalization stocks), 
interest rate, the number of housing starts, and a small capitalization industrial index. We 
can envision various other types of data, similarly plotted, for other application areas. 

How many different patterns can be extracted from the data corresponding to Figure l ?  
A few patterns seem fairly apparent. For example, "temperature (B3) and rainfall (Bl) 
often seem to move in the same direction." Also, "the coffee crop (B2) seems to rise after 
a "cool dry spell" (B3 & B4)." Likewise, for legend A, the corresponding patterns are that 
"interest rate (A3) and the large capitalization index (Al) often seem to move in the same 
direction," and that "housing starts (A2) seem to jump after a period of lower interest 
rates (A3)." However, there are also some more subtle patterns in the data. For example, 
"the small capitalization index (A4) seems to become very volatile after a drop in the large 
capitalization index (Al) ." 

In describing the trends in the graphs, we made use of several kinds of terms, which can 
be viewed as part of an application-specific vocabulary. For example, a "bottom reversal" 
is a term used by technical analysts of economic indicators [LR78] to express concisely an 
interesting (to them) progression of data values plotted in time. S ida r ly ,  economists refer 
to "seasonal unemployment" or "peaks" as part of their language. The same is true in 
most application areas, e.g. medicine ( "night fevers"), biology ("hibernation periods"), 
and other areas of specialization involving temporally rich data. Such terms, which we call 
temporal predicates, make explicit reference to the temporal dimension. One issue that we 
must address is that there is frequently some degree of fuzziness in these terms, in the sense 
that there can be a certain tolerance for variations from the "typical" trend. 

We also noted that housing starts jump after a period where the average interest rates 
are low. Accordingly, our vocabulary must also consist of a rich set of purely temporal 
predic@es such as "after", "immediately after", "before", etc. These predicates refer ex- 
clusively to time. Although there is a well-known complete set of these predicates [A1184], 
we must be able to deal with imprecision in matching them with the data. For example, 
immediately-a fter(t3, t2) is true if the value of t3 is greater than that of t2 by less than 
some specified "small" amount. 

In addition, we need temporal aggregate functions, which specify how the raw data can 
be aggregated over time. For example, averaging, summation, maximizing, minimizing, 
and counting are examples of aggregates which can be applied to raw data. For example, 
aueragehousing-starts(housing-starts, t l ,  t 2 )  would return the average number of housing 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-95-12 



TRENDS(Stock, From, To) 

BEARS(Stock, From, To) BULLS(Stock, From, To) 

HEAD-AND-SHOULDERS(Stock, From, To) I 

ND-SHOULDERS(Stock, From, To) 

DECLlNE(Stock, From, To) 
ADVANCE(Stock, From, To) 

Figure 2: Example of a Classification Hierarchy of Technical Analysis Patterns. 

starts in the interval (t l ,  t2). Likewise average-volatility c (stock, t l ,  t2) would return the 
standard deviation of averaged daily returns of a stock in the interval ( t l ,  t2). 

Note that terms such as "bottom reversal" are user-defined predicates built out of a set of 
more primitive predicates. These user-defined predicates essentially provide relational views 
[U1188] on the original data and are useful since patterns are often expressed in terms of such 
views on the original data. More precisely, a user-defined predicate over some database is 
a disjunction of conjunctive clauses, i.e., is of the form !/El( A Pij), where each atomic 
formula P, is either (i) a database relation, (ii) relational operator, such as =, <, 5, de- 
fined either on temporal values or on the domain values (including attributes from database 
relations), (iii) another user-defined predicate. 

Since a user-defined predicate can be defined in terms of other user-defined predicates, 
we can represent this relationship in terms of a classification hierarchy, such as the one in 
Figure 2. This hierarchy is useful for providing a vocabulary for expressing and searching 
for patterns. 

