
MULTI-PLAYER BELIEF CALCULI: 

MODELS AND APPLICATIONS 

Shimon Schocken 
Information Systems Department 

Stern School of Business 
New York University 

Robert A. Hummel 
Courant Institute of Mathematical Sciences 

New York University 

February 4, 1993 

Center for Research on Information Systems 
Information Systems Department 

Stern School of Business 
New York University 

Workinq Paper Series 

STERN IS-93-2 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-02 



Multi-Player Belief Calculi: Models and Applications 

Slzirnon Schocken 

Robert A. Hurnrnel 

February 4, 1993 

In developing methods for dealing with uncertainty in reasoning systems, it 
is important to consider the needs of the target applications. In particular, 
when the source of inferential uncertainty can be tracked to distributions of 
expert opinions, there might be different ways to model the representation and 
combination of these opinions. In this paper we present the notion of multi- 
player belief calculi - a framework that takes into consideration not only the 
'regular' type of evidential uncertainty, but also the diversity of expert opinions 
when the evidence is held fixed. Using several applied examples, we show how 
the basic framework can be naturally extended to support different application 
needs and different sets of assumptions about the nature of the inference process. 
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1 Introduction 

The area of research that is generally referred to as "uncertainty in artificial intelligence" 

consists of many different methods for reasoning under uncertainty, and the reader is re- 

ferred to Pearl [9] for a comprehensive review. The methods that are in common use include 

the Dempster-Shafer theory of evidence (Shafer, [12]), fuzzy set theory (Zadeh, [16]), and 

Bayesian networks (Pearl, 191). There is now an entire subfield devoted to the topic, with 

compiled workshop proceedings [S]. Yet in spite of the great theoretical progress that was 

made during the last decade, a common criticism of the existing methods is that they are 

inapplicable to  a wide range of real problems. Indeed, theories developed independent of 

applications tend to lack extensibility and miss important features of standard reasoning. 

In order to  begin to address this problem, we argue in this paper that methods of uncer- 

tainty reasoning should be application-driven and sufficiently flexible to accommodate the 

needs of different problems and inference contexts. 

In many methods, degrees of belief are encoded using probabilities. For example, Bayesian 

networks make use of probabilistic combinations to maintain degrees of uncertainty in 

propositions (Pearl, [lo]). However, it is a well-observed fact that belief and probability are 

often two separate notions. $For example, it is possible to be very certain (or alternatively, 

very uncertain) about a probabilistic statement. E d y  expert systems like MYCIN and 

Prospector represented propositions 1 : V i t h  pairs of numbers - one number relating to a 

probability and the other to a degree of certainty - and employed different methods for 

combining them [I], 131. Subsequently, most expert systems use some form of an uncertainty 

reasoning calculus to deal with non-categorical inference rules and uncertain data. 
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Depending on whether probabilities are interpreted as subjective quantities or as frequentist 

measures of occurance rates, different methods for interpreting and combining them, result. 

While some of the methods use pairs of number in place of point probabilities, others use 

intervals of probabilities (Dempster, [2], Good, [4]). Intervals are equivalent to the "pair of 

numbers" representation, in the sense that there is a central value and an interval width. 

However, the concept of an interval leads naturally to the idea that a combination formula 

can be developed by tracking all possible pairings of values within intervals. One way 

to  view this formulation is to distinguish between two sample spaces. The probabilities 

might be defined based on occurrences over one sample space, whereas the intervals might 

represent different estimates of the probability, as computed by or elicited from different 

agents indexed over a second and separate sample space. This duality is the foundation 

behind the multi-player belief formulation that is described in this paper. 

Perhaps the most well-studied method for representing and combining belief intervals is the 

Dempster-Shafer theory of evidence, in which the end-points of the intervals are represented 

through belief and plausibility functions, together with a particular calculus (Shafer, [12]). 