Finally, we note that we have all dong assumed an underlying data type called a time 
series, a function from some bounded time interval into some underlying domain of values. 
Formally,let DOM be a domain (any set) and T be a bounded time interval (T = [L, A]). 
Then a time series is a function TS : T + DOM. We assume that this data type is sup- 
ported in some way - either directly or indirectly - by the underlying DBMS. Time series 
can be specified with various representation methods. For example, it can be represented 
with a Fourier transform. In this case, the frequency plot will be a "description" of the time 
series. Alternatively, the time series can be approximated with a set of polynomials based on 
the approaches used in the wavelet theory [Chu92]. Finally, the extensional representation 
of the function itself as a set (typically, very large) of < time, value > pairs might sometimes 
be appropriate. 
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To summarize, in addition to the database, we make use of what can be termed a data 
dictionary which can be viewed as a layer that enables a pattern discovery system to focus its 
attention on things that will be meaningful to the user. This vocabulary consists of temporal 
predicates, some of which can be defined by the user in terms of other temporal predicates, 
temporal aggregate functions, and time series. 

3 The Type of Knowledge to  Be Discovered 

There is no standard definition of the term "pattern" in the literature. In trying to draw 
a common thread through a collection of papers on "Knowledge Discovery in Databases," 
Frawley et.al. [FPSMSZ] define patterns as follows: 

Given a set of facts (data) F, a language L, and some measure of certainty C, a 
pattern S is a statement S in L that describes relationships among a subset Fs of 
F with certainty C, such that S is simpler (in some sense) than the enumeration 
of all facts in Fs. 

Their definition is intentionally vague to cover a wide variety of approaches. 
The temporal domain brings additional considerations to the concept of a pattern. For 

example, in Figure 1 the number of housing starts (A2) from 8/15/88 to 10/12/88 exhibits 
a pattern known as head-and-shoulders [LR78]. As another example of a temporal pattern 
consider the statement "if a price correction to a stock is seen immediately preceding the 
announcement of big news, then insider trading in that stock is likely during that time." 
This pattern can be expressed as a temporal rule described below. 

The first type of pattern mentioned above, which we call predicate-based patterns, maps 
a time series of data into the interval [0,1]. Let TS be a set of all time series TS defined 
over the time interval T ,  and let I be a set of all possible time subintervals over T .  Then a 
predicate- based pattern is a function: 

PAT : T S  x I -+ [O, 11 
The interval [0,1] captures the "fuzziness" associated with the patterns. A certain pattern, 
for example, might be the "prototypical" head-and-shoulders in which case a value of 1 would 
be assigned to the pattern. Lower values would indicate deviations from the prototypical 
pattern, with 0 denoting no match at all. A special case of the above are patterns that assign 
only 1 and 0 (or TRUE and FALSE) to time series, are therefore like standard predicates in 
logic. , 

We will denote a pattern over the time interval [tl, t2] for the time series TS as 
PAT(TS, tl,  t2). For example, bottom-reuersal(dai1y-rain f all, 5/11/88,6/3/88) means that 
the daily rainfall in Rio de Janeiro exhibits the bottom-reversal pattern between 5/11/88 
and 6/3/88. 

Predicate-based patterns can be defined in many ways. For example, the bottom,reversal 
pattern can be defined in terms of the first-order logic as: 

bottom-reversal (x, tl, t2) = (3) (tl  < t < t2 A monotone-decrease(x, t l ,  t) 
A monotone-increase(z, t, t2)} 
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where monotone-increase(x, tl, t2) and rnonotonedecrease(x, ti ,  t2) are user-defined predi- 
cates saying that "by and large" x is monotonically increasing (decreasing) between times 
tl and t2. These predicates can be defined in an obvious way in first-order terms. Alterna- 
tively, bo'Hom-reversal can be defined by taking a Fourier transform of a pattern and then 
identifying certain types of frequencies in the transformed pattern. Another way to define 
bot$m-reversal pattern is to use the pattern recognition approach by identifying a set of 
features, dividing the space of all features into different regions and then computing into 
which region a certain pattern falls. 

The second type of pattern can be defined as a rule, following the approach proposed in 
[DT93], i.e. as an expression of the following form: 

where pi7 i = I,. . . , n and q are any of the predicates discussed in Section 2 (temporal or 
non-temporal database relations, user-defined predicates and predicate-based patterns) or 
negations of these predicates, or relational operators (=, <, <, 2, >) defined on constants, 
variables or user-defined functions, and c is a number (for instance, a conditional probability) 
in the interval [0,1] that indicates the degree to which the rule holds. Some of the predicates 
and functions in the rules are temporal and others are non-temporal. We make the usual 
assumptions about our rules, i.e, there are no negations in the head of a rule, and the patterns 
are safe [U2188], so there is a finite number of tuples satisfying the body of a rule. 

We provide examples of some patterns expressed as rules below. 
If a price correction in a stock is seen before the announcement of big news about 
the company, then insider trading is likely 

corredimz(Stock, t l ,  t2) A big-news(Stock, t3) A immediately -after (t3, t2) 
-+ insider-trading(Stock, t l ,  t2) ' [75%] (2) 

where correction, big-news, immediately-after, insider-trading are user-defined temporal 
predicates. The next pattern provides an example of a predicate-based pattern and a user- 
defined function appearing in a rule. 

If a stock shows a head and shoulders pattern, and investor cash levels are low, 
then a bearish period is likely to follow 

head-and-shoulders(stock, t l ,  t2) A avg_investor-cash * (cash-index, t l ,  t2) < low-cash 
A immediately-after(t, t l ,  t2) -+ bearish(stock, t) [62%] (3) 

where h%ad-and-shoulders is a predicate-based pattern and avg-investor-cash* is the user- 
defined aggregate function returning the average levels of investor cash between times t l  and 
t2. 

4 A Categorization of Knowledge Discovery Tasks 

How should we categorize the different types of patterns that can be discovered from data? 
To appreciate what we mean by "different types of patterns, consider the following example. 
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Predicates 

Table 1: Types of Knowledge Discovery Tasks. 

Suppose a financial analyst is perusing a time series of prices for a particular bond, and 
finds an interesting pattern, where its price underwent a sudden price reversal. He wants 
the system to find all similar cases. Contrast this with a case where the analyst to know all 
cases where the price went through "unusual swings". Intuitively, cases of the second type 
seem like they would be harder for a system to discover. The goal is less precise, making the 
search a lot harder. 

We believe that a reasonable and useful way to categorize pattern discovery tasks is in 
terms of the representation scheme for knowledge that the system utilizes. As described in the 
previous section, our representation of "knowledge" is in the form of patterns represented 
either as predicates, such as head-and-shoulders(Stock, From, To), or as rules containing 
these predicates, such as the "insider trading" rule 2 presented in Section 3. Thus, one 
dimension along which we can distinguish the activities of the system is whether the unit of 
discovery is an individual predicate or a complete rule. 

The second dimension for distinguishing between different types of discovery is whether 
the discovery is of new pieces of "knowledge" - i.e., the generation of new predicates or rules 
previously unknown to the system - or the validation or search for existing templatess - 
i.e., discerning the occurrence of a known pattern at a particular point or over a particular 
interval in time, or adjusting the certainty of a known rule (note that in both of these cases 
of "validation", the "existing" predicates or rules may have been asserted by the user of the 
system, or may themselves have been "discovered" previously by the system itself). 

Categorizing patterns in terms of the above two dimensions leads to a two-by-two clas- 
sification of the knowledge discovery tasks to be explored, as shown in Table 1. The 
two dimensions of this matrix represent orthogonal dimensions of the discovery activ- 
ity. The predicates/rules dimension refers to the unit of the discovery task, and since 
predicates are the components of rules it is natural to consider them in this order. The 
ualidation/generation dimension refers to the input to the discovery task. In validation the 
system focuses on a particular pattern and determines whether it holds in the data, whereas 
in generation the system attempts to discover new patterns on its own. 

Thg following sections analyze the four types of discovery shown in Table 1. Discovery 
tasks of Class I involve the validation of previously defined facts or concepts, expressed in the 
form of predicates. Discovery tasks of Class I1 involve the validation of previously asserted 
rules. Discovery tasks of Class I11 involve the discovery of new, interesting predicate-based 
patterns that occur in the database. Discovery tasks of Class IV involve the discovery of 
new rules, which consist of interesting relationships among predicates. 

Center for Digital Economy Research 
Stern School of Business 
W o r h g  Paper IS-95-12 



4.1 Class I Tasks 

Discovery tasks of Class I involve the validation of previously defined facts or concepts, 
expressed in the form of predicates. This activity therefore involves the evaluation of user- 
defined predicates or views over the underlying database. 