As we treat in greater detail below, the theory of evidence can be viewed as replacing 

intervals of probabilities with collections of lists of possibilities (we take a possibility to be 

a subset of hypotheses, propositions, or simply labels). This gives rise to a multi-player 

interpretation, in which different players specify different possibilities and a calculus is used 

to pooI and combine their opinions into a joint opinion. 

In the standard Dempster-Shafer model, each 'player' designates a single nonempty subset 

of labels. Several authors proposed extensions to this basic setting. In Yen's GERTIS 

system [15], each 'player' designates a collection of disjoint nonempty subsets toget her 
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with a probability distribution over the collection of subsets. A calculus is then developed 

using a modified Dempster's formula. Further, a hierarchy of labels is incorporated to 

allow players to  refine the precision with which they designate subcollections of labels. 

Recently, Tzeng has introduced a mathematical model of uncertain information [14]. The 

model is related to  the Dempster-Shafer calculus, in that there are "messages" that map to 

subsets of labels, but is considerably more general. Indeed, Tzeng shows how the Bayesian 

calculus and the Dempster-Shafer calculus fit into the scheme, and demonstrates a range 

of other possibilities that can be derived from the same model. Each message in Tzeng's 

formulation may have a weight, and for c given piece of evidence, there is an associated 

collection of distinct messages, each giving a single subcollection of labels. The collection 

of possible evidence codes are then given a prior probability distribution, and computations 

may be made in a Bayesian fashion conditioned on certain codes. The modeling that leads 

to structure in Tzeng's model occurs when the variety of available messages, codes, and 

sets of experts, are restricted. 

The fact that there are alternative and more general models for handling uncertainty in 

reasoning systems suggests that any single framework is likely to be inadequate for some 

applications. Accordingly, in this paper we begin with a simple framework for reasoning 

under uncertainty that can be easily extended in many different ways. Next, we discuss 

how particular application needs and assumption sets can be addressed by modifications 

and extensions of the basic framework. 
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Multi-Player Belief Calculi 

In a recent article, Hummel Sr; Manevitz [63 noted that evidential reasoning is characterized 

by two types of uncertainty: 'intrinsic' and 'extrinsic.' The source of intrinsic uncertainty 

is pluralism, or diversity of opinions: when two or more experts are presented with the 

same piece of evidence, the conclusions that they draw may be different. In contrast, ex- 

trinsic uncertainty occurs because different pieces of evidence lead to different conclusions. 

When two or more pieces of evidence are considered simultaneously, the joint conclusion 

that they yield can either contradict, amplify, or be quite different than, any one of the 

individual conclusions. In what follows, evidential reasoning models that take both types 

of uncertainty into consideration are called multi-player belief calculi. 

The mathematical foundations of multi-player belief calculi were articulated by Hummel Sr; 

Landy [5 ] ,  and the reader is referred there for a detailed analysis. In this section we wish 

to  describe the basic idea by example, without getting into formal notation. Let A, B, and 

C be three exhaustive and mutually exclusive hypotheses, exactly one of which is known 

to be true. Suppose that two groups of experts are called upon to assess the IikeIihoods of 

these hypotheses in light of two different bodies of evidence, denoted el and ea. Specifically, 

all the experts in each group are presented with the same body of evidence and are then 

asked to state individually the hypotheses that the evidence renders as unlikely, in their 

opinion. Two restrictions are placed on the expert responses. First, the experts must 
\ rr rule out unlikely hypotheses categorically (this restriction will be lifted la, . aecond, the 

experts are not allowed to rule out all the hypotheses. Thus, each expert opinion can be 

represented as a binary vector in which 0 codes that the respective hypothesis has been 
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ruled out by the expert and 1 otherwise. For example, the opinion (1,0,1) codes that B 

was ruled out by the expert, implying the expert's belief that the truth lies in the subset 

{A, C). Since the expert's response must imply at least one likely hypothesis, the opinion 

(0,0,0) is disallowed, and the case of insufficient reason, or total ignorance, is modeled by 

the opinion (1,1,1). This particular opinion is consistent with an expert who asserts that 

the available evidence is not sufficiently useful to rule out any hypothesis. 