Suppose, for example, that the user selects the time series A1 in Figure 1, indicates 
that the segment from 5/11/1988 through 6/3/1988 is "interesting" and asks the system 
to determine if this is a "bottom reversal" pattern, as defined in Section 3. This discovery 
process can have different levels of focus of the search. In our context of temporal databases 
and predicates, therefore, we consider the following types of discovery of predicate-biased 
patterns: 

1. bottom-reversal (IBM, 511 1/1988,6/3/1988) 

This type discovers if the time series for the IBM stock price exhibits the bottom- 
reversal pattern from 5/11/1988 to 6/3/1988. 

2. bottom-reversal (IBM, tl ,  t 2 )  

This type discovers all times tl and t2 such that the IBM stock price exhibits the 
bottom-reversal pattern on the time interval [tl, t2]. 

3. bottom-reversal (X, 5/11/1988,6/3/1988) 

This type discovers all the time series X that exhibit the bottom-reversal pattern be- 
tween 5/11/1988 and 6/3/1988. 

What would such a discovery process require? First, it requires an appropriate represen- 
tation for describing segments of temporal functions, as discussed in Section 2. Second, the 
matching of a pattern with a time series can be either exact or approximate ("fuzzy.") As an 
example of the exact matching, the interest rate might exactly match the user-defined bot- 
tom reversal pattern between 5/11/1988 and 6/3/1988. However, most likely, the matching 
would only be approximate. In this case, we have to use some measure of "fuzziness" to see 
if a time series matches a pattern. In general, approximate matching can be stated as the 
following optimization problem. Define some distance between a pattern and a time series 
that depends on some "matching" function. Then find a matching function that minimizes 
the distance between the pattern and the time series, subject to the user-specified constraints 
on the matching function. We say that the pattern matches the time series if the minimal 
distance is "small enough." 

We have already gone some way in developing and testing some techniques that appear 
to hold promise for tasks in this class. In particular, we have found that the signal processing 
techniqus of dynamic time warping is quite useful in detecting near matches of temporal pat- 
terns in large time series data [BC94, BC951. We have also begun exploring the application 
of neural net and fuzzy set technologies to tasks of this class. 

4.2 Class I1 Tasks 
Discovery tasks of Class I1 invoIve the validation of previously asserted rules. Typically, 
rules involve multiple predicates, and therefore generally multiple relations or views in the 
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database. When the database is rich in temporal data, such rules frequently express cor- 
relations between occurrences of different patterns, such as that "X typically follows Y", 
where "typically" might mean with a certainty factor above a certain threshold. Looking 
again at the data shown in Figure 1, for example, a domain expert might discern certain 
patterns that could be expressed in the form of rules. In the econometric domain, a rule 
might assert that "a sharp rise in housing starts (A2) typically follows a bottom reversal in 
the large capitalization index (Al)." In the agricultural domain, it appears that "a sustained 
drop in the temperature (B3) and a sustained drop in the amount of rainfall (Bl) typically 
occur simultaneously." Both of these proposed rules demonstrate the need to accommodate 
fuzziness in expressing such patterns, for instance in such terms as "typically follows" and 
"su~tained.~~ 

The task at  this level can be viewed more generally a s  follows. Given a rule of the form 
as defined in expression (I), evaluate (if it is a newly proposed rule) or re-evaluate (if the 
rule was previously asserted) the certainty factor c. 

We have already touched above upon one of the research question which bears on this 
type of discovery, namely, the treatment of "fuzzy" temporal relationships such as follows, 
follows soon after, etc. and the treatment of ' ~ z z y "  matches with other temporal patterns 
such as bottom-reversal. As we discussed above, this fuzziness could be treated either at 
the language level, with an explicit representation of the fuzziness, or left to the algorithmic 
level, i.e., incorporated into the pattern matching. In either case, the degree of matching of 
the predicates in a rule will influence the overall confidence - expressed in terms of c - in 
the strength of the entire rule. 

In summary, classes I and I1 are both validation tasks, where the system is presented 
with a given pattern (predicate- or rule-based) and is asked to 'Levaluate" it with respect to 
its knowledge base and the underlying database. More difficult than this type of discovery 
is. the task of generation. In the next two sections we discuss the issues involved in the 
generation of new predicates (Class 111) and new rules (Class IV). 