Figure 1 depicts a hypothetical 'scenario i.n which the sources of evidence el and e2 charac- 

terize two groups consisting of five and seven experts, respectively. All the experts express 

their beliefs in a common set of hypotheses - {A,B,C) - and their specific opinions are 

recorded in the two left-most tables in the figure. As the tables indicate, in the first group 

two experts say that el rules out C and three experts say that el rules out B. Similarly, 

in the second group two experts say that e2 rules out A and C, four experts say that e2 

rules out A, and one expert says that e2 rules out A and B. How can we summarize these 

distributions of opinions into a single statement about the joint impact of the body of 

evidence {el, e2) on the relative likelihoods of the three hypotheses? 

Technically speaking, one can think of a variety of such multi-player belief calculi. The 

calculi will differ in terms of expert matching rules and belief combination operators, but 

their overall goal will be the same: reducing a multitude of possibly conflicting and re- 

dundant opinions into some plausible summary. However, we believe that the only calculi 

which are worth researching are those that have (i) a solid normative justification, and (ii) 

a practical face validity. Figure 1 illustrates the operation of one such calculus, which we 

call the Boolean set-product model. Later in the paper we will use this simple model as a 

point of departure towards developing more sophisticated calculi that can be customized 
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for different applications. 

( e l ,  e2) ' 

A B C  -------- 
4 : O l O  
8 : O l O  

(e l ,  e2) 

A B C  --------- 
6: 0 0 1  

2: 0 0 . 0 ~ 1 0 :  0 10-16: 0 l o  
6 : O O l  normalize 1 4 : O O l  1 9 : O O l  

Figure 1 

The Boolean set-product calculus implements what may be termed a cartesian consensus 

operation. First, one constructs all the committees of two that can be formed by matching 

each expert from the first group with each expert from the second group. In the above 

example, there are 5 x 7 = 35 such pairs of experts. The opinion of each committee is 

then taken to be the conjunction of the Boolean opinions of its members. For example, all 

the committees whose members had the individual opinions (1,1,0) and ( O , 1 , 1 )  yield the 

joint opinion (0,1,0) (first tuple in the third table). In the special case of figure 1, four 

commit tees ended up producing this particular opinion. Note that the Boolean conjunction 

operator rules out the hypotheses that were ruled out by both experts. This combination 
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scheme would not work if the individual experts were instructed to select, rather than 

eliminate, hypotheses. This subtle point will be taken up later in the paper. 

As it turns out, the Boolean conjunction of valid opinions may well generate an invalid 

opinion, which happens whenever the operator produces vectors of the form (0,0,0). This 

is an anomaly, since null opinions are disallowed at the axiomatic level. One way to resolve 

the problem is to disregard all the committees that produced null opinions and distribute 

their 'votes' evenly among all the conlrnittees that produced non-null opinions. In figure 

1, this operation yields the table (el, e2).  Finally, since the only thing that distinguishes 

one commit tee from another (in this particular model) is the joint opinion, the committees 

that have identical opinions are collated, leading to the right most table in figure 1. 

The Boolean set-product calculus is of special interest t o  us because of its unique rela- 

tionship to the Dempster-Shafer model. First, we recall that Dempster's rule computes a 

pooled mass function m = ml 63 mz : 2' i [0, I] as follows: 

As was shown by Hummel St Landy (19SS), the Boolean set-product calculus and the stan- 

dard Dempster-Shafer model are isomorphic. The remainder of this section demonstrates 

this important relationship in the context of figure 1. First, the frame of discernment is the 
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hypotheses set 0 = { A ,  B, C), exactly one of which is assumed to be true. Each expert rules 

out a subset of hypotheses, thereby retaining a subset X 2 0 of likely hypotheses which is 

said to be possible. For example, the opinion (1,0,1) implies that { A ,  C) is possible in the 

view of that expert. Hence, if we let X range over Z8, then the mass m(X), belief Bel(X), 

and plausibility Pl(X) functions can be defined as (i) the fraction of experts who implied 

that the subset X is possible; (ii) the fraction of experts who ruled out all the hypotheses 

outside X ;  and (iii) the fraction of experts whose possible subsets intersect X .  It is easy 

tho show that these fractional mappings preserve all the mathematical properties of m(.), 

Belt.), and PI(.) by construction. 

To illustrate, consider the specific scenario depicted in figure 1. The two left-most ta- 

bles induce two mass functions ml, m2 : 2{AyB7C} _+ [O, 11 as follows: ml({A, B)) = 

2/5, ml({A,C)) = 3/5, and ml(X) = 0 for all other subsets of 0, and m2({B,C}) = 

2/7, m2({B)) = 4/7, m2({C)) = 1/7, and m2(X) = 0 for all other subsets of 0. Similarly, 

the right-most table - the outcome of the Boolean set product operation on the above two 

tables - induces the mass m({B)) = 16/35, m ( { C ) )  = 19/35, and m(X) = 0 for all other 

subsets of 0. The relationship of the Boolean set-product calculus to Dempster's rule is 

illustrated by the fact that had we applied the latter to the two functions ml and m2 using 

eqn. (1) and (Z), we would have obtained precisely the same function as m. That is, if we 

denote the mass function that a set of opinions T induces by m,, the set-product/binary- 

conjunction operation as @, and Dempster's rule as $, we have the following isomorphism: 

~ T ~ B T ~  = m ~ z .  

The multi-player interpretation and the isomorphism imply that the Dempster-Shafer 

model is essentially a mechanism for representing and combining statistics of collections of 
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opinions rather than tracking the collections themselves. However, different applications 

may require different ways to summarize and process collections of expert opinions. This 

view means that the Dempster-Shafer model can be seen as one instance in a parametric 

family of multi-player belief calculi. 

Medical Diagnosis 

Two common practices in medical diagnosis are: (i) referrals, and (ii) second opinions. 

A referral occurs when a general physician directs a patient to a specialist; a second 

opinion occurs when a patient consults independently with two doctors of the same spe- 

cialty. This section illustrates how multi-player belief calculi can be used to model a 

multi-referral/multi-opinions diagnostic process. 

As is normally done in diagnostic and fault-detection applications, we take the hypotheses 

set to be an exhaustive and mutually-exclusive set of potential diseases. If the initial set 

is not exhaustive, it can be made so by adding the hypothesis "none-of-the-above." If 

it is originally not mutually-exclusive, it can be augmented with all the plausible subsets 

of diseases that may co-occur in the same patient. The experts correspond to doctors 

who are grouped in different specialties, e.g. general physicians, neurologists, cardiologists, 

etc., all examining the same patient. Each doctor issues an independent prognosis that 

is essentially a list of possible diseases. The different bodies of evidence (e.g. el and ez 

in figure 1) model the different training, diagnostic procedures, and information sets that 

characterize different specialists. For example, a hand surgeon who examines a patient 

with a severe pain in the wrist joint will ask different questions and administer different 
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tests compared to a neurologist who examines the very same patient. 

Since medicine is an inexact science, it is entirely possible that the prognoses of the same 

patient will be inconsistent. Hence, if all the doctors were considered equally qualified, 

it would be reasonable to try to (i) gauge the degrees of agreement/disagreement among 

the various specialists; and (ii) fuse the individual opinions into a joint prognosis that 

takes all the doctors into consideration. This pooling mechanism could be implemented 

in the context of a consultation system that makes use of previous prognoses of virtual 

patients that share common symptomatic profiles. There are at  least two examples that 

could greatly benefit from such a consultation system: health management organizations 

(HMO)%, and emergency rooms. 