4.3 Class III Tasks 

In order to discover an interesting pattern (in contrast to validating one), a system must 
know where to focus its search. It must also know what to look for. Both these pieces of 
information can be based on the interests of the user. For example, patterns of interest could 
be "bottom reversals" in interest rates over some specified time period, "periodic spiking" 
of rainfall in a region, "volatile yields" of coffee crops, and so on. These patterns are newly 
discovered predicates, which could later become part of new rules which we consider in Class 
IV patterns. 

Let us consider a specific database on schema stocks(Date, Stock, Volume, PIE,  Nigh, 
Low, Close), from which we want to discover "interesting" predicate-based patterns. If we 
are interested in finding patterns on time series, we should first specify the space of time 
series to consider and how it can be determined from the database. This space of time series 
can either be specified by the user or be discovered by the system as being interesting in some 
sense. Initially, we assume that the user specifies this space of time series. For example, he 
or she may be interested in patterns of daily closing prices for the small capitalization stocks 
traded on the NASDAQ Stock exchange between January 1990 and January 1993. 
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Once the space of time series is defined, the system should look for "interesting" patterns 
in it. Where should a system start looking for "interesting" patterns in this set of time 
series? Should it look for periodic spikes or drops? For shapes that seem to occur several 
times over the time series? What durations should it pick for these shapes? Should it Look for 
the most frequently occurring patterns of closing prices where the pattern length is between 
10 -and 30 days? The search here must be based either on what is of interest to the user 
or "anomalous" data values, that is, values or distributions that deviate significantly from 
what they are "expected" to be. 

There are a number of measures of interestingness that the user can specify to the dis- 
covery system, such as 

volatility, standard deviation, and change in amplitude; for example the user may want 
to find patterns with highest standard deviation over some time interval 

frequency of occurrence; for example, the user may want to find the most frequently 
occurring patterns of daily closing stock prices for small capitalization stocks 

periodicity; for example, the user may want to find the most periodic patterns in the 
amounts of rainfall in Rio de Janeiro 

In addition, the system should have parameters for the above measures of interestingness. 
For example, it makes little sense to simply ask a system to look for the most frequently 
occurring patterns since shorter duration patterns would occur far more frequently than 
longer ones. Rather, what might be more interesting are the most frequently occurring 
patterns over periods of time ranging, say, between 10 and 30 days with the maximal standard 
deviation of 3.75. In effect, we must specify constraints which enable a system to find patterns 
that will turn out to be meaningful to the user. 

We have begun exploring the application of genetic algorithms and neural net technologies 
to tasks of this class. We also plan to explore clustering, factor, and discriminant analysis 
techniques for generating interesting predicates. 

4.4 Class IV Tasks 

Discovery tasks of Class IY involve the discovery of new rules of the form pl A . . . A p, -+ q, 
as defined in Section 3. For example, the system can discover the following rule that might 
be of interest to the economists: 

a bottom reversal in the large capitalization index, when accompanied by a bot- 
tom reversal in the interest rate, is typically followed shortly by a spike in the 
number of housing starts 

This rule can be formally expressed as 
bottomreversal (largecap-index, t 1, t2) A bottom-reversal(intrate, t3, t4) A 

same-time(t1, t2, t3, t4) A soon-a f ter(t, t2) -+ spike(housing-starts, t) [c] 
where same-time(t1, t2, t3, td) is a temporal correlation predicate speciEying that the time 
intervals [tl,  t2] and [t3, t4] occur "roughly" a t  the same time: and soon-after(t, t') is another 
temporal correlation predicate specifying that tJ < t and that t and t' are "close enough." 
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The problem of discovering new interesting temporal rules of the general form pl A . . . A 
p, -+ q [c] is an open-ended problem and can be focused by specifling the following types 
of constraints: 

I .  Constraints on the structure of a rule, i.e., what types of predicates pi and q, i = 
1,. . . , n, can appear in the rule, and constraints on the value of n. At one extreme, 
we can impose no constraints on the rules to be discovered. This means that we allow 
n to be any integer, and pi and q be arbitrary predicates defined in Section 3. As 
another extreme, we assume that n = 1, and that we want to discover the rules of the 
form pl 4 q, where pl and q are predicate-based patterns. Clearly, we can consider 
rules with other types of constraints that form a spectrum of options between the two 
extremes discussed above. 