In a typical HMO, general physicians are routinely asked to examine numerous patients 

under time pressure, refer them to specialists, and then manage the overall information 

gathering and consultation process. Recent reports about the health care crisis in the 

United States indicate that the referral process is extremely wasteful, to the extent that 

insurance companies have begun to rebut the medical judgement of the referring doctors 

(New York Times, 1/20/93). In particular, it has been observed that general physicians 

often make unnecessary referrals in order to protect themselves from malpractice suits and 

compensate for lack of diagnostic experience. Under such circumstances, an inexperienced 

doctor who examines a new patient could clearly benefit from a consultation system that 

advises him/her on how different specialists have judged similar cases in the past. This 

information can be gathered from historical medical records, and then processed and sum- 

marized by a multi-player belief calculus. 

However, there are several reasons why the simple Boolean set-product calculus described 
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in the previous section is inappropriate for such an application. First, the prognoses that 

doctors make in practice are often non-categorical and non-committal, and thus the require- 

ment that all opinions be Boolean is unrealistic. Second, the calculus yields a measure of 

average opinion which takes into account neither the number of doctors in each specialty 

group, nor the variance of their individual opinions. Needless to say, both parameters 

are critically important in real consultations with multiple doctors. Third, the opinions 

of all the doctors are weighted equally, and there is no provision for amplifying or dis- 

counting certain individual opinions, as is normally done in practice. Fourth, the bodies of 

evidence that characterize the different specialist groups have common features, and thus 

they cannot be considered independent. 

Focusing on the latter point, note that in the absence of other assumptions, the proba- 

bility distribution over a collection of hypotheses, conditioned on two different sources of 

evidence, can have an arbitrarily complex functional relationship to the probabilities that 

are conditioned on each source of evidence individually. Similarly, the level of uncertainty 

for each hypothesis, given two sources of evidence, may be arbitrarily related to the con- 

ditional probabilities and uncertainties for those hypotheses individually. To make order 

of the chaos, one must either have a functional model for the relationships, or one must 

make certain simplifying assumptions. In general, selection of the appropriate assump- 

tions should be driven by the applications. Thus, different versions of multi-player calculi 

that address these and other application-specific concerns can be developed, yielding more 

realistic approaches to uncertainty reasoning. 
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Bibliographical indexing 

Bibliographical indexing models concern the construction of data structures that enable 

rapid content-based access to collections of documents. Given a document, on the one 

hand, and a keyword lexicon, on the other, the goal of the indexing model is to select a 

subset of keywords that 'best' describes the document to its prospective users. Since some 

keywords are more relevant to the document than others, a numeric scale is often used 

to express the strength of association between the document and the selected keywords. 

The result is an index vector, consisting of pairs of keywords and their respective relevance 

weights. 

Like medical diagnosis, bibliographical indexing is an inexact science. The relevance of a 

document to a keyword is a subjective relation which may be based on an aggregation of 

several indexing opinions. Specifically, each document has many classifiers, or discerning 

characteristics, that determine its relevance. For example, the title of a document can sug- 

gest one index, whereas the abst~nct can suggest another. Other aspects of the document, 

obtained through lexical, linguistic, and citations, analyses will yield additional indexing 

opinions that must be taken into consideration. Hence, even if the individual relevance 

opinions were forced to be binary, their aggregation would probably induce a continuous 

index. In addition, the indexing opinions may or may not be automatic. In the latter case, 

they would be elicited from human catalogers who inject yet another level of uncertainty to 

the indexing process. That is, when two catalogers are given access to the same classifier 

as background information, they may well supply two different indexing opinions. In fact, 

empirical studies have indicated that this kind of indexing uncertainty prevails even among 

well-trained catalogers (Jacoby Sz Slamecka [7], Stevens [13]). 
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In a recent paper, we explored how a multi-player belief calculus can be used to model 

and manage an indexing process that involves multiple relevance opinions (Schocken & 

Hummel, [ l l ] ) .  In this application, the frame of discernment ( { A ,  B, C) in figure 1) is 

taken to  be a set of descriptive keywords, or a lexicon. The experts correspond to human 

catalogers who are asked to express relevance opinions regarding a given document. In the 

simplest model, each cataloger supplies a list of relevant keywords. Next, a multi-player 

relevance calculus is used to combine the individual relevance opinions into a joint set of 

committee opinions. The mass function that the (normalized) committee opinions induce 

is then taken to  be the joint relevance vector associated with the document in question. 

There are several reasons why the catalogers can be placed in different categories (corre- 

sponding to tables el and ez in figure l), and why the joint index may be more informative 

than any one of the individual indexes. From a cognitive standpoint, instead of asking 

each cataloger to read and index the entire document, it may better to expose different 

catalogers to  different classifying criteria - e.g. the document's title, abstract, introduc- 

tion and conclusion sections, etc. - and then combine their individual indexing opinions 

using a formal model. This approach can reduce information overload, debias classification 

errors, and generate new relevance opinions. Of course, the question of whether a pooled 

approach will yield better indexing decisions than individuals should be tested empirically. 

As data communications and networking technologies continues to develop, retrieval sys- 

tems like WAIS will connect masses of people to on-line libraries, opening new possibilities 

for interactive indexing. In an interactive indexing scenario, relevance opinions are dynam- 

ically elicited from library searchers and then used to refine (or even create) index vectors. 

The relevance opinions of the searchers can be obtained explicitly, or through keyword ex- 
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traction algorithms that match their stated queries and the documents that they eventually 

find useful. In such a setting, the different groups of catalogers can correspond to the dif- 

ferent domains, or queries, in the context of which the relevance opinions were made. Such 

an indexing scheme could be particularly effective in multi-disciplinary areas of interest. 

For example, it is quite possible that computer scientists, physicists, and neurologists will 

use different terms to  describe and access the same neural networks paper. We believe 

that multi-player belief calculi, along with lexical analysis methods, could be used to join 

these different indexing opinions into a composite index that takes into consideration the 

information needs of a diverse group of library patrons. 

Discussion 

The example applications that were presented above lead us to two key observations: (1) 

individual players should be allowed to express probabilistic opinions, and the probabilities 

can be regarded as estimates or subjective quantities; (2) players can be grouped into 

classes and hierarchies based on the information that they bring to bear in arriving at their 

assessments. The variation in the resulting distribution of opinions can be attributed to 

the evidence that is presented, and to the specializations of the agents giving the opinions. 

In the Hummel Sz Manevitz work [ 6 ] ,  uncertainty calculi satisfying desiderata (1) are devel- 

oped. In these calculi, multiple probabilistic opinions are expressed (actually, logarithmic 

opinions), and the degree of uncertainty is encoded in the spread of the opinions. These 

calculi also permit aggregation of the opinions into classes, satisfying portions of condition 

(2). The classes are then combined using a Bayesian combination of all tuples of opin- 
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ions, potentially using non-independent conditioning and varying weights on the individual 

opinions. The degree of certainty in the resulting belief representation is naturally encoded 

in the resulting distribution. 

On the other hand, the calculi given by Hummel St Manevitz only deal with 'intrinsic' 

uncertainty, so that uncertainty increases as constituent groups of opinions spread, but 

not necessarily as they diverge. In our applications, we can see how uncertainty should 

take into account divergence of opinions that might result from different classes of players, 

but that the formulas should reflect the fact that only certain divergences of opinions lead 

to  uncertainty, whereas other divergences are explainable and might even lead to greater 

certainty. Further, we see that the dependencies among different classes should be modeled 

accurately, and that methods for uncertainty management need to be adaptive. 

The purpose of this paper was to survey the theory of multi-player belief calculi and to 

explore its potential use in certain canonical applications. Our next step in this research 

program is to  fully specify several calculi, implement them in reasoning systems, and then 

test their effectiveness in controlled experiments. While we have yet to build these systems, 

we believe that the multi-player paradigm, and the grouping of the players in ways suggested 

by the applications, will provide important and useful constraints to the development of 

practical methods for reasoning under uncertainty. 
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