2. Constraints on the size of the set of ordered data (such as  a time series) on which rules 
are discovered. We can assume either that each time series comes from a predefined 
set of ordered data (e.g. the set of daily temperatures taken in the major US cities 
over the past 3 years) or that it is a single set of data (daily temperatures in New York 
City taken over the past 3 years). 

3. Constraints on the number of patterns associated with set of ordered data. For exam- 
ple, we can look either at a single pattern on a time series or on multiple patterns. 

Depending on the selection of these constraints, we obtain different types of pattern 
discovery problems. We present some of the important problems for three specific choices of 
sets of constraints described above. 

1. Discovering correlation rules among patterns such that each pattern is defined on a 
single data series (the rule pl A . . . A pn + q is a correlation rule if p l ,  . . . , p,, and q 
are predicate-based patterns). Consider the ordered data set TSi for i = I,. . . , k and 
assume that a predicate-based pattern PA% is associated with each TSi. Then we want 
to find any interesting correlations among different patterns PAT, for i = 1,. . . , k. For 
example, we can try to find out if there is a correlation between head-and-shoulders 
and decline patterns in interest rates considered over the past 10 years. 

2. Discovering correlation rules among multiple patterns on multiple series of data. Con- 
sider an index I = (1,. . . , k)  and a set of data series TSi = {TSij)  for each i € I. For 
each series TSij, there is a set of patterns {PATjm) associated with it. Then we want 
to find any interesting correlations among different patterns PAT,jimi for i = 1 , .  . . , k, 
such that pattern PATij,,, is defined on TSiji. 

3. Discovering any arbitrary interesting rules pl A . . . A p, + q without any constraints 
on their structure. For example, we may want to discover interesting rules involving 
known technical analysis patterns [LR78] for the stock prices. These rules can involve 
stock prices, interest rates, and various other important statistics. They can also 
involve various groups of stocks, such as "transportation," or "small capitalization," 
or "growth1' stocks. 
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The major research issue is how to discover new rule-based patterns for each of the 
three problems presented above. The special case of Problem 1, when we want to discover 
correlations between two known patterns on a single time series, can be solved by using 
the solutions to the pattern discovery problems in Class I. For example, if we want to 
find correlations between head-and-shoulders and decline patterns in interest rates over the 
p q t  10 years, then we can determine all the cases of head-and-shovlders and of decline 
patterns over the past 10 years using the discovery techniques for Class I. After that, we 
can detect correlations among instances of these patterns. On the other extreme, Problem 3 
in its general formulation requires that a system decide for itself what metrics (frequencies, 
standard deviations, etc) it will use for detecting anomalies, and direct the search based on 
these metrics. 

We believe that the discovery tasks in this quadrant are inherently generate and test kinds 
of tasks for which intelligent hypothesis generators are essential. We have already developed 
some discovery techniques for the non-temporal domain [DT93] which we plan to extend to 
the temporal case. We have also plan to explore applications of genetic algorithms, neural 
nets, decision trees [Qui86], and statistical classification methods [BFOS84] to the discovery 
tasks in this quadrant. 

5 Concluding Remarks 

The task of discovering knowledge from databases is a challenging one, While consider- 
ing temporal databases adds to the complexity of both the database and the knowledge 
structures, we believe that the payoff will be great because in many applications temporal 
associations, correlations, and patterns ware a rich source of domain knowledge. In this 
paper we have provided an overview of the characteristics of both the application areas and 
the knowledge structures which we are analyzing. 

In the organization of our research agenda, we have found that having a simple but 
inforrnative classification scheme for the units and the tasks of discovery is an extremely 
useful in developing a plan of attack for the many problems such a rich domain presents. It 
provides a way of categorizing tasks according to their level of difficulty, and it also suggests 
what techniques might work for discovering the different kinds of patterns. 

We are currently exploring a number of techniques for handling these different types 
of discovery in a variety of application areas, and are developing a prototype discovery 
system structured as a loosely-coupled toolkit of tasks. Each task is a specialist in solving a 
particular subproblem of the overall goal of discovering useful knowledge. 
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